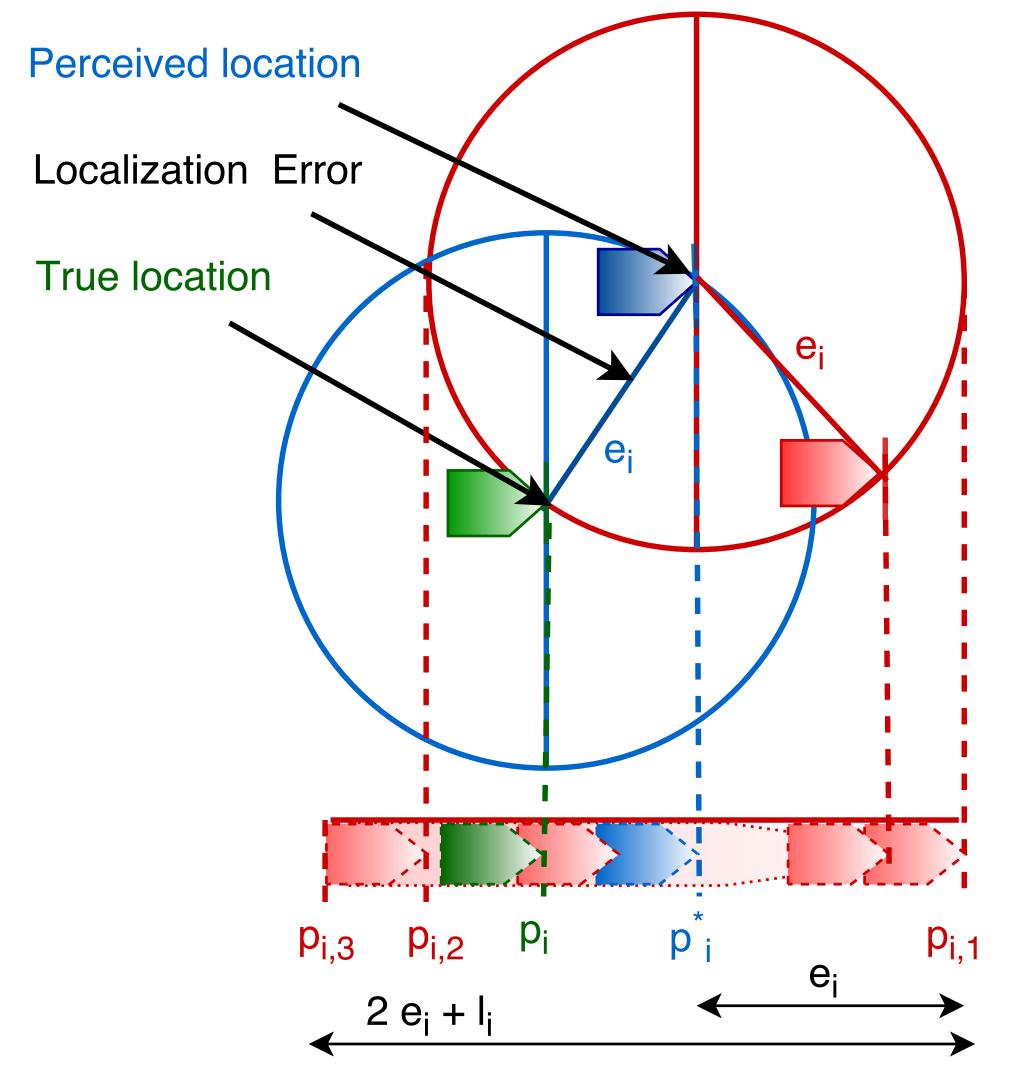
Accounting for Localization Errors in a Mixed-Vehicle Centralized Control System

UPPONC SORBONNE UNIVERSITÉS Raj Haresh PATEL, Jérôme HÄRRI, Christian BONNET

Communication Systems Department, EURECOM, Sophia-Antipolis, France

Mixed Vehicle Scenario

- Near future will have vehicles with different levels of automation on the roads
- Manually Driven Vehicles: No automation
 ACC vehicles: vehicle control capability
- -CACC vehicles: vehicle control and communication capability
- Present day traffic issues \rightarrow solution
 - Traffic jams
 - Accidents $\} \rightarrow$ Vehicle Control Coordination
 - Fuel economy


Vehicle Control Coordination

Localization Errors

- Different Localization techniques achieve different levels of localization accuracy
- Localization errors with map-matching techniques are usually lower than with GPS
- Issue: Unaccounted errors in localization
 (e_i) causes accidents in a centralized control model

Methodology

True location (p_i): (unknown) actual localization value

- Centralized control: a common controller computes and allocates control inputs
- From a controller point of view:
 Active Participants (APs) can be controlled (e.g.: CACC vehicles)
- Passive Participants (PPs) can not be controlled (e.g.: manually driven vehicles)
- Assumption: PPs like APs communicate with centralized controller using DSRC or cellular connection
- Perceived location (p^{*}_i): (known) localization value with errors computed by the vehicle
 Potential location (p_{i,1} to p_{i,2}): (computed) locations where vehicle can be found based on perceived location and localization accuracy
- Compute and use potential area occupied $(p_{i,1} \text{ to } p_{i,3})$ to ensure collision avoidance
- Solve multi vehicle collision free braking scenario using a centralized control model implementing Model Predictive Control

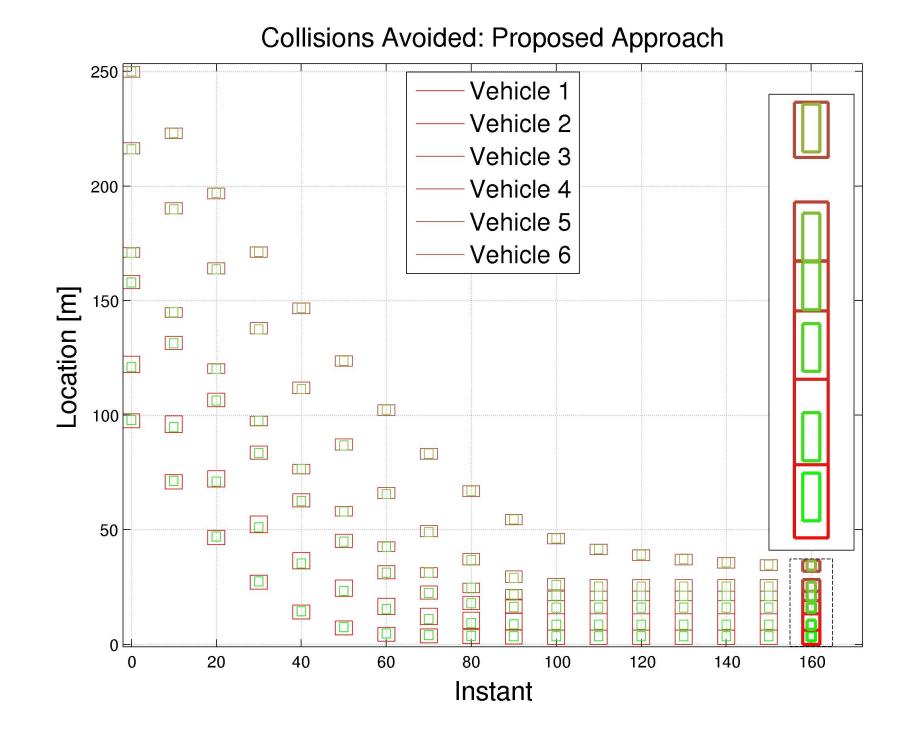
 $\begin{array}{l} p_{i,1} \text{ to } p_{i,2} : \text{Potential location of vehicle} \\ p_{i,1} \text{ to } p_{i,3} : \text{Potential area occupied by the vehicle} \\ \end{array}$ Figure: Modeling localization errors in 2D and in 1D

Evaluation Criteria

Compute number of collisions avoided when:

- Localization errors are absent $\Rightarrow \alpha$
- Localization errors are present, unaccounted $\Rightarrow \beta$
 - compute control inputs using erroneous localization
- implement computed control inputs on vehicles in their true locations
- Cost function used in β1 maximizes comfort whereas the cost function used in β2 minimizes deviation from a desired intervehicular distance (3 m)

Centralized Control Model

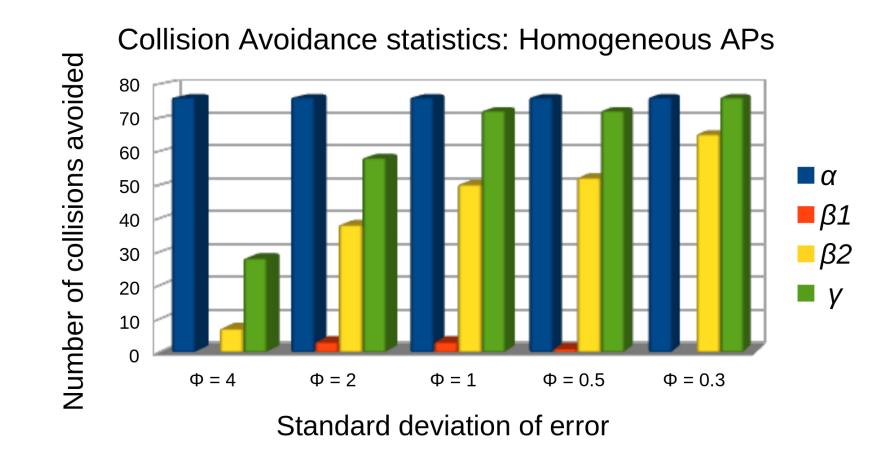

Goal: To account for localization errors to ensure collision avoidance while deriving control inputs for APs Cost Function $\begin{cases} \min i = \sum_{i=1}^{n_v} \sum_{n=1}^{N} ||u_i(n) - u_i(n-1)||_2 \\ \text{subject to} \\ \\ l_{i,e} = l_i + 2 \cdot e_i \\ p_{i,1} = p_i^* + e_i \end{cases}$

	$x_i = [p_{i,1} \ v_i]^T$
State Equations <	$x_i(n+1) = Ax_i(n) + Bu_i(n)$
	$ \begin{cases} A = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} & B = \begin{bmatrix} (\Delta t)^2 / 2 \\ \Delta t \end{bmatrix} \\ p_{i,1} = v_i; \dot{v}_i = u_i; \dot{u}_i = j_i \\ \begin{cases} x_i^{min} \le x_i(n) \le x_i^{max} \end{cases} $
	$ \begin{array}{lll} p_{i,1} = v_i; & \dot{v}_i = u_i; & \dot{u}_i = j_i \end{array} $
	$x_i^{min} \le x_i(n) \le x_i^{max}$
Vehicle and Passenger Constraints	$u_i^{min} \le u_i(n) \le u_i^{max}$
	$j_i^{min} \le j_i(n) \le j_i^{max}$
Collision Avoidance Condition <	$\left\{ d_{ik}^*(n) = p_{i,1}(n) - p_{k,1}(n) - l_{i,e} > 0 \qquad \forall i \in 2n_v, \ k = i - 1 \right\}$
Braking Condition <	$v_i(N) = 0$
Manually Driven Vehicles	$\begin{cases} u_i(n) = \begin{cases} 0 & \text{if } 0 \le n \le nt_{i,1} \\ u_i^{min} & nt_{i,1} < n \le nth_i \\ 0 & n > nth_i \end{cases} \forall i \in \{PP\} \end{cases}$

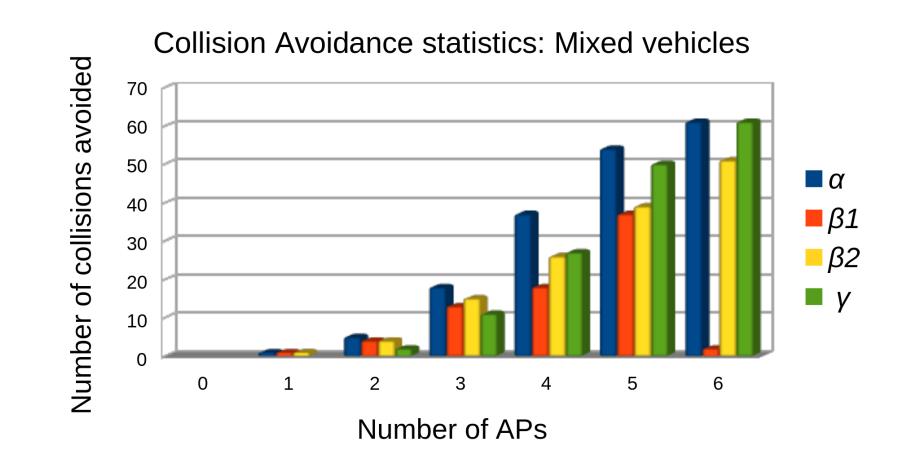
- Localization errors are present, accounted $\Rightarrow \gamma$

Algorithm Performance

Green block = true location of vehicle Red block = potential location of vehicle


Simulation Results

Mixed APs and PPs


Homogeneous APs

- Our proposed approa

- Localization error for each vehicle is derived from $\mathcal{N}(0,\,\varphi)$ with a fixed φ

 Localization error for each AP and PP is derived from *N*(0, φ); (φ_{AP}=30 cm, φ_{PP}=4 m) respectively

 Our proposed approach considers localization errors while computing control inputs for APs in a centralized control system

Summary

- Despite erroneous localization, proposed algorithm closely matches the performance of the case where true localization was known
- Higher the penetration of AP, more are the collisions avoided because:
- -AP's controls can be controlled
- -AP's usually have lower localization errors

References

 R. H. Patel, J. Härri and C. Bonnet, "Accounting for Localization Errors in a Mixed-Vehicle Centralized Control System", MobilTUM 2017.