Beamforming Design with Combined Channel Estimate and Covariance CSIT via Random Matrix Theory

Wassim Tabikh\(^{1,6}\), Yi Yuan-Wu\(^{6}\), Dirk Slock\(^{\dagger}\),
\(^{\dagger}\)EURECOM, Sophia-Antipolis, France, Email: \{slock,wassim.tabikh\}@eurecom.fr
\(^{6}\)Orange Labs, Issy-les-Moulineaux, France, Email: \{yi.yuan,wassim.tabikh\}@orange.com

Abstract—The Interfering Broadcast Channel (IBC) applies to the downlink of (cellular and/or heterogeneous) multi-cell networks, which are limited by multi-user (MU) interference. The interference alignment (IA) concept has shown that interference does not need to be inevitable. In particular spatial IA in the MIMO IBC allows for low latency transmission. However, IA requires perfect and typically global Channel State Information at the Transmitter(s) (CSIT), whose acquisition does not scale well with network size. Also, the design of transmitters (Tx) and receivers (Rx) is coupled and hence needs to be centralized (cloud) or duplicated (distributed approach). CSIT, which is crucial in MU systems, is always imperfect in practice. We consider the joint optimal exploitation of mean (channel estimates) and covariance Gaussian partial CSIT. Indeed, in a Massive MIMO (MaMIMO) setting (esp. when combined with mmWave) the channel covariances may exhibit low rank and zero-forcing might be possible by just exploiting the covariance subspaces. But the question is the optimization of beamformers for the expected weighted sum rate (WSR) at finite SNR. We propose explicit beamforming solutions and indicate that existing large system analysis can be extended to handle optimized beamformers with the more general partial CSIT considered here.

Index Terms—Massive MIMO; multi-user; multi-cell; sum rate; beamforming; partial CSIT; large system analysis

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/transmission and Rx may denote receive/receiver/reception. Interference is the main limiting factor in wireless transmission. Base stations (BSs) disposing of multiple antennas are able to serve multiple User Equipments (UEs) simultaneously. However, MU systems have precise requirements for CSIT which is more difficult to acquire than CSI at the Rx (CSIR). Hence we focus here on the more challenging downlink (DL) and we talk about the so-called maximizing the weighted sum rate with partial CSIT. Earlier works have attempted optimal partial CSIT designs for multi-user MIMO, e.g. the Expected Weighted Sum MSE (EWSMSE) approach applied in [1] for MIMO IBC BF design. However, the EWSMSE approach is suboptimal and cannot even be used in the zero channel mean case (case of covariance CSIT only). In spite of that, it has been mistakenly considered optimal as recently as in [2]. We treat the Gaussian CSIT case with both mean and covariance information. The goal here is to go beyond the extreme of ZF and to introduce a meaningful BF design at finite SNR and with partial CSIT. A significant push for large system analysis in MaMIMO systems appeared in [3]. It allows to obtain deterministic (instead of fast fading channel dependent) expressions for various scalar quantities, facilitating the analysis of wireless systems. E.g. it may allow to evaluate beamforming performance without computing explicit beamformers. The analysis in [3] allowed e.g. the determination of the optimal regularization factor in R-ZF BF. A little known extension appeared in [4] for optimal beamformers, but only for the perfect CSIT case. Some other extensions appeared recently in [5] or [6] where MISO IBC is considered with perfect CSIT and weighted R-ZF BF, with two optimized weight levels, for intracell or intercell interference.

The contributions of this paper are: a new look at Rx/Tx design with partial CSI, derivation of BF design exploiting both mean and covariance CSIT for the MIMO IBC, which becomes optimal in the MaMIMO limit.

II. THE IBC SIGNAL MODEL

Let us consider an IBC system with \(C \) cells with a total of \(K \) users. We shall consider a system-wide numbering of the users. User \(k \) is served by BS \(b_k \). The \(N_k \times 1 \) received signal at user \(k \) in cell \(b_k \) is

\[
y_k = H_{k,b_k} G_{k} x_k + \sum_{b_i = b_k} H_{k,b_i} G_{k} x_i + \sum_{j \neq b_k} \sum_{i \neq j} H_{k,j} G_{i} x_i + v_k
\]

(1)

where \(x_k \) are the intended \(d_k \times 1 \) signals (each white and unit variance), \(d_k \) is the number of intended streams, \(H_{k,b_k} \) is the \(N_k \times M_{b_k} \) channel from BS \(b_k \) to user \(k \). BS \(b_k \) serves \(K_{b_k} = \sum_{i \neq b_k} 1 \) users. We consider the noise as \(v_k \sim \mathcal{CN}(0, \sigma^2 I_{N_k}) \). The \(M_{b_k} \times d_k \) spatial Tx filter or beamformer (BF) is \(G_{k} \).

III. MAX WSR WITH PERFECT CSIT

This section stems entirely from [7]. Consider as a starting point for the optimization the weighted sum rate (WSR)

\[
WSR = WSR(Q) = \sum_{k=1}^{K} u_k \ln \det \left(I_{N_k} + R_{\Xi}^{-1} H_{k,b_k} Q_k H_{k,b_k}^H \right)
\]

(2)
where \(Q\) represents the collection of transmit covariance matrices \(Q_k\), the \(u_k\) are rate weights
\[
R_k = H_{k:b_k} Q_k H_{k:b_k}^H + R_\Sigma, \quad \Sigma = G_i G_i^H, \\
R_\Sigma = \sum_{i \neq k} H_{k:b_i} Q_i H_{k:b_i}^H + \sigma^2 I_{N_k}
\]
\(R_k, R_\Sigma\) are the total and the interference plus noise Rx covariance matrices resp. The WSR cost function needs to be augmented with the power constraints
\[
\sum_{k:b_k = j} \tr\{Q_k\} \leq P_j^{BS}
\]
So our optimization problem can be expressed as the following:
\[
\max_Q WSR(Q) \quad \text{s.t.} \quad \sum_{k:b_k = j} \tr\{Q_k\} \leq P_j^{BS}
\]
where \(WSR(Q)\) is given in (2). In a classical difference of convex functions (DC programming) approach, Kim and Giannakis [7] propose to keep the concave terms and to replace the convex interference terms by the linear (and hence concave) tangent approximation. More specifically, consider the dependence of WSR on \(Q_k\) alone. Then
\[
WSR = u_k \ln \det(R_k^{-1} R_k) + WSR_{\Sigma}, \\
WSR_{\Sigma} = \sum_{i=1}^{i=k} u_i \ln \det(R_i^{-1} R_i)
\]
where \(\ln \det(R_i^{-1} R_i)\) is concave in \(Q_i\) and \(WSR_{\Sigma}\) is convex in \(Q_k\). Since a linear function is simultaneously convex and concave, consider the first order Taylor series expansion in \(Q_k\) around \(\hat{Q}\) (i.e. all \(\hat{Q}_i\)) with e.g. \(\hat{R}_i = R_i(\hat{Q})\), then
\[
WSR_{\Sigma}(Q_k, \hat{Q}) \approx WSR_{\Sigma}(\hat{Q}, \hat{Q}) - \tr\{(Q_k - \hat{Q}_k) \hat{A}_k\}
\]
\[
\hat{A}_k = -\frac{\partial WSR_{\Sigma}(Q_k, \hat{Q})}{\partial Q_k} \bigg|_{Q_k = \hat{Q}_k, Q_i \neq \hat{Q}_i} = \sum_{i=1}^{i=k} u_i H_i H_i^H (\hat{R}_{i}^{-1} - \hat{R}_{i}^{-1}) H_i b_k
\]
Note that the linearized (tangent) expression for \(WSR_{\Sigma}\) constitutes a lower bound for it. Now, dropping constant terms, reparameterizing the \(Q_k = G_k G_k^H\), performing this linearization for all users, and augmenting the WSR cost function with the constraints, we get the Lagrangian
\[
WSR(G, \lambda, \lambda) = \sum_{j=1}^{C} \lambda_j P_j^{BS} + \sum_{k=1}^{K} u_k \ln \det(I_{d_k} + G_k^H \hat{B}_k G_k) - \tr\{G_k^H (\hat{A}_k + \lambda_{b_k} I_{M_{b_k}}) G_k\}
\]
where
\[
\hat{B}_k = H_{k:b_k}^H \hat{R}_\Sigma^{-1} H_{k:b_k}
\]
The gradient (w.r.t. \(G_k\)) of this concave WSR lower bound is actually still the same as that of the original WSR criterion! And it allows an interpretation as a generalized eigenmatrix condition, thus \(G_k = \text{eigenmatrix} (\hat{B}_k, \hat{A}_k + \lambda_{b_k} I_{M_{b_k}})\) is the (normalized) generalized eigenmatrix of the two indicated matrices, with eigenvalues \(\Sigma_k = \text{eigenvalues} (\hat{B}_k, \hat{A}_k + \lambda_{b_k} I_{M_{b_k}})\). Let \(\Sigma_k^{(1)} = G_k^H \hat{B}_k G_k^H, \quad \Sigma_k^{(2)} = G_k^H \hat{A}_k G_k^H\). The advantage of formulation (8) is that it allows straightforward power adaptation: introducing diagonal power matrices \(P_k \geq 0\) and substituting \(G_k = G_k P_k^2\) in (8) yields
\[
WSR = \sum_{j=1}^{C} \lambda_j P_j^{BS} + \sum_{k=1}^{K} \left[u_k \ln \det \left(I_{d_k} + P_k \Sigma_k^{(1)} \right) - \tr\{P_k \Sigma_k^{(2)} + \lambda_{b_k} I\} \right]
\]
which leads to the following interference leakage aware water filling
\[
P_k(l, l) = \left(\frac{1}{\Sigma_k^{(1)}(l, l)} \left(\frac{u_k \Sigma_k^{(1)}(l, l)}{\Sigma_k^{(2)}(l, l) + \lambda_{b_k}} - 1 \right) \right)^+ \]
for all \(l\) s.t. \(\Sigma_k^{(1)} > 0\) where \(z^+ = \max(0, z)\) and the Lagrange multipliers \(\lambda_{b_k}\) are adjusted to satisfy the power constraints
\[
\sum_{k:b_k = j} \sum_{l=1}^{d_k} P_k(l, l) = P_j^{BS}
\]
This can be done by bisection and gets executed per BS. Note that some Lagrange multipliers could be zero. Note also that as with any alternating optimization procedure, there are many updating schedules possible, with different impact on convergence speed. The quantities to be updated are the \(G_k\), the \(P_k\) and the \(\lambda_i\). The advantage of the DC approach is that it works for any number of quantities to be updated are the
\[
C = C_1^{1/2} H C_1^{1/2} \quad (12)
\]
where \(C_1^{1/2}, C_1^{1/2}\) are Hermitian square-roots of the Rx and Tx side covariance matrices
\[
E H H H^H = \tr\{C_i\} C_i \quad (13)
\]
Now, the Tx dispose of a (deterministic) channel estimate
\[
\hat{H}_d = H + C_1^{1/2} \tilde{H}_d C_1^{1/2} \quad (14)
\]
where again the elements of \(\tilde{H}_d\) are .13 \(CN(0, 1)\), and typically \(C_1 = \sigma^2 I_M\). The combination of the estimate with the prior information leads to the (posterior) LMMSE estimate
\[
\hat{H} = H_d (C_1 + C_d)^{-1} C_1 = H + C_1^{1/2} \tilde{H}_p C_1^{1/2} \quad (15)
\]
where \(\tilde{H}\) and \(\tilde{H}_p\) are independent. Note that we get for the MMSE estimate of a quadratic quantity of the form
\[
E_{\hat{H}/\hat{H}} H^H \hat{H} = \hat{H}^H \hat{H} + \tr\{C_i\} C_i = S \quad (16)
\]
Let us emphasize that this MMSE estimate implies \(S = \arg \min E[H_i H'_i | (H'_i H - T)^2] \). It averages out to
\[
E[H_i S] = E[H_i H'_i] H = E[H_i H'_i H] = \text{tr}(C_r) C_t .
\]
Hence, if we want the best estimate for \(H'_i H \) (which appears in the signal or interference powers), it is not sufficient to replace \(H \) by \(H'_i \) but also the covariance information should be exploited. Note that \(\mu = \frac{\text{tr}(C'_r) \text{tr}(C_r)}{\text{tr}(C_r)} \) is a form of Ricean factor that represents channel estimation quality.

V. Expected WSR (EWSR)

For the WSR criterion, we have assumed so far that the channel \(H \) is known. Once the CSIT is imperfect, various optimization criteria could be considered, such as outage capacity. Here we shall consider the expected weighted sum rate \(E[H_i WSR(Q, H)] \)
\[
\text{EWSR}(Q) = E[H_i \sum_k u_k \ln \det(I_{M_{b_k}} + H_{k,b_k}^{-1} R_{k,b_k}^{-1} H_{k,b_k} Q_k) \]
\]

VI. MAMIMO LIMIT

In the MAMIMO limit where the number of Tx antennas \(M \) becomes very large, the WSR converges to a deterministic limit that depends on the distribution of the channels. The actual statistical distribution of the channel is one thing. The CSIT distribution as in Section IV is another. The Tx have no choice but to design their BFs according to their partial CSIT. Then to get the actual resulting WSR, the BFs designed with the partial CSIT need to be evaluated with the actual channel distribution. Now, for the design with partial CSIT, the WSR will also converge to a deterministic limit in the MAMIMO regime. We get a convergence for any term of the form
\[
H_i H'_i M \rightarrow \infty \implies \text{E}[\text{H}_i H'_i H] = \text{E}[Q_i C_r] C_t . \quad (19)
\]
In what follows we shall go one step further in the separable channel correlation model and assume \(C_{r,k,b_j} = C_{r,k}, \forall b_j \). This leads us to introduce
\[
H_k = [H_{k,1} \cdots H_{k,C}] = [H_{k} - C_{r_k} H_{k} C_{r_k}^{-1}]^{1/2} P_{k},
\]
\[
Q = \begin{pmatrix}
\sum_{i:b_i = 1} Q_i \\
\vdots \\
\sum_{i:b_i = C} Q_i
\end{pmatrix} = \sum_{j=1}^{C} \sum_{i:b_i = j} I_j Q_j H^H_j
\]
\[
Q_\Sigma = Q - I_{b_k} Q_k H^H_{b_k}
\]
where \(C_{p,k} \) is blockdiag \(\{C_{p,k,1}, \ldots, C_{p,k,C}\} \), and \(I_j \) is an all zero block vector except for an identity matrix in block \(j \). Using (19), let us define
\[
\tilde{R}_k = \sigma^2 N_{V_k} + \tilde{H}_k Q_k H^H_k + \text{tr}(Q C_{p,k}) C_r \quad (21)
\]
which represent the total and the interference plus noise Rx covariance matrices in the MAMIMO regime respectively. This leads to
\[
WSR = u_k \ln \det(I_{M_{b_k}} + H_{k,b_k}^{-1} \tilde{R}_k^{-1} H_{k,b_k} Q_k) + WSR_\Sigma
\]
MISO scenario, the Rx covariance scalars as considered as one by default. So for a user k we have the following:

$$\bar{h}_{k,b_k} = \sqrt{\alpha^2 (\frac{M}{\text{tr} (C_{t,k,b_k})})} \bar{h}_{k,b_k} C_{t,k,b_k} + \sqrt{(1-\alpha^2) (\frac{M}{\text{tr} (C_{p,k,b_k})})} \bar{h}_{p,k,b_k} C_{p,k,b_k};$$ \hspace{1cm} (26)

$$h_{k,b_k} = \bar{h}_{k,b_k} C_{t,k,b_k};$$ \hspace{1cm} (27)

The model in (26) and (27) is the same as (15) and (12) but conceived in a way to preserve the channel gain. In other words the real channel h_{k,b_k} in (27) and the channel estimate \bar{h}_{k,b_k} in (26) have the same gain. Proof:

$$E((\alpha^2 - \frac{M^2}{\text{tr} (C_{t,k,b_k})}) \bar{h}_{k,b_k} Q_h h_{k,b_k}^H) = \alpha^2 M;$$ \hspace{1cm} (28)

$$E((1-\alpha^2) - \frac{M^2}{\text{tr} (C_{p,k,b_k})}) \bar{h}_{p,k,b_k} Q_h h_{p,k,b_k}^H) = (1-\alpha^2) M;$$ \hspace{1cm} (29)

which completes the proof. For the simulations of Figures 1 and 2, we have used 100 channel realizations with $\alpha^2 = \frac{3}{4}$, i.e. 100 different realizations of the couple \bar{h}_{k,b_k} and \bar{h}_{p,k,b_k} which both follow the zero-mean unit-variance Gaussian distribution. Thus, in Figure 1 and Figure 2 we have in total $1 - \alpha^2 = \frac{1}{4}$ as estimation error variance. As Figures 1 and 2 suggest, our algorithm surpasses the EWSMSE approach in [1], and we perceive a huge gain for our approach with respect to EWSMSE in the case of low rank correlation matrices as depicted in Figure 2. The reason of the gain can be explained as follows. The Expected Signal-to-Interference plus Noise ratio (ESINR) given in (31)

$$ESINR_k = E[\frac{h_{k,b_k}^H Q_h h_{k,b_k}}{\sigma^2 + \sum_{i \neq k} h_{i,b_k}^H Q_i h_{i,b_k}}]$$ \hspace{1cm} (31)

converges to (32) when the number of Tx antennas becomes very large and induces quantities containing the posterior covariance matrix C_p.

$$ESINR_k = \frac{E[h_{k,b_k}^H Q_h h_{k,b_k}]}{\sigma^2 + \sum_{i \neq k} E[h_{i,b_k}^H Q_i h_{i,b_k}]} = \frac{\mathbf{h}_{k,b_k}^H C_p \mathbf{h}_{k,b_k} + tr\{Q_h C_{p,k,b_k}\}}{\sigma^2 + \sum_{i \neq k} \mathbf{h}_{i,b_k}^H C_p \mathbf{h}_{i,b_k} + tr\{Q_i C_{p,k,b_k}\}}$$ \hspace{1cm} (32)

Furthermore, the EWSMSE approach maximizes the WSR via the minimization of the MSE which in the signal terms contains a term linear in \mathbf{h} as shown in [1, Equation (3)] and its expectation in the same section of [1], which only contains the (posterior) mean of \mathbf{h}, hence does not account for the posterior covariance. However, our approach maximizes directly the expression in (32) and hence is better than the EWMSE approach.
ADEL (EU FP7) and DIONISOS (French ANR). The research of Orange Labs is partially supported by the EU H2020 project ONE5G.

REFERENCES

APPENDIX

The proof of (25) is based on lemmas from Random Matrix Theory (RMT) in [3]. The equation (7) can be reformulated as

\[
A_k = \sum_{i \neq k}^K u_i [A_{i,k} - A_{i,k}] ;
\]

\[
A_{i,k}^A = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k} ; A_{i,k}^B = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k}.
\]

(33)

Applying [3, Lemma 2],

\[
(R_{i}^{-1} - R_{i}^{-1}) = -R_{i}^{-1} (R_{i} - R_{i}) R_{i}^{-1} = -R_{i}^{-1} (H_{i,b_k} Q_k H_{i,b_k}^H R_{i}^{-1} H_{i,b_k} ;
\]

\[
A_{i,k}^A = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k} ; A_{i,k}^B = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k} ;
\]

\[
A_{i,k}^C = A_{i,k}^C - \tilde{A}_{i,k}^C A_{i,k}^C with \tilde{A}_{i,k}^C = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k}.
\]

Similarly,

\[
A_{i,k}^B = A_{i,k}^D - \tilde{A}_{i,k}^B Q_k A_{i,k}^D with \tilde{A}_{i,k}^D = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k}.
\]

Using the channel model in section IV,

\[
A_{i,k}^C = H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k} + C_{i,b_k}^H H_{i,b_k}^H R_{i,b_k}^{-1} C_{i,b_k}^H
\]

\[
- C_{i,b_k}^H H_{i,b_k}^H R_{i,b_k}^{-1} C_{i,b_k}^H + H_{i,b_k}^H R_{i,b_k}^{-1} H_{i,b_k}^H \rightarrow \tilde{A}_{i,k}^C.
\]

Moreover,

\[
A_{i,k}^D \rightarrow \tilde{A}_{i,k}^D + \tilde{A}_{i,k}^D + \tilde{A}_{i,k}^D
\]

\[
R_{i,k} = \sum_{j \neq k}^K H_{i,b_j} Q_j H_{i,b_j}^H + \sigma^2 I_{N_i} = \tilde{R}_{i,k}.
\]

(34)

Note that (a) and (c) above correspond to “using the expected value of the matrix and (34),” and “using the expected value of the matrix and (34)” respectively, while (b) and (d) correspond both to “using the expected value of the matrix.” Now, the proof is completed.