
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

These d’Habilitation a Diriger des Recherches

Presented by Maurizio Filippone

Department of Data Science, EURECOM

maurizio.filippone@eurecom.fr

Gaussian Processes for Accurate Quantification of
Uncertainty and Large-Scale Learning

Submitted in total fulfillment of the requirements

of the degree of Habilitation a Diriger des Recherches

Rapporteurs

• Mohamed Chetouani, Université Pierre et Marie Curie

• Olivier Roustant, Ecole des Mines de St-Etienne

• Cesare Furlanello, Fondazione Bruno Kessler

Jury members

• Lorenzo Rosasco, Università di Genova and MIT

• Bernard Merialdo, EURECOM

• Nicholas Ayache, INRIA Sophia Antipolis

Contents

Chapter 1 Introduction 3

1.1 Motivation . 3

1.2 Bayesian Gaussian Processes for Quantification of Uncertainty 5

1.3 Plan of the thesis . 7

Chapter 2 Bayesian inference for Gaussian process models 9

Article: A comparative evaluation of stochastic-based inference methods for Gaus-

sian process models . 12

Article: Probabilistic prediction of neurological disorders with a statistical assess-

ment of neuroimaging data modalities . 36

Article: Pseudo-Marginal MCMC for Gaussian Processes 59

Chapter 3 Large-Scale Gaussian process learning 73

Article: Enabling scalable stochastic gradient-based inference for Gaussian pro-

cesses by employing the Unbiased LInear System SolvEr (ULISSE) 76

Article: Preconditioning Kernel Matrices . 87

Article: MCMC for Variationally Sparse Gaussian Processes 101

Article: Random Feature Expansions for Deep Gaussian processes 113

Chapter 4 Conclusions 129

Bibliography 133

2

Chapter 1

Introduction

1.1 Motivation

Drawing meaningful conclusions on the way complex real life phenomena work and being

able to predict the behavior of systems of interest require developing accurate and highly

interpretable mathematical models. In order to verify whether such models can actually

reproduce the behavior of the system under study in a faithful way, one needs to investigate

the agreement of simulations from the model with observed data. A few examples of modeling

scenarios that I have been actively involved with after obtaining my Ph.D. in 2008 are the

following: (i) detection of neuro-degenerative diseases from neuroimaging data [17, 28, 36] (ii)

analysis of regulatory interactions and signaling processes in living cells [13, 32] (iii) analysis of

perception of personality and conflict in social interactions from nonverbal cues [30, 22, 23, 41]

(iv) prediction of yield of oil reservoirs [29] (v) estimation of disclosure risk [7] (vi) prediction

of time series applied to prediction of user availability in network applications and tide levels

[6, 12].

In general, mathematical models have parameters that need tuning to allow them to “mimic”

the behavior of the system, so an important task is to estimate or infer these parameters

based on observed data. The thread connecting most of my works after obtaining my Ph.D.

is Bayesian inference. Within this framework, it is possible to determine the degree of un-

certainty in parameter estimates and consistently propagate this to predictions and model

selection tasks. Also, it is possible to include prior knowledge from domain experts and carry

out model selection in a principled way.

The application domains above make a strong case as to why quantification of uncertainty is

of paramount importance. For instance, just considering one of these applications, for many

neurological and psychiatric disorders, making a definitive diagnosis and predicting clinical

outcome are complex and difficult problems. Any decision on the clinical outcome leads to

a treatment strategy that has associated costs and has an important impact on subjects’ life

3

expectancy and living conditions. Methods that accurately assign a degree of uncertainty to

clinical assessments hold the potential to improve mainstream clinical practice and to provide

more cost-effective and personalized approaches to treatment.

Despite the appeal of Bayesian inference, carrying out Bayesian computations for any inter-

esting models is analytically intractable, as discussed next. Consider a supervised learning

scenario. Let X be a set of n input vectors xi ∈ Rd(1 ≤ i ≤ n), and let y be the vector

consisting of the corresponding labels1 yi. Consider a probabilistic model for the observed

data parameterized by θ so that the likelihood is p(y|X,θ), and assume some prior p(θ) over

the parameters. The use of Bayesian techniques can be motivated by the following expression

for the predictive probability distribution of the label for a test input x∗:

p(y∗|x∗,y, X) =

∫
p(y∗|x∗,θ)p(θ|y, X)dθ (1.1)

This expression is central in Bayesian data analysis, as it shows how predictions can be made

by averaging out the parameters after the training set of n data has been observed. This ex-

pression also shows how crucial it is to be able to compute the posterior probability p(θ|y, X)

of parameters given the observations. Using Bayes’ theorem, the posterior distribution of

parameters given the observed data is simply

p(θ|y, X) =
p(y|X,θ)p(θ)∫
p(y|X,θ)p(θ)dθ

(1.2)

where p(y|X,θ) is the so called likelihood, p(θ) is the prior, and the denominator is a normal-

ization that ensures that the posterior is a proper density over the space of θ’s. Equation 1.2

can be interpreted as the update of one’s prior belief about model parameters after data are

observed. The intractability of Bayesian inference techniques stems from the normalization of

equation 1.2 that is generally not available analytically, apart from some special cases (when

likelihood and prior form a conjugate pair).

A further and perhaps more urgent challenge for modern day applications of Bayesian infer-

ence arises from the fact that it is not even possible to develop mathematical models for some

classes of complex systems. Again, considering the problem of diagnosis of neurological and

psychiatric disorders from neuroimaging data, it is not clear how to develop a mathemati-

cal model that relates brain structure with disease progression. In other cases, even when

a mathematical model faithfully describes the evolution of a system, models implemented is

computer programs might require computing times that are beyond what is needed to make

quantification of uncertainty using Bayesian techniques viable. A representative example is

the prediction of yield of oil reservoirs; typically, one run of the underlying models requires

hours or sometimes days depending on their complexity. In all these cases, common prac-

tice is to employ nonparametric statistical models as a surrogate for the unknown model or

1Without loss of generality, we assume that the labels are univariate; the extension to multivariate labels
is straightforward.

4

as an emulator for the response of expensive computer simulations. Such a nonparametric

treatment, allows one to flexibly and expressively model data, to characterize the uncer-

tainty in model parameters, and to account for the uncertainty due to the lack of knowledge

about the underlying model. After obtaining my Ph.D. in 2008, my work has been dedicated

to the development of techniques that deal with the intractability of Bayesian inference for

nonparametric models, and in particular Gaussian processes, as discussed next.

1.2 Bayesian Gaussian Processes for Quantification of Uncer-
tainty

Gaussian Processes (gps) offer a distribution over functions that can be used for the purpose of

determining a distribution over mappings between random variables. In most gp models, the

labels y are assumed to be conditionally independent given a set of n latent variables. Such

latent variables are modeled as realizations of a function f(x) at the input vectors x1, . . . ,xn,

i.e., f = {f(x1), . . . , f(xn)}. Latent variables are used to express the likelihood function,

which under the assumption of independence becomes p(y|f) =
∏n
i=1 p(yi|fi), where p(yi|fi)

depending on the data being modeled (e.g., Gaussian for regression, Bernoulli for probit

classification with probability P (yi = 1) = Φ(f(xi)) where Φ is defined as the cumulative

normal distribution).

This model construction is similar to the one in generalized linear modeling; what charac-

terizes gp models, however, is the way the latent variables are specified. In particular, we

assume that the function f(x) is distributed as a gp, which implies that the latent function

values f are jointly distributed as a Gaussian p(f |X,θ) ∼ N (0,K), where K is the covariance

matrix. The entries of the covariance matrix K are specified by a covariance (kernel) function

with hyper-parameters θ between pairs of input vectors. A popular covariance function is the

radial basis function covariance defined as:

k(xi,xj) = σ exp

{
− 1

τ2
‖ xi − xj ‖2

}
(1.3)

The parameter τ defines the length-scale of the interaction between the input vectors, while

σ represents the marginal variance for each latent variable. It is possible to extend this for

automatic relevance determination of the feature, which takes the form:

k(xi,xj) = σ exp

{
−

d∑

r=1

1

τr2
(xi(r) − xj(r))

2

}
(1.4)

The advantage of the ard covariance is that it accounts for the influence of each feature on

the mapping between inputs and labels, with larger values of parameters (τ1, ..., τd) indicating

a higher influence of the corresponding features [23, 41]. For simplicity of notation, from now

on we will denote by θ the vector of all covariance parameters.

5

When making predictions, using a point estimate of θ has been reported to potentially under-

estimate the uncertainty in predictions or yield inaccurate assessment of the relative influence

of different features [17, 16, 4]. Therefore, a Bayesian approach is usually adopted to over-

come these limitations, which entails characterizing the posterior distribution over covariance

parameters. In order to do so, it is necessary to employ methods, such as Markov chain

Monte Carlo (mcmc), that require computing the marginal likelihood p(y|X,θ) every time θ

is updated. We now discuss the challenges associated with the computation of the marginal

likelihood for the special case of a Gaussian likelihood and the more general case of non-

Gaussian likelihoods.

Challenge #1: the non-Gaussian likelihood case

In the case of non-Gaussian likelihoods, the likelihood p(y|f) and the gp prior p(f |X,θ) do

not form a conjugate pair. As a consequence, it is not possible to solve the integral needed

to compute the marginal likelihood

p(y|X,θ) =

∫
p(y|f)p(f |X,θ)df (1.5)

and this requires some form of approximation. A notable example is gp probit classification,

which is what we explore in detail in this paper. In this case, the observations y are assumed to

be Bernoulli distributed with success probability given by p(yi|fi) = Φ(yifi) [35]. For gps with

non-Gaussian likelihoods, there have been several proposals on how to carry out deterministic

approximation to integrate out the latent variables. Such approximations recover tractability

but introduce bias in predictions and quantification of uncertainty. Crucially, it is not possible

to quantify the extent of their impact, and this can be undesirable in applications where

quantification of uncertainty is of primary interest. Over the past few years, part of my

research activities focused on stochastic approximation techniques, and in particular mcmc

techniques that offer guarantees of unbiasedness. Part I of this thesis is dedicated to my

contributions to tackle the challenges arising from employing mcmc techniques to carry out

unbiased inference of gps.

Challenge #2: the Gaussian likelihood case

In the gp regression setting, the observations y are modeled to be Gaussian with mean of f

(latent variables) and covariance λI, where I denotes the identity matrix, and λ is the variance

of the Gaussian noise on the observations. In this setting, the likelihood p(y|f) and the gp

priors p(f |θ) form a conjugate pair, so latent variables can be integrated out of the model

leading to p(y|X,θ) ∼ N (0,C), where C = K + λI. This yields the log-marginal likelihood

log[p(y|X,θ)] = −1

2
log |C| − 1

2
y>C−1y + const. (1.6)

in closed form. Although computable, the log-marginal likelihood requires computing the log

determinant of C and solving a linear system involving C. These calculations are usually

carried out by factorizing the matrix C using the Cholesky decomposition, giving C = LL>,

6

with L being lower triangular. The Cholesky algorithm requires O(n3) operations, but subse-

quently computing the terms of the marginal likelihood requires at most O(n2) operations [35].

These calculations become unfeasible for n larger than a few thousand and approximations

are usually employed to recover tractability. Similarly to the case of non-Gaussian likelihoods,

however, the amount of bias that is introduced as a result of these approximations cannot be

quantified. I devoted part of my research activities in the last few years to develop techniques

that make it possible to avoid factorizations of large matrices altogether without introducing

deterministic approximations. Part II of this thesis focuses on such approaches.

1.3 Plan of the thesis

The thesis is divided in two parts.

• In response to Challenge #1, Chapter 2 of the thesis deals with methods that I proposed

for Bayesian inference for Gaussian process models

• In response to Challenge #2, Chapter 3 of the thesis reports some of my recent works

on Large-scale Gaussian process learning

The papers included in the thesis contain experiments in various supervised learning problems.

The final chapter of the thesis will draw some conclusions and discuss some of the ongoing

and future work.

7

8

Chapter 2

Bayesian inference for Gaussian
process models

This part of the thesis focuses on the developments that I proposed to tractably quantify un-

certainty in Gaussian processes without introducing any bias. In particular, these approaches

deal with the problem of inferring gp covariance parameters as well as latent variables in

the case of non-Gaussian likelihood. As previously discussed, these models do not allow to

analytically ingrate out latent variables to obtain the marginal likelihood, and deterministic

approximations are usually proposed to recover tractability. The works reported in this part

of the thesis propose ways to avoid deterministic approximations by employing mcmc tech-

niques to draw samples from the posterior distribution over covariance parameters and latent

variables.

Resources and grants: These activities involved my time and that of a number of collabora-

tors. In particular, the works [17, 18, 16] were published soon after completing my experience

as a post-doctoral researcher at University College London working in a collaborators with

researchers at King’s College London. Most of the funding for these activities came from my

funding as a post-doctoral researcher and a three-year EPSRC project (national UK funding

body).

• A comparative evaluation of stochastic-based inference methods for Gaus-

sian process models In the non-Gaussian likelihood case, it is possible to think of

latent variables as model parameters and attempt to employ various off-the-shelf mcmc

samplers to characterize the posterior distribution over covariance parameters and la-

tent variables. Loosely speaking, most mcmc approaches work by setting up a Markov

chain in the space of model parameters whereby new values of parameters are proposed

and then accepted through a given criterion. The proposal mechanisms trades-off explo-

ration versus exploitation of the parameter space and it is based, e.g., on random walks,

Hamiltonian or Langevin dynamics, whereas the acceptance of a proposal is so that

9

the Markov chain has the posterior over model parameters as its invariant distribution.

The appeal of these techniques is that convergence to the posterior follows under quite

general conditions. An important feature of mcmc is ensuring that the Markov chain

mixes well and that samples have a good degree of independence, so that samples from

the Markov chain represent a sample from the posterior over model parameters.

The application of mcmc techniques to sample from the posterior over covariance pa-

rameters and latent variables, however, is not straightforward. The reason is that

covariance parameters and latent variables are highly coupled due to the hierarchical

dependency between them. As a result, proposing covariance parameters and latent

variables jointly within mcmc techniques is going to make it very unlikely to accept

any proposals. Sampling covariance parameters and latent variable separately, instead,

introduces slow mixing of the Markov chain; the reason is that covariance parameters

determine some behavior of the latent variables (e.g., length-scale of oscillations) and

sampling latent variables conditioned on covariance parameters will give rise with pro-

posals for latent variables with similar behavior. This work deals with ways to mitigate

the coupling effect within mcmc techniques through reparameterization techniques. In

particular, this work studies techniques that introduce transformations of latent vari-

ables to make the sampling of covariance parameters easier.

• Probabilistic prediction of neurological disorders with a statistical assess-

ment of neuroimaging data modalities

Most of the applied work I carried out on neuroimaging data involves studies on Parkin-

son’s diseases in collaboration with neuroscientists at King’s College London and Uni-

versity College London [17, 28, 33]. Some of the Parkinson’s diseases are clinically

indistinguishable in the early stages, despite having distinct characteristic patterns of

molecular pathology. Finding sensitive and specific objective biomarkers for predict-

ing disease state in these disorders is an important aim for several reasons: first, the

disorders have different prognoses, where some Parkinson’s diseases are characterized

by relentless disease progression and carry a life expectancy of only a few years after

diagnosis, others do not convey a substantial reduction in life expectancy. Second, the

disorders have differential responses to treatment; some Parkinson’s diseases respond

moderately well to dopaminergic therapy and deep-brain stimulation, whereas others

are associated with a poor response. Third, objective biomarkers predictive of early

disease state may be useful to reduce the misdiagnosis rate in clinical trials of potential

disease-modifying compounds. However, for any objective measure to facilitate clinical

decision making in the long term, it must accurately and simultaneously discriminate

between all the disorders.

Magnetic resonance imaging (MRI) holds the potential to provide objective diagnostic

markers for the disorders. However, no published studies have demonstrated an auto-

mated approach to predict diagnosis in individual subjects with accuracy that could

be considered clinically useful. Existing studies have employed either manual mea-

10

surements derived from radiological examination of MRI scans (rMRI) or automated

approaches based on voxel-based morphometry (VBM). Both approaches have disad-

vantages: rMRI markers are operator-dependent and time-consuming to construct and

are not sufficiently specific for discriminating between some Parkinson’s diseases despite

good sensitivity for discriminating between others. While VBM has been successful in

identifying neuroanatomical changes associated with these disorders at the group level,

it has limited ability to predict disease state at the level of individual subjects.

In the applications on neuroimaging data, I employed analysis techniques based on non-

parametric statistical models. In contrast to rMRI and VBM, this line of work aims to

predict disease state at the single-subject level based on distributed patterns of anatom-

ical abnormality. Before our studies, only two studies had considered this methodology

to Parkinsonian disorders and were unable to accurately discriminate all diagnostic

groups. In this work, we adopted a multinomial logit model based on gp priors as a

probabilistic prediction method that provides the means to incorporate measures from

different imaging modalities. We aimed to characterize uncertainty without resorting

to potentially inaccurate deterministic approximations, and therefore we proposed to

employ mcmc methods. The structure of the model and the large number of variables

involved, however, make the use of mcmc techniques seriously challenging, and we had

to develop a suitable approach to make this feasible. The application of these advanced

statistical modeling and inference techniques resulted in significant improvements over

the state-of-the art in the discrimination between all diagnostic groups. Furthermore, we

demonstrated how to combine data obtained from a variety of neuroimaging measures,

and how to assess the importance of these in the discrimination task.

• Pseudo-Marginal MCMC for Gaussian Processes In the case of a non-Gaussian

likelihood, we discussed how the marginal likelihood of the model is unavailable analyti-

cally, so it is not possible to use it directly within mcmc sampling approaches. However,

when the marginal likelihood can be unbiasedly approximated, it is possible to resort

to so-called Pseudo-Marginal mcmc algorithms [2], whereby the exact marginal likeli-

hood is replaced by an estimate. Perhaps surprisingly, by replacing the exact marginal

likelihood with an unbiased approximation does not affect the distribution from which

the mcmc approach is sampling from. This observation has deep consequences, as it is

possible to devise mcmc approach that rely exclusively on approximate and tractable

computations without introducing approximations. The price pay for this is that the

Markov chain can mix slowly when the variance of the estimated marginal likelihood is

large. A large variance in the estimate of the marginal likelihood can eventually lead to

the acceptance of a parameter within the mcmc simulation because the corresponding

marginal likelihood is overestimated. If the overestimation is severe, it is unlikely that

any new proposal will be accepted, resulting in slow convergence and low efficiency.

In the case of gps, we developed pseudo-marginal mcmc algorithms to draw samples

from the posterior over covariance parameters by unbiasedly estimating the marginal

11

likelihood using importance sampling. The key here is that the marginal likelihood can

be unbiasedly estimated relying on popular approximations developed in the literature of

gps to integrate out latent variables. This so-called Pseudo-Marginal mcmc approach

can be shown to yield samples from the exact posterior distribution over covariance

parameters, but it is based on computations that are tractable. A key question that we

aimed to address in the paper is whether the proposed “exact” mcmc actually yields

any noticeable advantages in quantification of uncertainty in predictions. We addressed

this by comparing the proposed fully Bayesian approach with gps, treated with various

degrees of approximations, and Support Vector Machines. The results indicate that

the proposed approach outperforms the competitors in characterizing the degree of

uncertainty in predictions, especially for small data sets.

12

A Comparative Evaluation of Stochastic-based
Inference Methods for Gaussian Process Models

M. Filippone · M. Zhong · M. Girolami

Abstract Gaussian Process (GP) models are extensively used in data analysis
given their flexible modeling capabilities and interpretability. The fully Bayesian
treatment of GP models is analytically intractable, and therefore it is necessary to
resort to either deterministic or stochastic approximations. This paper focuses on
stochastic-based inference techniques. After discussing the challenges associated
with the fully Bayesian treatment of GP models, a number of inference strate-
gies based on Markov chain Monte Carlo methods are presented and rigorously
assessed. In particular, strategies based on efficient parameterizations and efficient
proposal mechanisms are extensively compared on simulated and real data on the
basis of convergence speed, sampling efficiency, and computational cost.

Keywords Bayesian inference · Gaussian Processes ·Markov chain Monte Carlo ·
hierarchical models · latent variable models

1 Introduction

Gaussian Process (GP) models represent a class of models that are popular in
data analysis due to the associated flexibility and interpretability. Both these fea-
tures are a direct consequence of their rich parameterization. Flexibility is due to
the nonparametric prior over latent variables conditioning observations, whereas
interpretability is due to the parameterization of the structure associated with the
latent variables. Observations are conditionally independent given a set of jointly
Gaussian latent variables, and are assumed to be distributed according to the par-
ticular type of data being modeled. The covariance structure of the latent variables

Maurizio Filippone
School of Computing Science, University of Glasgow, United Kingdom.
E-mail: maurizio.filippone@glasgow.ac.uk

Mingjun Zhong
Department of Biomedical Engineering, Dalian University of Technology, P.R. China
E-mail: mingjun.zhong@gmail.com

Mark Girolami
Department of Statistical Science, University College London, United Kingdom.
E-mail: girolami@stats.ucl.ac.uk

2 M. Filippone et al.

is then parameterized by a set of hyper-parameters that characterizes the covari-
ance of the input vectors in terms of length-scales and intensity of interaction.
GP models comprise a large set of models, and this paper focuses in particular
on Logistic Regression with GP priors (LRG) (Rasmussen and Williams, 2006),
Log-Gaussian Cox models (LCX) (Møller et al., 1998), Stochastic Volatility models
with GP priors (VLT) (Wilson and Ghahramani, 2010), and Ordinal Regression
with GP priors (ORD) (Chu and Ghahramani, 2005).

Exact inference in GP models is analytically intractable. Most of the work
to tackle such intractability focuses on deterministic approximations to integrate
out latent variables; those approaches include the Laplace Approximation (LA)
(Tierney and Kadane, 1986), Expectation Propagation (EP) (Minka, 2001), and
mean field approximations (Opper and Winther, 2000) (see, e.g., Rasmussen and
Williams (2006) for an extensive presentation of such approximations, and Kuss
and Rasmussen (2005) for their assessment on LRG models). Deterministic approxi-
mations provide a computationally tractable way to integrate out latent variables,
but it is not possible to quantify the error that they introduce in the quantification
of uncertainty in predictions (although EP for LRG is reported to be very accu-
rate in Kuss and Rasmussen (2005)); also, those methods target the integration of
latent variables only.

In the direction of providing a fully Bayesian treatment of GP models, it is
necessary to integrate out latent variables as well as hyper-parameters, and this is
usually done by quadrature methods (Cseke and Heskes, 2011; Rue et al., 2009),
thus limiting the number of hyper-parameters that can be employed in GP models.

Based on those considerations, this paper focuses on non-deterministic meth-
ods to carry out inference in GP models, and in particular on stochastic based
approximations based Markov Chain Monte Carlo (MCMC) methods. The use of
MCMC based inference methods is appealing as it provides asymptotic guarantees
of convergence to exact inference. In practice, this translates into the possibility
of achieving results with the desired level of accuracy (Flegal et al., 2007). Un-
fortunately, the use of MCMC methods for inference in GP models is extremely
difficult. The aim of this paper is to discuss the challenges associated with MCMC
based inference for GP models, and compare a number of strategies that have been
proposed in the literature to tackle them. A preliminary version of this work can
be found in Filippone et al. (2012)1.

To the best of our knowledge, this work (i) is the first attempt to extensively
assess the state-of-the-art in stochastic-based inference methods for GP models,
and (ii) sets the bar for new MCMC methods for inference in GP models. Along
with those contributions, this paper presents (iii) a variant of the Hybrid Monte
Carlo algorithm that outperforms state-of-the-art methods to sample from the
posterior distribution of the latent variables, and (iv) tests the combination of
parameterizations, as recently proposed in Yu and Meng (2011), in the case of GP
models.

1 An implementation of the methods considered in this paper can be found at:
http://www.dcs.gla.ac.uk/~maurizio/pages/code.html

3

1.1 Gaussian Process Models

Let X = {x1, . . . ,xn} be a set of n input vectors described by a set of d covariates
xi ∈ Rd, associated with observed responses y = {y1, . . . , yn}. In GP models, the
generative process modeling the observed data y given X is as follows. Observa-
tions are assumed to be conditionally independent given a set of n latent variables
f = {f1, . . . , fn}, and distributed according to a certain distribution depending on
the particular type of data, e.g., Bernoulli for binary labels and Poisson for obser-
vations in the form of counts. This can be translated into a likelihood function of
the form p(y|f) =

∏n
i=1 p(yi|fi), where for generality the distribution p(yi|fi) is

left unspecified.
In this work, latent variables are assumed to be drawn from a zero mean GP

prior with covariance function k. The GP prior is a prior over functions, and the
covariance structure given by k specifies the characteristics of such functions (i.e.,
degree of smoothness and marginal variance). Let k be parameterized by a vector
of hyper-parameters θ = (σ, ψτ1 , . . . , ψτd), and assume:

k(xi,xj |θ) = σq(xi,xj |ψτ) = σ exp

[
−1

2

d∑

r=1

(xi − xj)
2
(r)

exp(ψτr)
2

]
(1)

with exp(ψτr) defining the length-scale of the interaction between the input vectors
for the rth covariate and σ giving the marginal variance for latent variables. This
type of covariance can be used for Automatic Relevance Determination (ARD)
(Mackay, 1994) of the covariates, as the values τi = exp(ψτi) can be interpreted
as length-scale parameters. This definition of covariance function is adopted in
many applications and is the one we will consider in the remainder of this paper.
Exponentiation of the hyper-parameters is convenient, so that standard MCMC
transition operators can be employed for ψτi thus avoiding dealing with boundary
conditions or non-standard MCMC proposals (Robert and Casella, 2005). Let
Q be the matrix whose entries are qij = q(xi,xj |ψτ); the covariance matrix K
will then be K = σQ. The model is fully specified by choosing a prior p(θ) for
the hyper-parameters. The model structure is therefore hierarchical, with hyper-
parameters conditioning the latent variables that, in turn, condition observations,
so that p(y, f , θ) = p(y|f)p(f |θ)p(θ).

In a Bayesian setting, the predictive distribution for new input values x∗ can
be written in the following way (for the sake of clarity we drop the explicit condi-
tioning on X and x∗):

p(y∗|y) =

∫ ∫ ∫
p(y∗|f∗)p(f∗|f , θ)p(f , θ|y)df∗dfdθ (2)

The left hand side of Eq. 2 is a full probability distribution characterizing the
uncertainty in predicting y∗ given the GP modeling assumption.

In this work we will focus on stochastic approximations for obtaining samples
from the posterior distribution of f and θ, so that we can obtain a Monte Carlo
estimate of the predictive distribution as follows:

p(y∗|y) ' 1

N

N∑

i=1

∫
p(y∗|f∗)p(f∗|f (i), θ(i))df∗ (3)

4 M. Filippone et al.

where N denotes the number of samples used to compute the estimate. In Eq. 3
we denoted the ith samples from the posterior distribution of f and θ obtained
by means of MCMC methods by f (i) and θ(i). Note that the remaining integral is
univariate and it is generally easy to evaluate.

1.2 Challenges in MCMC based inference for GP models

Sampling from the posterior of latent variables and hyper-parameters by joint
proposals is not feasible; it is extremely unlikely to propose a set of latent variables
and hyper-parameters that are compatible with each other and observed data. This
forces one to consider schemes such as Gibbs sampling, where groups of variables
are updated one at time, leading to the following challenges:

(i) Due to the hierarchical structure of GP models, chains converge slowly and
mix poorly if the coupling effect between the groups of variables is not dealt with
properly. This requires some form of reparameterization or clever proposal mech-
anism that efficiently decouples the dependencies between the groups of variables.
This effect has drawn a lot of attention in the case of hierarchical models in gen-
eral (Yu and Meng, 2011), and recently in GP models Knorr-Held and Rue (2002);
Murray and Adams (2010). In Knorr-Held and Rue (2002) a joint update of latent
variables and hyper-parameters is proposed with the aim of avoiding proposals for
hyper-parameters to be conditioned on the values of latent variables. In Murray
and Adams (2010) a parameterization based on auxiliary data is proposed that
aims at reducing the coupling between the two groups of variables. Other ideas
involve the use of reparameterizations based on whitening the latent variables;
in the terminology of Yu and Meng (2011), this corresponds to employing the so
called Ancillary Augmentation (AA) parameterization. Recently, Yu and Meng
(2011) proposed to interweave parameterizations characterized by complementary
features in order to boost sampling efficiency. Parameterizations can be comple-
mentary in the sense that they offer better performance in either strong or weak
data limits; the idea of combining parameterizations is to achieve high sampling
efficiency in both strong and weak data scenarios. We are interested in comparing
the methods in Knorr-Held and Rue (2002); Murray and Adams (2010) and Yu
and Meng (2011) applied to GP models. Another possibility would be to approxi-
mately integrate out latent variables and obtain samples from the corresponding
approximate posterior of hyper-parameters. For GP classification this might be
a sensible thing to do, as the Expectation Propagation approximation has been
reported to be very accurate Kuss and Rasmussen (2005); however, this is peculiar
to GP classification and for general GP models it may not be the case.

(ii) Sampling hyper-parameters and latent variables cannot be done using ex-
act Gibbs steps, and it requires proposals that are accepted/rejected based on a
Hastings ratio, leading to a waste of expensive computations. Transition operators
characterized by acceptance mechanisms embedded in a Gibbs sampler, are usu-
ally referred to as Metropolis-within-Gibbs operators. Designing proposals that
guarantee high acceptance and independence between samples is extremely chal-
lenging, especially because latent variables can have dimensions in the order of
hundreds or thousands. We will compare several transition operators, for different
steps of the Gibbs sampler, with the aim of gaining insights about ways to strike a
good balance between efficiency and computational cost. We will consider transi-

5

tion operators characterized by proposal mechanisms with increasing complexity,
and in particular the Metropolis-Hastings (MH) operator which is based on ran-
dom walk types of proposals, Hybrid Monte Carlo (HMC) which uses the gradient
of the log-density of interest, and manifold methods (Girolami and Calderhead,
2011) which use curvature information (i.e., second derivatives of the log-density).

The paper is organized as follows: Sections 2 and 3 report the parameterization
strategies and the transition operators considered in this work. Sections 4 and 5
report an extensive comparison of those strategies and transition operators, on
simulated and real data, on the basis of efficiency, convergence speed and com-
putational complexity; section 6 concludes the paper. For the sake of readability,
most of the technical derivations can be found in the appendices.

2 Dealing with the hierarchical structure of GP models

2.1 Sufficient and Ancillary Augmentation

From a generative perspective, the model structure is hierarchical with latent
variables representing sufficient statistics for the hyper-parameters. This parame-
terization is referred to as Sufficient Augmentation (SA) in Yu and Meng (2011)
and allows one to express the joint density as

SA p(y, f , θ) = p(y|f)p(f |θ)p(θ) (4)

It is also possible to introduce the decomposition of the matrix Q into the
product of two factors LLT, and view the generation of the latent variables as
f =
√
σLν with ν ∼ N (ν|0, I), which implies that f ∼ N (f |0,K). In the remainder

of this paper, we will consider L to be the lower triangular Cholesky decomposition
of K, but in principle any square root of K could be used. In this way, ν is ancillary
for θ and it is possible to express the joint density as

AA p(y,ν, θ) = p(y|ν, θ)p(ν)p(θ) (5)

This parameterization is called Ancillary Augmentation (AA) in the terminology
of Yu and Meng (2011). In Murray and Adams (2010) SA and AA are referred
to as unwhitened and whitened parameterizations respectively. Weak and strong
data limits can influence the efficiency in sampling using either parameterization.
For this reason, it is important to choose an efficient parameterizations for the
particular problem under study and for the available amount of data, as both
these aspects can dramatically influence efficiency and convergence speed of the
chains.

2.2 Ancillarity-Sufficiency Interweaving Strategy - ASIS

In this section we briefly review the main results presented in Yu and Meng (2011)
on the combination of parameterizations to improve convergence and efficiency of
MCMC methods, and we will illustrate how these results can be applied to GP
models. Intuitively, combining parameterizations seems promising to take the best
from them in both weak and strong data limits, or at least, to avoid the possibility

6 M. Filippone et al.

that chains do not converge because of the wrong choice of parameterization.
Alternating the sampling in the SA and AA parameterizations is the most obvious
way of combining the two parameterizations, but as recently investigated in Yu
and Meng (2011), interweaving SA and AA is actually a more promising way
forward. From a theoretical perspective, the geometric rate of convergence r of
the scheme when the parameterizations are interweaved, is related to the rates of
the two schemes r1 and r2 by r ≤ R1,2

√
r1r2, where R1,2 is the maximal correlation

between the latent variables for the two schemes. Given that the former expression
implies r ≤ max(r1, r2), combining the two parameterizations leads to a scheme
that is better than the worst. This is already an advantage compared to using a
single scheme when one is in doubt on which scheme to use. However, the key result
is the fact that R1,2 can be very small depending on the two parameterizations,
so it is possible to make the combined scheme converge quickly even if neither
of the individual schemes do. In general, this result is quite remarkable, as once
different reparameterizations are available, combining them using the interweaving
strategy is simple to implement, and can dramatically boost sampling efficiency.
In GP models, the ASIS scheme amounts to interweaving SA and AA updates,
that following Yu and Meng (2011) yields:

f |y, θ −→ θ|f −→ ν = σ−1/2L−1f −→ θ|y,ν (6)

2.3 Knorr-Held and Rue (KHR)

The idea underpinning KHR, is to jointly sample parameters and latent variables
as follows. Firstly, a set of hyper-parameters θ′|θ is proposed and secondly a set of
latent variables conditioned on the new set of hyper-parameters, namely f ′|y, θ′, is
proposed. The proposal (θ′, f ′) is then jointly accepted or rejected according to a
standard Hastings ratio. The key idea is to avoid making the proposal θ′ accepted
on the basis of f to avoid the strong coupling effect due to the hierarchical nature
of the model. KHR was proposed in applications making use of Gaussian Markov
Random Fields, and we will discuss the application of this idea for GP models
in the section reporting the experiments. In order to avoid difficulties in devising
a proposal for sampling from f ′|y, θ′), here we set the proposal as the Gaussian
obtained by constructing a Laplace approximation to p(f |y, θ′).

2.4 Surrogate Method (SURR)

In the SURR method (Murray and Adams, 2010), a set of auxiliary latent vari-
ables g is introduced as a noisy version of f ; in particular, p(g|f , θ) = N (g|f , Sθ).
This construction yields a conditional distribution for f of the form p(f |g, θ) =
N (f |m, R), with R = Sθ −Sθ(Sθ +K)−1Sθ and m = RS−1

θ g. After decomposing
R = DDT, the sampling of θ is then conditioned on the variables η defined as
f = Dη + m. The covariance Sθ is constructed to be diagonal with elements ob-
tained by matching the posterior for each latent variable individually or by Taylor
approximations (see Murray and Adams (2010) for details).

7

3 MCMC transition operators considered in this work

This section presents the transition operators considered in this work. We are in-
terested in understanding whether and to what extent employing proposal mech-
anisms making use of gradient or curvature information of the target density im-
proves sampling efficiency and speed of convergence with respect to computational
complexity. We therefore consider transition operators with increasing complexity,
and in particular the Metropolis-Hastings (MH) operator which is based on ran-
dom walk types of proposals, the Hybrid Monte Carlo (HMC) operator which uses
gradient information, and the Simplified Manifold Metropolis Adjusted Langevin
Algorithm (SMMALA) operator which is one of the simplest manifold MCMC
methods proposed in Girolami and Calderhead (2011) using curvature informa-
tion.

For the sake of clarity, we will focus on the transitions operators for f , but the
same operators can be easily applied to θ. We will first present MH, HMC, and
SMMALA, and we will then discuss Elliptical Slice Sampling and a few variants
of MH and HMC that have been specifically proposed for sampling f , and do
not have counterparts for θ. In the case of latent variables, the operators aim
to leave the posterior p(f |y, θ) invariant; in the remainder of this work, W (f) is
defined as log[p(y|f)p(f |θ)], which equals the log of the desired target density up to
constants. In the case of hyper-parameters we can define the invariant distribution
according to the chosen parameterization and apply the operators presented here
for sampling θ rather than f .

3.1 Metropolis-Hastings - MH

The Metropolis-Hastings transition operator employs a proposal mechanism g(f ′|f)
based on a random walk (Robert and Casella, 2005). A common choice is to use
a multivariate Gaussian proposal with covariance Σ centered at the former posi-
tion f , thus taking the form g(f ′|f) = N (f ′|f , Σ). For such a symmetric proposal
mechanism, f ′ is then accepted with probability min

{
1, exp(W (f ′)−W (f))

}
.

3.2 Hybrid Monte Carlo - HMC

In Hybrid Monte Carlo (HMC) the proposals are based on the analogy of a physical
system, where a particle is simulated moving in a potential field (Neal, 1993). An
auxiliary variable p, that plays the role of a momentum variable, is drawn from
N (p|0,M), where the covariance matrix M is the so called mass matrix. The
joint density of f and p factorizes as p(f ,p) = exp(W (f))p(p), and the negative
log-joint density reads

H(f ,p) = −W (f) +
1

2
log(|M |) +

1

2
pTM−1p + const. (7)

This is the Hamiltonian of the simulated particle, where the potential field is given
by −W (f) and the kinetic energy by the quadratic form in p. In order to draw

8 M. Filippone et al.

proposals from p(f |y, θ), we can simulate the particle for a certain time interval,
introducing an analogous of time t and solving Hamilton’s equations

df

dt
=
∂H

∂p
= M−1p

dp

dt
= −∂H

∂f
= ∇fW (8)

Given that there is no friction, the energy will be conserved during the mo-
tion of the particle. Solving Hamilton’s equations directly for general potential
fields, however, is analytically intractable, and therefore it is necessary to resort
to schemes where time is discretized. The leapfrog integrator discretizes the dy-
namics in λ steps, also known as leapfrog steps, and is volume preserving and
reversible (see Neal (1993) for details). The leapfrog integrator yields an update of
(f ,p) into (f(λ),p(λ)). The discretization introduces an approximation such that
the total energy is not conserved, so a Metropolis accept/reject step of the form
min{1, exp(−H(f(λ),p(λ))+H(f ,p))} is needed to ensure that HMC samples from
the correct invariant distribution. The HMC transition operator is reported in Al-
gorithm 1.

Algorithm 1 HMC transition operator when M = LML
T
M

1: f(0) = f ; p(0) ∼ N (p(0)|0,M) . z ∼ N (0, I); p(0) = LMz
2: λ = sample[1, . . . , λmax]
3: for (t = 0 to λ− 1) do
4: p(t+1/2) = p(t) + ε

2
∇fW (f(t))

5: f(t+1) = f(t) + εM−1p(t+1/2) . M−1p = bcksub(LT
M , (fwdsub(LM ,p)))

6: p(t+1) = p(1/2) + ε
2
∇fW (f(t+1))

7: end for
8: r = min

{
0, H(f(0),p(0))−H(f(λ),p(λ))

}
. log |M | = 2

∑
i log(LM)ii

. pTM−1p = ‖fwdsub(LM ,p)‖2
9: u ∼ Exp(u|1)

10: if (r > −u) then return f(λ)
11: else return f(0)

3.3 Manifold MCMC - Simplified Manifold MALA - SMMALA

Manifold MCMC methods (Girolami and Calderhead, 2011) were proposed to
have an automatic mechanism to tune parameters in MALA and HMC, and are
based on the use of curvature through the Fisher Information (FI) matrix. The FI
matrix and the Christoffel symbols are the key quantities in information geometry
as they characterize the curvature and the connection on the statistical manifold
respectively. Consider a statistical model S = {p(y|ψ)|ψ ∈ Ψ} where y denotes
observed variables and ψ comprises all model parameters. Under conditions that
are generally satisfied for most commonly used models (Amari and Nagaoka, 2000),
S can be considered a C∞ manifold, and is called statistical manifold. Let L =
log[p(y|ψ)]; the FI matrix G of S at ψ is defined as:

G(ψ) = Ep(y|ψ)

[
(∇ψL) (∇ψL)T

]
= −Ep(y|ψ)[∇ψ∇ψL] (9)

9

By definition, the FI matrix is positive semidefinite, and can be considered as the
natural metric on S.

In the case of GP models that are hierarchical we need to consider the statistical
manifolds associated with the two levels of the hierarchy separately. Let’s focus
on the statistical manifold associated with the model for y given f . The manifold
MALA (MMALA) algorithm (Girolami and Calderhead, 2011) defines a Langevin
diffusion with stationary distribution p(f |θ,y) on the Riemann manifold of density
functions, characterized by a metric tensor denoted as Gf ,f . By employing a first
order Euler integrator to solve the diffusion, a proposal mechanism with density
g(f ′|f) = N (f ′|µ(f , ε), ε2G−1

f ,f) is obtained, where ε is the integration step size, a
parameter which needs to be tuned, and the dth component of the mean function
µ(f , ε)d is

µ(f , ε)d = fd +
ε2

2

(
G−1

f ,f∇fW (f)
)
d
− ε2

n∑

i=1

n∑

j=1

(G−1
f ,f)i,jΓ

d
i,j

where Γ di,j are the Christoffel symbols of the metric in local coordinates (Amari
and Nagaoka, 2000). Similarly to MALA (Roberts and Stramer, 2002), due to the
discretization error introduced by the first order approximation, convergence to the
stationary distribution is not guaranteed anymore and thus a standard Metropolis
accept/reject step is employed to correct this bias.

In the same spirit, it is possible to extend HMC to define Hamilton’s equations
on the statistical manifold. This was proposed and applied in Girolami and Calder-
head (2011) and called Riemann manifold Hamiltonian Monte Carlo (RM-HMC).
In this work, we will not consider RM-HMC or MMALA, as they both require
the derivatives of the FI matrix that would require several expensive operations.
Instead, we will consider a simplified version of MMALA (SMMALA), where we
assume a manifold with constant curvature, that effectively removes the term de-
pending on the Christoffel symbols, so that the mean of the proposal of SMMALA
becomes

µs(f , ε) = f +
ε2

2
G−1

f ,f∇fW (f) (10)

Furthermore, in the last subsection of this section we will present two variants of
HMC that bear some similarities with RM-HMC but are computationally cheaper.
The SMMALA transition operator is sketched in Algorithm 2.

Algorithm 2 SMMALA transition operator

1: µs(f , ε) = f + ε2

2
G−1

f ,f∇fW (f) . Gf ,f = LGL
T
G

. G−1
f ,f∇fW (f) = bcksub(LT

G, (fwdsub(LG,∇fW (f))))

2: f ′ ∼ N (f ′|µs(f , ε), ε
2G−1

f ,f) . z ∼ N (0, I); f ′ = ε bcksub(LT
G, z) + µs(f , ε)

3: r = min {0,W (f ′)−W (f) + log [g(f |f ′)]− log [g(f ′|f)]} . log |Gf ,f | = 2
∑
i log(LG)ii

. (f ′ − µs(f , ε))
TG−1

f ,f (f ′ − µs(f , ε)) = ‖fwdsub(LG, (f
′ − µs(f , ε)))‖2

4: u ∼ Exp(u|1)
5: if (r > −u) then return f ′

6: else return f

10 M. Filippone et al.

3.4 Elliptical Slice sampling - ELL-SS

Elliptical Slice Sampling (ELL-SS) has been proposed in Murray et al. (2010) to
draw samples for f in GP models, and is based on slice sampling (Neal, 2003). Due
to the fact that latent variables are Gaussian, it is possible to derive this particular
version of slice sampling, when constrained on an ellipse. For completeness, we
report the transition operator in Algorithm 3 and we refer the reader to Murray
et al. (2010) for further details. Note that ELL-SS is quite appealing as it returns

Algorithm 3 ELL-SS transition operator

1: z ∼ N (0,K)
2: u ∼ Exp(u|1) η = log p(y|f)− u . Set a threshold on the log-likelihood
3: α ∼ U [0, 2π] [αmin, αmax] = [α− 2π, α] . Define the bracket
4: f ′ = f cos(α) + z sin(α)
5: if (log p(y|f ′) > η) then return f ′

6: else . Shrink the bracket
7: if (α < 0) then αmin = 0
8: else αmax = 0

9: α ∼ U [αmin, αmax]
10: Go to 4

a sample which does not need to be accepted or rejected (in fact, a rejection
mechanism is implicit within step 5), and the proposal mechanism does not have
any free parameters that need tuning.

3.5 Scaled versions of MH - MH v1 and MH v2

Due to the strong correlation of latent variables imposed by the GP prior, employ-
ing a MH operator with an isotropic covariance to sample latent variables leads to
extremely poor efficiency. In order to overcome this problem, Neal (1999) proposed
two versions of MH that we will denote by MH v1 and MH v2. In MH v1, a set of
latent variables z is drawn from the GP prior z ∼ N (z|0,K), and the proposal is
constructed as follows:

f ′ = f + α z (11)

where the parameter α controls the degree of update. In MH v2, instead, the
proposal is as follows:

f ′ =
√

1− α2 f + α z (12)

In the latter case, given that the proposal satisfies detailed balance with respect
to the prior, the acceptance has to be based on the likelihood alone.

3.6 Scaled versions of HMC - HMC v1 and HMC v2

By a similar argument as in MH, it is possible to introduce scaled versions of HMC
that reduce the correlation between latent variables. This can be done by setting
the mass matrix of HMC according to the precision of the posterior distribution of

11

latent variables. Similarly, from an information geometric perspective, it is sensible
to whiten latent variables according to the metric tensor of the statistical manifold.
We notice that the metric tensor associated to the model for y given f is K−1 plus a
diagonal matrix which is a function of f (see appendix A for full details). Whitening
with respect to that metric tensor would be computationally very expensive for
GP models, as it would require the simulation of the Hamiltonian dynamics on a
manifold with a position-dependent curvature; this is implemented by RM-HMC
which requires the derivatives of the metric tensor as well as implicit leapfrog
iterations (Girolami and Calderhead, 2011). In order to reduce the computational
cost, we propose the following two options: (i) to approximate the diagonal term to
be independent of f so that M−1 = (K−1 +C)−1 = C−1−C−1(K +C−1)−1C−1

with C diagonal and independent of f ; we call this variant HMC v1. (ii) to ignore
the diagonal part of the metric tensor and set M−1 = K; we call this variant
HMC v2. In HMC v1, one simple way to make C independent of f is to compute
it for the GP prior mean (which is zero), as proposed, e.g., in Christensen et al.
(2005); Vanhatalo and Vehtari (2007).

In both cases, it is possible to employ a standard and computationally efficient
HMC proposal that captures part of the curvature of the statistical manifold. This
is achieved by introducing a variant of HMC that, rather than using the Cholesky
decomposition of the mass matrix, uses the decomposition of its inverse. We report
this variant of the HMC transition operator in Algorithm 4.

In HMC v1, employing this formulation of HMC is convenient as computing
the inverse of M is more stable than computing M = K−1 + C, that requires
a potentially unstable inversion of K. HMC v1 requires the computation of the
inverse of the mass matrix and its factorization each time a new value of θ is
proposed. In HMC v2, instead, no extra operations in O(n3) are required given
that K is already factorized, thus making it computationally very convenient.

Algorithm 4 HMC transition operator when M−1 = LM−1LT
M−1

1: f(0) = f ; p(0) ∼ N (p(0)|0,M) . z ∼ N (0, I); p(0) = bcksub(LT
M−1 , z)

2: λ = sample[1, . . . , λmax]
3: for (t = 0 to λ− 1) do
4: p(t+1/2) = p(t) + ε

2
∇fW (f(t))

5: f(t+1) = f(t) + εM−1p(t+1/2) . M−1p = LM−1 (LT
M−1p)

6: p(t+1) = p(1/2) + ε
2
∇fW (f(t+1))

7: end for
8: r = min

{
0, H(f(0),p(0))−H(f(λ),p(λ))

}
. log |M | = −2

∑
i log(LM−1)ii

. pTM−1p = ‖LT
M−1p‖2

9: u ∼ Exp(u|1)
10: if (r > −u) then return f(λ)
11: else return f(0)

4 Results on simulated data

In this section, we first report a study on the efficiency and speed of convergence of
different transition operators in sampling from posterior distribution of individual

12 M. Filippone et al.

groups of variables in the SA and AA parameterization. Secondly, we report the
same analysis to compare different parameterizations to obtain samples from the
joint posterior distribution of f and θ.

4.1 Experimental setup

We simulated data from the four GP models considered in this work, namely: LRG,
LCX, VLT, and ORD. We generated 10 data sets simulating from each of the four
models for all combinations of n = 100, 400, and d = 2, 10, for a total of 160 distinct
data sets. In order to isolate the effect of different likelihood functions in the results,
we seeded the generation of the input data matrix X, hyper-parameters, and latent
variables so that these were the same across different models. Covariates were
generated uniformly in the unit hyper-cube, and the parameters used to generate
latent variables were σ = exp(2), ψτi ∼ U [−3,−1]. We imposed Gamma priors on
the length-scale parameters with shape a and rate b, p(τi) = Gam(τi|a = 1, b = 1).
We imposed an inverse Gamma prior p(σ) = invGam(σ|a = 1, b = 1), where a and
b are shape and scale parameters respectively on σ to exploit conjugacy in the SA
parameterization.

In all the experiments we collected 20000 samples after a burn-in phase of
5000 iterations; during the burn-in we also had an adaptive phase to allow the
samplers reach recommended acceptance rates (for example around 25% for MH).
The transition operators for f had the following tuning parameters: α for MH v1
and MH v2, and ε for SMMALA and the variants of HMC which used a maximum
of 10 leapfrog steps. The transition operators for θ employed the following pro-
posals: MH used a covariance Σ = αI, HMC used a mass matrix M = αI and 10
maximum leapfrog steps, and SMMALA used a step-size ε. Convergence analysis
was performed using the R̂ potential scale reduction factor (Gelman and Rubin,
1992), which is a classic score used to assess convergence of MCMC algorithms.
The computation of the R̂ value is based on the within and between chain vari-
ances; a value close to one indicates that convergence is reached. The R̂ value was
computed based on 10 chains initialized from the prior to study what efficiency
can be achieved without running preliminary simulations; this is different from
the initialization procedure suggested in Gelman and Rubin (1992) that requires
locating the modes of the target density. Due to the fairly diffuse priors on the
length-scale parameters, we noticed difficulty in achieving convergence in some
cases; we therefore initialized ψτi randomly in the interval [−3,−1]. The value of
R̂ was checked at 1000, 2000, 5000, 10000, 20000 iterations. We use the following
procedure to compactly visualize the speed of convergence; we threshold the me-
dian value of R̂ across 10 data sets at each checkpoint and use the following visual
coding to report speed of convergence: < 1.1 < < 1.3 < < 2 < , so that indi-
cates that R̂ < 1.1, indicates that 1.1 < R̂ < 1.3, and so on. We then stack the
rectangles associated to each checkpoint where we computed the value of R̂, thus
producing a sort of histogram of the median of R̂ over the iterations. Efficiency
of MCMC methods is compared based on the minimum of the Effective Sample
Size (ESS) (Robert and Casella, 2005) computed across all the sampled variables.
We then report its mean and standard deviation across the 10 chains and the 10
different data sets for each combination of size of the data set, dimensionality, and
type of likelihood.

13

Table 1 Breakdown of the number of operations in O(n3) required to apply the transition
operators considered in this work. #M, #I and #C represent number of multiplication of n×n
matrices, inversions of n × n matrices, and number of Cholesky decompositions respectively.
Counts are reported as functions of the number of iterations T and number of covariates d. In
HMC, λ̄ denotes the average number of leapfrog steps in one iteration.

f |θ,y θ|f θ|ν,y
#M #I #C #M #I #C #M #I #C

MH 0 0 1 0 0 T 0 0 T
HMC 0 0 1 0 T λ̄ T 0 0 T + Tdλ̄
SMMALA 0 1 T Td T T 0 0 T + Td
ELL-SS 0 0 1 − − − − − −
MH v1 0 0 1 − − − − − −
MH v2 0 0 1 − − − − − −
HMC v1 0 1 2 − − − − − −
HMC v2 0 0 1 − − − − − −

We are also interested in statistically assessing which methods achieve faster
convergence. In order to do so, we perform pairwise Mann-Whitney tests with
significance level of 0.05 comparing the value of R̂ at the last checkpoint for all
the chains across 10 data sets. This allows us to obtain an ordering of methods in
terms of convergence speed. In each table we include a row at the bottom reporting
the result of such a test. We denote by 1|2 situations where the method in row 1
of the corresponding table converges significantly faster than the method in row 2.
Instead, the notation 1, 2 is used when the method in row 1 does not converge
significantly faster than the method in row 2.

As a measure of complexity, we counted the number of operations with com-
plexity in O(n3), namely number of Cholesky factorizations of n × n matrices
(#C), number of inversions of n × n matrices (#I)2, and number of multiplica-
tions of n × n matrices (#M). We believe that this is a more reliable measure
of complexity with respect to running time, as running time can be affected by
several implementation details and other factors that are not directly related to
the actual complexity of the algorithms.

4.2 Assessing the efficiency of samplers for individual groups of variables

In this section, we present an assessment of the efficiency of different transition
operators for each group of variables using both SA and AA parameterizations.
Computational complexity for all the operators considered in the next sections is
summarized in Tab. 1, where T represents the number of iterations, d the number of
covariates and λ̄ the average number of leapfrog steps in HMC transition operators.
In the following sub-sections we present results about the sampling of the latent
variables and hyper-parameters separately.

14 M. Filippone et al.

Table 2 Comparison of transition operators to sample f |y, θ for data generated from models
with four different likelihoods. Minimum ESS is averaged over 10 chains for 10 different data
sets for each value of n and d. The last row in each sub-table reports the result of the statistical
test to assess which operators achieve significantly faster convergence.

LRG

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH v1 67 (15) 47 (3) 22 (7) 8 (1)
MH v2 204 (35) 151 (7) 67 (17) 30 (2)
SMMALA 756 (284) 262 (30) 457 (212) 48 (5)
ELL-SS 321 (61) 241 (11) 104 (25) 50 (2)
HMC v1 3395 (400) 5163 (268) 1352 (380) 2962 (155)
HMC v2 4004 (577) 5225 (224) 1566 (342) 2995 (129)

6|5|3|4|2|1 6|5|3, 4|2|1 6|5|3|4|2|1 6|5|4|3|2|1

LCX

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH v1 18 (16) 6 (2) 6 (5) 1 (0)
MH v2 23 (24) 6 (2) 8 (7) 1 (0)
SMMALA 217 (155) 39 (4) 258 (177) 7 (1)
ELL-SS 39 (42) 11 (4) 11 (11) 2 (0)
HMC v1 372 (277) 188 (123) 199 (200) 81 (30)
HMC v2 254 (197) 188 (125) 64 (37) 80 (30)

6|5|3|4|2|1 6|5|3|4|1, 2 5|3, 6|4|2|1 6|5|3|4|2|1

VLT

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH v1 28 (13) 10 (2) 15 (8) 2 (0)
MH v2 31 (16) 12 (2) 16 (8) 2 (0)
SMMALA 424 (216) 117 (13) 418 (127) 61 (7)
ELL-SS 46 (20) 18 (4) 22 (10) 4 (1)
HMC v1 1494 (667) 449 (42) 1384 (392) 249 (25)
HMC v2 418 (68) 443 (39) 183 (31) 245 (25)

4|3|2|1, 5, 6 3|4|2|1, 5, 6 3, 4|2|1, 5, 6 3|6|4, 5|2|1

ORD

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH v1 14 (8) 6 (2) 7 (5) 1 (0)
MH v2 14 (9) 7 (2) 7 (5) 2 (0)
SMMALA 48 (89) 2 (0) 107 (156) 1 (0)
ELL-SS 21 (11) 10 (2) 9 (5) 2 (0)
HMC v1 539 (650) 472 (39) 176 (200) 257 (23)
HMC v2 175 (54) 483 (37) 61 (22) 255 (24)

6|5|3|4|1, 2 6|5|4|2|1|3 6|5|3|4|1, 2 6|5|2, 4|1, 3

4.2.1 Sampling f |y, θ

In this section we focus on the sampling from the posterior distribution of the
latent variables f . The results can be found in Tab. 2, and they were obtained

2 This is a shorthand notation to denote a back and forward substitution of the identity
matrix using Cholesky factors.

15

Table 3 Comparison of transition operators to sample θ|f . Minimum ESS is averaged over
10 chains for 10 different data sets for each value of n and d. The last row reports the result
of the statistical test to assess which operators achieve significantly faster convergence.

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH 2024 (144) 156 (37) 2124 (125) 77 (33)
HMC 11325 (915) 830 (269) 12556 (661) 293 (137)
SMMALA 9592 (2052) 61 (23) 10241 (2672) 47 (17)

1|2, 3 2|1|3 1|2|3 2|1|3

by fixing θ to the values used to generate the data. We notice that different like-
lihood functions heavily affect efficiency and convergence speed; in the examples
considered here, the results show that in LRG it is possible to achieve efficiency
one order of magnitude higher than in other models. The scaled versions of MH
work well in the case of LRG (MH v1 is slightly better than MH v2), but do not
offer guarantees of convergence on other models. ELL-SS achieves better efficiency
and convergence than the scaled versions of MH. SMMALA, which uses gradient
and curvature information, achieves good efficiency and faster convergence than
MH v1, MH v2, and ELL-SS, but at the cost of one operation in O(n3) at each
iteration, as the metric tensor is a function of f and needs to be factorized at each
iteration. Overall, the results suggest that the scaled versions of HMC are the
best sampling methods for f |θ,y. HMC v1 is slightly better than HMC v2, but it
requires one extra inversion and one extra Cholesky decomposition compared to
HMC v2 that does not require any operations in O(n3) once the covariance matrix
of the GP is factorized.

4.2.2 SA parameterization - Sampling θ|f

In this section we present results about the sampling of hyper-parameters from the
posterior distribution θ|f ,y which, given the hierarchical structure of the model, is
simply θ|f independent from the data model. As reported in Tab. 1, the complexity
of applying SMMALA and HMC is quite high compared to MH. MH requires one
Cholesky factorization of Q at each iteration. In HMC, at each leapfrog step, the
gradients of Q with respect to θ are needed and the cheapest way to do this is
by inverting Q first and noticing that all the remaining operations are in O(n2);
this is done λ̄ times on average at every iteration of HMC. Similarly, in SMMALA
the gradient can be computed by inverting Q first; by doing so, the metric tensor
can then be computed by d multiplications with the derivatives of Q and no other
O(n3) operations.

The results are reported in Tab. 3, and were obtained by fixing f to the value
used to generate the data and sampling only the length-scale parameters, as σ can
be efficiently sampled using exact Gibbs steps. HMC improves quite substantially
on efficiency, but not on speed of convergence; it may be worth employing some
rescaling of the hyper-parameters to improve on this as suggested by Neal (1996).
The performance of SMMALA is highly variable in efficiency and it converges
more slowly than MH and HMC. This might be due to the skewness of the target

16 M. Filippone et al.

Table 4 Comparison of transition operators to sample θ|y, ν for data generated from models
with four different likelihoods. Minimum ESS is computed as the average over 10 chains for 10
different data sets for each value of n and d. The last row in each sub-table reports the result
of the statistical test to assess which operators achieve significantly faster convergence.

LRG

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH 556 (201) 131 (33) 512 (177) 56 (11)
HMC 2572 (1382) 859 (278) 2666 (973) 223 (39)
SMMALA 3833 (2032) 65 (42) 6877 (1584) 47 (21)

1, 3|2 2|1|3 1|3|2 1|2, 3

LCX

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH 818 (386) 6 (4) 1030 (397) 3 (1)
HMC 5169 (3297) 11 (8) 7145 (3852) 4 (3)
SMMALA 6158 (2788) 9 (6) 8377 (1815) 6 (4)

3|1, 2 1, 2|3 1, 2, 3 1, 2|3

VLT

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH 859 (318) 22 (6) 795 (270) 8 (6)
HMC 5680 (2634) 48 (20) 5233 (2482) 11 (11)
SMMALA 6274 (1896) 14 (9) 6950 (2763) 11 (9)

1, 2, 3 1|2|3 1, 2, 3 1|2|3

ORD

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂
MH 689 (159) 14 (7) 552 (168) 9 (6)
HMC 155 (296) 14 (11) 79 (115) 4 (4)
SMMALA 3356 (1661) 11 (8) 2328 (1423) 19 (27)

1, 3|2 1, 3|2 1, 3|2 1, 3|2

distribution, that is known to affect the efficiency of SMMALA (Stathopoulos and
Filippone, 2011). The results indicate that MH strikes a good balance between
efficiency and computational cost.

4.2.3 AA parameterization - Sampling θ|y,ν

In this section we present the sampling of the hyper-parameters from the posterior
distribution θ|y,ν, where we fixed ν to the values used to generate the data. The
analysis of complexity shows that MH requires one Cholesky factorization at each
iteration. In HMC, each leapfrog requires computing L and the gradient of L with
respect to θ and no other operations in O(n3); this can be computed using the
differentiation of the Cholesky algorithm which requires d operations in O(n3)
(Smith, 1995). Likewise, for SMMALA L and the d derivatives of L with respect
to θ are the only operations in O(n3) needed.

17

Table 5 Comparison of different strategies to sample f , θ|y for data generated from a
LRG model. The rightmost column reports the complexity of the different methods with re-
spect to number of inversion and Cholesky decompositions. In KHR, κ̄ represents the average
number of iterations to run the Laplace Approximation.

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂ #I #C
AA 131(57) 117(34) 94(38) 47(17) 0 T
ASIS 138(63) 168(49) 98(39) 60(25) 0 2T
KHR 856(360) 177(48) 481(219) 116(32) 0 κ̄T + 2T
SA 8(6) 59(18) 5(2) 14(6) 0 T
SURR 173(95) 90(32) 157(51) 35(15) T 2T

3|5|1, 2|4 1, 2|3, 4, 5 3|5|1, 2|4 2, 3|1|4, 5

The results can be found in Tab. 4 and are again variable across different
models. In general SMMALA and HMC do not seem to offer faster convergence
with respect to the MH transition operator which is therefore competitive in terms
of efficiency relative to computational cost.

4.3 Assessing the efficiency of different parameterizations

After analyzing the results in the previous section, we decided to combine the
transition operators which achieved a good sampling efficiency with relatively low
computational cost and ease of implementation. We decided that a good combina-
tion to be used in AA, SA, ASIS, and SURR could be as follows: sampling f using
HMC v2 and θ using MH; HMC v2 and MH where adapted during the burn-in
phase and in HMC v2 we set the maximum number of leapfrog steps to 10. For
the sake of brevity, we focus on the LRG model only; the results on efficiency and
speed of convergence in sampling hyper-parameters are reported in Tab. 5.

It is striking to see how challenging it is to efficiently sample from the poste-
rior distribution of latent variables and hyper-parameters. Sampling efficiency is
generally low; this is consistent with our experience in other applications involv-
ing sampling in hierarchical models (Filippone et al., 2012). As expected, the SA
parameterization is the worst among the ones we tested. The AA parameteriza-
tion, ASIS, and SURR generally offer good guarantees of convergence within a few
thousand iterations. SURR seems to be superior in efficiency, which is consistent
with what reported in Murray and Adams (2010), but it requires more operations
in O(n3) compared to AA and ASIS. ASIS slightly improves efficiency and speed
of convergence with respect to the AA scheme but requires double the number of
operations in O(n3). KHR seems effective in breaking the correlation between the
two groups of variables, but it may require several iterations within the approxi-
mation used to sample f . In the experiments considered here κ̄ is around 8, so the
best compromise between computations and efficiency seems to be given by the
AA and ASIS parameterizations.

18 M. Filippone et al.

Table 6 Comparison of different strategies to sample f , θ|y in four UCI data sets modeled
using a LRG model.

Pima Wisconsin SPECT Ionosphere
n = 768, d = 8 n = 683, d = 9 n = 80, d = 22 n = 351, d = 34

ESS R̂ ESS R̂ ESS R̂ ESS R̂
AA 34 (4) 42 (15) 99 (18) 12 (5)
ASIS 35 (8) 47 (11) 215 (23) 24 (8)
KHR 153 (14) 20 (10) 101 (16) 2 (2)
SA 5 (2) 7 (3) 97 (12) 11 (7)
SURR 76 (10) 25 (14) 84 (14) 9 (4)

5 Results on real data

We repeated the comparison of different parameterizations on four UCI data sets
(Asuncion and Newman, 2007), namely the Pima, Wisconsin, SPECT, and Iono-
sphere data sets, which we modeled using LRG models; the results are reported
in Tab. 6. We used the same priors and experimental setup as in the previous
sections, except that all features were transformed to have zero mean and unit
standard deviation, and latent variables were sampled iterating five updates of
HMC v2. Also, chains were initialized sampling from the prior. Again, the SA
parameterization shows the poorest efficiency and convergence speed, and the AA
parameterization improves on that. Combining the AA and SA parameterizations
using ASIS slightly improves on the AA parameterization, although the improve-
ment is not dramatic. The SURR method improves on the AA parameterization,
which is consistent with what reported in Murray and Adams (2010). The results
of KHR are highly variable across data sets; in cases where the approximation to
sample latent variables is accurate, the chains mix well. In some cases, however,
the approximation is not accurate enough to guarantee a good acceptance rate,
and the chains can spend a long time in the same position before accepting the
joint proposal.

6 Conclusions

In this paper we studied and compared a number of state-of-the-art strategies
to carry out the fully Bayesian treatment of GP models. We focused on four GP
models and performed an extensive evaluation of efficiency, convergence speed, and
computational complexity of several transition operators and sampling strategies.

The results in this paper show that latent variables can be sampled quite
efficiently with little computational effort once the GP covariance matrix is fac-
torized. This can be achieved by a simple variant of HMC that we introduced in
this paper. About sampling hyper-parameters in different parameterizations, the
results presented here indicate that the gain in sampling efficiency given by the
use of complicated proposal mechanisms does not scale as much as their computa-
tional cost. It would be interesting to investigate some recently proposed variants
to slice sampling (Thompson and Neal, 2010) and Hybrid Monte Carlo (Hoffman
and Gelman, 2012) on the sampling of hyper-parameters.

The analysis of the results obtained by different parameterization suggest that
AA is a sensible and computationally cheap parameterization with good conver-

19

gence properties. AA performs similarly to ASIS at half the computational cost. It
makes sense, however, to employ ASIS when in doubt about the best parameteri-
zation to use, although GP models with full covariance matrices will generally fall
into the weak data limit as the O(n2) space and O(n3) time complexities constrain
the number of data that can be processed.

In general, the results show how challenging it is to efficiently sample from
the posterior distribution of latent variables and hyper-parameters in GP models
and motivates further research into methods to do this efficiently. Some sampling
strategies, such as the one based on the AA parameterization, are capable of
achieving convergence within a reasonable number of iterations, and this makes
it possible to carry out the fully Bayesian treatment of GP models dealing with
a small to moderate number of samples. We have recently demonstrated that this
is indeed the case in Filippone et al. (2012), but more needs to be done in the
direction of developing robust stochastic based inference methods for GP models.

It would be interesting to investigate how performance is affected by the choice
of the design, which in the simulated data presented here was assumed uniform.
Also, we studied in particular GP models with the squared exponential ARD
covariance function. It would be interesting to compare the method considered
here in models characterized by other covariance functions, such as the Matérn, or
sparse inverse covariance functions as in Rue et al. (2009); the latter would make
it possible to test the strong data limit case. Finally, in this study we have not
included a mean function for the GP prior or extra parameters for the likelihood
function. This would require including the sampling of other quantities that may
further impact on efficiency and speed of convergence.

References

1. Amari, S. and H. Nagaoka (2000). Methods of Information Geometry, Volume 191
of Translations of Mathematical monographs. Oxford University Press.

2. Asuncion, A. and D. J. Newman (2007). UCI machine learning repository.
3. Christensen, O. F., G. O. Roberts, and J. S. Rosenthal (2005). Scaling limits for

the transient phase of local MetropolisHastings algorithms. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 67 (2), 253–268.

4. Chu, W. and Z. Ghahramani (2005). Gaussian Processes for Ordinal Regression.
Journal of Machine Learning Research 6, 1019–1041.

5. Cseke, B. and T. Heskes (2011). Approximate Marginals in Latent Gaussian Mod-
els. Journal of Machine Learning Research 12, 417–454.

6. Filippone, M., A. F. Marquand, C. R. V. Blain, S. C. R. Williams, J. Mourão-
Miranda, and M. Girolami (2012). Probabilistic Prediction of Neurological Dis-
orders with a Statistical Assessment of Neuroimaging Data Modalities. Annals
of Applied Statistics 6 (4), 1883–1905.

7. Filippone, M., M. Zhong, and M. Girolami (2012). On the fully Bayesian treatment
of latent Gaussian models using stochastic simulations. Technical Report TR-
2012-329, School of Computing Science, University of Glasgow.

8. Flegal, J. M., M. Haran, and G. L. Jones (2007). Markov Chain Monte Carlo: Can
We Trust the Third Significant Figure? Statistical Science 23 (2), 250–260.

9. Gelman, A. and D. B. Rubin (1992). Inference from iterative simulation using
multiple sequences. Statistical Science 7 (4), 457–472.

20 M. Filippone et al.

10. Girolami, M. and B. Calderhead (2011). Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 73 (2), 123–214.

11. Hoffman, M. D. and A. Gelman (2012). The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research, to appear.

12. Knorr-Held, L. and H. Rue (2002). On Block Updating in Markov Random Field
Models for Disease Mapping. Scandinavian Journal of Statistics 29 (4), 597–614.

13. Kuss, M. and C. E. Rasmussen (2005). Assessing Approximate Inference for Bi-
nary Gaussian Process Classification. Journal of Machine Learning Research 6,
1679–1704.

14. Mackay, D. J. C. (1994). Bayesian methods for backpropagation networks. In
E. Domany, J. L. van Hemmen, and K. Schulten (Eds.), Models of Neural Net-
works III, Chapter 6, pp. 211–254. Springer.

15. Minka, T. P. (2001). Expectation Propagation for approximate Bayesian inference.
In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
UAI ’01, San Francisco, CA, USA, pp. 362–369. Morgan Kaufmann Publishers
Inc.

16. Møller, J., A. R. Syversveen, and R. P. Waagepetersen (1998). Log Gaussian Cox
Processes. Scandinavian Journal of Statistics 25 (3), 451–482.

17. Murray, I. and R. P. Adams (2010). Slice sampling covariance hyperparameters
of latent Gaussian models. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta (Eds.), NIPS, pp. 1732–1740. Curran Associates,
Inc.

18. Murray, I., R. P. Adams, and D. J. C. MacKay (2010). Elliptical slice sampling.
Journal of Machine Learning Research - Proceedings Track 9, 541–548.

19. Neal, R. (2003). Slice Sampling. Annals of Statistics 31, 705–767.
20. Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo meth-

ods. Technical Report CRG-TR-93-1, Dept. of Computer Science, University of
Toronto.

21. Neal, R. M. (1996). Bayesian Learning for Neural Networks (Lecture Notes in
Statistics) (1 ed.). Springer.

22. Neal, R. M. (1999). Regression and classification using Gaussian process priors
(with discussion). Bayesian Statistics 6, 475–501.

23. Opper, M. and O. Winther (2000). Gaussian processes for classification: Mean-
field algorithms. Neural Computation 12 (11), 2655–2684.

24. Rasmussen, C. E. and C. Williams (2006). Gaussian Processes for Machine Learn-
ing. MIT Press.

25. Robert, C. P. and G. Casella (2005). Monte Carlo Statistical Methods (Springer
Texts in Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

26. Roberts, G. O. and O. Stramer (2002). Langevin Diffusions and Metropolis-
Hastings Algorithms. Methodology and Computing in Applied Probability 4 (4),
337–357.

27. Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approximations.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 (2),
319–392.

28. Smith, S. P. (1995). Differentiation of the Cholesky Algorithm. Journal of Com-
putational and Graphical Statistics 4 (2), 134–147.

21

29. Stathopoulos, V. and M. Filippone (2011). Discussion of the paper ”Riemann
manifold Langevin and Hamiltonian Monte Carlo methods” by Mark Girolami
and Ben Calderhead. Journal of the Royal Statistical Society, Series B (Statis-
tical Methodology) 73 (2), 167–168.

30. Thompson, M. and R. M. Neal (2010). Covariance-Adaptive Slice Sampling.
Technical Report 1002, Department of Statistics, University of Toronto.

31. Tierney, L. and J. B. Kadane (1986). Accurate Approximations for Posterior
Moments and Marginal Densities. Journal of the American Statistical Associa-
tion 81 (393), 82–86.

32. Vanhatalo, J. and A. Vehtari (2007). Sparse Log Gaussian Processes via MCMC
for Spatial Epidemiology. Journal of Machine Learning Research - Proceedings
Track 1, 73–89.

33. Wilson, A. G. and Z. Ghahramani (2010). Copula Processes. In J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.), NIPS,
pp. 2460–2468. Curran Associates, Inc.

34. Yu, Y. and X.-L. Meng (2011). To Center or Not to Center: That Is Not the
Question–An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting
MCMC Efficiency. Journal of Computational and Graphical Statistics 20 (3),
531–570.

A SA and AA parameterizations

A.1 Sufficient Augmentation (SA)

We derive here the quantities needed to apply the transition operators considered in this work
in the SA parameterization. Let L = log[p(y|f)]. The log-joint density is:

log[p(y, f , θ)] = L − 1

2
log(|Q|)− n

2
log(σ)− 1

2σ
fTQ−1f + log[p(θ)] + const.

Note that σ could be marginalized out, but it would not be possible to get manageable ex-
pressions for the metric tensor with respect to τ ; for f , instead, this would be possible. We do
not pursue this here, and we leave it for future investigation.

By inspecting the log-joint density, we see that we can obtain the conditional density for
σ in the following form

log[p(σ|y, f , τ)] = −n
2

log(σ)− 1

2σ
fTQ−1f + const.

which we recognize as an inverse Gamma. By placing an inverse Gamma prior on σ in the
form invGa(σ|a, b) with shape a and scale b, we can sample directly:

σ ∼ invGa

(
σ

∣∣∣∣a+
n

2
, b+

1

2
fTQ−1f

)

The gradients of the log-joint density needed to apply gradient based operators are:

∇f log[p(y, f , θ)] = ∇fL −
1

σ
Q−1f

∂ log[p(y, f , θ)]

∂ψτi
= −1

2
Tr

(
Q−1 ∂Q

∂ψτi

)
+

1

2σ
fTQ−1 ∂Q

∂ψτi
Q−1f +

∂ log[p(ψτ)]

∂ψτi
The FI for latent variables and parameters are:

R = FIf ,f = Ey

[
(∇fL)(∇fL)T

]
= −Ey [∇f∇fL]

22 M. Filippone et al.

FIψτ ,ψτ
= Ef

[
(∇ψτ

log[p(f |ψτ)])(∇ψτ
log[p(f |ψτ)])T

]

Given that the likelihood factorizes with respect to the observations, the Hessian of L with
respect to f is diagonal, so R = FIf ,f is diagonal as well. The metric tensors are the FI matrices
plus the negative Hessian of the priors:

Gf ,f = R+
1

σ
Q−1

Gψτi ,ψτj
= +

1

2
Tr

(
Q−1 ∂Q

∂ψτj
Q−1 ∂Q

∂ψτi

)
− ∂2 log[p(ψτ)]

∂ψτi∂ψτj

A.2 Ancillary Augmentation (AA)

We derive here the quantities needed to apply the transition operators considered in this work
in the AA parameterization. The expression of the log-joint density is the same as in the SA
case, bearing in mind the transformation f =

√
σLν; this yields:

log[p(y, ν, θ)] = L(y|ν, θ)− 1

2
νTν + log[p(θ)] + const.

The gradient with respect to the hyper-parameters can be computed by using the chain
rule of derivation and standard properties of derivatives of vector valued functions:

∂ log[p(y, ν, θ)]

∂ψτi
=
√
σ(∇fL(y|f))T ∂L

∂θi
ν +

∂ log[p(ψτ)]

∂ψτi

The FI matrix is readily obtained as:

FIθi,θj = σνT
∂LT

∂θi
R
∂L

∂θj
ν

With the contribution (negative Hessian) of the prior, the metric tensor used in the manifold
methods results in:

Gθi,θj = σνT
∂LT

∂θi
R
∂L

∂θj
ν − ∂2 log[p(θ)]

∂θi∂θj

B GP models considered in this paper

B.1 Logistic regression with GP priors (LRG)

Let:

l+(f) = logistic(f) =
1

1 + exp(−f)
l−(f) = 1− l+(f) = logistic(−f)

In logistic regression, observations follow a Bernoulli distribution with success probability given
by a sigmoid transformation of the associated latent variables:

p(y|f) =

n∏

i=1

p(yi|fi) =

n∏

i=1

Bern(yi|l+(fi)) =

n∏

i=1

l+(fi)
yi l−(fi)

(1−yi)

The gradient with respect to f results in:

(∇fL)j = yj − l+(fj)

The computation of diagonal elements of the FI matrix for f requires the expectations of y2i
which are the same as the expectations of yi, that are l+i ; this leads to Rii = l+(fi)l

−(fi).

23

B.2 Log-Gaussian Cox model (LCX)

In this model, observations follow a Poisson distribution with mean computed as an exponen-
tially transformed version of the corresponding latent variables:

p(y|f) =

n∏

i=1

p(yi|fi) =

n∏

i=1

Poisson(yi| exp(fi))

The gradient with respect to f and the diagonal elements of R result in:

(∇fL)j = yj − exp(fj) Rii = exp(fi)

B.3 Stochastic Volatility model with GP priors (VLT)

In this model, observations follow a zero mean Gaussian distribution with standard deviation
computed as an exponentially transformed version of the corresponding latent variable:

p(y|f) =

n∏

i=1

p(yi|fi) =

n∏

i=1

N (yi|0, exp(fi)
2)

The gradient with respect to f and the diagonal elements of R result in:

(∇fL)j = exp(fi)
−2y2j − 1 Rii = 2

B.4 Ordinal Regression with GP priors (ORD)

In this model, latent variables are thresholded at r points that will be denoted by b0, . . . , br,
with b0 = −∞ and br = +∞. Then, y is the index of the interval where the corresponding
latent variable f falls. The likelihood of an observed label yi associated to the ith latent variable
fi is then:

p̄(yi|fi) = 1 if byi−1 < f ≤ byi
and zero otherwise. This model is usually modified to allow for a noise term δ (distributed as
N (δ|0, σ2

δ)) in the latent variables so that:

p(yi|fi) =

∫
p̄(yi|fi + δ)N (δ|0, σ2

δ)dδ = Φ(z
(yi)
i)− Φ(z

(yi−1)
i)

where:

z
(s)
i =

bs − fi
σδ

In particular:

L =

n∑

i=1

log
[
Φ(z

(yi)
i)− Φ(z

(yi−1)
i)

]

(∇fL)i =
1

σδ

N (z
(yi−1)
i |0, 1)−N (z

(yi)
i |0, 1)

Φ(z
(yi)
i)− Φ(z

(yi−1)
i)

By writing the diagonal elements of Hessian of the log-likelihood computed for yi = s

(∇f∇fL)
(s)
ii =

1

σ2
δ

z
(s)
i N (z

(s)
i |0, 1)− z(s−1)

i N (z
(s−1)
i |0, 1)

Φ(z
(s)
i)− Φ(z

(s−1)
i)

− 1

σ2
δ

(
N (z

(s−1)
i |0, 1)−N (z

(s)
i |0, 1)

Φ(z
(s)
i)− Φ(z

(s−1)
i)

)2

it is possible to compute the expectation of the negative Hessian as:

Rii = −
r∑

s=1

(∇f∇fL)
(s)
ii p(s|fi) =

r∑

s=1

(∇f∇fL)
(s)
ii

[
Φ(z

(s−1)
i)− Φ(z

(s)
i)
]

Note that the formulation in this paper is slightly different from the one in Chu and Ghahra-
mani (2005), where σ is dropped and thresholds are inferred instead.

PROBABILISTIC PREDICTION OF NEUROLOGICAL
DISORDERS WITH A STATISTICAL ASSESSMENT OF

NEUROIMAGING DATA MODALITIES∗

By M. Filippone, A.F. Marquand C.R.V. Blain S.C.R. Williams J.
Mourão-Miranda and M. Girolami

AbstractFor many neurological disorders, prediction of disease
state is an important clinical aim. Neuroimaging provides detailed
information about brain structure and function from which such pre-
dictions may be statistically derived. A multinomial logit model with
Gaussian process priors is proposed to: (i) predict disease state based
on whole-brain neuroimaging data and (ii) analyze the relative infor-
mativeness of different image modalities and brain regions. Advanced
Markov chain Monte Carlo methods are employed to perform poste-
rior inference over the model. This paper reports a statistical assess-
ment of multiple neuroimaging modalities applied to the discrimina-
tion of three Parkinsonian neurological disorders from one another
and healthy controls, showing promising predictive performance of
disease states when compared to non probabilistic classifiers based
on multiple modalities. The statistical analysis also quantifies the
relative importance of different neuroimaging measures and brain re-
gions in discriminating between these diseases and suggests that for
prediction there is little benefit in acquiring multiple neuroimaging
sequences. Finally, the predictive capability of different brain regions
is found to be in accordance with the regional pathology of the dis-
eases as reported in the clinical literature.

1. Introduction. For many neurological and psychiatric disorders, making a
definitive diagnosis and predicting clinical outcome are complex and difficult prob-
lems. Difficulties arise due to many factors including overlapping symptom profiles,
comorbidities in clinical populations and individual variation in disease phenotype
or disease course. In addition, for many neurological disorders the diagnosis can only
be confirmed via analysis of brain tissue post-mortem. Thus, technological advances
that improve the efficiency or accuracy of clinical assessments hold the potential to

∗MG gratefully acknowledges support from the EPSRC grants EP/E052029/1 and
EP/H024875/1. AM gratefully acknowledges support from the KCL Centre of Excellence in Medical
Engineering, funded by the Wellcome Trust and EPSRC under grant no. WT088641/Z/09/Z and
JMM gratefully acknowledges support from the Wellcome Trust under grant no. WT086565/Z/08/Z.

Keywords and phrases: multi-modality multinomial logit model, Gaussian process, hierarchical
model, high dimensional data, Markov chain Monte Carlo, Parkinsonian diseases, prediction of
disease state

1

2 FILIPPONE ET AL.

improve mainstream clinical practice and to provide more cost-effective and person-
alized approaches to treatment.

In this regard, combining data obtained from neuroimaging measures with sta-
tistical discriminant analysis has recently attracted substantial interest amongst
the neuroimaging community (e.g., Klöppel et al. (2008); Marquand et al. (2008)).
Neuroimaging data present particular statistical challenges in that they are often
extremely high dimensional (in the order of hundreds of thousands to millions of
variates) with very few samples (tens to hundreds). Further, multiple imaging se-
quences may be acquired for each participant, each aiming to measure different
properties of brain tissue. Each sequence may in turn give rise to several different
measurements. In the present work, we will use the term ’modality’ to describe such
a set of measurements. In response to those challenges, most attempts to predict
disease state from neuroimaging data employ the Support Vector Machine (SVM;
see e.g. Schölkopf and Smola (2001)) based on information obtained from a sin-
gle modality. Such an approach however is not able, in any statistical manner, to
fully address questions related to the importance of different modalities. As we will
show in the experimental section of this paper, even the multi-modality SVM-based
classifier proposed in Rakotomamonjy et al. (2008) lacks a systematic way of char-
acterizing the uncertainty in the predictions and in the assessment of the relative
importance of different modalities.

In this work, we adopt a multinomial logit model based on Gaussian process
(GP) priors (Williams and Barber, 1998) as a probabilistic prediction method that
provides the means to incorporate measures from different imaging modalities. We
apply this approach to discriminate between three relatively common neurological
disorders of the motor system based on data modalities derived from three distinct
neuroimaging sequences. In this application we aim to characterize uncertainty with-
out resorting to potentially inaccurate deterministic approximations to the integrals
involved in the inference process. Therefore, we propose to employ Markov chain
Monte Carlo (MCMC) methods to estimate the analytically intractable integrals as
they provide guarantees of asymptotic convergence to the correct results. The par-
ticular structure of the model and the large number of variables involved, however,
make the use of MCMC techniques seriously challenging (Filippone, Zhong and Giro-
lami, 2012; Murray and Adams, 2010). In this work, we make use of reparametriza-
tion techniques (Yu and Meng, 2011) and state-of-the-art sampling methods based
on the geometry of the underlying statistical model (Girolami and Calderhead, 2011)
to achieve efficient sampling.

The remainder of the paper is structured as follows: in section 2, we describe the
motivating application of statistical discrimination of movement disorders from brain
images. In section 3 we introduce the multinomial logit model with GP priors and
in section 4 we present the associated MCMC methodology. In section 5 we report

3

a comparison of MCMC strategies applied to our brain imaging data and in section
6 we investigate the predictive ability of different data sources and brain regions,
comparing the results with a non-probabilistic multi-modality classifier based on
SVMs. Section 7 shows how predictive probabilities can be used to refine predictions,
and section 8 draws conclusions commenting on the questions that this methodology
addresses in this particular application.

2. Discriminating among Parkinsonian Disorders.

2.1. Introduction to the disorders. For this application, we aim to discriminate
between healthy control subjects (HCs) and subjects with either multiple system
atrophy (MSA), progressive supranuclear palsy (PSP) or idiopathic Parkinson’s dis-
ease (IPD), which are behaviorally diagnosed motor conditions collectively referred
to as ’Parkinsonian disorders’. MSA, PSP and IPD can be difficult to distinguish
clinically in the early stages (Litvan et al., 2003) and carry a high rate of misdiag-
nosis, even though early diagnosis is important in predicting clinical outcome and
formulating a treatment strategy (Seppi, 2007). For example, MSA and PSP have
a much more rapid disease progression relative to IPD and carry a shorter life ex-
pectancy after diagnosis. Further, IPD responds relatively well to pharmacotherapy,
while MSA and PSP are both associated with a modest to poor response. Thus,
automated diagnostic tools to discriminate between the disorders is of clinical rele-
vance where they may help to reduce the rate of misdiagnosis and ultimately lead
to more favourable outcomes for patients.

2.2. The clinical problem of discriminating among Parkinsonian Disorders. In
this study, we employed magnetic resonance imaging (MRI) as it is non-invasive,
widely available and, unlike alternative measures such as positron emission tomog-
raphy, does not involve exposing subjects to ionizing radiation. A detailed discussion
of the imaging modalities employed in this study is beyond the scope of the present
work but see Farrall (2006) for an overview. Briefly, the different imaging modalities
employed here measure different properties of brain tissue: T1-weighted imaging is
well-suited to visualizing anatomical structure, while T2-weighted structural imag-
ing often shows focal tissue abnormalities more clearly. Diffusion tensor imaging
(DTI) does not measure brain structure directly, but instead measures the diffusion
of water molecules along fibre tracts in the brain, thus quantifying the integrity of
the fibre bundles that connect different brain regions (see Basser and Jones (2002)
for an introduction to DTI).

A review of the neuropathology of the Parkinsonian disorders is also beyond
the scope of this work but briefly we note that MSA and PSP are characterized by
distinct cellular pathologies and subsequent degeneration of widespread and partially
overlapping brain regions. For MSA, affected regions include the brainstem, basal

4 FILIPPONE ET AL.

ganglia (e.g. caudate and putamen), cerebellum and cerebral cortex (Wenning et al.,
1997). Note that MSA is sometimes subdivided into Parkinsonian and cerebellar
subtypes (MSA-P and MSA-C respectively) but for the present work we included
both variants in the same class. For PSP the brainstem and basal ganglia both
undergo severe degeneration (Hauw et al., 1994) although cortical areas are also
affected. In contrast, IPD is characterized in the early stages by relatively focal
pathology in the substantia nigra (a pair of small nuclei in the brainstem), which is
difficult to detect using conventional structural MRI where the scans of IPD patients
can appear effectively normal (Seppi, 2007).

There is however, some evidence that changes in IPD can be detected using DTI
(see, e.g., Yoshikawa et al. (2004)). Thus, it is of interest to investigate which data
modalities are best suited to discriminating between MSA, PSP, IPD and HCs, which
has practical implications in planning future diagnostic studies: MRI scans are costly,
so it is desirable to know which data modalities provide the best discrimination of
the diagnostic groups and which scans can be omitted from a scanning protocol to
avoid wasting money acquiring scans that do not provide additional predictive value.

2.3. State of the art in diagnosis and prediction. We are aware of only one exist-
ing study that employed a discriminant approach to diagnose these diseases based
on whole-brain neuroimaging measures (Focke et al., 2011). This study employed
binary SVM classifiers to discriminate MSA-P from IPD, PSP and HCs based on
a similar sample to the present study. The authors reported that (i) PSP could be
accurately discriminated from IPD, (ii) that separation of the MSA-P group from
IPS and from controls was only marginally better than chance and (iii) that no
separation of the IPD group from HCs was possible. The authors did not attempt
to combine the distinct binary classifiers to provide multi-class predictions.

The problem of combining different modalities in classification models can be seen
as a Multiple Kernel Learning (MKL) problem (Lanckriet et al., 2004; Sonnenburg
et al., 2006). A recent MKL approach to classification referred to as ’simpleMKL’
has been proposed by Rakotomamonjy et al. (2008). SimpleMKL is based on a SVM
learning algorithm and shows good performance relative to other MKL approaches;
for this reason we will consider it as a baseline against which we aim to compare the
performance of the proposed approach.

2.4. Data acquisition and preprocessing. Eighteen subjects with MSA, 16 sub-
jects with PSP, 14 subjects with IPD (all in mid disease stage) and 14 HCs were
recruited according to clinical and experimental criteria described in Blain et al.
(2006). For each subject, a T2-weighted structural image, a T1-weighted spoiled
gradient recalled (SPGR) structural image and a DTI sequence were acquired and
preprocessed (see the appendix for the details on acquisition.)

All images were screened by a trained radiologist and were examined for gross

5

Figure 1. Examples of each data source (after preprocessing), taken from the same slice and subject

structural abnormalities, including white matter abnormalities. Diffusion tensor im-
ages were then preprocessed according to an in-house protocol and were summarized
by measures of fractional anisotropy (FA) and mean diffusivity (MD) at every brain
location (see Basser and Jones (2002)). SPGR images were preprocessed using the
DARTEL toolbox included in the SPM software package (www.fil.ion.ucl.ac.uk/spm),
which involved non-linear registration to a common reference space, segmentation
into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in addi-
tion to smoothing with a 6mm isotropic Gaussian kernel.

For this analysis, whole-brain (unmodulated) GM and WM images derived from
the SPGR scans, the T2 structural images plus the FA and MD images derived
from the DTI sequence were used for classification, yielding a total of five distinct
modalities for each subject. For illustrative purposes, an example of each type of
image after preprocessing is provided in figure 1.

3. Multinomial logit model with GP priors. The aim of this study is
twofold: the first is to reliably estimate the probability that new subjects have MSA,
PSP, IPD, or none of them and the second is to assess the importance of different
sources of information in the discrimination among these diseases. We cast this
problem as a multi-modality classification problem, whereby we associate class labels
corresponding to MSA, PSP, IPD, and HCs to n subjects described by s = 1, . . . , q
distinct representations (i.e. modalities), each defined by ds covariates.

Denote each modality by an n × ds matrix Xs. Let {y1, . . . ,yn} be the set of
observed labels for the n subjects. Assume a 1-of-m coding scheme (m = 4 in our
application), whereby the membership of subject i to class c is represented by a
vector yi of length m where (yi)r = 1 if r = c and zero otherwise.

In this work we propose a probabilistic multinomial logit classification model
based on Gaussian process (GP) priors to model the probability πic := p(yic =
1|X1, . . . , Xq) that subject i belongs to class c. The multinomial logit model assumes
that the class labels yi are conditionally independent given a set of m latent functions

6 FILIPPONE ET AL.

fc that model the πic using the following transformation:

(1) πic =
[exp(fc)]i

[
∑m

r=1 exp(fr)]i
.

We assume that the latent variables fc are independent across classes and drawn
from GPs, so that fc ∼ N (0, Kc). The assumption of independence between variables
belonging to different classes can be relaxed in cases where there is prior knowledge
about that. Note that the assumption of conditional independence of the class labels
given the latent variables is not restrictive as the prior over the latent variables
imposes a covariance structure that is reflected on the class labels.

In order to assess the importance of each modality in the classification task, we
propose to model each covariance Kc as a linear combination of covariances obtained
from the q modalities, say Cs with s = 1, . . . , q. We constrain the linear combination
of covariance functions to be positive definite by modeling Kc =

∑q
s=1 exp[θcs]Cs.

Note that given the additivity of the linear model under the GP it is possible to
interpret this model as one where each latent function is a linear combination of
basis functions with covariances Cs. Since the data modalities employed in this study
potentially have different numbers of features which are are also scaled differently,
we employed two simple operations to normalize the images prior to classification.
First we divided each feature vector by its Euclidean norm then standardised each
feature to have zero mean and unit variance across all scans. We then chose a
covariance for each modality to be Cs = XsX

T
s . Given that the modalities are

normalized and that the covariances are linear in the data sources Xs, the inference
of the corresponding weights allows to draw conclusions on their relative importance
in the classification task. In this work we imposed Gamma priors on the weights
exp[θcs], but for the sake of completeness and to rule out any dependencies of the
results from the parametrization of the weights and the specification of the prior, we
have also explored the possibility to use a Dirichlet prior inferring the concentration
parameter; we will discuss this in more detail in the sections reporting the results.

We note here that the representation in eq. 1 is redundant as class probabilities
are defined up to a scaling factor of the exponential of the latent variables. Choosing
a model in which m − 1 latent functions are modeled and one is fixed would remove
any redundancy, but, as described in Neal (1999) “forcing the latent values for one
of the classes to be zero would introduce an arbitrary asymmetry into the prior”.
Also, modeling m − 1 latent functions would not allow a direct interpretation of the
importance of different modalities given by the hyper-parameters.

We used all features to perform the classification because in our experience feature
selection does not provide a benefit in terms of increasing the accuracy of classifica-
tion models for neuroimaging data but does increase their complexity. In line with
this, a recent comparative analysis of alternative data preprocessing methods on

7

a publicly available neuroimaging dataset indicated that feature selection did not
improve classification performance but did substantially increase the computation
time (Cuingnet et al., 2011).

We now discuss how to make inference for the proposed model. In order to keep the
notation uncluttered, we will drop the explicit conditioning on Xs. We will denote
by f the (nc)×1 vector obtained by concatenating the class specific latent functions
fc, and similarly by y and π the vectors obtained by concatenating the vectors y·c
and π·c. Finally, let the m × q matrix θ denote the set of hyper-parameters, and K
be the matrix obtained by block-concatenating the covariance matrices Kc.

Given the likelihood for the observed labels, the prior over the latent functions,
and the prior over the hyper-parameters, we can write the log-joint density as

L = log[p(y, f , θ)] = log[p(y|f)] + log[p(f |θ)] + log[p(θ)] .

One of the goals of our analysis is to obtain predictive distributions for new
subjects. Let y∗ denote the corresponding label; the predictive density is obtained
by marginalizing out parameters and latent functions via

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|f , θ)p(f , θ|y)df∗dfdθ .

In this work, we propose to estimate this integral by obtaining posterior samples
from p(f , θ|y) using MCMC methods. The Appendix gives details of how Monte-
Carlo estimates of this predictive distribution may be obtained. Obtaining samples
from p(f , θ|y) is complex because of the structure of the model that makes f and
θ strongly coupled a posteriori. Also, there is no closed form for updating f and θ
using a standard Gibbs sampler, so samplers based on an accept/reject mechanism
need to be employed (Metropolis-within-Gibbs samplers) with the effect of reducing
efficiency. This motivates the use of efficient samplers to alleviate this problem as
discussed next.

4. MCMC sampling strategies.

4.1. Riemann Manifold MCMC methods. The proposed model comprises a set
of m latent functions, each of which has dimension n, and a set of q × m weights.
Given the large number of strongly correlated variables involved in the model, we
need to employ statistically efficient sampling methods to characterize the posterior
distribution p(f , θ|y).

Recently, a set of novel Monte Carlo methods for efficient posterior sampling
has been proposed in Girolami and Calderhead (2011) which provides promising
capability for challenging and high dimensional problems such as the one considered
in this paper. In most sampling methods (with the exception of Gibbs sampling)

8 FILIPPONE ET AL.

it is crucial to tune any parameters of the proposal distributions in order to avoid
strong dependency within the chain or the possibility that the chain does not move
at all. As the dimensionality increases, this becomes a hugely challenging issue, given
that several parameters need to be tuned and are crucial to the effectiveness of the
sampler.

The sampling methods developed in Girolami and Calderhead (2011) aim at pro-
viding a systematic way of designing such proposals by exploiting the differential
geometry of the underlying statistical model. The main quantity in this differential
geometric approach to MCMC is the local Riemannian metric tensor which is the
expected Fisher Information (FI) that defines the statistical manifold; see Girolami
and Calderhead (2011) for full details. The intuition behind manifold MCMC meth-
ods is that the statistical manifold provides a structure that is suitable for making
efficient proposals based on Langevin diffusion or Hamiltonian dynamics. In the
case of the sampling of f using RM-HMC, let Gf be the metric tensor computed
as the FI for the statistical manifold of p(y|f) plus the negative Hessian of p(f |θ)
(see the appendix for further details). Introducing an auxiliary momentum variable
p ∼ N (p|0, Gf) as in HMC, RM-HMC can be derived by solving the dynamics
associated with the Hamiltonian:

H(f ,p) = − log[p(y, f |θ)] +
1

2
log |Gf | +

1

2
pTG−1

f p + const.

Given that the metric tensor is dependent on the value of f , the Hamiltonian
is therefore non-separable between p and f , and a generalized leapfrog integrator
must be employed (Girolami and Calderhead, 2011). RM-HMC can be seen as a
generalization of Hybrid Monte Carlo (HMC) (Neal, 1993), where the mass matrix
is now substituted by the metric tensor.

4.2. Ancillary and Sufficient augmentation. The proposed classification model
is hierarchical, and the application of a Metropolis-within-Gibbs style scheme, sam-
pling f |θ,y then θ|f ,y, leads to poor efficiency and slow convergence. This effect has
drawn a lot of attention in the case of hierarchical models in general (Papaspiliopou-
los, Roberts and Sköld, 2007; Yu and Meng, 2011), and recently in latent Gaussian
models (Murray and Adams, 2010; Filippone, Zhong and Girolami, 2012). In or-
der to decouple the strong posterior dependency between θ and f we can apply
reparametrization techniques, whereby we introduce a new set of variables νc re-
lated to the old set of latent variables by a transformation fc = g(νc, θc). This
transformation can be chosen to achieve faster convergence as studied, e.g., in Pa-
paspiliopoulos, Roberts and Sköld (2007), and should be designed to handle both
strong and weak data limits, namely situations where data overwhelm the prior or
not. In the terminology of Yu and Meng (2011), we identify two particular cases,
namely Sufficient augmentation (SA), and Ancillary augmentation (AA). In the SA

9

scheme the sampling of θ is done by proposing θ′|θ, f ,y. In the case of weak data,
as it is the case in this application, the SA parametrization is inefficient, given the
strong coupling between f and θ. In contrast, in the AA scheme, the new set of
latent variables νc is constructed to be a priori independent from θ; this is a good
candidate to provide an efficient parametrization in cases of weak data. To see this,
in the case of no data, the posterior over hyper-parameters and the newly defined
latent variables νc corresponds to the prior which is factorized and easy to explore.

This parametrization makes the νc ancillary for y. We propose to realize this by
defining fc = Lcνc, where Lc is any square root of Kc (in the remainder of this paper
we will consider Lc as the Cholesky factor of Kc). This sampling scheme amounts to
sampling θ′|θ, ν1, . . . , νm,y. In the next section we will report experiments showing
the relative merits of SA and AA combined with manifold methods, with the ultimate
goal of achieving efficiency in inferring latent functions and hyper-parameters in our
application. All implemented methods were tested for correctness as proposed by
Geweke (2004), and convergence analysis was performed using the R̂ potential scale
reduction factor (Gelman and Rubin, 1992).

5. Comparison of MCMC sampling strategies. In this section we investi-
gate the efficiency of various MCMC sampling strategies in our application. Table
1 lists the sampling approaches that we considered for this study. All approaches
make use of RM-HMC for sampling the latent variables with different metrics. Ap-
proach (a) uses a simple isotropic metric so that RM-HMC is effectively HMC with
an identity mass matrix. Approaches (c), (d), and (f) use the metric derived from
the FI (see appendix), while approaches (b) and (e) use an alternative homoge-
neous metric, defined as F̂ = K−1 + diag(πp) − ΦpΦ

T
p . Note that this is similar to

the definition of the metric tensor outlined in the appendix, except πp and Φp are
defined by the prior frequency of the classes in the training set instead of by the
likelihood. Employing this homogeneous metric is less efficient than employing a po-
sition specific metric but it holds two practical advantages: (i) it has a substantially
lower computational cost since it does not recompute and invert the metric tensor
at every step and (ii) the explicit leapfrog integrator may be used in place of the
generalized (implicit) leapfrog integrator used in Girolami and Calderhead (2011).

In sampling the hyper-parameters, approaches (a)-(c) effectively employ an HMC
proposal with identity mass matrix with SA parametrization. Approach (d) uses RM-
HMC with metric derived from the FI as shown in appendix, whereas approaches
(e) and (f) make use of Metropolis-Hastings (MH) with an identity covariance with
AA parametrization.

Approach (a) can be viewed as a simple baseline approach since it does not incor-
porate any knowledge on the curvature of the target distribution and attempts to
explore the parameter space by isotropic proposals. It is presented primarily as a ref-

10 FILIPPONE ET AL.

Table 1
Sampling schemes evaluated

Approach p(f ′|f ,θ) p(θ′|f ,θ)
Sampler Metric Sampler Metric Scheme

(a) RM-HMC I RM-HMC I SA

(b) RM-HMC F̂ RM-HMC I SA
(c) RM-HMC Gf RM-HMC I SA
(d) RM-HMC Gf RM-HMC Gθ SA

(e) RM-HMC F̂ MH – AA
(f) RM-HMC Gf MH – AA

erence for the other approaches. Approaches (b) and (c) employ manifold methods
to efficiently sample the latent variables only while approaches (d) also applies them
to sample the hyper-parameters. Approaches (e) and (f) employ manifold methods
for the latent variables and an MH sampler with AA for the hyperparameters.

For all the experiments that follow, we applied an independent Gamma prior to
each weight exp(θcs), with a = b = 2, where a and b refer respectively to shape
and rate parameters. This prior is relatively vague but nevertheless constrained the
sampler to a plausible parameter range.

We tuned each of the sampling approaches described above using pilot runs and
assessed convergence by recording when all sampled variables had R̂ < 1.1. Accord-
ing to this criterion, sampling approaches (e) and (f) converged after 1,000 iterations
for the latent function variables and after a few thousands of iterations for the hy-
perparameters. Sampling approaches (a-d) did not converge even after 100,000 iter-
ations, so will not be considered further. This demonstrates that the structure of the
model poses a serious challenge in efficiently sampling f and θ, no matter how effi-
cient are the individual samplers employed in the Metropolis-within-Gibbs sampler.
For all subsequent analysis, we discarded all samples acquired prior to convergence
(burn-in). A plot reporting the evolution of Gelman and Rubin’s shrink factor vs
the number of iterations (for the first 10,000 iterations) for the slowest variable to
converge is reported in figure 2. The left and right panel of figure 2 correspond to
the slowest variable in the approach (e) for the multi-modality and multi-region
classifiers (see next section) respectively; in both cases the slowest variable was one
of the hyper-parameters.

For the latent function variables, we used an RM-HMC trajectory length of 10
leapfrog steps and a step size of 0.5 for sampling approaches (e) and (f). This ap-
peared to be near optimal and yielded an acceptance rate in the range of 60-70%,
while keeping correlation between successive samples relatively low. For the hyper-
parameters, a step size of 0.2 yielded an acceptance rate in the range of 60-70%
although correlation between successive samples remained high (see below).

We report the Effective Sample Size (ESS) (Geyer, 1992) for each method in ta-

11

0 2000 6000 10000

1
2

3
4

Multi−modal classifier

Iteration number

sh
rin

k
fa

ct
or

median
97.5%

0 2000 6000 10000

1
2

3
4

5

Multi−region classifier

Iteration number

sh
rin

k
fa

ct
or

median
97.5%

Figure 2. Convergence analysis: plot reporting the evolution of Gelman and Rubin’s shrink factor vs
the number of iterations for the slowest variable to converge in approach (e) for the multi-modality
classifier (left panel) and the multi-region classifier (right panel).

Table 2
Efficiency of converged sampling schemes (Multi-source classifier) Min and max refer to the

minimum and maximum ESS across all sampled variables

Approach mean % ESSf mean % ESSθ

(min, max) (min, max)

(e) 27.04 (5.31, 48.06) 0.34 (0.21, 0.48)
(f) 24.11 (5.71, 42.86) 0.31 (0.19, 0.42)

ble 2, expressed as a percentage of the total number of samples. The ESS is an
autocorrelation based method that is used to estimate the number of independent
samples within a set of samples obtained from an MCMC method. Both approaches
(e) and (f) sampled the latent function variables relatively efficiently although there
was some variability between different variables. Sampling of the hyperparameters
was much more challenging than the sampling of the latent function variables, and
the MH samplers achieved an ESS less than 0.5% for all variables. Thus, for sub-
sequent analysis we ran a relatively long Markov chain (5 million iterations) which
we thinned by a factor of 500, ensuring independent sampling for all variables. Note
that RM-HMC with metric F̂ and RM-HMC with matrix Gf (approaches (e) and
(f)) performed approximately equivalently for sampling the latent function variables.
Thus, for the remainder of this paper we focus on the results obtained from the sam-
pler that employed the homogeneous metric F̂ for the latent functions and MH for
the hyperparameters (i.e. approach (e)) owing to its lower computational cost. The
results reported in this section are in line with what observed in a recent extensive
study on the fully Bayesian treatment of models involving GP priors (Filippone,
Zhong and Girolami, 2012). In particular, it has been reported that the sampling of
the latent variables can be done efficiently using RM-HMC and a variant with the

12 FILIPPONE ET AL.

homogeneous metric F̂ , and that for the hyper-parameters the MH proposal with
the AA parametrization is a good compromise between efficiency and computational
cost.

6. Predictive accuracy and assessment of neuroimaging data modali-
ties. In this section, we have three main objectives: first, we aim to demonstrate
that the predictive approach we propose can accurately discriminate between multi-
ple neurological conditions. Second, we investigate which neuroimaging data modal-
ities carry discriminating information for these disorders and whether greater pre-
dictive performance can be achieved by combining multiple modalities. Finally, we
investigate the predictive ability of different brain regions for discriminating between
each of the disorders.

For estimating the predictive ability of the classifiers we performed four-fold cross-
validation (CV) In the CV procedure, we randomly partitioned the data into four
folds so that each CV fold contained approximately the same frequency of classes
as in the entire data set. We then carried out the inference leaving out one fold that
we used to assess the accuracy of the proposed method; leaving out one fold at a
time it is possible to obtain an estimate of performance on unseen data.

We compared the performance of the proposed multinomial logit model with
simpleMKL. Similar to the proposed method, simpleMKL allows an optimal linear
combination of data sources or brain regions to be inferred from the data but unlike
the proposed approach, simpleMKL is not a probabilistic model. In the MKL liter-
ature, each data source is referred to as a ’kernel’ which corresponds to a covariance
function for the proposed multinomial logit model. Since SVMs do not support true
multi-class classification, we employed a ’one-vs-all’ approach to combine multiple
binary classifiers to provide a multi-class decision function. This has the consequence
that simpleMKL estimates a linear combination of kernels that provides optimal ac-
curacy across all binary classification decisions, and is therefore not able to estimate
an independent set of kernel weighting factors for each class. To ensure the com-
parison with the multinomial logit model was as fair as possible we used nested
cross-validation to find an optimal value for the SVM regularization parameter C.
We achieved this by performing an inner ’leave-one-out’ cross validation cycle (’val-
idation’) within each outer four fold cycle (’test’) while we varied C logarithmically
across a wide range of values (10−5 to 105 in steps of 10). We selected the value of C
that provided the optimal accuracy on the validation set, before applying it to the
test set. To further examine whether any performance difference could be attributed
to the extension of simpleMKL to multiclass classification, we also compared the
accuracy of simpleMKL and the proposed model on all possible binary classification
decisions. For simpleMKL, we used the implementation provided by Rakotomamonjy
et al. (2008) where we used the ’weight variation’ stopping criterion and the default

13

options.
We employed two measures of predictive performance (i) balanced classification

accuracy, which measures the mean number of correct predictions across all classes
assuming a zero-one loss and (ii) a multi-class Brier score, which also quantifies the
confidence of classifier predictions on w unseen samples and can be computed as the
following error measure: B = 1

w

∑w
i=1

∑m
c=1(π

∗
ic − y∗ic)

2. Note that SimpleMKL does
not provide probabilistic predictions, so the Brier score is not appropriate to evaluate
the performance of this algorithm. Gneiting and Raftery (2007) reported studies on
the connections between the Brier score and predictive accuracy in the case of two
class classification, reporting that simple accuracy is a proper score unlike the Brier
score which is strictly proper. We are unaware of any results on the connections
between the two scores in the case of multi-class classification.

For comparison we also present predictive accuracy measures derived from clas-
sifiers using each data source independently, and a classifier using an unweighted
linear sum of data sources (i.e. Kc =

∑q
s=1 Cs for all c).

6.1. Multi-modal classifier. We first studied the classification problem based on
the five data sources obtained from the three modalities, namely GM, WM, T2, FA,
and MD, as explained in section 2, so that q = 5. The overall performance of each
model is summarized in table 3. Note that all classifiers exceeded the predictive
accuracy that would be expected by chance (i.e. p < 0.05, χ2 test).

Table 3
Predictive accuracy (multi-source classifier). Min and max values refer to minimum and maximum

values across CV folds

Input data Accuracy (min, max) Brier score (min, max)

1 GM only 0.627 (0.321, 0.854) 0.667 (0.636, 0.712)
2 WM only 0.603 (0.350, 0.771) 0.653 (0.609, 0.710)
3 T2 only 0.545 (0.500, 0.604) 0.663 (0.619, 0.695)
4 FA only 0.569 (0.442, 0.688) 0.675 (0.645, 0.703)
5 MD only 0.623 (0.533, 0.750) 0.631 (0.588, 0.680)
6 Weighted sum 0.598 (0.350, 0.708) 0.588 (0.517, 0.662)
7 Unweighted sum 0.610 (0.400, 0.708) 0.553 (0.469, 0.646)
8 SimpleMKL 0.418 (0.143, 0.625) -

From table 3, it is apparent that classifiers based on the T2 and FA data sources
achieved lower classification accuracy than all the other data sources, suggesting
they are not ideally suited to discriminating between these disorders. Further, the
linear combinations of sources did not achieve higher accuracy than the best in-
dividual data source and the highest accuracy was obtained using the GM images
only, although the difference is relatively small. The SimpleMKL classifier produced
lower accuracy than either linear combination derived from the multinomial logit
model. The mean accuracy for the binary classifiers over all pairs of classes was

14 FILIPPONE ET AL.

Figure 3. Posterior distributions for the predictive weights for the multi-modality classifier (A)
and the multi-region classifier (B). Panel A: Data sources: (1) GM, (2) WM, (3) T2, (4) FA, (5)
MD. Panel B: Regions: (1) brainstem, (2) cerebellum, (3) caudate, (4) middle occipital gyrus, (5)
putamen, (6) all other regions

slightly higher for the GP classifiers (0.807) relative to simpleMKL (0.741), suggest-
ing that most of the performance difference between simpleMKL and the proposed
multinomial logit approach can be attributed to the extension of simpleMKL to the
multiclass case.

In contrast to the outcomes for classification accuracy, the linear combinations
of data sources produced more accurate probabilistic predictions than any of the
individual modalities, indicative of a disjunction between categorical classification
accuracy and accurate quantification of predictive uncertainty (table 3). This is
probably a result of this model having greater flexibility to scale the magnitude of
the latent function variables.

6.1.1. Covariance parameters for the latent functions. The posterior distribution
of the weights is an important secondary outcome from this model and is summarized
in figure 3A. These hyper-parameters collectively describe the relative contribution
(or weighting factors) for each modality in deriving the prediction for each class.

The posterior class distribution for covariance weights in this model is relatively
flat across all modalities for each class although each weight has slightly greater
magnitude for the PSP and MSA classes relative to the other classes. Overall, the
results from this section provide evidence that all imaging modalities contain similar
information for discriminating disease groups. In other words, we found little benefit
from combining multiple neuroimaging sequences. This has the important implica-

15

1 2 3 4 5

Neuroimaging Modalities

Data source

w
ei

gh
t

0.
0

0.
2

0.
4

0.
6

0.
8

1 2 3 4 5 6

Brain Regions

Region

w
ei

gh
t

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 4. Weights of the neuroimaging modalities (left panel) and brain regions (right panel) ob-
tained by SimpleMKL across the four folds. Left panel: Data sources: (1) GM, (2) WM, (3) T2, (4)
FA, (5) MD. Right panel: Regions: (1) brainstem, (2) cerebellum, (3) caudate, (4) middle occipital
gyrus, (5) putamen, (6) all other regions

tion that for the purposes of discrimination it appears sufficient to acquire a single
structural MRI scan (i.e. SPGR image), which is comparatively rapid and inexpen-
sive to acquire. Although the T2 images are also relatively inexpensive, they do not
offer the same discriminative value and the DTI images, which are time-consuming
and expensive to acquire, and appear to offer little additional benefit.

In the left panel of Fig. 4 we report the kernel weights obtained by SimpleMKL
across the four folds. We can see how the values of the weights are not consistent
across the folds; for example, GM is given zero weight in the fourth fold, whereas
it seems to be important for the other three cases. Modality T2, instead, is con-
sistently given zero weight across the four folds suggesting that this might not add
any information to the other modalities. This is in contrast with the results of the
probabilistic classifier that suggests that there is not much evidence in the data to
completely ignore the information from one of the modalities.

6.2. Multi-region classifier. In this section, we illustrate how the proposed method-
ology may be used to estimate the predictive value of different brain regions for
classification although we will investigate the relative contribution of different brain
regions in greater detail and comment on the clinical significance of these findings
in a separate report. For neurological applications, it is primarily important to as-
sist interpretation, since it is desirable to identify differential patterns of regional
pathology for each disease. While there are other methods to achieve this goal, an
advantage of the proposed approach is that it provides a full posterior distribution
over regional weighting parameters. For this analysis we used only the GM data
modality, since it showed the highest discrimination accuracy, and used an anatom-
ical template (Shattuck et al., 2008) to parcellate the GM images into six regions:

16 FILIPPONE ET AL.

Table 4
Efficiency of converged sampling schemes (multi-region classifier). Min and max refer to the

minimum and maximum ESS across all sampled variables

Approach mean % ESSf mean % ESSθ

(min, max) (min, max)

(e) 8.52 (2.37, 34.85) 0.28 (0.11, 0.64)
(f) 9.42 (2.32, 35.44) 0.31 (0.11, 0.50)

(i) brainstem, (ii) bilateral cerebellum, (iii) bilateral caudate, (iv) bilateral middle
occipital gyrus, (v) bilateral putamen and (vi) all other regions, so that now q = 6.
As described above, the cerebellum, brainstem, caudate and putamen are affected
to varying degrees in MSA, PSP or IPD. The middle occipital gyrus region was se-
lected as a control region, as this is hypothesized to contain minimal discriminatory
information.

All sampling approaches performed similarly for this problem in that none of
the sampling approaches (a-d) converged after 100,000 iterations and sampling ap-
proaches (e) and (f) converged after 1,000 iterations for the latent function variables
and after a few thousands of iterations for the hyperparameters (see the right panel
of figure 2). Table 4 reports the efficiency of the sampling approaches (e) and (f) as
they were the only ones that converged in a reasonable number of iterations.

The sampling efficiency for the latent function values was somewhat lower for
this problem than for the multi-modal prediction problem described in the previous
section. On average, the sampling efficiency for the hyper-parameters was approxi-
mately equivalent to the values reported above, but the minimum ESS was slightly
lower. To accommodate this, we thinned all Markov chains by a factor of 1,000
ensuring approximately independent sampling for all variables.

Predictive accuracy measures for the multi-region classifier are presented in ta-
ble 5. All classifiers exceeded the predictive accuracy that would be expected by
chance (p < 0.05, χ2 test) except the simpleMKL classifier which performed very
poorly for this dataset. As for the multi-modal classifier, we compared the predictive
accuracy of simpleMKL to the logit model across all binary classification decisions.
In this case, the models produced similar accuracy (0.765 for the GP classifiers, 0.780
for simpleMKL. This provides further evidence that the suboptimal performances
of simpleMKL can be traced to the extension of the binary SVM to the multi-class
setting. In particular, it is likely that the suboptimal performance of simpleMKL in
the multi-class context is due to the fact that it does not support different weighting
factors for each class. In this case, the classifiers using weighted and unweighted
covariance sums of brain regions produced the most accurate predictions and quan-
tified predictive confidence most accurately. Again, there was negligible difference
between the classifiers using the weighted and unweighted sums.

17

Table 5
Predictive accuracy (multi-region classifier). Min and max values refer to minimum and maximum

values across CV folds

Input data Accuracy (min, max) Brier score (min, max)

1 Brainstem only 0.578 (0.500, 0.688) 0.595 (0.555, 0.643)
2 Cerebellum only 0.478 (0.333, 0.562) 0.634 (0.593, 0.643)
3 Caudate only 0.349 (0.221, 0.520) 0.737 (0.693, 0.764)
4 Mid. Occipital Gyrus only 0.419 (0.333, 0.479) 0.741 (0.677, 0.773)
5 Putamen only 0.438 (0.354, 0.521) 0.668 (0.604, 0.718)
6 All other regions 0.424 (0.321, 0.563) 0.753 (0.724, 0.779)
7 Weighted sum 0.614 (0.500, 0.708) 0.547 (0.499, 0.593)
8 Unweighted sum 0.624 (0.500, 0.708) 0.546 (0.501, 0.592)
9 SimpleMKL 0.229 (0.111, 0.375) -

6.2.1. Covariance parameters for the latent functions. The posterior distribution
of the weights for the multi-region classifieris summarized in figure 3B. The posterior
means of the weighting factors were again relatively constant between brain regions
and also showed a high variance. This indicates that the relative contribution of dif-
ferent brain regions was not strongly determined by the data and that we should be
cautious about interpreting the relative contributions of the different brain regions
using this approach. Nevertheless, the clearest differential effect among regions was
for the cerebellum, where the lower quartile of the posterior distribution for the MSA
class was greater than the mean of all other regions. In addition, the brainstem also
made a small positive contribution towards predicting the MSA class. As described
above, both the cerebellum and brainstem are known to undergo severe degenera-
tion in MSA. The strongest positive contributions to predicting the PSP class were
obtained from the brainstem, caudate and putamen, which once again are regions
known to show the extensive degeneration in PSP. The regional weighting factors
for the IPD and control groups were somewhat flatter, which is consistent with fo-
cal nature of the degeneration in early-mid IPD and with the observation that the
brain scans of these groups are difficult to discriminate from one another. However,
the posterior suggests that the cerebellum showed a relatively increased weighting
relative to other regions for the IPD class, and that the putamen was assigned a
relatively increased weighting for the IPD and HC classes, which is congruent with
the expectation that these classes are characterized by greater GM concentration in
those regions relative to the PSP and MSA classes respectively. From the current
analysis, it is difficult to determine the regions having the greatest predictive value
for discriminating the PD from the HC group. As future work, separate binary clas-
sifiers trained to discriminate these classes directly may be beneficial in this respect.
We notice also that the control region (i.e. the middle occipital gyrus) was assigned
comparatively low weighting for every class.

Overall, the results from this section suggest that distributed patterns of abnor-

18 FILIPPONE ET AL.

mality across multiple brain regions are necessary to accurately discriminate between
classes. The neurodegenerative disorders studied in the present work have relatively
well-defined regional pathology, but even in this case the most accurate predictions
were obtained from the classifiers using all brain regions.

Again, the analysis of the weights obtained by simpleMKL (right panel of Fig. 4)
shows that the non-probabilistic classifier obtains sparse solutions for the weights
that are not consistent across the folds, thus preventing one from being able to
properly assess the role played by each region in the classification task.

6.3. Results with the Dirichlet prior. Here we briefly discuss the results obtained
when imposing a Dirichlet prior on the weights exp(θcs), focusing only on the multi-
region classifier for the sake of brevity. The sampling strategy was as in approach (e),
with the difference that the update of the hyper-parameters followed a MH sampling
with proposal based on Dirichlet distributions. In order to test the robustness to prior
specification, we added a further level in the hierarchy of the model by imposing
a prior over the concentration parameter of the Dirichlet distribution, so that the
model had a joint density p(y, f , θ, α) = p(y|f)p(f |θ)p(θ|α)p(α). Including a hyper-
prior over the concentration parameter has the effect of averaging out the choice
of the prior and inferring the concentration parameter allows inference of levels of
sparsity from the data.

From the computational perspective, the sampling of α induces a further level
of correlation in the chains. We ran thorough convergence tests, and we obtained
similar convergence and efficiency results as in the previous analysis. We chose a
fairly diffuse hyper-prior p(α) as exponential with unit rate, so that E[α] = 1, which
corresponds to a uniform prior over the simplex for the weights.

Note that data has quite a weak effect in informing the posterior over the concen-
tration parameter, as they are three levels apart in the hierarchy (Goel and DeGroot,
1981). Nevertheless, comparing prior and posterior over α, we notice a slight reduc-
tion in the interquartile range from [0.29, 1.39] to [0.51, 1.49] and a shift of the mean
from 1 to 1.16, thus supporting a diffuse (non-sparse) prior over the weights. In
terms of questions addressed in this particular application, the results obtained by
adding a hyper-prior lead to the same conclusions.

7. Refining predictions using predictive probabilities. We have discussed
how a probabilistic approach allows us to assess the importance of different neu-
roimaging modalities in disease classification. Another advantage of employing a
probabilistic classification model is that predictive probabilities quantify the uncer-
tainty in the outcome, which allow a ”reject option” to be specified. Under this
framework, the researcher specifies in advance a confidence threshold below which
a prediction is considered to be inconclusive. In cases where the maximum class
probability does not exceed this threshold, the final decision may be deferred to

19

Figure 5. A: Accuracy-reject curve for multi-modality classifiers. B: Accuracy-reject curve for
multi-region classifiers.

another classification model or a human expert. To investigate the suitability of
the proposed classifier for this approach and to assess the accuracy of the classifier
across varying rejection thresholds, we plotted accuracy-reject curves for each of the
classifiers investigated in this work (figure 5). These were constructed by varying the
rejection threshold monotonically from 0 to 1 in steps of 0.01. At each threshold,
we computed the rejection rate as the proportion of samples for which the most
confident class prediction did not exceed the rejection threshold and measured the
accuracy of the remaining samples. The accuracy-reject curves were then generated
by plotting accuracy as a function of rejection rate.

The accuracy-reject curves show that: (i) predictive performance increases mono-
tonically across most rejection rates and (ii) the multi-source classifiers perform
better than any of the individual modalities or brain regions across most rejection
rates. This implies that the multi-source classifiers not only make fewer errors, but
also quantify predictive uncertainty more accurately than any of the individual re-
gions. At high rejection thresholds, the multi-modality classifier is outperformed by
the GM modality, owing to two confident misclassifications deriving from the FA
and MD modalities, suggesting the possibility of atypical white matter pathology in
these subjects.

8. Conclusions. In this paper we presented the application of a multinomial
logit model based on GP priors to the problem of classification of neurological dis-
orders based on neuroimaging measures. The proposed model is flexible and highly
descriptive, and it can be employed in scenarios where the focus is on gaining in-

20 FILIPPONE ET AL.

sights into the relative importance of different data modalities or brain regions in the
application under study. Also, it allows accurate quantification of the uncertainty in
the predictions, which is crucial in several applications and especially for predicting
disease state in clinical applications.

From a statistical perspective, carrying out the inference task in the model pre-
sented in this paper and in latent Gaussian models in general represents a serious
challenge. This paper presented a combination of advanced inference techniques
based on MCMC methods that allowed us to tackle this problem in an efficient way.
Predictions for unseen data were obtained by integrating out all the parameters
in the model, thus capturing the uncertainty in the inferred parameters. We also
investigated the use of a hyper-prior to integrate out the choice of the prior.

The motivating application for this study aimed to use neuroimaging measures to
classify a cohort of 62 participants, consisting of both healthy controls and patients
affected by one of three variants of Parkinsonian disorder. We demonstrated accu-
rate classification of disease state that compares favourably with the only existing
study of which we are aware of employing whole-brain neuroimaging measures to
discriminate between these disorders (Focke et al., 2011). For future work it will be
important to: (i) validate how well the predictive accuracy obtained here generalizes
to earlier disease stages and (ii) investigate methods to improve the predictive accu-
racy beyond what was reached here, which will become increasingly important when
the proposed method is evaluated in early stage disease. Construction of classifica-
tion features from brain images that better reflect the underlying pathology may
be particularly beneficial in this regard. We showed how the results of the inference
allowed us to draw conclusions regarding the relative importance of neuroimaging
measures and brain regions in discriminating between classes. We also compared
the results with SimpleMKL, a non-probabilistic multi-modality classifier based on
SVMs, which shows lower accuracy and most importantly is not able to address
questions regarding the relative importance of neuroimaging measures and brain re-
gions in a statistically consistent way. In contrast, the proposed method was able to
give insights into the predictive ability of the different neuroimaging sequences, and
suggested that all the modalities investigated in this study carry similar discrimina-
tive information. This has important implications for planning future studies, and
suggests that there is little benefit in acquiring multiple neuroimaging sequences.
Instead, for the purposes of prediction, acquiring a single structural brain image
is probably the most cost-effective approach. Another level of the analysis showed
that the proposed method was able to quantify the predictive ability of different
brain regions for discriminating between classes. Similar to the previous analysis,
this analysis showed that all regions carry some discriminative information, but at
the same time seems to indicate that some of them have greater predictive ability
than others for different classes. Further, the regional distribution of these regions

21

is in accordance with the known pathology of the disorders based on the clinical
literature.

APPENDIX A: DATA ACQUISITION DETAILS

For each subject, a T2-weighted structural image, a T1-weighted spoiled gradient
recalled (SPGR) structural image and a DTI sequence were acquired using a 1.5T
GE Signa LX NVi scanner (General Electric, WI, USA). All images had whole brain
coverage and imaging parameters for the T2 weighted images and DTI sequence have
been described previously (Blain et al., 2006). Imaging parameters for the SPGR
imaging sequence were: repetition time = 18ms, echo time = 5.1 ms, inversion time =
450 ms, matrix size = 256×152, field of view (FOV) = 240×240. SPGR Images were
reconstructed over a 240×240 FOV, yielding an in-plane resolution of 0.94×0.94mm
and 124 1.5 mm thick slices. Subjects provided informed written consent, and the
study was approved by the local Research Ethics Committee.

APPENDIX B: MCMC ADDITIONAL DETAILS

Let K∗· be an m× (mn) block diagonal rectangular matrix where entries in the r-
th diagonal block contain the covariance of the test sample with the training samples
corresponding to the r-th covariance Kr. Also, let K∗∗ be an m × m matrix where
the i, j entry is the covariance of the test sample corresponding to the covariances Ki

and Kj . A priori we assumed zero covariance across latent functions, so K∗∗ will be
diagonal. Using the properties of GPs, given f and θ, then p(f∗|f , θ) = N (f∗|µ∗, Σ∗)
with µ∗ = K∗·K−1f and Σ∗ = K∗∗ − K∗·K−1K·∗. Given N1 independent posterior
samples for f and θ, we can estimate the integral by

p(y∗|y) ≈ 1

N1

N1∑

i=1

∫
p(y∗|f∗)p(f∗|f(i), θ(i))df∗ .

Each of the former integrals can be estimated again by a Monte Carlo sum, by
drawing N2 independent samples from p(f∗|f(i), θ(i)) which is Gaussian:

∫
p(y∗|f∗)p(f∗|f(i), θ(i))df∗ ≈ 1

N2

N2∑

j=1

p(y∗|(f∗)(j)) .

The required gradients of the joint log-density follow as ∇fL = −K−1f + y − π
and

∂L
∂θcj

= −1

2
exp[θcj]Tr

(
K−1

c Cj

)
+

1

2
exp[θcj]f

T
c K−1

c CjK
−1
c fc +

∂p(θc)

∂θcj
.

and the FI for the two groups of variables, along with the negative Hessian of the pri-
ors are Gf = K−1+diag(π)−ΦΦT and (Gθ)cjr = 1

2 exp[θcr +θcj]Tr
(
K−1

c CrK
−1
c Cj

)

22 FILIPPONE ET AL.

where Φ is a (mn)×n matrix obtained by stacking by row the matrices diag(πc). The
derivatives of the two metric tensors needed to apply RM-HMC can be computed
by using standard properties of derivatives of expressions involving matrices.

REFERENCES

Basser, P. J. and Jones, D. K. (2002). Diffusion-tensor MRI: theory, experimental design and
data analysis - a technical review. NMR in Biomedicine 15 456–467.

Blain, C. R. V., Barker, G. J., Jarosz, J. M., Coyle, N. A., Landau, S., Brown, R. G.,
Chaudhuri, K. R., Simmons, A., Jones, D. K., Williams, S. C. R. and Leigh, P. N. (2006).
Measuring brain stem and cerebellar damage in Parkinsonian syndromes using diffusion tensor
MRI. Neurology 67 2199-2205.

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O. O.,
Chupin, M., Benali, H. and Colliot, O. (2011). Automatic classification of patients with
Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database.
NeuroImage 56 766-781.

Farrall, A. J. (2006). Magnetic resonance imaging. Practical Neurology 6 318-325.
Filippone, M., Zhong, M. and Girolami, M. (2012). On the fully Bayesian treatment of la-

tent Gaussian models using stochastic simulations Technical Report No. TR-2012-329, School of
Computing Science, University of Glasgow.

Focke, N. K., Helms, G., Scheewe, S., Pantel, P. M., Bachmann, C. G., Dechent, P.,
Ebentheuer, J., Mohr, A., Paulus, W. and Trenkwalder, C. (2011). Individual voxel-based
subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson
syndrome and healthy controls. Human Brain Mapping 32 1905–1915.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.
Statistical Science 7 457–472.

Geweke, J. (2004). Getting it right: joint distribution tests of posterior simulators. Journal of the
American Statistical Association 99 799–804.

Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science 7 473–483.
Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte

Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73
123–214.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association 102 359–378.

Goel, P. K. and DeGroot, M. H. (1981). Information about hyperparamters in hierarchical
models. Journal of the American Statistical Association 76 140–147.

Hauw, J., Daniel, S., Dickson, D., Horoupian, D., Jellinger, K., Lantos, P., McKee, A.,
Tabaton, M. and Litvan, I. (1994). Preliminary NINDS neuropathologic criteria for Steele-
Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44 2015-9.

Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D.,
Fox, N. C., Jack, C. R., Ashburner, J. and Frackowiak, R. S. J. (2008). Automatic
classification of MR scans in Alzheimer’s disease. Brain 131 681-689.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P. L., Ghaoui, L. E. and Jordan, M. I.
(2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning
Research 5 27-72.

Litvan, I., Bhatia, K. P., Burn, D. J., Goetz, C. G., Lang, A. E., McKeith, I., Quinn, N.,
Sethi, K. D., Shults, C. and Wenning, G. K. (2003). SIC Task Force appraisal of clinical
diagnostic criteria for Parkinsonian disorders. Movement Disorders 18 467–486.

Marquand, A. F., Mourão Miranda, J., Brammer, M. J., Cleare, A. J. and Fu, C. H. (2008).
Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport

23

19 1507–1511.
Murray, I. and Adams, R. P. (2010). Slice sampling covariance hyperparameters of latent

Gaussian models. In Advances in Neural Information Processing Systems 23 (J. Lafferty,
C. K. I. Williams, R. Zemel, J. Shawe-Taylor and A. Culotta, eds.) 1723–1731.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report No. CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

Neal, R. M. (1999). Regression and classification using Gaussian process priors (with discussion).
Bayesian Statistics 6 475–501.

Papaspiliopoulos, O., Roberts, G. O. and Sköld, M. (2007). A general framework for the
parametrization of hierarchical models. Statistical Science 22 59–73.

Rakotomamonjy, A., Bach, F. R., Canu, S. and Grandvalet, Y. (2008). SimpleMKL. Journal
of Machine Learning Research 9 2491–2521.

Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

Seppi, K. (2007). MRI for the differential diagnosis of neurodegenerative Parkinsonism in clinical
practice. Parkinsonism & Related Disorders 13 S400 - S405. Proceedings of the XVII WFN
World Congress on Parkinson’s Disease and Related Disorders.

Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L.,
Poldrack, R. A., Bilder, R. M. and Toga, A. W. (2008). Construction of a 3D probabilistic
atlas of human cortical structures. NeuroImage 39 1064–1080.

Sonnenburg, S., Rätsch, G., Schäfer, C. and Schölkopf, B. (2006). Large scale multiple
kernel learning. Journal of Machine Learning Research 7 1531-1565.

Wenning, G., Tison, F., Ben-Shlomo, Y., Daniel, S. and Quinn, N. (1997). Multiple system
atrophy: a review of 203 pathologically proven cases. Movement Disorders 12 133-47.

Williams, C. K. I. and Barber, D. (1998). Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 1342–1351.

Yoshikawa, K., Nakata, Y., Yamada, K. and Nakagawa, M. (2004). Early pathological changes
in the Parkinsonian brain demonstrated by diffusion tensor MRI. Journal of Neurology, Neuro-
surgery & Psychiatry 75 481-484.

Yu, Y. and Meng, X.-L. (2011). To center or not to center: that is not the question – an Ancillarity–
Sufficiency Interweaving Strategy (ASIS) for boosting MCMC efficiency. Journal of Computa-
tional and Graphical Statistics 20 531–570.

School of Computing Science
University of Glasgow
E-mail: maurizio.filippone@glasgow.ac.uk

Institute of Psychiatry
King’s College London
E-mail: andre.marquand@kcl.ac.uk

camillahertlein@googlemail.com
steve.williams@kcl.ac.uk

University College and
King’s College London
E-mail: j.mourao-miranda@cs.ucl.ac.uk

Department of Statistical Science
Centre for Computational Statistics
and Machine Learning
University College London
E-mail: mark@stats.ucl.ac.uk

1

Pseudo-Marginal Bayesian Inference for
Gaussian Processes

Maurizio Filippone and Mark Girolami

Abstract —The main challenges that arise when adopting Gaussian Process priors in probabilistic modeling are how to carry out exact
Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample
data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the
pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this
paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the
covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian
inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based
integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in
predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.

Index Terms —Hierarchic Bayesian Models, Gaussian Processes, Markov chain Monte Carlo, Pseudo-Marginal Monte Carlo, Kernel
Methods, Approximate Bayesian Inference.

✦

1 INTRODUCTION

Non-parametric or kernel based models represent a suc-
cessful class of statistical modelling and prediction meth-
ods. To focus ideas throughout the paper we employ the
working example of predictive classification problems;
the methodology presented, however, is applicable to
all hierarchic Bayesian models in general and those
employing Gaussian Process (GP) priors in particular.
Important examples of kernel-based classifiers are the
Support Vector Machine (SVM) [1], [2], the Relevance
Vector Machine (RVM) [3], [4], and the Gaussian Process
classifier [5]. Although these classifiers are based on dif-
ferent modeling assumptions and paradigms of statisti-
cal inference, they are characterized by a kernel function
or covariance operator that allows one to build nonlinear
classifiers able to tackle challenging problems [6], [7], [8],
[9], [10], [11].

In order to allow these classifiers to be flexible, it
is necessary to parameterize the kernel (or covariance)
function by a set of so called hyper-parameters. After
observing a set of training data, the aim is to estimate or
infer such hyper-parameters. In the case of SVMs point
estimates of hyper-parameters are obtained by optimiz-
ing a cross-validation error. This makes optimization
viable only in the case of very few hyper-parameters, as
grid search is usually employed, and is limited by the
available amount of data. In GP classification, instead,
the probabilistic nature of the model provides a means
(usually after approximately integrating out latent vari-

• M. Filippone is with the School of Computing Science, University of
Glasgow, UK. E-mail: maurizio.filippone@glasgow.ac.uk

• M. Girolami is with the Department of Statistics, University of Warwick,
UK. E-mail: m.girolami@warwick.ac.uk

ables) to obtain an approximate marginal likelihood that
offers the possibility to optimize the hyper-parameters;
this is known as type II Maximum Likelihood (ML) [12],
[5]. Deterministic approximations for integrating out
the latent variables include the Laplace Approxima-
tion (LA) [13], Expectation Propagation (EP) [14], Varia-
tional Bayes [15], Integrated Nested Laplace Approxima-
tions [16], and mean field approximations [17]; see [18],
[19] for extensive assessments of the relative merits of
different approximation schemes for GP classification.

From a fully Bayesian perspective, in a GP classifier
one would like to be able to (i) infer all model parameters
and latent variables from data and (ii) integrate out
latent variables and hyper-parameters with respect to
their posterior distribution when making predictions
accounting for their uncertainty; this in particular, would
effectively make the classifier parameter free. To date, the
literature lacks a systematic way to efficiently tackle both
of these questions. The main limitations are due the fact
that it is not possible to obtain any of the quantities
needed in the inference in closed form because of analyt-
ical intractability. This requires the use of some form of
approximation, and deterministic approximations have
been proposed to integrate out latent variables only; in
order to integrate out the hyper-parameters most of the
approaches propose quadrature methods [20], [16], that
can only be employed in the case of a small number of
hyper-parameters.

Recently, there have been a few attempts to carry
out inference using stochastic approximations based on
Markov chain Monte Carlo (MCMC) methods [21], [22],
[23], the idea being to leverage asymptotic guarantees of
convergence of Monte Carlo estimates to the true values.
Unfortunately, employing MCMC methods for inferring
latent variables and hyper-parameters is extremely chal-

2

lenging, and state-of-the-art methods for doing so are
still inefficient and difficult to use in practice.

This paper aims at providing a straightforward to
implement methodology that is effective in the direction
of bridging this gap, by proposing an MCMC method
that addresses most of the difficulties that one is faced
with when applying stochastic based inference in GP
modeling, such as discrete label classification. The main
issue in applying MCMC methods to carry out inference
in GP classification is in sampling the hyper-parameters
form the full posterior. This is due to the structure of the
model that makes latent variables and hyper-parameters
strongly coupled a posteriori; as a result, chains are
characterized by low efficiency and poor mixing. The key
idea of the proposed methodology is to break the correla-
tion in the sampling between latent variables and hyper-
parameters by approximately integrating out the latent
variables while retaining a correct MCMC procedure;
namely, maintaining the exact posterior distribution over
hyper-parameters as the invariant distribution of the
chains and ergodicity properties. This can be achieved
by means of the so called Pseudo Marginal (PM) approach
to Monte Carlo sampling [24], [25]. This work shows
that the use of the PM approach leads to remarkable
efficiency in the sampling of hyper-parameters, thus
making the fully Bayesian treatment viable and simple
to implement and employ.

The importance of integrating out the hyper-
parameters to achieve a sound quantification of uncer-
tainty in predictions is well known and has been high-
lighted, for example, in [12], [26], [16], [27]; employing
this in practice, however, is notoriously challenging. The
main motivation for this work, is to demonstrate that this
marginalization can be done exactly, in a Monte Carlo
sense, by building upon deterministic approximations
already proposed in the GP and Machine Learning liter-
ature. This work reports a thorough empirical compar-
ison in this direction, showing the ability of the fully
Bayesian treatment to achieve a better quantification
of uncertainty compared to the standard practice of
optimization of the hyper-parameters in GP classifica-
tion. Furthermore, the results report a comparison with
a probabilistic version of the SVM classifier [28]. The
results on GP classification support the argument that
hyper-parameters should be integrated out to achieve a
reliable quantification of uncertainty in applications and
this paper provides a practical means to achieve this1.

The paper is organized as follows: section 2 reviews
the Gaussian Process approach to classification, and sec-
tion 3 presents the proposed MCMC approach to obtain
samples from the posterior distribution over both latent
variables and hyper-parameters. Section 4 reports an as-
sessment of the sampling efficiency achieved by the PM
approach compared to other MCMC approaches, and
section 5 reports a study on the performance of the fully

1. The code to reproduce all the experiments is available at:
http://www.dcs.gla.ac.uk/∼maurizio/pages/code pm/

Bayesian GP classifier compared to other probabilistic
classifiers. Finally, section 6 concludes the paper.

2 GAUSSIAN PROCESS CLASSIFICATION

In this section, we briefly review GP classification based
on a probit likelihood (see [5] for an extensive presen-
tation of GPs). Let X = {x1, . . . ,xn} be a set of n input
vectors described by d covariates and associated with
observed univariate responses y = {y1, . . . , yn} with
yi ∈ {−1,+1}. Let f = {f1, . . . , fn} be a set of latent
variables. From a generative perspective, GP classifiers
assume that the class labels have a Bernoulli distribution
with success probability given by a transformation of the
latent variables:

p(yi|fi) = Φ(yifi). (1)

Here Φ denotes the cumulative function of the Gaussian
density; based on this modeling assumption, the likeli-
hood function is:

p(y|f) =

n∏

i=1

p(yi|fi). (2)

The latent variables f are given a zero mean GP prior
with covariance K:

f ∼ N (f |0,K). (3)

Let k(xi,xj |θ) be the function modeling the covariance
between latent variables evaluated at the input vectors,
parameterized by a vector of hyper-parameters θ. In this
paper we will adopt a covariance function defined as
follows:

k(xi,xj |θ) = σ exp

[
−1

2
(xi − xj)

TA(xi − xj)

]
. (4)

The parameter σ is the variance of the marginal prior
distribution for each of the latent variables fi. The matrix
A, instead, defines the type of covariance between the
values of the function at different input vectors. By
defining a matrix A with a global parameter as follows,

A−1 = τ2I, (5)

an isotropic covariance function is obtained. Alterna-
tively, A can be defined to assign a different parameter
to each covariate

A−1 = diag
(
τ2
1 , . . . , τ

2
d

)
. (6)

The latter choice yields the so called Automatic Relevance
Determination (ARD) prior [29]. In this formulation, the
hyper-parameters τi can be interpreted as length-scale
parameters. Let θ be a vector comprising σ and all the
length-scale parameters, and K be the matrix whose
entries are kij = k(xi,xj |θ).

The GP classification model is hierarchical, as y is
conditioned on f , and f is conditioned on θ and the
inputs X . In order to keep the notation uncluttered, in
the remainder of this paper we will not report explicitly
the conditioning on the inputs in any of the equations.

3

We now briefly review the types of approximations that
have been proposed in the literature to employ GP
classifiers.

2.1 Deterministic approximations for integrating out
latent variables

One of the difficulties encountered in GP classification is
that, unlike GP regression, the prior on the latent vari-
ables and the likelihood do not form a conjugate pair;
therefore, it is not possible to analytically integrate out
the latent variables. As a consequence, it is not possible
to directly sample from or optimize the distribution of
hyper-parameters given the labels, nor directly evaluate
predictive probabilities. This has motivated a large body
of research that attempts to approximate the posterior
distribution over the latent variables p(f |y,θ) with a
Gaussian q(f |y,θ) = N (f |µq,Σq) in order to exploit
conjugacy. By doing so, it is possible to analytically
integrate out latent variables to obtain an approximate
marginal likelihood, and compute the predictive distri-
bution for new data, as discussed in the following. The
Gaussian approximation yields an approximate marginal
likelihood p̂(y|θ) that can then be optimized with respect
to the hyper-parameters, or used to obtain samples from
the approximate posterior distribution over the hyper-
parameters, say p̂(θ|y), using MCMC techniques. We
now briefly discuss how this can be achieved.

To obtain an approximate predictive distribution, con-
ditioned on a value of the hyper-parameters θ, we can
compute:

p(y∗|y,θ) =

∫
p(y∗|f∗)p(f∗|f ,θ)q(f |y,θ)df∗df . (7)

Here θ can be a ML estimate that maximizes the approx-
imate likelihood or one sample from the approximate
posterior p̂(θ|y). For simplicity of notation, let K be
the covariance matrix evaluated at θ, k∗ the vector
whose ith element is k(xi,x∗|θ) and k∗∗ = k(x∗,x∗|θ).
Given the properties of multivariate normal variables,
f∗ is distributed as N (f∗|µ∗, β2

∗) with µ∗ = kT
∗K

−1f
and β2

∗ = k∗∗ − kT
∗K

−1k∗. Approximating p(f |y,θ) with
a Gaussian q(f |y,θ) = N (f |µq,Σq) makes it possible
to analytically perform integration with respect to f in
equation 7. In particular, the integration with respect to
f yields N (f∗|m∗, s2∗) with

m∗ = kT
∗K

−1µq,

and

s2∗ = k∗∗ − kT
∗K

−1k∗ + kT
∗K

−1ΣqK
−1k∗.

The univariate integration with respect to f∗ follows
exactly in the case of a probit likelihood, as it is a
convolution of a Gaussian and a cumulative Gaussian

∫
p(y∗|f∗)N (f∗|m∗, s

2
∗)df∗ = Φ

(
m∗√
1 + s2∗

)
. (8)

We now briefly review two popular approximation
methods for integrating out latent variables, namely the
Laplace Approximation and Expectation Propagation.

2.1.1 Laplace Approximation
The Laplace Approximation (LA) is based on the as-
sumption that the distribution of interest can be approx-
imated by a Gaussian centered at its mode and with
the same curvature. By analyzing the Taylor expansion
of the logarithm of target and approximating densities,
the latter requirement is satisfied by imposing an in-
verse covariance for the approximating Gaussian equal
to the negative Hessian of the logarithm of the target
density [30]. For a given value of the hyper-parameters
θ, define

Ψ(f) = log[p(y|f)] + log[p(f |θ)] + const. (9)

as the logarithm of the target density up to terms in-
dependent of f . Performing a Laplace approximation
amounts in defining a Gaussian q(f |y,θ) = N (f |f̂ , Σ̂),
such that

f̂ = arg max
f

Ψ(f) and Σ̂−1 = −∇f∇fΨ(f̂). (10)

As it is not possible to directly solve the maximization
problem in equation 10, an iterative procedure based
on the following Newton-Raphson formula is usually
employed:

fnew = f − (∇f∇fΨ(f))−1∇fΨ(f) (11)

starting from f = 0 until convergence. The gradient and
the Hessian of the log of the target density are:

∇fΨ(f) = ∇f log[p(y|f)] −K−1f , (12)

∇f∇fΨ(f) = ∇f∇f log[p(y|f)] −K−1. (13)

Note that if log[p(y|f)] is concave, such as in probit clas-
sification, Ψ(f) has a unique maximum. Practically, the
Newton-Raphson update in equation 11 is implemented
by employing Woodbury identities to avoid inverting K
directly (see section 3.4 of [5] for full details). In such an
implementation, one n×n matrix factorization is needed
at each iteration and no other O(n3) operations.

2.1.2 Expectation Propagation
The Expectation Propagation (EP) algorithm is based
on the assumption that each individual term of the
likelihood can be approximated by an unnormalized
Gaussian

p(yi|fi) ≃ Z̃iN (fi|µ̃i, σ̃
2
i). (14)

Approximating each term in the likelihood by a Gaus-
sian implies that the approximate likelihood, as a func-
tion of f , is multivariate Gaussian

N (f |µ̃, Σ̃)

n∏

i=1

Z̃i (15)

with µ̃i = µ̃i and Σ̃ii = σ̃i.

4

Under this approximation, the posterior p(f |y,θ) is
approximated by a Gaussian q(f |y,θ) = N (f |f̂ , Σ̂) with:

Σ̂−1 = K−1 + Σ̃−1 and f̂ = Σ̂ Σ̃ µ̃ (16)

The EP algorithm is characterized by the way the pa-
rameters Z̃i, µ̃i, and σ̃2

i are optimized. The EP algorithm
loops through the n factors approximating the likelihood
updating those three parameters for each factor in turn.
First, the so called cavity distribution is computed

q\i(fi|θ) ∝
∫
p(f |θ)

∏

j 6=i

Z̃jN (fj |µ̃j , σ̃
2
j), (17)

which is obtained by leaving out the ith factor from
q(f |y,θ). Second, a revised Gaussian q′(fi|θ), which
closely approximates the product of the cavity distri-
bution and the exact ith likelihood term, is sought. In
particular, this is performed by minimizing the following
Kullback-Leibler divergence:

KL
(
q\i(fi|θ)p(yi|fi)

∥∥∥ q′(fi|θ)
)
, (18)

which in practice boils down to matching the moments
of the two distributions. Third, once the mean and
variance of q′(fi|θ) are computed, it is possible to derive
the updated parameters Z̃i, µ̃i, and σ̃2

i for the ith factor.
The derivation of those equations is rather involved, and
the reader is referred to [5] for full details; EP requires
five operations in O(n3) at each iteration. Note that
convergence of the EP algorithm is not guaranteed in
general; however, for GP classification, no convergence
issues have been reported in the literature. Furthermore,
EP for GP classification has been reported to offer su-
perior accuracy in approximations compared to other
methods [18], [19].

2.2 Fully Bayesian treatment

In a fully Bayesian treatment, the aim is to integrate out
latent variables as well as hyper-parameters:

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|f ,θ)p(f ,θ|y)df∗dfdθ. (19)

Again, the integration with respect to f∗ can be done an-
alytically, whereas the integration with respect to latent
variables and hyper-parameters requires the posterior
distribution p(f ,θ|y). One way to tackle the intractabil-
ity in characterizing p(f ,θ|y) is to draw samples from
p(f ,θ|y) using MCMC methods, so that a Monte Carlo
estimate of the predictive distribution can be used

p(y∗|y) ≃ 1

N

N∑

i=1

∫
p(y∗|f∗)p(f∗|f (i),θ(i))df∗, (20)

where f (i),θ(i) denotes the ith sample from p(f ,θ|y).
This estimate will asymptotically converge to the exact
expectation p(y∗|y).

3 MCMC SAMPLING FROM p(f ,θ|y)
Sampling from the posterior over f and θ by joint
proposals is not feasible; it is extremely unlikely to
propose a set of latent variables and hyper-parameters
that are compatible with each other and observed data.
In order to draw samples from p(f ,θ|y), it is therefore
necessary to resort to a Gibbs sampler, whereby f and
θ are updated in turn. We now briefly review the state
of the art in Gibbs sampling techniques for GP models,
and propose a new Gibbs sampler based on the PM
approach.

3.1 Drawing samples from p(f |y,θ)

Efficient sampling of the latent variables can be achieved
by means of Elliptical Slice Sampling (ELL-SS) [31]. ELL-
SS is based on an adaptation of the Slice Sampling algo-
rithm [32] to propose new values of the latent variables.
ELL-SS has the very appealing property of requiring no
tuning, so that minimum user intervention is needed,
and by the fact that once K is factorized the complexity
of iterating ELL-SS is in O(n2). Recently, the efficiency
of ELL-SS has been extensively demonstrated on several
models involving GP priors [21].

Another way to efficiently sample latent variables in
GP models is by means of a variant of Hybrid Monte
Carlo (HMC) [33], [34] where the inverse mass matrix
is set to the GP covariance K, as described in detail
in [21]. This variant of HMC can be interpreted as a
simplified version of Riemann manifold Hamiltonian
Monte Carlo (RMHMC) [35] which makes it possible to
obtain samples from the posterior distribution over f in
O(n2) once K is factorized. Owing to its simplicity, in the
remainder of this paper we will use ELL-SS to sample
from the posterior over latent variables p(f |y,θ).

3.2 Drawing samples from the posterior over θ em-
ploying reparameterization techniques

3.2.1 SA and AA parameterizations

In GP classification, efficiently sampling from the pos-
terior distribution over the latent variables and hyper-
parameters is complex because of their strong cou-
pling [21], [22], [26]. The result of this strong coupling
is that fixing f induces a sharply peaked posterior over
θ that makes the chain converge slowly and mix very
poorly. This effect is illustrated in Figure 1. In particular,
conditioning the sampling of θ on f corresponds to con-
sidering the standard parameterization of GP models y|f
and f |θ, which is also known as Sufficient Augmentation
(SA) [36].

A better parameterization can be given by introducing
a set of transformed (whitened) latent variables ν [37].
The way ν is defined is by f = Lν, L being the Cholesky
factor of K. In this parameterization, that is also known
as Ancillary Augmentation (AA) [36], ν are constructed
to be a priori independent from the hyper-parameters
(using L is convenient as it is needed also to evaluate

5

the GP prior density). In the AA parameterization θ
is sampled from p(θ|y,ν). The effect of conditioning
on ν makes the conditional posterior over θ larger, as
illustrated in Figure 1.

3.2.2 The Surrogate data model

In the Surrogate (SURR) data model proposed in [22],
a set of auxiliary latent variables g is introduced as a
noisy version of f ; in particular, p(g|f ,θ) = N (g|f , Sθ).
This construction yields a conditional for f of the form
p(f |g,θ) = N (f |m, R), with R = Sθ − Sθ(Sθ + K)−1Sθ

and m = RS−1
θ g. After decomposing R = DDT, the

sampling of θ is then conditioned on the “whitened”
variables η, defined as f = Dη + m. The covariance
Sθ is constructed by matching the posterior distribution
over each of the latent variables individually (see [22]
for further details). Figure 1 shows that the SURR pa-
rameterization is characterized by a conditional posterior
over θ larger than SA and slightly larger than the AA
parameterization.

3.3 Drawing samples from p(θ|y): the Pseudo
Marginal approach

The use of reparameterization techniques mitigates the
problems due to the coupling of latent variables and
hyper-parameters, but sampling efficiency for GP mod-
els is still an issue (for example, [7] reports simulations
of ten parallel chains comprising five millions samples
each). Intuitively, the best strategy to break the correla-
tion between latent variables and hyper-parameters in
sampling from the posterior over the hyper-parameters
would be to integrate out the latent variables alto-
gether. As we discussed, this is not possible, but here
we present a strategy that uses an unbiased estimate
of the marginal likelihood p(y|θ) to devise an MCMC
strategy that produces samples from the correct posterior
distribution p(θ|y). For the sake of clarity, in this work
we will focus on the Metropolis-Hastings algorithm with
proposal π(θ′|θ). We are interested in sampling from the
posterior distribution

p(θ|y) ∝ p(y|θ)p(θ). (21)

In order to do that, we would need to integrate out the
latent variables:

p(y|θ) =

∫
p(y|f)p(f |θ)df (22)

and use this along with the prior p(θ) in the Hastings
ratio:

z =
p(y|θ′)p(θ′)
p(y|θ)p(θ)

π(θ|θ′)

π(θ′|θ)
(23)

As already discussed, analytically integrating out f is not
possible.

The results in [25], [24] show that we can plug into the
Hastings ratio an estimate p̃(y|θ) of the marginal p(y|θ),

and as long as this is unbiased, then the sampler will
draw samples from the correct posterior p(θ|y).

z̃ =
p̃(y|θ′)p(θ′)
p̃(y|θ)p(θ)

π(θ|θ′)

π(θ′|θ)
(24)

This result is remarkable as it gives a simple recipe to
be used in hierarchical models to tackle the problem of
strong coupling between groups of variables when using
MCMC algorithms.

0.0 0.5 1.0 1.5 2.0
0

2
4

6
8

10

N = 200

length−scale

po
st

er
io

r
de

ns
ity

SA
AA
SURR
PM

Fig. 1. Comparison of the posterior distribution p(θ|y)
with the posterior p(θ|f) in the SA parameterization, the
posterior p(θ|y,ν) in the AA parameterization, and the
parameterization used in the SURR method.

Figure 1 shows the effect of conditioning the sampling
of θ on different transformations of the latent variables
given by SA (blue line), AA (red line), and SURR (green
line). The conditional variance for the three approaches
is still way lower than the variance of the marginal pos-
terior p(θ|y) that can be obtained by the PM approach.
This motivates the use of the PM approach to effectively
break the correlation between latent variables and hyper-
parameters in an MCMC scheme.

Note that if the goal is quantifying uncertainty in the
parameters only, and no predictions are needed, one
could just iterate the sampling of θ|y, as this is done
regardless of f . For predictions, instead, samples from
the joint posterior p(f ,θ|y) are needed in the Monte
Carlo integral in equation 20, so both steps are necessary.
We consider this as a Gibbs sampler despite the fact
that in principle interleaving of the two steps is not
needed; one could obtain samples from the posterior
distribution over f in a second stage, once samples from
p(θ|y) are available. This would come at an extra cost
given that sampling f |y,θ requires the factorization of K
for each MCMC sample θ. Therefore, when predictions
are needed, we prefer to interleave the two steps, and
still interpret the proposed sampling strategy as a Gibbs
sampler.

3.3.1 Unbiased estimation of p(y|θ) using importance
sampling

In order to obtain an unbiased estimator p̃(y|θ) for the
marginal p(y|θ), we propose to employ importance sam-
pling. We draw Nimp samples fi from the approximating

6

distribution q(f |y,θ), so that we can approximate the
marginal p(y|θ) =

∫
p(y|f)p(f |θ)df by:

p̃(y|θ) ≃ 1

Nimp

Nimp∑

i=1

p(y|fi)p(fi|θ)

q(fi|y,θ)
(25)

It is easy to verify that equation 25 yields an unbi-
ased estimate of p(y|θ), as its expectation is the exact
marginal p(y|θ). Therefore, this estimate can be used in
the Hastings ratio to construct an MCMC approach that
samples from the correct invariant distribution p(θ|y).
Algorithm 1 sketches the MH algorithm that we propose
to sample the hyper-parameters.

Algorithm 1 Pseudo-marginal MH transition operator to
sample θ.

Input: The current pair (θ, p̃(y|θ)), a routine to approx-
imate p(f |y,θ) by q(f |y,θ), and number of importance
samples Nimp

Output: A new pair (θ, p̃(y|θ))

1: Draw θ′ from the proposal distribution π(θ′|θ)
2: Approximate p(f |y,θ′) by q(f |y,θ′)
3: Draw Nimp samples from q(f |y,θ′)
4: Compute p̃(y|θ′) using eq. 25

5: Compute A = min

{
1,
p̃(y|θ′)p(θ′)
p̃(y|θ)p(θ)

π(θ|θ′)

π(θ′|θ)

}

6: Draw u from U[0,1]

7: if A > u then return (θ′, p̃(y|θ′))
8: else return (θ, p̃(y|θ))

From the theory of importance sampling [38], the
variance of the estimator is zero when q(f |y,θ) is pro-
portional to p(y|f)p(f |θ), which is proportional to the
posterior distribution over f that we do not know how to
sample from in the first place. In our case, the more accu-
rate the Gaussian approximation the smaller the variance
of the estimator. Given that EP has been reported to be
more accurate in approximating p(f |y,θ), it is reasonable
to expect that EP will lead to a smaller estimator variance
compared to LA. This will be assessed in the next section.

The motivation for using an importance sampling es-
timator rather than other simulation based methods for
estimating marginal likelihoods, is the following. Even
though it is possible to sample f relatively efficiently,
the estimation of marginal likelihoods from MCMC
simulations is generally challenging [39], [40] and only
guarantees of estimator consistency are available. Ob-
taining estimates based on samples from p(f |y,θ) would
require some form of user intervention (assessment of
convergence and estimation of efficiency) every time a
new value of θ is proposed; this is clearly not practical or
useful for the PM scheme. This work reports an extensive
assessment of LA and EP to obtain Gaussian approx-
imations to p(f |y,θ) within the importance sampling
estimate of p(y|θ).

3.3.2 Analysis of correctness

We show here why the proposed method yields an
MCMC approach that produces samples from the correct
invariant distribution p(θ|y). The easiest way to see
this is by considering Nimp = 1; showing correctness
for larger numbers of importance samples is similar
but notationally heavier (see [25] for further details).
By substituting the importance sampling estimate p̃(y|θ)
with Nimp = 1 into z̃ and rearranging the terms, we
obtain

z̃ =
p(y|f ′)p(f ′|θ′)p(θ′)
p(y|f)p(f |θ)p(θ)

×
[
q(f |y,θ)

q(f ′|y,θ′)

π(θ|θ′)

π(θ′|θ)

]
(26)

Isolating the terms in the squared bracket allows us to
interpret z̃ as a Hastings ratio with a joint proposal for
θ and for the importance sample f given by

π(f ′,θ′|f ,θ) = q(f ′|y,θ′)π(θ′|θ). (27)

The remaining term in z̃ indicates that the target distri-
bution this approach is sampling from is

p(y|f)p(f |θ)p(θ) = p(y, f ,θ). (28)

If we concentrate on θ, regardless of f , the target
distribution is exactly what we are aiming to sample
from, as it is proportional to the posterior p(θ|y). The
extension to more than one importance sample follows
from a similar argument, except that the approximat-
ing density q(f |y,θ) appears in the expression of the
target distribution; however, this does not cause any
problems as marginalizing latent variables leads to the
same conclusion as in the case Nimp = 1. The analysis for
Nimp = 1 also reveals an interesting similarity with the
approach proposed in [23], where a joint update of θ and
f was performed as follows: proposing θ′|θ, proposing
f ′|y,θ′, and accepting/rejecting the joint proposal θ′, f ′.
However in this case the PM transition kernel will still
target the desired marginal posterior irrespective of the
value of importance samples Nimp.

4 ASSESSING IMPORTANCE DISTRIBUTIONS

In this section, we present simulations to assess the
ability of the PM approach to characterize the marginal
likelihood p(y|θ) in GP classification. First, we aim to
assess the quality of the estimate given by the im-
portance sampler based on LA and EP on simulated
data with respect to the number of importance samples.
Second, we will evaluate the efficiency of the sampler on
simulated data with respect to the approximation used
to draw importance samples and with respect to their
number. Third, we will compare the PM approach with
the AA and SURR parameterizations that are the most
efficient sampling schemes proposed in the literature
for sampling hyper-parameters in models involving GP
priors [21]. In all the experiments, in both LA and EP
we imposed a convergence criterion on the change in
squared norm of f being less than n/104.

7

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

n = 50, LA

length−scale

ps
eu

do
 m

ar
gi

na
l

Nimp = 1
Nimp = 64

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

n = 50, EP

length−scale

ps
eu

do
 m

ar
gi

na
l

Nimp = 1
Nimp = 64

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

n = 200, LA

length−scale

ps
eu

do
 m

ar
gi

na
l

Nimp = 1
Nimp = 64

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

n = 200, EP

length−scale

ps
eu

do
 m

ar
gi

na
l

Nimp = 1
Nimp = 64

Fig. 2. Plot of the PM as a function of the length-
scale τ ; black solid lines represent the average over 500
repetitions and dashed lines represent 2.5th and 97.5th
quantiles for Nimp = 1 and Nimp = 64. The solid red line
is the prior density.

4.1 Analysis of the variance of the estimator

In this section, we present an assessment of the variance
of the estimator p̃(θ|y) with respect to the global length-
scale parameter τ in equation 5. In particular, we are
interested in comparing the quality of the approximation
given by the importance sampling approach based on
the two different approximations employed in this work.

Given that the dimensionality of the space where
the approximation is performed grows linearly with the
number of input vectors n, we are also interested in
studying the effect of n on the quality of the approxima-
tion. Based on these considerations, we simulated data
from the GP classification model with d = 2 and n = 50
and n = 200, with an isotropic covariance function with
τ = 0.35 and σ = 2.08. We fixed the value of σ to
the value used to generate the data, and we imposed a
Gamma prior on the length-scale p(τ) = G(τ |aτ , bτ) with
shape aτ = 1 and rate bτ = 1/

√
d. We then computed

the posterior over θ based on p̃(y|θ) for different values
of τ and over 500 repetitions, with different number of
importance samples Nimp. The results are reported in
figure 2.

As expected, for larger sets of importance samples, the
estimates are more accurate. We can also see that EP
leads to a smaller variance compared to LA, which is not
surprising given that the approximation achieved by EP
is more accurate [18], [19]. The experiment suggests that
there is little increase in the variance of the estimator for
the larger data set.

4.2 Effect of the pseudo marginal on the efficiency
of the sampler

In this section we report an analysis on simulated data
showing how the choice of the approximation and the
number of importance samples affect the efficiency in
sampling from p(θ|y). We generated data sets from the
GP classification model with different combinations of
number of input vectors and number of covariates. The
covariates were generated in the unit hypercube and
data were selected to have an equal number of input
vectors in each class. We chose Gamma priors for the
hyper-parameters as follows: p(τi) = G(τi|aτ , bτ) with
shape aτ = 1 and rate bτ = 1/

√
d, and p(σ) = G(σ|aσ, bσ)

with shape aσ = 1.2 and rate bσ = 0.2. In the formulation
of the GP classification model, all hyper-parameters have
to be positive; for the sake of convenience, we reparame-
terized them introducing the variables ψτi

= log(τi) and
ψσ = log(σ).

For each method, we ran 10 parallel chains for 5000
burn-in iterations followed by 10000 iterations; conver-
gence speed of the samplers was monitored using the
Potential Scale Reduction Factor (PSRF) (R̂ statistics) as
described in [41]. The chains were initialized from the
prior, rather than using the procedure suggested in [41]
to make the convergence test more challenging. Also,
correctness of the code was checked by using the idea
presented in [42], that indirectly shows that the Markov
chains have indeed p(θ|y) as their invariant distribution.

The proposal mechanism π(θ′|θ) was the same for all
the PM approaches for a given combination of n and d,
so that it is meaningful to analyze the effect of Nimp on
sampling efficiency, convergence speed, and acceptance
rate. In particular, a large variance for the estimator
of the marginal likelihood can eventually lead to the
acceptance of θ because p(y|θ) is largely overestimated
leading to a difficulty for the chain to move away from
there. In this case, the chain can get stuck and take
several iterations before moving again; this effect has
been reported in [24], [25]. To isolate the effect of Nimp

and the type of approximation on sampling efficiency
and acceptance rate, we tuned the chains using prelim-
inary runs for EP and Nimp = 64 to achieve about 25%
acceptance rate and used the same proposal for LA and
other values of Nimp.

The results are reported in table 1 for isotropic and
ARD covariances. As a measure of efficiency, we used
the minimum Effective Sample Size (ESS) [43] across the
hyper-parameters. The tables also report the median of
R̂ achieved by the chains at different iterations, namely
1000, 2000, 5000, and 10000. This gives an idea of the
convergence as the iterations progress. Finally, in table
1 we report the acceptance rate; a low acceptance rate
compared to the one obtained by PM EP (64) indicates
that the chains are more likely to get stuck due to a large
variance of the estimator of the marginal likelihood.

The results indicate that sampling efficiency when
employing EP to approximate the posterior distribution

8

TABLE 1
Analysis of convergence and efficiency of a MH algorithm sampling the hyper-parameters using the PM approach.

The results show the dependency of the effective sample size (ESS) and speed of convergence (measured through
the R̂ statistics after 1e3, 2e3, 5e3, and 1e4 iterations) with respect to the type of approximation (LA or EP) and the

number of importance samples used to compute an unbiased estimate of the marginal likelihood p(y|θ).

Isotropic ARD

n d Scheme ESS R̂ R̂ R̂ R̂ Acc ESS R̂ R̂ R̂ R̂ Acc
(Nimp) 1e3 2e3 5e3 1e4 rate 1e3 2e3 5e3 1e4 rate

50 2

PM LA (1) 749 (73) 1.00 1.00 1.00 1.00 23.9 (0.4) 131 (41) 1.04 1.05 1.04 1.02 13.0 (3.3)
PM LA (16) 778 (61) 1.00 1.00 1.00 1.00 25.1 (0.4) 206 (21) 1.05 1.04 1.03 1.01 16.7 (1.2)
PM LA (64) 752 (76) 1.00 1.00 1.00 1.00 24.8 (0.5) 212 (38) 1.03 1.03 1.02 1.01 16.6 (1.9)
PM EP (1) 747 (100) 1.00 1.00 1.00 1.00 24.4 (0.5) 208 (22) 1.01 1.00 1.01 1.00 16.1 (1.0)
PM EP (16) 736 (163) 1.00 1.00 1.00 1.00 25.0 (0.6) 246 (23) 1.00 1.00 1.00 1.00 19.2 (0.7)
PM EP (64) 793 (54) 1.00 1.00 1.00 1.00 24.9 (0.5) 252 (24) 1.00 1.00 1.00 1.00 19.9 (0.8)
AA 287 (58) 1.00 1.00 1.00 1.00 22.7 (0.9) 20 (9) 1.12 1.12 1.05 1.03 20.3 (2.6)
SURR 154 (11) 1.01 1.00 1.00 1.00 22.4 (1.0) 21 (6) 1.11 1.08 1.07 1.05 21.6 (3.3)

50 10

PM LA (1) 237 (147) 1.25 1.26 1.19 1.08 18.2 (4.6) 19 (12) 1.08 1.09 1.13 1.17 7.1 (4.4)
PM LA (16) 238 (194) 1.01 1.02 1.03 1.02 16.9 (6.0) 62 (30) 1.04 1.04 1.06 1.11 17.6 (4.9)
PM LA (64) 348 (126) 1.01 1.01 1.01 1.01 21.8 (2.3) 78 (23) 1.03 1.03 1.01 1.01 20.2 (2.8)
PM EP (1) 282 (47) 1.02 1.01 1.01 1.00 19.2 (1.4) 63 (18) 1.03 1.03 1.02 1.01 15.6 (1.2)
PM EP (16) 507 (36) 1.00 1.00 1.00 1.00 24.7 (1.0) 107 (12) 1.01 1.01 1.01 1.01 24.2 (0.5)
PM EP (64) 583 (51) 1.00 1.00 1.00 1.00 26.1 (0.6) 108 (28) 1.02 1.01 1.01 1.01 26.3 (0.7)
AA 71 (23) 1.02 1.01 1.02 1.01 22.8 (2.5) 74 (6) 1.03 1.03 1.02 1.02 22.4 (2.7)
SURR 52 (15) 1.04 1.02 1.02 1.02 21.8 (2.9) 45 (5) 1.03 1.03 1.02 1.01 21.7 (1.7)

200 2

PM LA (1) 717 (31) 1.00 1.00 1.00 1.00 31.7 (0.5) 318 (29) 1.00 1.00 1.00 1.00 38.3 (0.8)
PM LA (16) 739 (46) 1.00 1.00 1.00 1.00 32.6 (0.5) 364 (20) 1.00 1.00 1.00 1.00 43.1 (0.5)
PM LA (64) 730 (26) 1.00 1.00 1.00 1.00 32.6 (0.6) 355 (42) 1.00 1.00 1.00 1.00 43.6 (0.7)
PM EP (1) 736 (47) 1.00 1.00 1.00 1.00 32.8 (0.5) 349 (26) 1.00 1.00 1.00 1.00 42.0 (0.4)
PM EP (16) 736 (48) 1.00 1.00 1.00 1.00 32.7 (0.4) 365 (21) 1.00 1.00 1.00 1.00 43.5 (0.5)
PM EP (64) 721 (43) 1.00 1.00 1.00 1.00 32.6 (0.7) 354 (37) 1.00 1.00 1.00 1.00 43.9 (0.6)
AA 112 (49) 1.01 1.01 1.01 1.01 21.6 (1.0) 41 (8) 1.07 1.07 1.06 1.04 23.0 (2.3)
SURR 54 (8) 1.01 1.02 1.01 1.01 21.5 (1.5) 61 (9) 1.02 1.02 1.01 1.01 22.0 (1.9)

200 10

PM LA (1) 115 (53) 1.03 1.03 1.02 1.04 27.1 (11.3) 27 (10) 1.39 1.33 1.19 1.11 12.3 (2.9)
PM LA (16) 117 (42) 1.05 1.04 1.03 1.03 26.8 (9.0) 53 (18) 1.08 1.06 1.03 1.02 18.0 (1.9)
PM LA (64) 145 (62) 1.01 1.01 1.01 1.02 28.7 (8.0) 37 (31) 1.14 1.15 1.17 1.17 13.2 (8.6)
PM EP (1) 75 (35) 1.03 1.03 1.03 1.02 18.2 (3.7) 26 (14) 1.12 1.09 1.13 1.08 10.3 (3.1)
PM EP (16) 137 (38) 1.01 1.01 1.01 1.01 27.6 (4.2) 52 (13) 1.20 1.15 1.08 1.04 17.1 (2.1)
PM EP (64) 130 (64) 1.09 1.09 1.09 1.12 25.5 (10.0) 45 (21) 1.03 1.03 1.03 1.09 17.4 (3.4)
AA 26 (6) 1.05 1.04 1.03 1.03 23.7 (1.9) 22 (7) 1.10 1.08 1.05 1.03 21.6 (5.5)
SURR 18 (7) 1.27 1.28 1.24 1.16 21.5 (8.6) 10 (3) 1.07 1.08 1.06 1.05 20.3 (3.9)

over f is higher than when employing the LA algorithm.
It is striking to see that evaluating the PM with as little
as one importance sample seems already able to offer
acceptable performance in terms of ESS compared to
larger values of Nimp. However, a low acceptance rate
when Nimp is small suggests that the corresponding
chains can take several iterations before accepting any
proposals.

4.3 Comparison with reparameterization techniques

Table 1 also reports a comparison of the PM method with
the AA and SURR sampling schemes with a Metropolis-
Hastings transition operator so that results are meaning-
fully comparable. The proposal mechanism was tuned
during the burn-in phase to achieve about 25% accep-
tance rate. Table 1 shows that the PM approach achieves
faster convergence and higher sampling efficiency com-
pared to the AA scheme. The SURR method has com-
parable convergence behavior and efficiency compared
to the AA scheme. This is somehow different from
what presented in [22], where a component-wise slice
sampling transition operator was employed. In [22], the

SURR method achieved higher efficiency per covariance
construction, likelihood evaluation and running time
compared to the AA method. In the experiment reported
here ESS is comparable.

Table 2 reports the average number of operations in
O(n3) needed for one iteration of the PM approach
with LA and EP approximations and the AA and SURR
parameterizations. The table shows that EP is more
expensive than the LA algorithm, and that the PM
approaches require more O(n3) operations compared to
AA and SURR. Normalization of the ESS by the number
of operations suggests that the cost of obtaining indepen-
dent samples using the PM approach is generally better
than AA and SURR. In the PM approach we also tried
stopping the approximation algorithms using a looser
convergence criterion (results not reported); especially
for Nimp = 64 this yielded similar efficiency with much
lower computational cost.

We conducted a further test of convergence with the
aim of mitigating the effect of the random walk ex-
ploration and highlighting the advantages offered by
different parameterizations. We ran the AA, SURR and
PM approaches by repeating each step of the Gibbs

9

TABLE 3
Analysis of convergence and efficiency of the AA and SURR parameterizations compared to the PM approach. Each
of the Gibbs sampling updates was repeated 20 times in order to highlight the effect of the parameterization alone.
The PM approach is based on the EP approximation and Nimp = 64. The column next to the one reporting the ESS

shows the ESS normalized by the number of operations in O(n3).

Isotropic ARD

n d Scheme ESS ESS R̂ R̂ R̂ R̂ ESS ESS R̂ R̂ R̂ R̂
/O(n3) 1e3 2e3 5e3 1e4 /O(n3) 1e3 2e3 5e3 1e4

50 2
PM 9057 (243) 556 (15) 1.00 1.00 1.00 1.00 4301 (169) 243 (10) 1.00 1.00 1.00 1.00
AA 1571 (378) 1571 (378) 1.00 1.00 1.00 1.00 57 (11) 57 (11) 1.01 1.01 1.01 1.01
SURR 702 (98) 234 (33) 1.00 1.00 1.00 1.00 64 (9) 21 (3) 1.02 1.02 1.02 1.01

50 10
PM 7478 (333) 575 (26) 1.00 1.00 1.00 1.00 2207 (141) 161 (10) 1.00 1.00 1.00 1.00
AA 211 (22) 211 (22) 1.01 1.00 1.00 1.00 464 (40) 464 (40) 1.00 1.00 1.00 1.00
SURR 133 (23) 44 (8) 1.01 1.01 1.01 1.00 207 (18) 69 (6) 1.01 1.01 1.01 1.00

200 2
PM 8850 (301) 571 (19) 1.00 1.00 1.00 1.00 5844 (166) 338 (10) 1.00 1.00 1.00 1.00
AA 327 (142) 327 (142) 1.01 1.00 1.01 1.00 143 (22) 143 (22) 1.01 1.01 1.00 1.00
SURR 234 (24) 78 (8) 1.00 1.00 1.00 1.00 339 (47) 113 (16) 1.00 1.00 1.00 1.00

200 10
PM 737 (533) 55(40) 1.01 1.01 1.01 1.01 363 (250) 28 (19) 1.03 1.03 1.01 1.01
AA 37 (7) 37 (7) 1.05 1.05 1.05 1.03 42 (8) 42 (8) 1.03 1.03 1.02 1.01
SURR 25 (6) 8 (2) 1.05 1.05 1.01 1.00 22 (5) 7 (2) 1.09 1.07 1.05 1.03

TABLE 2
Average number of operations in O(n3) required for each

iteration of the PM approaches with the LA and EP
approximations and for each iteration in the AA and

SURR parameterizations.

n d Scheme Isotropic ARD

50 2

PM LA 8.2 (0.2) 8.8 (0.2)
PM EP 16.3 (0.0) 17.7 (0.1)
AA 1.0 (0.0) 1.0 (0.0)
SURR 3.0 (0.0) 3.0 (0.0)

50 10

PM LA 7.8 (0.3) 8.3 (0.2)
PM EP 13.0 (0.1) 13.7 (0.1)
AA 1.0 (0.0) 1.0 (0.0)
SURR 3.0 (0.0) 3.0 (0.0)

200 2

PM LA 8.7 (0.0) 9.3 (0.0)
PM EP 15.5 (0.0) 17.3 (0.0)
AA 1.0 (0.0) 1.0 (0.0)
SURR 3.0 (0.0) 3.0 (0.0)

200 10

PM LA 7.6 (0.2) 7.9 (0.2)
PM EP 13.3 (0.1) 13.2 (0.2)
AA 1.0 (0.0) 1.0 (0.0)
SURR 3.0 (0.0) 3.0 (0.0)

sampler 20 times, so that we can roughly consider the
new sample drawn in a Gibbs sampling updates inde-
pendent with respect to the previous. The behavior of
the R̂ statistics with respect to the number of iterations,
reported in table 3, reveals some interesting features. All
methods are characterized by fast convergence. In the
case of the SURR and AA methods, however, efficiency
is much lower than what can be achieved by the PM
method when repeating the Gibbs sampling update θ|y
20 times. This is an indication that the parameterizations
of SURR and AA methods are not fully capable of
breaking the correlation between hyper-parameters and
latent variables. Finally, note that in the case of ARD
covariances, the low efficiency in all methods is due to
the random walk type of exploration; in those cases 20
iterations of the Gibbs sampling steps were not enough

to ensure independence between consecutive samples.

4.4 Convergence speed and efficiency on real data

This section reports a comparison of classification per-
formance on three UCI data sets [44], so as to verify
the capability of the proposed approach to effectively
carry out inference for parameters in general GP clas-
sification problems. The Breast and Pima data sets are
two-class classification problems, described by d = 9
and d = 8 covariates, comprising n = 682 and n = 768
input vectors respectively. The Abalone data set has
three classes; in this paper, we considered the task of
inferring parameters of a GP probit classifier for the
two classes “M” and “F”, resulting in a data set of
n = 2835 input vectors and d = 8 covariates. All
covariates were transformed to have zero mean and unit
standard deviation. We selected the isotropic covariance
function in equation 5 and chose the following priors for
their parameters: p(τ) = G(τ |aτ , bτ) with shape aτ = 1
and rate bτ = 1/

√
d, and p(σ) = G(σ|aσ, bσ) with shape

aσ = 1.1 and rate bσ = 0.1.
We compared the proposed sampling PM approach

with the AA and SURR parameterizations. In the latter
two, we alternated the sampling of θ using the MH
algorithm and the sampling of f iterating ELL-SS ten
times. In the PM approach we selected an approximation
based on the LA algorithm and chose the number of
importance samples to be Nimp = 1.

We ran chains for 12000 iterations, where the first
2000 were used to tune the proposal mechanisms to
achieve an acceptance rate between 20% and 30%. In
the case of the PM approach, in the adaptive phase we
used the approximate marginal likelihood obtained by
the LA algorithm. This was to overcome the problems
that may arise when chains get trapped due to a largely
overestimated value of the marginal likelihood. After
2000 iterations, we then switched to the estimate of the

10

marginal likelihood obtained by importance sampling.
For each sampling approach, we ran 10 parallel chains
initialized from the prior, so that we could compare
convergence speed.

The results for the three UCI data sets are reported
in figures 3 and 4. The plots show efficiency and con-
vergence speed in the sampling of the logarithm of the
length-scale parameter τ . The left and middle panels of
these figures show the trace and the auto-correlation
plots of one chain after the burn-in period of 2000
iterations. The auto-correlation plot gives an indication
of efficiency; the faster the auto-correlation of a chain
reaches values close to zero, the higher the efficiency of
the corresponding MCMC approach. In order to facilitate
visualization, the traces were thinned by a factor of 10
and the auto-correlation plots were computed on the
thinned chains. The right panel shows the evolution of
the PSRF (R̂) after the burn-in period without thinning
the chains.

The results indicate that the SURR parameterization
yields better performance compared to the AA param-
eterization, where convergence can be extremely slow.
The PM approach achieves impressive efficiency and
convergence speed compared to the AA and SURR pa-
rameterizations. Remarkably, in these experiments, this
is achieved using only one importance sample and a
relatively cheap approximation based on the LA algo-
rithm. We note here that this might not be the case in
general. The key to the success of the PM approach is
the possibility to obtain a low-variance estimator for the
marginal likelihood p(y|θ). Some approximations might
not be good enough to ensure that this is the case;
in such situations, more importance samples or better
approximations should be employed. This has recently
been investigated in more detail in [45], where unbiased
estimates of the marginal likelihood based on Annealed
Importance Sampling [46] have been proposed.

5 COMPARISON WITH OTHER PROBABILISTIC
CLASSIFIERS

5.1 Data sets and experimental setup

This section reports a comparison of classification per-
formance on five UCI data sets. In the Glass data set we
considered the two classes “window glass” and “non-
window glass”. In the USPS data set we considered the
task of classification of “3” vs “5” as in [18].

We constructed increasingly larger training sets com-
prising an equal number of input vectors per class. For
each value of number of input vectors n, we constructed
40 training sets across which we evaluated the perfor-
mance of the proposed PM approach.

5.2 Comparing methods

We compared the PM approach (MCMC PM EP) with
(i) a probabilistic version of an SVM classifier [28] (ii)
the GP classifier using the EP approximation [18], [5]

Breast n = 682

0 200 400 600 800 1000

1.5

2.0

2.5

3.0
AA − Trace plot

0 200 400 600 800 1000

1.5

2.0

2.5

3.0
SURR − Trace plot

0 200 400 600 800 1000

1.5

2.0

2.5

3.0
PM − Trace plot

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
AA − Autocorr.

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
SURR − Autocorr.

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
PM − Autocorr.

0 4000 8000

1.0

1.5

2.0

2.5

3.0
AA − PSRF

0 4000 8000

1.0

1.5

2.0

2.5

3.0
SURR − PSRF

0 4000 8000

1.0

1.5

2.0

2.5

3.0
PM − PSRF

Pima n = 768

0 200 400 600 800 1000

1.0

1.5

2.0

2.5
AA − Trace plot

0 200 400 600 800 1000

1.0

1.5

2.0

2.5
SURR − Trace plot

0 200 400 600 800 1000

1.0

1.5

2.0

2.5
PM − Trace plot

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
AA − Autocorr.

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
SURR − Autocorr.

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
PM − Autocorr.

0 4000 8000

1.0

1.5

2.0

2.5

3.0
AA − PSRF

0 4000 8000

1.0

1.5

2.0

2.5

3.0
SURR − PSRF

0 4000 8000

1.0

1.5

2.0

2.5

3.0
PM − PSRF

Fig. 3. Summary of efficiency and convergence speed
on Breast and Pima data sets for the AA and SURR pa-
rameterization and the proposed PM approach. All plots
show the sampling of the logarithm of the length-scale
parameter τ . The figure shows trace plots (left panels)
and corresponding auto-correlation plots (middle panels)
for one chain thinned by a factor of 10 after burn-in. The
right panel reports the evolution of the PSRF after burn-in;
in this plot the solid line and the red dashed line represent
the median and the 97.5% percentile respectively.

optimizing θ using type II Maximum Likelihood [5],
[12] (EP ML) and (iii) with the classifier obtained by
sampling θ based on the marginal likelihood computed
by EP (MCMC EP). Predictions in EP ML and MCMC EP
were carried out by approximately integrating out latent
variables according to the Gaussian approximation given

11

Abalone n = 2835

0 200 400 600 800 1000

1.0

1.5

2.0

2.5

3.0

AA − Trace plot

0 200 400 600 800 1000

1.0

1.5

2.0

2.5

3.0

SURR − Trace plot

0 200 400 600 800 1000

1.0

1.5

2.0

2.5

3.0

PM − Trace plot

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
AA − Autocorr.

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
SURR − Autocorr.

0 5 15 25

0.0

0.2

0.4

0.6

0.8

1.0
PM − Autocorr.

0 4000 8000

1.0

1.5

2.0

2.5

3.0
AA − PSRF

0 4000 8000

1.0

1.5

2.0

2.5

3.0
SURR − PSRF

0 4000 8000

1.0

1.5

2.0

2.5

3.0
PM − PSRF

Fig. 4. Summary of efficiency and convergence speed on
the Abalone data set.

by the EP algorithm.
We used the SVM code in the e1071 R package,

which provides a front-end to the LIBSVM library where
non-linear SVMs employ a squared exponential isotropic
kernel. In order to meaningfully compare the four clas-
sifiers, we used the isotropic kernel/covariance for all of
them. In the MCMC PM EP method we set Nimp = 64.

5.3 Performance scores

We are interested in comparing the ability of the classi-
fiers to reliably quantify uncertainty in predicting class
labels. Predictive probabilities give a means to do so; the
more confident the classifier is about a correct class label,
the better. Also, predictive probabilities make it possible
to avoid making decisions when predictive probabilities
are below a given threshold.

Following [47], we propose to summarize the ability of
a classifier to reliably quantify uncertainty in predictions
by analyzing classification accuracy and AUC (which
denotes the area under the Receiver Operating Charac-
teristic (ROC) curve for the classifier) versus the degree
of abstention. In particular, we propose to measure the
area under the two curves obtained by plotting accuracy
versus degree of abstention and AUC versus degree
of abstention. We will denote such scores by “capacity
accuracy” and “capacity AUC”, respectively. A value of
capacity close to one suggests that a classifier is capable
of correctly classifying test data with a high degree of
confidence.

For a probabilistic classifier, we compute accuracy and
AUC versus degree of abstention as follows. Denote by
ρ a threshold for the predictive probabilities. Accord-
ing to a threshold value ρ, we compute the degree of
abstention as the proportion of test data for which the

predictive probability p satisfies the following condition
0.5 − ρ < p < 0.5 + ρ. For the rest of the test data,
namely data for which the classifier is most confident, we
compute accuracy and AUC. We repeat this procedure
for different values of ρ, starting from 0.00 going up
to 0.50 at increments of 0.01, so that we obtain the
plots of accuracy and AUC with respect to degree of
abstention. We finally compute the area of the two curves
to obtain “capacity accuracy” and “capacity AUC” for
the classifier. Given that the degree of abstention might
not reach the value of one, we propose to divide the
area of the curves by the largest degree of abstention,
so that the two capacity scores are normalized to one.
Figure 5 shows two exemplar curves of accuracy and
AUC with respect to the degree of abstention that are
used to compute the capacity scores.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Glass

Abstention

A
cc

ur
ac

y

SVM
EP ML
MCMC EP
MCMC PM EP

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Pima

Abstention

A
U

C

SVM
EP ML
MCMC EP
MCMC PM EP

Fig. 5. Left panel: Plot of accuracy vs degree of absten-
tion for one of the folds in the Glass data set for n = 50.
Right panel: Plot of AUC vs degree of abstention for one
of the folds in the Pima data set for n = 20.

5.4 Results

The results are reported in figures 6 and 7 for the
five data sets considered in this work. In general, the
probabilistic version of the SVM classifier leads to a
worse quantification of uncertainty compared to the GP
classifiers. Figure 5 shows how SVMs tend to assign
high confidence to wrong decisions more often than
GP classifiers. Also, the GP classifier optimizing the
hyper-parameters (EP ML) yields worse performance
compared to the GP classifiers where hyper-parameters
are integrated out. Finally, the general trend is that the
PM approach is the one achieving the best quantification
of uncertainty compared to all the classifiers considered
in this work.

A closer look at the posterior distribution obtained
by MCMC EP and MCMC PM EP reveals the following
insights. In the case of classification, the quality of the
approximation of the marginal likelihood given by EP
is generally accurate enough that the posterior distribu-
tion over the hyper-parameters for the MCMC PM EP
approach is similar to the one obtained by employing
MCMC EP. Differences in predictions obtained by the
two methods are mostly due to the different way latent

12

10 20 50 100

0.5

0.6

0.7

0.8

0.9
Pima

n

C
ap

ac
ity

 a
cc

ur
ac

y

n

SVM
EP ML
MCMC EP
MCMC PM EP

10 20 50 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pima

n

C
ap

ac
ity

 A
U

C

n

SVM
EP ML
MCMC EP
MCMC PM EP

10 20 50 100

0.5

0.6

0.7

0.8

0.9

1.0
Thyroid

n

C
ap

ac
ity

 a
cc

ur
ac

y

n

10 20 50 100

0.96

0.97

0.98

0.99

1.00

10 20 50 100

0.0

0.2

0.4

0.6

0.8

1.0
Thyroid

n

C
ap

ac
ity

 A
U

C

n

10 20 50 100

0.95

0.96

0.97

0.98

0.99

1.00

Fig. 6. Plots of performance scores with respect to size
of training set for the Pima (first row) and the Thyroid
(second row) data sets. The legend is reported in the first
row only and it applies to all the plots. In the remaining
plots, a closeup is reported to make it easier to compare
the results.

variables are integrated out when making predictions.
The situation can be different for other GP models where,
for example, EP cannot be derived or EP exhibits conver-
gence issues, so those considerations are peculiar to GP
classification. The aim of this study is to demonstrate
that it is important to account for the uncertainty in
the hyper-parameters when predicting labels on unseen
data in order to achieve a sound quantification of uncer-
tainty. Although this has been pointed out in previous
work [12], [26], [16], [27], the proposed approach makes
exact Bayesian computations, in a Monte Carlo sense,
actually feasible by building upon deterministic approx-
imations.

In terms of complexity of the three GP classifiers, the
following considerations can be made. All the methods
employ EP that requires three O(n3) operations at each
iteration. In the case of ML, the approximation of the
marginal likelihood p(y|θ) given by EP is optimized with
respect to θ. When the number of hyper-parameters is
small, as in the cases of the isotropic RBF covariance
function considered here, the optimization can be per-
formed by grid search. In the case of the ARD covariance,
optimization can be performed, for instance, by em-
ploying the conjugate gradient algorithm, that requires
the derivatives of the approximate marginal likelihood
with respect to the hyper-parameters. Computing such
derivatives involves an extra O(n3) operation (see sec-
tion 5.5.2 of [5]). In MCMC EP the approximation of
the marginal likelihood p(y|θ) given by EP is used

10 20 50 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ionosphere

n

C
ap

ac
ity

 a
cc

ur
ac

y

n

SVM
EP ML
MCMC EP
MCMC PM EP

10 20 50 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ionosphere

n

C
ap

ac
ity

 A
U

C

n

SVM
EP ML
MCMC EP
MCMC PM EP

10 20 50 100

0.5

0.6

0.7

0.8

0.9

1.0
Glass

n

C
ap

ac
ity

 a
cc

ur
ac

y

n

10 20 50 100

0.92

0.94

0.96

0.98

1.00

10 20 50 100

0.2

0.4

0.6

0.8

1.0
Glass

n

C
ap

ac
ity

 A
U

C

n

10 20 50 100

0.95

0.96

0.97

0.98

0.99

1.00

10 20 50 100

0.6

0.7

0.8

0.9

1.0
USPS

n

C
ap

ac
ity

 a
cc

ur
ac

y

n

10 20 50 100

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

10 20 50 100

0.4

0.6

0.8

1.0
USPS

n

C
ap

ac
ity

 A
U

C

n

10 20 50 100

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Fig. 7. Plots of performance scores with respect to size
of training set for the Ionosphere (first row), the Glass
(second row) and the USPS (third row) data sets. The
legend is reported in the first row only and it applies to all
the plots. In the remaining plots, a closeup is reported to
make it easier to compare the results.

directly to obtain samples form p(θ|y). In this case, each
iteration requires running EP to obtain an approximation
to p(y|θ), so the overall complexity is still in O(n3),
but the number of operations depends on the number
of the iterations the MCMC approach is run for. Run-
ning MCMC PM EP requires exactly the same number
of operations as MCMC EP, except that the Cholesky
decomposition of the covariance of the approximating
Gaussian is needed to draw the importance samples,
adding an extra O(n3) operation.

To compute the mean of the predictive distribution for
one test sample, EP ML requires only operations in O(n2)
and none in O(n3), as the expensive elements needed
to compute it are already available from running the EP
approximation. In the case of MCMC EP, the mean of the
predictive distribution is an average of means computed
for several draws from the posterior over θ, so the com-
plexity scales linearly with the number of MCMC sam-
ples and quadratically with n. MCMC PM EP, instead,

13

requires samples from the posterior distribution over la-
tent variables in addition to hyper-parameters. Drawing
samples from p(f |y,θ) requires computations in O(n2) as
previously discussed. For each sample from the posterior
distribution over latent variables and hyper-parameters,
all the other computations are again in O(n2) following
similar arguments as in the case of EP ML; therefore,
similarly to MCMC EP, the complexity scales linearly
with the number of MCMC samples and quadratically
with n.

6 CONCLUSIONS

This paper presented a methodology that enables the
fully Bayesian treatment of GP models, using probit
regression as a working example, and builds upon ex-
isting approximate methods for integrating out latent
variables. The key element in this paper is the adoption
of the pseudo marginal approach to devise a correct
MCMC sampling scheme for the hyper-parameters of the
covariance of the Gaussian Process prior from an approx-
imation of the marginal density of the observation given
the hyper-parameters. The resulting sampling scheme is
simple, and it is based on approximate methods that are
currently very popular.

The results indicate that the proposed methodology
leads to an MCMC approach where chains are character-
ized by high convergence speed and high efficiency. This
is an important feature that yields a step forward toward
making fully Bayesian inference based on Gaussian Pro-
cesses a concrete possibility for many applications with
little user intervention. The overall efficiency is driven
by the MH proposal for the hyper-parameters that can
be inefficient for models with several hyper-parameters;
a matter of current investigation is to study alternative
proposal mechanisms that avoid the erratic behavior of
random walk exploration.

In support vector based classifiers hyper-parameters
are optimized by minimizing the cross-validation error
across a set of candidate values. It is clear that for
small data sets or for covariance functions with a large
number of hyper-parameters, this procedure becomes
unfeasible. The proposed approach, instead, yields a
natural way to integrate the uncertainty in the hyper-
parameters when making predictions and infer them
from data. The comparison with other state-of-the-art
probabilistic classifiers that are commonly employed in
the Machine Learning community shows that accounting
for the posterior over the hyper-parameters is extremely
beneficial, especially for small data sets.

In terms of scalability, the main computational bot-
tleneck is in the computation of the GP prior density
that requires the factorization of the covariance matrix,
which is in O(n3). The same considerations apply to all
GP classifiers that use approximate methods to integrate
out latent variables, so we argue that by running an
efficient sampling procedure for the hyper-parameters
rather than an optimization strategy, the computational

overhead will not be dramatically higher, but the classi-
fication performance will be much more reliable.

We believe that the results presented here can be
extended to other latent Gaussian models, such as Log-
Gaussian Cox process models [48] and Ordinal Regres-
sion with GP priors [49]. Finally, it is possible to extend
the proposed PM MCMC approach to deal with GP
models characterized by a sparse inverse covariance,
which are popular when analyzing spatio-temporal data.
In this case, it is possible to exploit sparsity in the inverse
covariance of the GP, yielding a fast mixing and efficient
MCMC approach capable of processing large amounts
of data.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous re-
viewers for their critical and constructive comments and
suggestions. Mark Girolami is supported by an EPSRC
Established Career Research Fellowship EP/J016934/2,
a Royal Society Wolfson Research Merit Award, and
EPSRC Project grants ENGAGE EP/K015664/2 and
EQUIP EP/K034154/1. This work is dedicated to
Stefano Filippone.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support Vector Networks,” Machine
Learning, vol. 20, pp. 273–297, 1995.

[2] V. N. Vapnik, The nature of statistical learning theory. New York,
NY, USA: Springer-Verlag New York, Inc., 1995.

[3] C. E. Rasmussen and J. Q. Candela, “Healing the relevance
vector machine through augmentation,” in Proceedings of the 22nd
international conference on Machine learning, ser. ICML ’05. New
York, NY, USA: ACM, 2005, pp. 689–696.

[4] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
2001.

[5] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[6] A. Bosch, A. Zisserman, and X. Muoz, “Scene Classification Using
a Hybrid Generative/Discriminative Approach,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 30, no. 4,
pp. 712–727, 2008.

[7] M. Filippone, A. F. Marquand, C. R. V. Blain, S. C. R. Williams,
J. Mourão-Miranda, and M. Girolami, “Probabilistic Prediction
of Neurological Disorders with a Statistical Assessment of Neu-
roimaging Data Modalities,” Annals of Applied Statistics, vol. 6,
no. 4, pp. 1883–1905, 2012.

[8] T. Jaakkola, M. Diekhans, and D. Haussler, “A Discriminative
Framework for Detecting Remote Protein Homologies,” Journal
of Computational Biology, vol. 7, no. 1-2, pp. 95–114, 2000.

[9] T. Joachims, “Text Categorization with Suport Vector Machines:
Learning with Many Relevant Features,” in ECML, ser. Lecture
Notes in Computer Science, C. Nedellec and C. Rouveirol, Eds.,
vol. 1398. Springer, 1998, pp. 137–142.

[10] G. Rätsch, S. Sonnenburg, and C. Schäfer, “Learning Interpretable
SVMs for Biological Sequence Classification,” BMC Bioinformatics,
vol. 7, no. S-1, 2006.

[11] O. Williams, A. Blake, and R. Cipolla, “Sparse Bayesian learning
for efficient visual tracking,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 8, pp. 1292–1304, Aug. 2005.

[12] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), 1st ed. Springer, Aug. 2007.

[13] C. K. I. Williams and D. Barber, “Bayesian classification with
Gaussian processes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, pp. 1342–1351, 1998.

14

[14] T. P. Minka, “Expectation Propagation for approximate Bayesian
inference,” in Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence, ser. UAI ’01. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001, pp. 362–369.

[15] M. N. Gibbs and D. J. C. MacKay, “Variational Gaussian process
classifiers,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 11, no. 6, pp. 1458–1464, 2000.

[16] H. Rue, S. Martino, and N. Chopin, “Approximate Bayesian
inference for latent Gaussian models by using integrated nested
Laplace approximations,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 71, no. 2, pp. 319–392, 2009.

[17] M. Opper and O. Winther, “Gaussian processes for classification:
Mean-field algorithms,” Neural Computation, vol. 12, no. 11, pp.
2655–2684, 2000.

[18] M. Kuss and C. E. Rasmussen, “Assessing Approximate Inference
for Binary Gaussian Process Classification,” Journal of Machine
Learning Research, vol. 6, pp. 1679–1704, 2005.

[19] H. Nickisch and C. E. Rasmussen, “Approximations for Binary
Gaussian Process Classification,” Journal of Machine Learning Re-
search, vol. 9, pp. 2035–2078, Oct. 2008.

[20] B. Cseke and T. Heskes, “Approximate Marginals in Latent Gaus-
sian Models,” Journal of Machine Learning Research, vol. 12, pp.
417–454, 2011.

[21] M. Filippone, M. Zhong, and M. Girolami, “A comparative evalu-
ation of stochastic-based inference methods for Gaussian process
models,” Machine Learning, vol. 93, no. 1, pp. 93–114, 2013.

[22] I. Murray and R. P. Adams, “Slice sampling covariance hyper-
parameters of latent Gaussian models,” in NIPS, J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
Eds. Curran Associates, 2010, pp. 1732–1740.

[23] L. Knorr-Held and H. Rue, “On Block Updating in Markov
Random Field Models for Disease Mapping,” Scandinavian Journal
of Statistics, vol. 29, no. 4, pp. 597–614, Dec. 2002.

[24] C. Andrieu and G. O. Roberts, “The pseudo-marginal approach
for efficient Monte Carlo computations,” The Annals of Statistics,
vol. 37, no. 2, pp. 697–725, Apr. 2009.

[25] M. A. Beaumont, “Estimation of Population Growth or Decline in
Genetically Monitored Populations,” Genetics, vol. 164, no. 3, pp.
1139–1160, Jul. 2003.

[26] R. M. Neal, “Regression and classification using Gaussian process
priors (with discussion),” Bayesian Statistics, vol. 6, pp. 475–501,
1999.

[27] M. B. Taylor and J. P. Diggle, “INLA or MCMC? A Tutorial and
Comparative Evaluation for Spatial Prediction in log-Gaussian
Cox Processes,” 2012, arXiv:1202.1738.

[28] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, 2011.

[29] D. J. C. Mackay, “Bayesian methods for backpropagation net-
works,” in Models of Neural Networks III, E. Domany, J. L. van
Hemmen, and K. Schulten, Eds. Springer, 1994, ch. 6, pp. 211–
254.

[30] L. Tierney and J. B. Kadane, “Accurate Approximations for Pos-
terior Moments and Marginal Densities,” Journal of the American
Statistical Association, vol. 81, no. 393, pp. 82–86, 1986.

[31] I. Murray, R. P. Adams, and D. J. C. MacKay, “Elliptical slice
sampling,” Journal of Machine Learning Research - Proceedings Track,
vol. 9, pp. 541–548, 2010.

[32] R. M. Neal, “Slice Sampling,” Annals of Statistics, vol. 31, pp. 705–
767, 2003.

[33] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
Monte Carlo,” Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987.

[34] R. M. Neal, “Probabilistic inference using Markov chain Monte
Carlo methods,” Dept. of Computer Science, University of
Toronto, Tech. Rep. CRG-TR-93-1, Sep. 1993.

[35] M. Girolami and B. Calderhead, “Riemann manifold Langevin
and Hamiltonian Monte Carlo methods,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 73, no. 2,
pp. 123–214, Mar. 2011.

[36] Y. Yu and X.-L. Meng, “To Center or Not to Center: That Is Not
the Question–An Ancillarity-Sufficiency Interweaving Strategy
(ASIS) for Boosting MCMC Efficiency,” Journal of Computational
and Graphical Statistics, vol. 20, no. 3, pp. 531–570, 2011.

[37] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld, “A general
framework for the parametrization of hierarchical models,” Sta-
tistical Science, vol. 22, no. 1, pp. 59–73, 2007.

[38] C. P. Robert and G. Casella, Monte Carlo Statistical Methods
(Springer Texts in Statistics). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[39] N. Friel and A. N. Pettitt, “Marginal likelihood estimation via
power posteriors,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 70, no. 3, pp. 589–607, 2008.

[40] J. Skilling, “Nested sampling for general Bayesian computation,”
Bayesian Analysis, vol. 1, no. 4, pp. 833–860, 2006.

[41] A. Gelman and D. B. Rubin, “Inference from iterative simulation
using multiple sequences,” Statistical Science, vol. 7, no. 4, pp.
457–472, 1992.

[42] J. Geweke, “Getting it right: joint distribution tests of posterior
simulators,” Journal of the American Statistical Association, vol. 99,
no. 467, pp. 799–804, 2004.

[43] W. R. Gilks and D. J. Spiegelhalter, Markov chain Monte Carlo in
practice. Chapman & Hall/CRC, 1996.

[44] A. Asuncion and D. J. Newman, “UCI machine learning reposi-
tory,” 2007.

[45] M. Filippone, “Bayesian inference for Gaussian process clas-
sifiers with annealing and exact-approximate MCMC,” 2013,
arXiv:1311.7320.

[46] R. M. Neal, “Annealed importance sampling,” Statistics and Com-
puting, vol. 11, no. 2, pp. 125–139, Apr. 2001.

[47] C. Ferri and J. Hernández-Orallo, “Cautious Classifiers,” in RO-
CAI, J. Hernández-Orallo, C. Ferri, N. Lachiche, and P. A. Flach,
Eds., 2004, pp. 27–36.

[48] J. Møller, A. R. Syversveen, and R. P. Waagepetersen, “Log
Gaussian Cox Processes,” Scandinavian Journal of Statistics, vol. 25,
no. 3, pp. 451–482, 1998.

[49] W. Chu and Z. Ghahramani, “Gaussian Processes for Ordinal
Regression,” Journal of Machine Learning Research, vol. 6, pp. 1019–
1041, Dec. 2005.

Maurizio Filippone Maurizio Filippone received
a Master’s degree in Physics and a Ph.D. in
Computer Science from the University of Gen-
ova, Italy, in 2004 and 2008, respectively.

In 2007, he was a Research Scholar with
George Mason University, Fairfax, VA. From
2008 to 2011, he was a Research Associate with
the University of Sheffield, U.K. (2008-2009),
with the University of Glasgow, U.K. (2010), and
with University College London, U.K (2011). He
is currently a Lecturer with the University of

Glasgow, U.K. His current research interests include statistical methods
for pattern recognition.

Dr Filippone serves as an Associate Editor for Pattern Recognition
and the IEEE Transactions on Neural Networks and Learning Systems.

Mark Girolami Mark Girolami FRSE is Profes-
sor of Statistics in the Department of Statistics
at the University of Warwick. He also holds a
professorial post in the Department of Computer
Science at Warwick and is Director of the EP-
SRC funded Research Network on Computa-
tional Statistics and Machine Learning. He is
currently Editor-in-Chief of the journal Statistics
and Computing, an Associate Editor for J. R.
Statist. Soc. C, Journal of Computational and
Graphical Statistics and Area Editor for Pattern

Recognition Letters. He currently holds a Royal Society Wolfson Re-
search Merit Award and an EPSRC Established Career Research
Fellowship.

Chapter 3

Large-Scale Gaussian process
learning

In this part of the thesis I present my work on the development of scalable approximate infer-

ence methods for gps, keeping accurate quantification of uncertainty as a desirable property.

The starting point of this line of work is based on the core idea behind the Pseudo-Marginal

mcmc work for gps with non-Gaussian likelihoods [16]. In this work, we showed how to

leverage unbiased computations of the likelihood to obtain samples from the posterior distri-

bution over covariance parameters without introducing any bias. Taking the same idea one

step further, it is possible to think that fast approximate computations, provided that they

satisfy some properties, are enough to carry out “exact” inference. This is the idea under-

pinning the paper [15], later developed to carry out stochastic gradient-based optimization

of covariance parameters using preconditioning techniques [10]. IN parallel, we also explored

various alternative directions to carry out approximations for gp models that enable scaling

to large-scale supervised learning problems [20, 9, 25].

Resources and grants: These activities involved my time, the time of a number of students,

and that of a number of collaborators. The works [15, 10] involved my time as well as that

of two students; for the former, I was helped by a Master’s student, while the latter was led

by one of my Ph.D. students, and is in collaboration with Oxford and Columbia universities.

The work [20] involved my time in a collaboration with Cambridge and Lancaster universities

(one PhD student from Cambridge and two academics). The work [9] is led by one of my

Ph.D. students, and is in collaboration with another colleague within the Department of

Data Science at EURECOM and the University of New South Wales, Australia. Most of the

funding for these activities came from a three-year EPSRC project and the AXA Chair.

• Preconditioning Kernel Matrices and Enabling scalable stochastic gradient-

based inference for Gaussian processes by employing the Unbiased LInear

System SolvEr (ULISSE) Instead of approximating the marginal likelihood in an

73

unbiased fashion as in [16], these works are based on the development of an unbiased

estimator of the gradient of the log-marginal likelihood. In gps, working with the

gradient of the log-marginal likelihood rather than the log-marginal likelihood itself has

some important advantages. The log-marginal likelihood of gp models involves the

computation of the log-determinant of the (generally dense) n × n covariance matrix

C = K+ λI, where n is the number of data, as well as the solution of linear systems of

this kind C−1v with v ∈ Rn. The standard way to proceed is to compute determinants

and inverses based on a factorization of the matrix C, which costs O(n3) operations;

storing the matrix C and its factorization requires O(n2) space. By employing stochastic

linear algebra techniques, it is possible to obtain an unbiased version of the gradient

of the log-likelihood relying exclusively on the solution of linear systems involving C.

The motivation for employing SGLD for inference of GP covariance parameters comes

from inspecting the gradient of the log-marginal likelihood that has components gi =
∂ log[p(y|θ,X)]

∂θi
:

gi = −1

2
Tr

(
C−1

∂C

∂θi

)
+ y>C−1

∂C

∂θi
C−1y (3.1)

Computing the gi’s requires again O(n3) operations due to the trace term and the linear

system C−1y. However, we can introduce Nr vectors r(i) with components drawn from

{−1, 1} with probability 1/2 and unbiasedly estimate the trace term [19], obtaining:

g̃i = − 1

2Nr

Nr∑

i=1

r(i)
>
C−1

∂C

∂θi
r(i) + y>C−1

∂C

∂θi
C−1y (3.2)

Given that E(r(i)r(i)
>

) = I, we can readily verify that

E[r(i)
>
C−1

∂C

∂θi
r(i)] = Tr

[
C−1

∂C

∂θi
E(r(i)r(i)

>
)

]

which yields the trace term in eq. 3.1. Hence, in order to compute an unbiased version of

the gradient of the log-marginal likelihood we need to solve one linear system for y and

one for each of the Nr vectors r(i) used to estimate the trace term. This consideration

forms the basis of the proposed methodology. Computing an unbiased version of the

gradient involves solving linear systems only, which is much easier and cheaper than

estimating log-determinants. We investigated methods to solve such systems that avoid

the necessity to store the matrix C and that are based on iterating matrix-vector prod-

ucts, such as Conjugate Gradient and Preconditioned Conjugate Gradient algorithms.

In this case, the elements of C can be computed on the fly when needed in the com-

putation of the matrix-vector multiplication. Matrix-vector multiplications cost O(n2)

operations and are easily parallelizable.

Inference or optimization of covariance parameters θ can then proceed by relying exclu-

sively on stochastic gradients. For instance, it is possible to employ stochastic gradient-

based mcmc samplers, such as the one in [39], and this is what is presented in [15]. In

74

[9], instead, we demonstrated the scalability of this proposal when optimizing covariance

parameters using stochastic gradient-based optimization techniques. In particular, in

[9] we showed how popular approximations to scale gp computations can effectively be

used to precondition the linear systems involved in the calculation of stochastic gradients

to significantly accelerate computations. In all, these works demonstrate the potential

of these techniques to scale gp computations from O(n3) time and O(n2) space com-

plexities to O(n2) and O(n), respectively, while maintaining a sound quantification of

uncertainty as the gp model is not approximated.

• MCMC for Variationally Sparse Gaussian Processes Another recent work that

aims to scale nonparametric modeling to large datasets appears in [20]. In this work,

we borrow ideas from the literature on scalable gps using inducing points [38] and de-

velop an mcmc-based inference algorithm that has many interesting properties. The

proposed inference algorithm assumes that a limited set of cleverly positioned inducing

points is sufficient to accurately model the available data, therefore making computa-

tions cheaper. This work differs from previous work on scalable gps in the way it infers

all variables in the model. In particular, we show that the optimal posterior distribu-

tion over the inducing points is a Dirac’s delta, yielding a theoretical justification for

the optimization of the position of the inducing points. Furthermore, we develop an

efficient mcmc algorithm, based on Hybrid Monte Carlo, that is capable of drawing

samples from the posterior distribution of all variables in the model, both latent vari-

ables and covariance parameters. Finally, we demonstrate in several applications that a

limited number of inducing points and the proposed inference method yield an accurate

quantification of uncertainty in predictions.

• Random Feature Expansions for Deep Gaussian processes Deep Gaussian Pro-

cesses (dgps) [11] are deep probabilistic models obtained by stacking multiple layers

implemented through gps. This construction to model composition of functions natu-

rally resembles that of Deep Neural Networks (dnns). The connection between dgps

and dnns has been extensively investigated in the literature, and dgps with a variety

of kernel functions can be interpreted as dnns with an infinite number of neurons at

each layer and specific activation functions (see, e.g., [14, 31]). In contrast to dnns,

dgps provide an elegant way to deal with the model-selection problem of determining

a suitable number of neurons, as they are inherently nonparametric learning machines.

Furthermore, they allow for a principled probabilistic framework to carry out learning

of latent representations and covariance parameters.

Although attractive from a theoretical point of view, learning dgps poses some signifi-

cant computational challenges that arguably hinder their application to a wider variety

of problems. In contrast, dnns have been extremely successful in areas such as computer

vision because of their amenability to GPU and distributed computations, automatic

differentiation tools, and mature developments of regularization techniques, such as low-

rank weight representations and dropout [37]. In this work, we aimed to bridge the gap

75

between dgps and dnns by showing how dgps can be learned at scale by borrowing the

key strengths of dnns, while retaining a probabilistic formulation for accurate quan-

tification of uncertainty. In particular, we show how random feature approximations

of covariance functions applied to dgps lead to dnns with activation functions induced

by the choice of the gp covariance function and low-rank weight matrices. We conve-

niently implemented stochastic variational inference [24] in TensorFlow [1] to infer the

parameters of such approximate dgps. Through extensive experimental comparisons,

we demonstrate that our proposal significantly advances the state-of-the-art in inference

of dgp models, and can be applied to millions of observations with moderately deep

architectures.

76

Enabling scalable stochastic gradient-based inference for Gaussian processes
by employing the Unbiased LInear System SolvEr (ULISSE)

Maurizio Filippone MAURIZIO .FILIPPONE@GLASGOW.AC.UK

School of Computing Science, University of Glasgow, UK

Raphael Engler RAPHAEL.ENGLER@WEB.DE

School of Computing Science, University of Glasgow, UK

Abstract

In applications of Gaussian processes where
quantification of uncertainty is of primary in-
terest, it is necessary to accurately character-
ize the posterior distribution over covariance pa-
rameters. This paper proposes an adaptation of
the Stochastic Gradient Langevin Dynamics al-
gorithm to draw samples from the posterior dis-
tribution over covariance parameters with negli-
gible bias and without the need to compute the
marginal likelihood. In Gaussian process re-
gression, this has the enormous advantage that
stochastic gradients can be computed by solving
linear systems only. A novel unbiased linear sys-
tems solver based on parallelizable covariance
matrix-vector products is developed to acceler-
ate the unbiased estimation of gradients. The re-
sults demonstrate the possibility to enable scal-
able and exact (in a Monte Carlo sense) quantifi-
cation of uncertainty in Gaussian processes with-
out imposing any special structure on the covari-
ance or reducing the number of input vectors.

1. Introduction

Probabilistic kernel machines based on Gaussian Pro-
cesses (GPs) (Rasmussen & Williams, 2006) are popular
in a number of applied domains as they offer the possi-
bility to flexibly model complex data and, depending on
the choice of covariance function, to gain some under-
standing on the underlying behavior of the system under
study. When quantification of uncertainty is of primary
interest, it is necessary to accurately characterize the pos-
terior distribution over covariance parameters. This has

Proceedings of the32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

been argued in a number of papers where this is done by
means of Markov chain Monte Carlo (MCMC) methods
(Williams & Rasmussen, 1995; Williams & Barber, 1998;
Neal, 1999; Murray & Adams, 2010; Taylor & Diggle,
2012; Filippone et al., 2013; Filippone & Girolami, 2014).

The limitation of MCMC approaches to draw samples from
the posterior distribution over covariance parameters is that
they need to compute the marginal likelihood at every it-
eration. In GP regression, a standard way to compute
the marginal likelihood involves storing and factorizing an
n×n matrix, leading toO(n3) time andO(n2) space com-
plexities, wheren is the size of the data set. For large data
sets this becomes unfeasible, so a large number of con-
tributions can be found in the literature on how to make
these calculations tractable. For example, when the GP
covariance matrix has some particular properties, e.g., it
has sparse inverse (Rue et al., 2009; Simpson et al., 2013;
Lyne et al., 2015), it is computed on regularly spaced in-
puts (Saatçi, 2011), or it is computed on univariate in-
puts (Gilboa et al., 2015), it is possible to considerably re-
duce the complexity in computing the marginal likelihood.
When these properties do not hold, which is common in
several Machine Learning applications, approximations are
usually employed. Some examples involve the use subsets
of the data (Candela & Rasmussen, 2005), the determina-
tion of a small number of surrogate input vectors that rep-
resent the full set of inputs (Titsias, 2009; Hensman et al.,
2013), and the application of GPs to subsets of the data
obtained by partitioning the input space (Gramacy et al.,
2004), to name a few. Unfortunately, it is difficult to as-
sess to what extent approximations affect the quantification
of uncertainty in predictions, although some interesting re-
sults in this direction are reported in (Banerjee et al., 2013).

The focus of this paper are applications of GP regression
where the structure of the covariance matrix is not neces-
sarily special and quantification of uncertainty is of primary
interest, so that approximations should be avoided. This
paper proposes an adaptation of the Stochastic Gradient

Enabling scalable stochastic gradient-based inference for Gaussian processes

Langevin Dynamics (SGLD) algorithm (Welling & Teh,
2011) to draw samples from the posterior distribution over
GP covariance parameters. SGLD does not require the
computation of the marginal likelihood and yields sam-
ples from the posterior distribution of interest with negli-
gible bias. This has the enormous advantage that stochastic
gradients can be computed by solving linear systems only
(Gibbs, 1997; Gibbs & MacKay, 1997; Stein et al., 2013).
Linear systems can be solved by means of iterative meth-
ods, such as the Conjugate Gradient (CG) algorithm, that
are based on parallelizable covariance matrix-vector prod-
ucts (Higham, 2008; Skilling, 1993; Seeger, 2000). Similar
ideas were previously put forward to optimize GP covari-
ance parameters (Chen et al., 2011; Anitescu et al., 2012;
Stein et al., 2013). Despite theO(n2) in time andO(n)
in space complexities of these methods compare well with
theO(n3) in time andO(n2) in space complexities of tra-
ditional MCMC-based inference, solving dense linear sys-
tems at each iteration makes the whole inference frame-
work too slow to be of practical use. We compare a num-
ber of standard ways to speed up the solution of dense lin-
ear systems, such as fast covariance matrix-vector products
(Gray & Moore, 2000; Moore, 2000) and preconditioning
(Srinivasan et al., 2014), and in line with what reported in
(Murray, 2009), we observe that they yield little gain in
computational speed compared to the standard CG algo-
rithm. In order to enable practical inference for GPs ap-
plied to large data sets, we therefore develop an Unbiased
LInear Systems SolvEr (ULISSE) that essentially allows
the CG algorithm to stop early while retaining unbiased-
ness of the solution.

We highlight here that (i) in (Welling & Teh, 2011), an
unbiased estimate of the gradient is computed by consid-
ering small batches of data. Recent alternative contribu-
tions on scaling Bayesian inference by analyzing small
batches of data can be found in (Banterle et al., 2014;
Maclaurin & Adams, 2014). GPs do not lend themselves
to this treatment, due to the covariance structure making all
data dependent on one another. (ii) ULISSE is complemen-
tary to recent approaches in the area of probabilistic numer-
ics that aim at infering, rather than computing, solutions to
linear systems (Hennig, 2014). (iii) The proposed inference
method is based on “noisy” gradients and is complemen-
tary to recent inference approaches based on noisy likeli-
hoods (Lyne et al., 2015; Filippone, 2014). In GP regres-
sion, iterative methods akin to the CG algorithm (Higham,
2008) can be employed to obtain an unbiased estimate of
the log-determinant of the covariance matrix, but this re-
mains an extremely onerous calculation needed to get an
unbiased estimate of the log-marginal likelihood. A further
and perhaps more challenging issue is transforming the un-
biased estimate of the log-marginal likelihood in an unbi-
ased estimate of the marginal likelihood (Kennedy & Kuti,

1985; Liu, 2000; Lyne et al., 2015).

This paper demonstrates that employing ULISSE within
SGLD makes it possible to accurately carry out inference
of covariance parameters in GPs and effectively scale these
computations to large data sets. We report results on a
data set with about23 thousand input vectors where we can
draw ten thousand samples per day from the posterior dis-
tribution over covariance parameters on a desktop machine
with standard hardware1. To the best of our knowledge,
this paper reports the first real attempt to enable full quan-
tification of uncertainty of covariance parameters of GPs
without reducing the number of input vectors and without
imposing sparsity on the GP covariance or its inverse.

The paper is organized as follows. Section2 briefly reviews
GPs and motivates the adoption of SGLD to infer GP co-
variance parameters. Section3 describes and evaluates the
CG algorithm to solve linear systems and some variants
based on fast covariance matrix-vector product and precon-
ditioning. Section4 presents ULISSE and its use to obtain
an unbiased estimate of the gradient of the log-marginal
likelihood in GPs. Section5 demonstrates the ability of
the proposed methodology to accurately infer covariance
parameters in GPs and its scalability properties to a large
data set where the marginal likelihood cannot be computed
exactly. Finally, Section6 draws the conclusions.

2. Inference of covariance parameters in GPs

In GP regression, a set of continuous labelsy =
{y1, . . . , yn} is associated with a set of input vectorsX =
{x1, . . . ,xn}. Throughout the paper, we will employ zero
mean GPs with the following covariance function:

k(xi,xj) = σ exp
(
τ‖xi − xj‖2

)
+ λδij (1)

with δij = 1 if i = j and zero otherwise. The parameter
τ determines the rate of decay of the covariance function,
whereasσ represents the marginal variance of each Gaus-
sian random variable comprising the GP. The parameterλ
is the variance of the (Gaussian) noise on the labels. LetK
be the covariance matrix withKij = k(xi,xj) and denote
by θ the vector comprising all parameters of the covariance
matrixK, namelyθ = (σ, τ, λ).

In a Bayesian sense, we would like to carry any uncertainty
in parameters estimates forward to predictions over the la-
bely∗ for a new input vectorx∗. In particular, this requires
solving the following integral:

p(y∗|y, X,x∗) =

∫
p(y∗|y, θ, X,x∗)p(θ|y, X)dθ. (2)

Such an expectation, like any other expectation under the

1Code to reproduce all the results can be found here:
www.dcs.gla.ac.uk/ ˜ maurizio/pages/code.html

Enabling scalable stochastic gradient-based inference for Gaussian processes

posterior overθ, is analytically intractable, so it is neces-
sary to resort to some approximations. A standard way to
tackle this intractability is to draw samples fromp(θ|y, X)
using MCMC methods, and approximate the expectation
with the Monte Carlo estimate

p(y∗|y, X,x∗) ≃ 1

N

N∑

i=1

p(y∗|θ(i), X,x∗), (3)

where θ(i) denotes theith of a set of samples from
p(θ|y, X). Drawing samples from the posterior distribu-
tion can be done using several MCMC algorithms that es-
sentially are based on a proposal mechanism and on an
accept/reject step that requires the evaluation of the log-
marginal likelihood:

log[p(y|θ, X)] = −1

2
log (|K|) − 1

2
yTK−1y + const.

(4)
A standard way to proceed, is to factorize the covari-
ance matrixK = LLT using the Cholesky algorithm
(Golub & Van Loan, 1996). The factorization costsO(n3)
operations and requires the storage ofO(n2) entries of
the covariance matrix, but after that computing the log-
determinant and the inverse ofK multiplied by y can be
done usingO(n2) operations.

The computational complexities above pose a constraint on
the scalability of GPs to large data sets. Iterative methods
based on covariance matrix-vector products (CMVPs) have
been proposed to obtain an unbiased estimate of the log-
marginal likelihood. Even though these methods scale with
O(n2) in time andO(n) in space, they are of little practical
use in the task of sampling fromp(θ|y, X), as the number
of iterations needed to estimate the log-determinant term
can be prohibitively large (see, e.g., (Chen et al., 2011)).
We now illustrate our proposal to obtain samples from
p(θ|y, X) with negligible bias and without having to es-
timate log-determinants and marginal likelihoods.

2.1. Stochastic Gradient Langevin Dynamics (SGLD)

We briefly describe how to adapt SGLD (Welling & Teh,
2011) to obtain samples fromp(θ|y, X) in GPs. The idea
behind SGLD is to modify the standard stochastic gradi-
ent optimization algorithm (Robbins & Monro, 1951) by
injecting Gaussian noise in a way that ensures transition
into a Langevin dynamics phase yielding samples from the
posterior distribution of interest. In particular, the proposal
of a new set of parameters is

θt+1 = θt +
εt

2
M {g̃ + ∇θ log[p(θ)]} + ηt (5)

with ηt ∼ N (ηt|0, εtM) and g̃ an unbiased estimate of
the gradient oflog[p(y|θ, X)]. We have also introduced a
preconditioning matrixM that can be chosen to improve

convergence of SGLD. The update equation, except forηt,
is the standard update used in stochastic gradient optimiza-
tion. The parametersεt are chosen to satisfy

∞∑

t=1

εt = ∞ and

∞∑

t=1

ε2
t < ∞ (6)

as these conditions, along with some other technical as-
sumptions, guarantee convergence to a local maximum.
The injected noiseηt is Gaussian with covarianceεtM en-
suring that the algorithm transitions into a discretized ver-
sion of a Langevin dynamics with target distribution given
by the posterior overθ. In principle, it would be nec-
essary to accept or reject the proposals, which would re-
quire evaluating the marginal likelihood. The key result
in (Welling & Teh, 2011) is that when SGLD reaches the
Langevin dynamics phase, the step-sizeεt is small enough
to make the acceptance rate close to one. Therefore, in this
phase it is possible to accept all proposals, avoiding having
to evaluate the marginal likelihood, at the cost of introduc-
ing a negligible amount of bias.

Following (Welling & Teh, 2011), we can estimate when
the algorithm reaches the Langevin dynamics phase by
monitoring the ratio between the variance of the stochastic
gradients and the variance of the injected noise. Defining
V to be the sampling covariance of the stochastic gradients
andλmax(A) to be the largest eigenvalue of a matrixA, we
can write such a ratio as

εt

4
λmax

(
M

1
2 V M

1
2

)
(7)

When this ratio is small enough the algorithm is in its
Langevin dynamics phase and produces samples from the
posterior distribution overθ. Further theoretical analyses
on the convergence properties of SGLD can be found in
(Teh et al., 2014; Vollmer et al., 2015).

The motivation for employing SGLD for inference of GP
covariance parameters comes from inspecting the gradient
of the log-marginal likelihood that has components

gi = −1

2
Tr

(
K−1 ∂K

∂θi

)
+ yTK−1 ∂K

∂θi
K−1y (8)

Computing thegi’s requires againO(n3) operations due to
the trace term and the linear systemK−1y. However, we
can introduceNr vectorsr(i) with components drawn from
{−1, 1} with probability 1/2 and unbiasedly estimate the
trace term (Gibbs, 1997), obtaining:

g̃i = − 1

2Nr

Nr∑

i=1

r(i)TK−1 ∂K

∂θi
r(i) + yTK−1 ∂K

∂θi
K−1y

(9)

Given thatE(r(i)r(i)T) = I, we can readily verify that

E[r(i)TK−1 ∂K
∂θi

r(i)] = Tr
[
K−1 ∂K

∂θi
E(r(i)r(i)T)

]
, which

Enabling scalable stochastic gradient-based inference for Gaussian processes

Algorithm 1 The Conjugate Gradient algorithm
Input: dataX, vectorb, convergence thresholdǫ, initial
vectors0, maximum number of iterationsT
e0 = b − Ks0; d0 = e0;
for i = 0 to T do

αi =
eT

i ei

dT
i Kdi

;

si+1 = si + αidi;
ei+1 = ei − αiKdi;
if ‖ei+1‖ < ǫ then

returns = si+1;
end if

βi =
eT

i+1ei+1

eT
i ei

;

di+1 = ei+1 + βidi;
end for

yields the trace term in eq.8. Hence, in order to compute an
unbiased version of the gradient of the log-marginal likeli-
hood we need to solve one linear system fory and one
for each of theNr vectorsr(i) used to estimate the trace
term. This consideration forms the basis of the proposed
methodology. Computing an unbiased version of the gra-
dient involves solving linear systems only, which is much
easier and cheaper than estimating log-determinants.

3. Solving linear systems without storing K

We have discussed that SGLD to infer covariance parame-
ters in GPs requires solving linear systems. Here we briefly
review the Conjugate Gradient (CG) algorithm that is a
popular method to iteratively solve linear systems based
on Covariance Matrix Vector Product (CMVP) operations.
CMVPs can be carried out without having to storeK, so
their time and space complexities are inO(n2) andO(n),
respectively. We also discuss and evaluate a few variants
to speed up computations/convergence, such as precondi-
tioning and fast CMVPs. Throughout this section we will
evaluate the effectiveness of these alternatives on a GP re-
gression task applied to the Concrete data set from the
UCI repository (Asuncion & Newman, 2007). This data set
contains data about the compressive strength ofn = 1030
samples of concrete described byd = 8 features.

3.1. The Conjugate Gradient (CG) algorithm

Given a linear system of the formKs = b with K andb
given, the CG algorithm (Golub & Van Loan, 1996) yields
the solutions without having to invert or factorize the ma-
trix K. The idea is to calculate the solutions as the mini-
mizer of

φ(s) =
1

2
sTKs − sTb (10)

which can be obtained by employing gradient-based opti-

0 2 4 6 8 10 12
log10(κ)

a = 1, b = 1
a = 1, b = 0.1
a = 1, b = 0.01
a = 0.5, b = 0.01

Figure 1.Distribution of the condition numberκ of the covari-
ance matrix for different choices of shape and rate parameters of
a Gamma prior on each covariance parameterθ.

mization. The CG algorithm is initialized from an initial
guesss0. After that, the iterations refine the solutions by
updates in directionsdi. The CG algorithm, in comparison
with the standard gradient descent, is characterized by the
fact thatK-orthogonality (or conjugacy with respect toK)
of the search directions is imposed, namelydT

i Kdj = 0
wheni 6= j. This condition yields a sequence of residuals
ei = b − Ksi that are mutually orthogonal, and guaran-
tees convergence in at mostn iterations. Remarkably, the
CG algorithm can be implemented in a way that requires a
single CMVP (Kdi) at each iteration (see Algorithm1).

The trade-off between accuracy and speed is governed by
the thresholdǫ, which in this paper is set toǫ = 10−8.
Theoretically, the CG algorithm is guaranteed to converge
in at mostn iterations, but in practice, due to the repre-
sentation in finite numerical precision, orthogonality of the
directions can be lost, especially in badly conditioned sys-
tems, and the CG algorithm can take more thann iterations
to converge. The condition number of a matrix is defined
as the ratio between its largest and smallest eigenvalues:

κ =
λmax(K)

λmin(K)

Fig. 1 shows the distribution of the condition number when
each covariance parameterθi is sampled form a Gamma
distribution with shape and rate parametersa andb. The
distributions are reasonably vague and give a rough idea of
the typical condition numbers encountered during the infer-
ence of GP covariance parameters for the Concrete data set.
We can expect slower convergence speed when the condi-
tion number is large due to numerical instabilities; we are
interested in quantifying to what extent this applies to GPs
and what is the impact of cheap CMVPs and precondition-
ing on convergence speed. In the remainder of this section,
we will consider the problem of solving the linear system
Ks = y that is needed in the calculation of part of the gra-
dient in eq.9. The results pertaining to the solution of the
linear systemsKs = r(i) are quite similar, so for the sake
of brevity we will omit them.

3.2. Fast CMVPs

We consider here the use of two fast CMVPs based on
efficient representation of input data that we will call

Enabling scalable stochastic gradient-based inference for Gaussian processes

“kdtree” (Gray & Moore, 2000) and “anchors” (Moore,
2000)2. These methods yield fast CMVPs at the price of
a lower accuracy.

In the top row of Fig.2 we show the number of itera-
tions required by the CG algorithm to reach convergence
versus the condition number and the error in the solution
versus the condition number. The error is defined as the
norm of the difference between the solution obtained by
the CG algorithm and the one obtained by factorizingK
using the Cholesky algorithm and carrying out forward and
back substitutions withy. We compare a baseline CG algo-
rithm with CMVPs performed in double precision with CG
algorithms implemented with (i) single precision (“float”)
CMVPs, (ii) “kdtree” CMVPs and (iii) “anchors” CMVPs.
The convergence threshold of the CG algorithm was set to
10−8, so in order to be able to satisfy this criterion when
employing “kdtree” and “anchors” CMVPs, we selected
the relative and absolute tolerance parameters to be10−10.

The results indicate that double precision calculations lead
to the lowest number of iterations compared to the other
methods, especially whenκ is large. Double precision cal-
culations also offer the lowest error. Single precision cal-
culations lead to a very poor error compared to the other
methods. The CG algorithm with “kdtree” CMVPs seems
to take longer to converge than the one with “anchor”
CMVPs, but it achieves a lower error.

Drawing definitive conclusions on whether fast CMVPs
yield any gain in computing time is far from trivial, as this
very much depends on implementation details and hard-
ware where the code is run. What we can say, however, is
that gaining orders of magnitude speed-ups would require
reducing the accuracy of fast CMVPs, but this would re-
quire loosening up the convergence criterion in order for
the CG algorithm to converge. As a result, we would be
able to obtain solutions of linear systems faster but at the
cost of a reduced accuracy in the solution, which in turn
would bias the estimation of gradients.

3.3. Preconditioned CG

The Preconditioned CG (PCG) is a variant of the CG algo-
rithm that aims at mitigating the issues associated with the
rate of convergence of the CG algorithm when the condi-
tion numberκ is large. A (right) preconditioning matrixJ
operates on the linear system yielding

KJ−1(Js) = b

The success of PCG is based on the possibility to construct
J so thatKJ−1 is well conditioned. This can be achieved
whenJ−1 well approximatesK−1, and a complication im-

2code implementing these methods can be found here:
www.cs.ubc.ca/ ˜ awll/nbody_methods.html

0 1 2 3 4 5 6

1
2

3
4

5

log10(κ)

lo
g 1

0(n
um

be
r

ite
ra

tio
ns

) double
float
anchors
kdtree

0 1 2 3 4 5 6

−
15

−
10

−
5

0

log10(κ)

lo
g 1

0(n
or

m
 r

es
id

ua
l)

0 1 2 3 4 5 6
1

2
3

4
log10(κ)

lo
g 1

0(n
um

be
r

ite
ra

tio
ns

) CG
PCG double
PCG float

0 1 2 3 4 5 6

−
14

−
10

−
6

log10(κ)

lo
g 1

0(n
or

m
 r

es
id

ua
l)

Figure 2.Top row: Comparison of fast CMVPs on number of iter-
ations and error versus condition number. Bottom row: Compar-
ison of the CG algorithm and two PCG algorithms using double
and single precision CMVPs to solve inner linear systems.

mediately arises on how to do so for general kernel matrices
without carrying out expensive operations (inO(n3)).

In (Srinivasan et al., 2014) it was proposed to defineJ =
K + δI with δ > 0. Compared to the standard CG al-
gorithm, the PCG algorithm introduces the solution of an
“inner” linear system of the formJ−1z at each iteration,
that can be solved again using the CG algorithm. A large
value ofδ makesK + δI well conditioned and makes con-
vergence speed of the inner CG algorithm faster, whereas it
makesJ−1 andK−1 considerably different leading to the
necessity to run the outer CG algorithm for several itera-
tions. For small values ofδ the situation is reversed, soδ
needs to be tuned to find an optimal compromise.

In the bottom row of Fig.2, we compare the standard CG
algorithm with two versions of the PCG algorithm on num-
ber of iterations and accuracy of the solution. In the first
version of the PCG algorithm we used double precision cal-
culations when solving the inner linear systems, whereas in
the second version we used single precision calculations.
In both versions of the PCG algorithm we setδ to yield the
lowest number of iterations in order to show whether it is
possible to reduce the number of computations.

The results show that the standard CG algorithm takes less
iterations to converge than the PCG algorithm (counting
both inner and outer iterations). Even in the case of sin-
gle precision calculations in the inner CG algorithm, we
did not experience any gain in computing time due to the

Enabling scalable stochastic gradient-based inference for Gaussian processes

increased number of iterations. For other data and in dif-
ferent experimental conditions there might be a compu-
tational advantage in using a preconditioner, as shown in
(Srinivasan et al., 2014), but the gain is generally modest.

4. Unbiased LInear System SolvEr (ULISSE)

From the analysis in the previous sections it is evident that
none of the standard ways to speedup calculations and con-
vergence of the CG algorithm offer substantial gains in
computing time. As a result, employing iterative meth-
ods as an alternative to traditional factorization techniques
seems beyond practicality as pointed out, e.g., in (Murray,
2009). One of the novel contributions of this paper is to ac-
celerate the CG algorithm at the expenses of obtaining an
(unbiased) estimate of the solution. The idea is to stop the
CG algorithm before the convergence criterion is satisfied
and apply some corrections to ensure unbiasedness of the
solution. We note here that our proposal can be applied to
any of the variants of the CG algorithm presented earlier
and to dense as well as sparse linear systems.

We can rewrite the final solution of a linear system obtained
by the CG algorithm as a sum of incremental updates

s = s0 + δ1 + . . . + δT (11)

assuming that it takesT iterations to satisfy the conver-
gence thresholdǫ. We can define an “early stop” thresh-
old α > ǫ that will be reached afterl < T iterations, and
rewrite the final solution by introducing a series of coeffi-
cients as follows

s = s0 +

l−1∑

i=1

δi +
1

w0

(
w0δl+0 +

1

w1

(
w0w1δl+1 +

+
1

w2
(w0w1w2δl+2 + . . .)

))
(12)

We will focus on coefficients defined aswr = exp(βr),
but this choice is not restrictive. We can now obtain an
unbiased estimate of the solution of the linear system by
adding these instructions to the standard CG algorithm: set
s̃ = s0 +

∑l−1
i=1 δi and iterate forj = 0, 1, . . . the following

two steps (i) drawuj ∼ U [0, 1] (ii) if uj < 1
wj

then s̃ =

s̃+
∏j

r=0 wrδl+j , else returñs and stop the CG algorithm.
The expectation of̃s is clearlys and the rate of decayβ
in the expression ofwr determines the average number of
steps that are carried out after the convergence thresholdα
is reached.

For simplicity, we set the early stop threshold toα = q
√

n
asq gives a rough indication of the average error that we
are expecting in each element of the solution. In Fig.3 we
report number of iterations and average standard deviation
across the elements of the solution. ULISSE with two dif-
ferent values ofβ andq is compared with the baseline CG

0 1 2 3 4 5 6

0.
5

1.
5

2.
5

3.
5

log10(κ)

lo
g 1

0(n
um

be
r

ite
ra

tio
ns

) CG
ULISSE q=0.1
ULISSE q=1.0

0 1 2 3 4 5 6

−
8

−
6

−
4

−
2

0
2

4

log10(κ)

lo
g 1

0(a
vg

 s
td

 d
ev

)

0 1 2 3 4 5 6
0.

5
1.

5
2.

5
3.

5
log10(κ)

lo
g 1

0(n
um

be
r

ite
ra

tio
ns

) CG
ULISSE q=0.1
ULISSE q=1.0

0 1 2 3 4 5 6

−
15

−
10

−
5

0

log10(κ)

lo
g 1

0(a
vg

 s
td

 d
ev

)

Figure 3.Comparison of the CG algorithm and ULISSE with
early stop thresholdsα calculated withq = 0.1 andq = 1 on
number of iterations and standard deviation of the solution. The
top row corresponds toβ = 1 in the calculation of the weights
wr, whereas the bottom row corresponds toβ = 100.

algorithm without early stop (“CG”). We stress again that
the error is such that the solution is unbiased.

4.1. Impact on the calculation of stochastic gradients

We conclude this section by showing the impact of ULISSE
in the calculation of stochastic gradients in GPs. Applying
the proposed unbiased solver to the first term ofg̃i in eq.9
is straightforward and it requires solvingNr linear systems,
one for each of ther(i) vectors. For the quadratic term in
y, instead, we need to obtain two independent unbiased es-
timates ofK−1y in order for the expectation of the whole
term to be unbiased. This can be implemented by running
a single instance of the CG algorithm and keeping track of
two solutions obtained by independent draws of the uni-
form variablesuj used to early stop the CG algorithm. We
remark that the unbiased estimation of gradients involves
now two sources of stochasticity: one due to the stochastic
estimate of the trace term in eq.8, and one due to the pro-
posed way to unbiasedly solve all linear systems in eq.9.

Fig. 4 reports the average, taken with respect to100 repeti-
tion of thelog10 of the relative square norm of the error:

‖g(θ) − g̃(θ)‖2

‖g(θ)‖2
(13)

as a function of the condition numberκ. We used one vec-
tor r(1) to estimate the gradient in eq.9. The figure shows

Enabling scalable stochastic gradient-based inference for Gaussian processes

0 1 2 3 4 5 6

1.
0

2.
0

3.
0

log10(κ)

lo
g 1

0(n
um

be
r

ite
ra

tio
ns

) CG
ULISSE q=0.1
ULISSE q=1.0

0 1 2 3 4 5 6

−
8

−
6

−
4

−
2

0

log10(κ)

lo
g 1

0(a
vg

 r
el

 s
qu

ar
e

no
rm

)

Figure 4.Comparison of the CG algorithm and ULISSE and early
stop thresholds computed withq = 0.1 andq = 1 to estimate the
gradient of the log-marginal likelihood in eq.9. In ULISSE, the
weightswr are calculated withβ = 1.

that the estimate in eq.9 (“CG” in the figure) is quite accu-
rate, as the relative error is small in a wide range of values
of κ. Also, at the expenses of a larger variance in the es-
timate of the gradient, ULISSE yields orders of magnitude
improvements in the number of iterations.

5. Experimental validation

In this section, we infer covariance parameters of GP re-
gression models using SGLD with ULISSE. We start by
considering the Concrete data set where it is possible to
compare our proposal with the Metropolis-Hastings (MH)
algorithm. We then demonstrate the scalability of the pro-
posed methodology by considering a data set withn =
22, 784 andd = 8.

5.1. Comparison with MCMC

We ran the MH algorithm for fifty-thousand iterations to
the GP regression model with covariance in eq.1 applied
to the Concrete data set. We allowed for an initial adaptive
phase to reach an average acceptance rate between0.2 and
0.4, and we discarded the first ten-thousand samples. Fig.5
shows the running mean and the interval corresponding to
plus/minus twice the running standard deviation of the pos-
terior over the three parameters (solid red lines) computed
over the remaining forty-thousand samples.

We compare the run from the MH algorithm with SGLD,
where we made the following design choices. We em-
ployed ULISSE within the CG algorithm with double pre-
cision CMVPs. We set the early stop thresholdα to

√
n and

the parameterβ in the computation of the weightswr to 1.
Stochastic gradients were computed usingNr = 4 vectors
r(i). We ran SGLD for forty-thousand iterations; the step-
size was set toεt = a(b + t)−γ , with γ = 1, and it was
chosen to start from10−1 and reduce to10−4 on the last
iteration. During the execution of SGLD we monitored the

0 10000 20000 30000

1.
0

2.
5

4.
0

Iteration number

lo
g(

σ)

0e+00 1e+04 2e+04 3e+04

1.
0

2.
5

4.
0

Iteration number

lo
g(

σ)

PSRF median
PSRF 97.5%

0 10000 20000 30000

−
2.

9
−

2.
6

Iteration number

lo
g(

λ)

0e+00 1e+04 2e+04 3e+04

1.
0

2.
5

4.
0

Iteration number

lo
g(

λ)

PSRF median
PSRF 97.5%

0 10000 20000 30000

−
3.

5
−

2.
5

Iteration number

lo
g(

τ)

0e+00 1e+04 2e+04 3e+04

1.
0

2.
5

4.
0

Iteration number

lo
g(

τ) PSRF median
PSRF 97.5%

Figure 5.Concrete data (n = 1030) - Left panel: Comparison of
MCMC (red) and SGLD with ULISSE (black) on running mean
and plus/minus two standard deviations. The trace of one chain
of SGLD is shown in gray. Right panel: Convergence analysis of
SGLD with ULISSE with PSRF computed over ten chains.

quantity εt

4 λmax

(
M

1
2 V M

1
2

)
as discussed in Section4,

and we froze the value ofεt when it was less than0.002;
the covariance of the gradientsV was estimated on batches
of one-hundred iterations. In order to speed up computa-
tions, we decided to redraw the vectorsr(i) every twenty
iterations and to keep them fixed in between. The advan-
tage of this is that the solutions of the linear systemsKr(i)

can be used to initialize the same systems when proposing
newθ’s thus speeding up convergence. Finally, we set the
preconditioning matrixM in SGLD as the inverse of the
negative Hessian of the log of the posterior density at its
mode computed on a subset of five hundred input vectors,
as this is cheap way to obtain a rough idea of the covariance
structure of the posterior distribution for the full data set.

SGLD yields an effective sample size of about0.1% and it
draws one independent sample every27 sec. In Fig.5 we
report the running statistics for the three parameters (solid
black lines), and the trace-plot of one run of SGLD (solid
gray lines), where we discarded all iterations prior to the
freezing of the step-sizeεt. The figure shows a striking
match between the results obtained by a standard MCMC
approach and SGLD with ULISSE. This demonstrates that
our proposal is a valid alternative to other MCMC ap-
proaches to reliably quantify uncertainty in GPs.

In order to check convergence speed of SGLD, we ran ten
parallel chains and computed the Potential Scale Reduction
Factor (PSRF) (Gelman & Rubin, 1992). The chains were
initialized by drawing from a Gaussian with mean on the
MAP solution over a subset of five hundred input vectors
and covarianceM , so as to ensure enough dispersion to re-
liably report the PSRF. Fig.5 shows the median and the

Enabling scalable stochastic gradient-based inference for Gaussian processes

0 5000 10000 15000

0.
85

1.
05

Iteration number

lo
g(

σ)

0 5000 10000 15000

1.
0

2.
5

4.
0

Iteration number

lo
g(

σ)

PSRF median
PSRF 97.5%

0 5000 10000 15000

−
1.

80
−

1.
70

Iteration number

lo
g(

λ)

0 5000 10000 15000

1.
0

2.
5

4.
0

Iteration number

lo
g(

λ)
PSRF median
PSRF 97.5%

0 5000 10000 15000

−
0.

95
−

0.
75

Iteration number

lo
g(

τ)

0 5000 10000 15000

1.
0

2.
5

4.
0

Iteration number

lo
g(

τ) PSRF median
PSRF 97.5%

Figure 6.Census data (n = 22, 784) - Left panel: Running
mean and plus/minus two standard deviations (black) and trace
of one chain of SGLD (gray). Right panel: Convergence analysis
of SGLD with ULISSE reporting the PSRF computed over five
chains.

97.5th percentile of the PSRF across the ten chains. The
analysis of these plots reveals that SGLD achieves conver-
gence after few thousand iterations.

5.2. Demonstration on a larger dataset

We now present the application of SGLD with ULISSE to
a data set where it is not possible to run any MCMC algo-
rithm with exact computation of the marginal likelihood on
a conventional desktop machine. This data set contains data
collected as part of the 1990 US census. In this study, we
used the 8L data set3 where the regression task associates
the median house price in a given region with demographic
composition and housing market features (n = 22, 784 and
d = 8). We kept the same experimental conditions as in
the case of the Concrete data, except thatεt was chosen to
decrease from5 · 10−2 to 5 · 10−6 to cope with the larger
gradients obtained for this data set, and the preconditioner
M was estimated based on the MAP on one-thousand data
points. The running statistics for the three parameters for
one chain are reported in Fig.6, along with the PSRF com-
puted across five chains, which shows that convergence was
reached after few thousand iterations.

SGLD with ULISSE was run on a desktop machine with
an eight core (i7-2600 CPU at 3.40GHz) processor, and
an NVIDIA GeForce GTX 590 graphics card (released in
2011). The two GPUs in the graphics card are used to carry
out CMVPs. With this arrangement, we were able to draw
roughly ten thousand samples per day from the posterior
distribution over covariance parameters. SGLD yields an

3www.cs.toronto.edu/ ˜ delve/data/

effective sample size of roughly0.1%, and it can draw one
independent sample every2.4 hours.

6. Conclusions

This paper presented a novel way to accurately infer co-
variance parameters in GPs. The novelty stems from the
combination of stochastic gradient-based inference and a
fast unbiased solver of linear systems. The results demon-
strate that it is possible to carry out inference of GP co-
variance parameters over a data set comprising about23
thousand input vectors in a day on a desktop machine with
standard hardware. The proposed methodology can exploit
parallelism in computing covariance matrix-vector prod-
ucts, so there is an opportunity to scale “exact” inference
(in a Monte Carlo sense) to even larger data sets. We are
not aware of any method that is capable of carrying out full
quantification of uncertainty of GP covariance parameters
on such large data sets without imposing special structures
on the covariance or reducing the number of input vectors.
These results are important not only in Machine Learn-
ing, but also in areas where quantification of uncertainty is
of primary interest and GPs are routinely employed, such
as calibration of computer models (Kennedy & O’Hagan,
2001) and optimization (Jones et al., 1998).

The results reported in this paper, although promising, in-
dicate some directions for improvements. SGLD requires
the tuning of a preconditioning matrixM . ChoosingM
to be similar to the covariance of the posterior speeds up
convergence of SGLD when it reaches the Langevin dy-
namics phase. However,M also affects the scaling of the
gradient in the proposal. During the first phase of SGLD
this might not be optimal, and ideally, gradients should be
scaled in a way similar to AdaGrad (Duchi et al., 2011). In
(Welling & Teh, 2011), it was possible to establish a con-
nection between the covariance of the gradients, the Fisher
Information, andM due to the fact that stochastic gradi-
ents are computed on subsets of the data. We were un-
able to do so for GPs due to the different way stochasticity
is introduced in the computation of the gradients. Despite
this complication, we demonstrated that it is still possible
to obtain convergence to the posterior distribution over co-
variance parameters in a reasonable number of iterations,
which is of ultimate importance in any inference task.

We are currently investigating the application of SGLD
to automatic relevance determination covariances and the
possibility to extend our proposal to scale inference for
other GP models, e.g., GP classification and GPs for spatio-
temporal data. Other interesting aspects to explore would
be the introduction of mixed precision calculations within
the CG algorithm to improve convergence and computation
speed as presented, e.g., in (Jang et al., 2011; Cevahir et al.,
2009; Baboulin et al., 2009).

Enabling scalable stochastic gradient-based inference for Gaussian processes

Acknowledgments

MF gratefully acknowledges support from EPSRC grant
EP/L020319/1.

References

Anitescu, M., Chen, J., and Wang, L. A Matrix-free
Approach for Solving the Parametric Gaussian Process
Maximum Likelihood Problem.SIAM Journal on Scien-
tific Computing, 34(1):A240–A262, 2012.

Asuncion, A. and Newman, D. J. UCI machine learning
repository, 2007.

Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Lan-
gou, J., Langou, J., Luszczek, P., and Tomov, S. Accel-
erating scientific computations with mixed precision al-
gorithms.Computer Physics Communications, 180(12):
2526–2533, 2009.

Banerjee, A., Dunson, D. B., and Tokdar, S. T. Ef-
ficient Gaussian process regression for large datasets.
Biometrika, 100(1):75–89, 2013.

Banterle, M., Grazian, C., and Robert, C. P. Acceler-
ating Metropolis-Hastings algorithms: Delayed accep-
tance with prefetching, June 2014. arXiv:1406.2660.

Candela, J. Q. and Rasmussen, C. E. A Unifying View of
Sparse Approximate Gaussian Process Regression.Jour-
nal of Machine Learning Research, 6:1939–1959, 2005.

Cevahir, A., Nukada, A., and Matsuoka, S. Fast Conjugate
Gradients with Multiple GPUs. In Allen, G., Nabrzyski,
J., Seidel, E., van Albada, G., Dongarra, J., and Sloot,
P. (eds.),Computational Science ICCS 2009, volume
5544 of Lecture Notes in Computer Science, pp. 893–
903. Springer Berlin Heidelberg, 2009.

Chen, J., Anitescu, M., and Saad, Y. Computing f(A)b via
Least Squares Polynomial Approximations.SIAM Jour-
nal on Scientific Computing, 33(1):195–222, 2011.

Duchi, J., Hazan, E., and Singer, Y. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimiza-
tion. Journal of Machine Learning Research, 12:2121–
2159, July 2011.

Filippone, M. Bayesian inference for Gaussian process
classifiers with annealing and pseudo-marginal MCMC.
In 22nd International Conference on Pattern Recogni-
tion, ICPR 2014, Stockholm, Sweden, August 24-28,
2014, pp. 614–619. IEEE, 2014.

Filippone, M. and Girolami, M. Pseudo-marginal Bayesian
inference for Gaussian processes.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36(11):
2214–2226, 2014.

Filippone, M., Zhong, M., and Girolami, M. A compara-
tive evaluation of stochastic-based inference methods for
Gaussian process models.Machine Learning, 93(1):93–
114, 2013.

Gelman, A. and Rubin, D. B. Inference from iterative sim-
ulation using multiple sequences.Statistical Science, 7
(4):457–472, 1992.

Gibbs, M. and MacKay, D. J. C. Efficient Implementa-
tion of Gaussian Processes. Technical report, Cavendish
Laboratory, Cambridge, UK, 1997.

Gibbs, M. N. Bayesian Gaussian processes for regression
and classification. PhD thesis, University of Cambridge,
1997.

Gilboa, E., Saatci, Y., and Cunningham, J. P. Scaling Mul-
tidimensional Inference for Structured Gaussian Pro-
cesses.IEEE Trans. Pattern Anal. Mach. Intell., 37(2):
424–436, 2015.

Golub, G. H. and Van Loan, C. F.Matrix computations.
The Johns Hopkins University Press, 3rd edition, Octo-
ber 1996.

Gramacy, R. B., Lee, H. K. H., and Macready, W. G. Pa-
rameter space exploration with Gaussian process trees.
In Proceedings of the 21st International Conference
on Machine Learning (ICML 2004), Banff, Alberta,
Canada, July 4-8, 2004. ACM, 2004.

Gray, A. G. and Moore, A. W. ’N-Body’ Problems in Sta-
tistical Learning. InAdvances in Neural Information
Processing Systems 13, NIPS, 2000, Denver, CO, USA,
pp. 521–527. MIT Press, 2000.

Hennig, P. Probabilistic Interpretation of Linear Solvers,
October 2014. arXiv:1402.2058.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian Pro-
cesses for Big Data, September 2013. arXiv:1309.6835.

Higham, N. J.Functions of Matrices: Theory and Compu-
tation. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2008.

Jang, Y.-C., Kim, H.-J., and Lee, W. Multi GPU
Performance of Conjugate Gradient Solver with Stag-
gered Fermions in Mixed Precision, November 2011.
arXiv:1111.0125.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient
Global Optimization of Expensive Black-Box Functions.
Journal of Global Optimization, 13(4):455–492, 1998.

Kennedy, A. D. and Kuti, J. Noise without Noise: A New
Monte Carlo Method.Physical Review Letters, 54:2473–
2476, 1985.

Enabling scalable stochastic gradient-based inference for Gaussian processes

Kennedy, M. C. and O’Hagan, A. Bayesian calibration of
computer models.Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 63(3):425–464,
2001.

Liu, K.-F. A Noisy Monte Carlo Algorithm with Fermion
Determinant. In Frommer, A., Lippert, T., Medeke, B.,
and Schilling, K. (eds.),Numerical Challenges in Lat-
tice Quantum Chromodynamics, volume 15 ofLecture
Notes in Computational Science and Engineering, pp.
142–152. Springer Berlin Heidelberg, 2000.

Lyne, A.-M., Girolami, M., Atchade, Y., Strathmann,
H., and Simpson, D. On Russian Roulette Estimates
for Bayesian inference with Doubly-Intractable Likeli-
hoods, February 2015. arXiv:1306.4032.

Maclaurin, D. and Adams, R. P. Firefly Monte Carlo:
Exact MCMC with Subsets of Data, March 2014.
arXiv:1403.5693.

Moore, A. The Anchors Hierarchy: Using the Triangle In-
equality to Survive High-Dimensional Data. InProceed-
ings of the Twelfth Conference on Uncertainty in Artifi-
cial Intelligence, pp. 397–405. AAAI Press, 2000.

Murray, I. Gaussian processes and fast matrix-vector mul-
tiplies, 2009. Presented at the Numerical Mathematics
in Machine Learning workshop at the 26th International
Conference on Machine Learning (ICML 2009), Mon-
treal, Canada.

Murray, I. and Adams, R. P. Slice sampling covariance hy-
perparameters of latent Gaussian models. InAdvances in
Neural Information Processing Systems 23, NIPS, Van-
couver, BC, Canada, 6-9 December 2010, pp. 1732–
1740. Curran Associates, Inc., 2010.

Neal, R. M. Regression and classification using Gaussian
process priors (with discussion).Bayesian Statistics, 6:
475–501, 1999.

Rasmussen, C. E. and Williams, C.Gaussian Processes for
Machine Learning. MIT Press, 2006.

Robbins, H. and Monro, S. A Stochastic Approximation
Method.The Annals of Mathematical Statistics, 22:400–
407, 1951.

Rue, H., Martino, S., and Chopin, N. Approximate
Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations.Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 71(2):319–392, 2009.

Saatçi, Y.Scalable Inference for Structured Gaussian Pro-
cess Models. PhD thesis, University of Cambridge,
2011.

Seeger, M. Skilling techniques for Bayesian analysis.
Technical report, Institute for ANC, Edinburgh, UK,
2000.

Simpson, D. P., Turner, I. W., Strickland, C. M., and
Pettitt, A. N. Scalable iterative methods for sampling
from massive Gaussian random vectors, December 2013.
arXiv:1312.1476.

Skilling, J. Bayesian Numerical Analysis. In Grandy, W. T.
and Milonni, P. W. (eds.),Physics and Probability, pp.
207–222. Cambridge University Press, 1993. Cambridge
Books Online.

Srinivasan, B. V., Hu, Q., Gumerov, N. A., Murtugudde,
R., and Duraiswami, R. Preconditioned Krylov solvers
for kernel regression, August 2014. arXiv:1408.1237.

Stein, M. L., Chen, J., and Anitescu, M. Stochastic approx-
imation of score functions for Gaussian processes.The
Annals of Applied Statistics, 7(2):1162–1191, 2013.

Taylor, M. B. and Diggle, J. P. INLA or MCMC? A Tu-
torial and Comparative Evaluation for Spatial Prediction
in log-Gaussian Cox Processes, 2012. arXiv:1202.1738.

Teh, Y. W., Thíery, A., and Vollmer, S. Consistency and
fluctuations for stochastic gradient Langevin dynamics,
September 2014. arXiv:1409.0578.

Titsias, M. K. Variational Learning of Inducing Variables in
Sparse Gaussian Processes. InProceedings of the 12th
International Conference on Artificial Intelligence and
Statistics, AISTATS, Clearwater Beach, FL, USA, April
16-18, 2009, pp. 567–574. JMLR.org, 2009.

Vollmer, S. J., Zygalakis, K. C., , and Teh, Y. W.
(Non-) asymptotic properties of Stochastic Gradient
Langevin Dynamics, January 2015. arXiv:1501.00438.

Welling, M. and Teh, Y. W. Bayesian Learning via Stochas-
tic Gradient Langevin Dynamics. InProceedings of
the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July
2, 2011, pp. 681–688. Omnipress, 2011.

Williams, C. K. I. and Barber, D. Bayesian classification
with Gaussian processes.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20:1342–1351,
1998.

Williams, C. K. I. and Rasmussen, C. E. Gaussian Pro-
cesses for Regression. InAdvances in Neural Informa-
tion Processing Systems 8, NIPS, Denver, CO, November
27-30, 1995, pp. 514–520. MIT Press, 1995.

Preconditioning Kernel Matrices

Kurt Cutajar KURT.CUTAJAR@EURECOM.FR

EURECOM, Department of Data Science

Michael A. Osborne MOSB@ROBOTS.OX.AC.UK

University of Oxford, Department of Engineering Science

John P. Cunningham JPC2181@COLUMBIA.EDU

Columbia University, Department of Statistics

Maurizio Filippone MAURIZIO.FILIPPONE@EURECOM.FR

EURECOM, Department of Data Science

Abstract
The computational and storage complexity of
kernel machines presents the primary barrier to
their scaling to large, modern, datasets. A com-
mon way to tackle the scalability issue is to use
the conjugate gradient algorithm, which relieves
the constraints on both storage (the kernel ma-
trix need not be stored) and computation (both
stochastic gradients and parallelization can be
used). Even so, conjugate gradient is not with-
out its own issues: the conditioning of kernel ma-
trices is often such that conjugate gradients will
have poor convergence in practice. Precondi-
tioning is a common approach to alleviating this
issue. Here we propose preconditioned conju-
gate gradients for kernel machines, and develop a
broad range of preconditioners particularly use-
ful for kernel matrices. We describe a scalable
approach to both solving kernel machines and
learning their hyperparameters. We show this
approach is exact in the limit of iterations and
outperforms state-of-the-art approximations for a
given computational budget.

1. Introduction
Kernel machines, in enabling flexible feature space repre-
sentations of data, comprise a broad and important class
of tools throughout machine learning and statistics; promi-
nent examples include support vector machines (Schölkopf

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

& Smola, 2001) and Gaussian processes (GPs) (Rasmussen
& Williams, 2006). At the core of most kernel machines is
the need to solve linear systems involving the Gram ma-
trix K = {k(xi,xj | θ)}i,j=1,...,n, where the kernel func-
tion k, parameterized by θ, implicitly specifies the feature
space representation of data points xi. Because K grows
with the number of data points n, a fundamental computa-
tional bottleneck exists: storing K is O(n2), and solving
a linear system with K is O(n3). As the need for large-
scale kernel machines grows, much work has been directed
towards this scaling issue.

Standard approaches to kernel machines involve a factor-
ization (typically Cholesky) of K, which is efficient and
exact but maintains the quadratic storage and cubic run-
time costs. This cost is particularly acute when adapting
(or learning) hyperparameters θ of the kernel function, as
K must then be factorized afresh for each θ. To alleviate
this burden, numerous works have turned to approximate
methods (Candela & Rasmussen, 2005; Snelson & Ghahra-
mani, 2007; Rahimi & Recht, 2008) or methods that ex-
ploit structure in the kernel (Gilboa et al., 2015). Approxi-
mate methods can achieve attractive scaling, often through
the use of low-rank approximations to K, but they can in-
cur a potentially severe loss of accuracy. An alternative
to factorization is found in the conjugate gradient method
(CG), which is used to directly solve linear systems via a
sequence of matrix-vector products. Any kernel structure
can then be exploited to enable fast multiplications, driving
similarly attractive runtime improvements, and eliminating
the storage burden (neither K nor its factors need be repre-
sented in memory). Unfortunately, in the absence of special
structure that accelerates multiplications, CG performs no
better than O(n3) in the worst case, and in practice finite
numerical precision often results in a degradation of run-

Preconditioning Kernel Matrices

time performance compared to factorization approaches.

Throughout optimization, the typical approach to the slow
convergence of CG is to apply preconditioners to improve
the geometry of the linear system being solved (Golub &
Van Loan, 1996). While preconditioning has been explored
in domains such as spatial statistics (Chen, 2005; Stein
et al., 2012; Ashby & Falgout, 1996), the application of
preconditioning to kernel matrices in machine learning has
received little attention. Here we design and study precon-
ditioned conjugate gradient methods (PCG) for use in ker-
nel machines, and provide a full exploration of the use of
approximations of K as preconditioners.

Our contributions are as follows. (i) Extending the work
in (Davies, 2014), we apply a broad range of kernel ma-
trix approximations as preconditioners. Interestingly, this
step allows us to exploit the important developments of ap-
proximate kernel machines to accelerate the exact compu-
tation that PCG offers. (ii) As a motivating example used
throughout the paper, we analyze and provide a general
framework to both learn kernel parameters and make pre-
dictions in GPs. (iii) We extend stochastic gradient learning
for GPs (Filippone & Engler, 2015; Anitescu et al., 2012)
to allow any likelihood that factorizes over the data points
by developing an unbiased estimate of the gradient of the
approximate log-marginal likelihood. We demonstrate this
contribution in making the first use of PCG for GP classi-
fication. (iv) We evaluate datasets over a range of problem
size and dimensionality. Because PCG is exact in the limit
of iterations (unlike approximate techniques), we demon-
strate a tradeoff between accuracy and computational ef-
fort that improves beyond state-of-the-art approximation
and factorization approaches.

In all, we show that PCG, with a thoughtful choice of
preconditioner, is a competitive strategy which is possibly
even superior than existing approximation and CG-based
techniques for solving general kernel machines1.

2. Motivating example – Gaussian Processes
Gaussian processes (GPs) are the fundamental building
block of many probabilistic kernel machines that can be ap-
plied in a large variety of modeling scenarios (Rasmussen
& Williams, 2006). Throughout the paper, we will denote
by X = {x1, . . . ,xn} a set of n input vectors and use
y = (y1, . . . , yn)⊤ for the corresponding labels. GPs are
formally defined as collections of random variables char-
acterized by the property that any finite number of them is
jointly Gaussian distributed. The specification of a kernel
function determines the covariance structure of such ran-

1Code to replicate all results in this paper is available at
http://github.com/mauriziofilippone/preconditioned_GPs

dom variables

cov
(
f(x), f(x′)

)
= k(x,x′ | θ).

In this work we focus in particular on the popular Radial
Basis Function (RBF) kernel

k(xi,xj | θ) = σ2 exp

[
−1

2

d∑

r=1

(xi − xj)
2
r

l2r

]
, (1)

where θ represents the collection of the kernel parameters
σ2 and l2r . Defining fi = f(xi) and f = (f1, . . . , fn)⊤,
and assuming a zero mean GP, we have

f ∼ N (f | 0,K),

where K is the n × n Gram matrix with elements Kij =
k(xi,xj | θ). Note that the kernel above and many popular
kernels in machine learning give rise to dense kernel matri-
ces. Observations are then modeled through a transforma-
tion h of a set of GP-distributed latent variables, specifying
the model

yi ∼ p
(
yi | h(fi)

)
, f ∼ N (f | 0,K).

2.1. The need for preconditioning

The success of nonparametric models based on kernels
hinges on the adaptation of kernel parameters θ. The
motivation for preconditioning begins with an inspection
of the log-marginal likelihood of GP models with prior
N (f | 0, K). In Gaussian processes with a Gaussian like-
lihood yi ∼ N (yi | fi, λ), we have analytic forms for

log[p(y | θ, X)] = −1

2
log (|Ky|) − 1

2
y⊤K−1

y y + const,

and its derivatives with respect to kernel parameters θi,

gi = −1

2
Tr

(
K−1

y

∂Ky

∂θi

)
+

1

2
y⊤K−1

y

∂Ky

∂θi
K−1

y y. (2)

where Ky = K + λI . The traditional approach in-
volves factorizing the kernel matrix Ky = LL⊤ using
the Cholesky algorithm (Golub & Van Loan, 1996) which
costs O(n3) operations. After that, all other operations cost
O(n2) except for the trace term in the calculation of gi

which once again requires O(n3) operations. Similar com-
putations are required for computing mean and variance
predictions for test data (Rasmussen & Williams, 2006).
Note that the solution of a linear system is required for
computing the variance at every test point.

This approach is not viable for large n and, consequently,
many approaches have been proposed to approximate these
computations, thus leading to approximate optimal values
for θ and approximate predictions. Here we investigate the

Preconditioning Kernel Matrices

possibility of avoiding approximations altogether, by argu-
ing that for parameter optimization it is sufficient to ob-
tain an unbiased estimate of the gradient gi. In particular,
when such an estimate is available, it is possible to employ
stochastic gradient optimization that has strong theoretical
guarantees (Robbins & Monro, 1951). In the case of GPs,
the problematic terms in eq. 2 are the solution of the linear
system K−1

y y and the trace term. In this work we make
use of a stochastic linear algebra result that allows for an
approximation of the trace term,

Tr

(
K−1

y

∂Ky

∂θi

)
≈ 1

Nr

Nr∑

i=1

r(i)⊤
K−1

y

∂Ky

∂θi
r(i),

where the Nr vectors r(i) have components drawn from
{−1, 1} with probability 1/2. Verifying that this is an un-
biased estimate of the trace term is straightforward consid-
ering that E

(
r(i)r(i)⊤)

= I (Gibbs, 1997).

This result shows that all it takes to calculate stochastic
gradients is the ability to efficiently solve linear systems.
Linear systems can be iteratively solved using conjugate
gradient (CG) (Golub & Van Loan, 1996). The advantage
of this formulation is that we can attempt to optimize ker-
nel parameters using stochastic gradient optimization with-
out having to store Ky and, given that the most expensive
operation is now multiplying the kernel matrix by vectors,
only O(n2) computations are required. However, it is well
known that the convergence of the CG algorithm depends
on the condition number κ(Ky) (ratio of largest to small-
est eigenvalues), so the suitability of this approach may
also be curtailed if Ky is badly conditioned. To this end,
a well-known approach for improving the conditioning of
a matrix, which in turn accelerates convergence, is pre-
conditioning. This necessitates the introduction of a pre-
conditioning matrix, P , which should be chosen in such a
way that P−1Ky approximates the identity matrix, I . Intu-
itively, this can be obtained by setting P = Ky; however,
given that in Preconditioned CG (PCG) we are required
to solve linear systems involving P , this choice would be
no easier than solving the original system. Thus we must
choose P which approximates Ky as closely as possible,
but which can also be easily inverted. The PCG algorithm
is shown in Algorithm 1.

2.2. Non-Gaussian Likelihoods

When the likelihood p(yi | fi) is not Gaussian, it is no
longer possible to analytically integrate out latent vari-
ables. Instead, techniques such as Gaussian approxima-
tions (see, e.g., (Kuss & Rasmussen, 2005; Nickisch &
Rasmussen, 2008)) and methods attempting to character-
ize the full posterior p(f , θ | y) (Murray et al., 2010; Fil-
ippone et al., 2013) may be required. Among the various
schemes to recover tractability in the case of models with

Algorithm 1 The Preconditioned CG Algorithm, adapted
from (Golub & Van Loan, 1996)
Require: data X, vector v, convergence threshold ϵ, initial

vector x0, maximum no. of iterations T
r0 = v − Kyx0; z0 = P−1r0; p0 = z0

for i = 0 : T do
αi =

rT
i zi

rT
i Kyzi

xi+1 = xi + αipi

ri+1 = ri + αiKypi

if ∥ri+1∥ < ϵ then
return x = xi+1

end if
zi+1 = P−1ri+1

βi =
rT
i+1ri+1

rT
i ri

pi+1 = pi+1 + βipi

end for

a non-Gaussian likelihood, we choose the Laplace approx-
imation, as we can formulate it in a way that only requires
the solution of linear systems. The GP models we consider
assume that the likelihood factorizes across all data points
p(y | f) =

∏n
i=1 p(yi | fi). The use of CG for com-

puting the Laplace approximation has been proposed else-
where (Flaxman et al., 2015), but we make the first use of
preconditioning and stochastic gradient estimation within
the Laplace approximation to compute stochastic gradients
for non-conjugate models.

Defining W = −∇f∇f log[p(y | f)] (a diagonal matrix),
carrying out the Laplace approximation algorithm, comput-
ing its derivatives wrt θ, and making predictions, all pos-
sess the same computational bottleneck: the solution of lin-
ear systems involving the matrix B = I +W

1
2 KW

1
2 (Ras-

mussen & Williams, 2006). For a given θ, each iteration
of the Laplace approximation algorithm requires solving
one linear system involving B and two matrix-vector mul-
tiplications involving K; the linear system involving B can
be solved using CG or PCG. The Laplace approximation
yields the mode f̂ of the posterior over latent variables and
offers an approximate log-marginal likelihood in the form:

log[p̂(y | θ, X)] = −1

2
log |B|− 1

2
f̂⊤K−1f̂+log[p(y | f̂)]

which poses the same computational challenges as the re-
gression case. Once again, we therefore seek an alternative
way to learn kernel parameters by stochastic gradient op-
timization based on computing unbiased estimates of the
gradient of the approximate log-marginal likelihood. This
is complicated further by the inclusion of an additional “im-
plicit” term accounting for the change in the solution given
by the Laplace approximation for a change in θ. The full
derivation of the gradient is rather lengthy and is deferred
to the supplementary material. Nonetheless, it is worth not-

Preconditioning Kernel Matrices

ing that the calculation of the exact gradient involves trace
terms similar to the regression case that cannot be com-
puted for large n, and we unbiasedly estimate these using
the stochastic approximation of the trace.

3. Preconditioning Kernel Matrices
Here we consider choices for kernel preconditioners, and
for the sake of clarity we focus on preconditioners for Ky.
Unless stated otherwise, we shall consider standard left
preconditioning, whereby the original problem of solving
Kyz = v is transformed by applying a preconditioner, P ,
to both sides of this equation. This formulation may thus
be expressed as P−1Kyz = P−1v.

3.1. Nyström type approximations

The Nyström method was originally proposed to approxi-
mate the eigendecomposition of kernel matrices (Williams
& Seeger, 2001); as a result, it offers a way to obtain a
low rank approximation of K. This method selects a sub-
set of m ≪ n data (inducing points) collected in the set
U which are intended for approximating the spectrum of
K. The resulting approximation is K̂ = KXUK−1

UUKUX

where KUU denotes the evaluation of the kernel function
over the inducing points, and KXU denotes the evalua-
tion of the kernel function between the input points and
the inducing points. The resulting preconditioner P =
KXUK−1

UUKUX + λI can be inverted using the matrix in-
version lemma

P−1v = λ−1
[
I − KXU (KUU + KUXKXU)

−1
KUX

]
v,

which has O(m3) complexity.

3.1.1. FULLY AND PARTIALLY INDEPENDENT
TRAINING CONDITIONAL

The use of a subset of data for approximating a GP kernel
has also been utilized in the fully and partially independent
training conditional approaches (FITC and PITC, respec-
tively) for approximating GP regression (Candela & Ras-
mussen, 2005). In the former case, the prior covariance of
the approximation can be written as follows:

P = KXUK−1
UUKUX +diag

(
K − KXUK−1

UUKUX

)
+λI.

As the name implies, this formulation enforces that the
latent variables associated with U are taken to be com-
pletely conditionally independent. On the other hand, the
PITC method extends on this approach by enforcing that al-
though inducing points assigned to a designated block are
conditionally dependent on each other, there is no depen-
dence between points placed in different blocks:

P = KXUK−1
UUKUX+bldiag

(
K − KXUK−1

UUKUX

)
+λI.

For the FITC preconditioner, the diagonal resulting from
the training conditional can be added to the diagonal noise
matrix, and the inversion lemma can be invoked as for the
Nyström case. Meanwhile, for the PITC preconditioner,
the noise diagonal can be added to the block diagonal ma-
trix, which can then be inverted block-by-block. Once
again, matrix inversion can then be carried out as before,
where the inverted block diagonal matrix takes the place of
λI in the original formulation.

3.2. Approximate factorization of kernel matrices

This group of preconditioners relies on approximations to
K that factorize as K̂ = ΦΦ⊤. We shall consider different
ways of determining Φ such that P can be inverted at a
lower cost than the original kernel matrix K. Once again,
this enables us to employ the matrix inversion lemma, and
express the linear system:

P−1v = (ΦΦ⊤+λI)−1v = λ−1[I−Φ(I+Φ⊤Φ)−1Φ⊤]v.

We now review a few methods to approximate the kernel
matrix K in the form ΦΦ⊤.

3.2.1. SPECTRAL APPROXIMATION

The spectral approach uses random Fourier features for de-
riving a sparse approximation of a GP (Rahimi & Recht,
2008). This approach for GPs was introduced in (Lázaro-
Gredilla et al., 2010), and relies on the assumption that sta-
tionary kernel functions can be represented as the Fourier
transform of non-negative measures. As such, the elements
of K can be approximated as follows:

K̂ij =
σ2

0

m
ϕ(xi)

⊤ϕ(xj) =
σ2

0

m

m∑

r=1

cos
[
2πs⊤

r (xi − xj)
]
.

In the equation above, the vectors sr denote the spec-
tral points (or frequencies) which in the case of the RBF
kernel can be sampled from N

(
0, 1

4π2 Λ
)
, where Λ =[

1/l21, . . . , 1/l2n
]
. To the best of our knowledge, this is the

first time such an approximation has been considered for
the purpose of preconditioning kernel matrices.

3.2.2. PARTIAL SVD

Another factorization approach that we consider in this
work is the partial singular value decomposition (SVD)
method (Golub & Van Loan, 1996). The SVD method fac-
torizes the original kernel matrix K into AΛA⊤, where
A is a unitary matrix and Λ is a diagonal matrix of sin-
gular values. Here, we shall consider a variation of this
technique called randomized truncated SVD (Halko et al.,
2011), which constructs an approximate low rank SVD fac-
torization of K using random sampling to accelerate com-
putations.

Preconditioning Kernel Matrices

3.2.3. STRUCTURED KERNEL INTERPOLATION (SKI)

Some recent work on approximating GPs has exploited the
fast computation of Kronecker matrix-vector multiplica-
tions when inputs are located on a Cartesian grid (Gilboa
et al., 2015). Unfortunately, not all datasets meet this re-
quirement, thus limiting the widespread application of Kro-
necker inference. To this end, SKI (Wilson & Nickisch,
2015) is an approximation technique which exploits the
benefits of the Kronecker product without imposing any
requirements on the structure of the training data. In par-
ticular, a grid of inducing points, U , is constructed, and
the covariance between the training data and U is then rep-
resented as KXU = WKUU . In this formulation, W de-
notes a sparse interpolation matrix for assigning weights
to the elements of KUU . In this manner, a precondi-
tioner exploiting Kronecker structure can be constructed as
P = WKUUW⊤ + λI . If we consider V = W/

√
λ,

we can rewrite the (inverse) preconditioner as P−1 =
λ−1(V KUUV ⊤ + I)−1. Since this can no longer be solved
directly, we solve this (inner-loop) linear system using the
CG algorithm (all within one iteration of the outer-loop
PCG). For badly conditioned systems, although the com-
plexity of the required matrix-vector multiplications is now
much less than O(n2), the number of iterations to solve lin-
ear systems involving the preconditioner is potentially very
large, and could diminish the benefits of preconditioning.

3.3. Other approaches

3.3.1. BLOCK JACOBI

An alternative to using a single subset of data involves
constructing local GPs over segments of the original
data (Snelson & Ghahramani, 2007). An example of such
an approach is the Block Jacobi approximation, whereby
the preconditioner is constructed by taking a block diag-
onal of K and discarding all other elements in the kernel
matrix. In this manner, covariance is only expressed for
points within the same block, as P = bldiag (Ky + λI) .
The inverse of this block diagonal matrix is computation-
ally cheap (also block diagonal). However, given that a
substantial amount of information contained in the original
covariance matrix is ignored, this choice is intrinsically a
rather crude approach.

3.3.2. REGULARIZATION

An appealing feature shared by the aforementioned precon-
ditioners (aside from SKI) is that their structure enables us
to directly solve P−1v. An alternative technique for con-
structing a preconditioner involves adding a positive regu-
larization parameter, δI , to the original kernel matrix, such
that P = Ky + δI (Srinivasan et al., 2014). This follows
from the fact that adding noise to the diagonal of Ky makes
it better-conditioned, and the condition number is expected

to decrease further as δ increases. Nonetheless, for the pur-
pose of preconditioning, this parameter should be tuned in
such a way that P remains a sensible approximation of Ky.
As opposed to the previous preconditioners, this is an in-
stance of right preconditioning, which has the following
general form KyP−1(Px) = v.

Given that it is no longer possible to evaluate P−1v analyt-
ically, this linear system is solved yet again using CG, such
that a linear system of equations is solved at every outer
iteration of the PCG algorithm. Due to the potential loss of
accuracy incurred while solving the inner linear systems,
a variation of the standard PCG algorithm, referred to as
flexible PCG (Notay, 2000), is used instead. Using this ap-
proach, a re-orthogonalization step is introduced such that
the search directions remain orthogonal even when the in-
ner system is not solved to high precision.

4. Comparison of Preconditioners
In this section, we provide an empirical exploration of these
preconditioners in a practical setting. We begin by consid-
ering three datasets for regression from the UCI repository
(Asuncion & Newman, 2007), namely the Concrete dataset
(n = 1030, d = 8), the Power Plant dataset (n = 9568, d =
4), and the Protein dataset (n = 45730, d = 9). In par-
ticular, we evaluate the convergence in solving Kyz = y
using iterative methods, where y denotes the labels of the
designated dataset, and Ky is constructed using different
configurations of kernel parameters.

With this experiment, we aim to assess the quality of dif-
ferent preconditioners based on how many matrix-vector
products they require, which, for most approaches, corre-
sponds to the number of iterations taken by PCG to con-
verge. The convergence threshold is set to ϵ2 = n · 10−10

so as to roughly accept an average error of 10−5 on each
element of the solution.

For every variation, we set the parameters of the precon-
ditioners so as to have a complexity lower than the O(n2)
cost associated with matrix-vector products; by doing so,
we can assume that the latter computations are the domi-
nant cost for large n. In particular, for Nyström-type meth-
ods, we set m =

√
n inducing points, so that when we in-

vert the preconditioner using the matrix inversion lemma,
the cost is in O(m3) = O(n3/2). Similarly, for the Spectral
preconditioner, we set m =

√
n random features. For the

SKI preconditioner, we take an equal number of elements
on the grid for each dimension; under this assumption, Kro-
necker products have O(dn

d+1
d) cost (Gilboa et al., 2015),

and we set the size of the grid so that the complexity of
applying the preconditioner matches O(n3/2), so as to be
consistent with the other preconditioners. For the Regular-
ized approach, each iteration needed to apply the precondi-

Preconditioning Kernel Matrices

Concrete dataset Power plant dataset Protein dataset

-3 -2 -1 0 1 2
log10(l)

-2

-4

-6

lo
g 1

0(
λ

)

-3 -2 -1 0 1 2
log10(l)

-2

-4

-6

lo
g 1

0(
λ

)

-3 -2 -1 0 1 2
log10(l)

-2

-4

-6

lo
g 1

0(
λ

)

log10(nit)

0

5

-3 -2 -1 0 1 2

-2

-4

-6

+ + − + + +

− − − + + +

− − − − + +

Block Jacobi

-3 -2 -1 0 1 2

-2

-4

-6

− − ◦ − − −
− − − − − −
− − − − + −

PITC

-3 -2 -1 0 1 2

-2

-4

-6

◦ ◦ + − − −
+ ◦ + − − −
+ + + − − −

FITC

-3 -2 -1 0 1 2

-2

-4

-6

◦ + + − − −
◦ + + − − −
◦ + + − − −

Nystrom

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + − −
+ + + + − −
+ + + + − −

Spectral

-3 -2 -1 0 1 2

-2

-4

-6

+ + + − − −
+ + + + − −
+ + + + − −

Randomized SVD

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + +

+ + + + + +

+ + + + + +

Regularized

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + +

+ + + + + +

+ + + + + +

SKI

-3 -2 -1 0 1 2

-2

-4

-6

◦ ◦ + + + +

◦ ◦ − + + +

◦ ◦ − + + +

Block Jacobi

-3 -2 -1 0 1 2

-2

-4

-6

◦ ◦ + − − −
◦ ◦ + − − −
◦ ◦ + − − −

PITC

-3 -2 -1 0 1 2

-2

-4

-6

◦ ◦ + − − −
◦ ◦ + − − −
◦ ◦ + − − −

FITC

-3 -2 -1 0 1 2

-2

-4

-6

+ + + − − −
+ + + − − −
+ + + − − −

Nystrom

-3 -2 -1 0 1 2

-2

-4

-6

+ + + − − −
+ + + − − −
+ + + + + −

Spectral

-3 -2 -1 0 1 2

-2

-4

-6

+ + + − − −
+ + + − − −
+ + + − − −

Randomized SVD

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + +

+ + + + + +

+ + + ◦ + +

Regularized

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + −
+ + + + + −
+ + + ◦ + +

SKI

-3 -2 -1 0 1 2

-2

-4

-6

− − + + + +

◦ + − + + +

− + − ◦ + +

Block Jacobi

-3 -2 -1 0 1 2

-2

-4

-6

− ◦ + − − −
◦ + + − − −
◦ + + ◦ − +

PITC

-3 -2 -1 0 1 2

-2

-4

-6

◦ ◦ + − − −
◦ + + − − −
+ + + ◦ − −

FITC

-3 -2 -1 0 1 2

-2

-4

-6

◦ ◦ + − − −
◦ + + − − −
◦ + + − − −

Nystrom

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + − −
+ + + + − −
+ + + ◦ + −

Spectral

-3 -2 -1 0 1 2

-2

-4

-6

+ − − − − −
+ + − − − −
+ + − − − −

Randomized SVD

Loss

−2

−1

0

1

2

Gain

Figure 1. Comparison of preconditioners for different settings of kernel parameters. The lengthscale l and the noise variance λ are shown
on the x and y axes respectively. The top figure indicates the number of iterations required to solve the corresponding linear system using
CG, whilst the bottom part of the figure shows the rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10. Symbols added to facilitate reading in B/W print.

tioner requires one matrix-vector product, and we add this
to the overall count of such computations. For this precon-
ditioner, we add a diagonal offset δ to the original matrix,
equivalent to two orders of magnitude greater than the noise
of the process. In general, although the complexity of PCG
is indeed no different from that of CG, we emphasize that
experiencing a 2-fold or 5-fold (in some cases even an order
of magnitude) improvement can be very substantial when
plain CG takes very long to converge or when the dataset is
large.

We focus on an isotropic RBF variant of the kernel in eq. 1,
fixing the marginal variance σ2 to one. We vary the length-
scale parameter l and the noise variance λ in log10 scale.
The top part of fig. 1 shows the number of iterations that
the standard CG algorithm takes, where we have capped
the number of iterations to 100,000.

The bottom part of the figure reports the improvement of-
fered by various preconditioners measured as

log10

(
PCG iterations

CG iterations

)
.

It is worth noting that when both CG and PCG fail to con-
verge within the upper bound, the improvement will be
marked as 0, i.e. neither a gain or a loss within the given
bound. The results plotted in fig. 1 indicate that the low-

rank preconditioners (PITC, FITC and Nyström) achieve
significant reductions in the number of iterations for each
dataset, and all approaches work best when the lengthscale
is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the length-
scale is shorter, corresponding to a kernel matrix that is
more sparse. However, for cases yielding positive results,
the improvement is often in the range of an order of mag-
nitude, which can be substantial when a large number of
iterations is required by the CG algorithm.

The results also confirm that, as alluded to in the previous
section, Block Jacobi preconditioning is generally a poor
preconditioner, particularly when the corresponding kernel
matrix is dense. The only minor improvements were ob-
served when CG itself converges quickly, in which case
preconditioning serves very little purpose either way.

The regularization approach with flexible conjugate gradi-
ent does not appear to be effective in any case either, partic-
ularly due to the substantial amount of iterations required
for solving an inner system at every iteration of the PCG
algorithm. This implies that introducing additional small
jitter to the diagonal does not necessarily make the sys-
tem much easier to solve, whilst adding an overly large
offset would negatively impact convergence of the outer al-
gorithm. One could assume that tuning the value of this

Preconditioning Kernel Matrices

parameter could result in slightly better results; however,
preliminary experiments in this regard yielded only minor
improvements.

The results for SKI preconditioning are similarly discour-
aging at face value. When the matrix Ky is very badly
conditioned, an excessive number of inner iterations are re-
quired for every iteration of outer PCG. This greatly in-
creases the duration of solving such systems, and as a re-
sult, this method was not included in the comparison for
the Protein dataset, where it was evident that precondition-
ing the matrix in this manner would not yield satisfactory
improvements. Notwithstanding that these experiments de-
pict a negative view of SKI preconditioning, it must be said
that we assumed a fairly simplistic interpolation procedure
in our experiments, where each data point was mapped to
nearest grid location. The size of the constructed grid is
also hindered considerably by the constraint imposed by
our upper bound on complexity. Conversely, more sophisti-
cated interpolation strategies or even grid formulation pro-
cedures could possibly speed up the convergence of CG
for the inner systems. In line with this thought, however,
one could argue that the preconditioner would no longer be
straightforward to construct, which goes against our innate
preference towards easily derived preconditioners.

5. Impact of preconditioning on GP learning
One of the primary objectives of this work is to reformu-
late GP regression and classification in such a way that
preconditioning can be effectively exploited. In section 2,
we demonstrated how preconditioning can indeed be ap-
plied to GP regression problems, and also proposed a novel
way of rewriting GP classification in terms of solving lin-
ear systems (where preconditioning can thus be employed).
We can now evaluate how the proposed preconditioned GP
techniques compare to other state of the art methods.

To this end, in this section, we empirically report on the
generalization ability of GPs as a function of the time taken
to optimize parameters θ and compute predictions. In par-
ticular, for each of the methods featured in our comparison,
we iteratively run the optimization of kernel parameters for
a few iterations and predict on unseen data, and assess how
prediction accuracy varies over time for different methods.

The analysis provided in this report is inspired by
(Chalupka et al., 2013), although we do not propose an
approximate method to learn GP kernel parameters. In-
stead, we put forward a means of accelerating the op-
timization of kernel parameters without any approxima-
tion2. Given the predictive mean and variance for the

2The one proviso to this statement is that, for non-Gaussian
likelihood, stochastic gradients target the approximate log-
marginal likelihood obtained by the Laplace approximation.

Ntest test points, say m∗i and s2
∗i, we report two error

measures, namely the Root Mean Square Error, RMSE =√
1

Ntest

∑Ntest

i=1 (m∗i − y∗i)2, along with the negative log-

likelihood on the test data, −∑Ntest

i=1 log[p(y∗i | m∗i, s
2
∗i)],

where y∗i denotes the label of the ith of Ntest data points.
For classification, instead of the RMSE we report the error
rate of the classifier.

We can make use of stochastic gradients for GP models
to optimize kernel parameters using off-the-shelf stochas-
tic gradient optimization algorithms. In order to reduce
the number of parameters to tune, we employ ADA-
GRAD (Duchi et al., 2011) – an optimization algorithm
having a single step-size parameter. For the purpose of this
experiment, we do not attempt to optimize this parameter,
since this would require additional computations. Nonethe-
less, our experience with training GP models indicates that
the choice of this parameter is not critical: we set the step-
size to one.

Fig. 2 shows the two error measures over time for a se-
lection of approaches. In the figure, PCG and CG refer to
stochastic gradient optimization of kernel parameters using
ADAGRAD, where linear systems are solved with PCG
and CG, respectively. In view of the results obtained in
our comparison of preconditioners, we decide to proceed
with the Nyström preconditioning method. Furthermore,
we construct the preconditioner with m = 4

√
n points ran-

domly selected from the input data at each iteration, such
that the overall complexity of the PCG method matches
plain CG. For these methods, stochastic estimates of trace
terms are carried out using Nr = 4 random vectors. The
baseline CHOL method refers to the optimization of kernel
parameters using the L-BFGS algorithm, where the exact
log-marginal likelihood and its gradient are calculated us-
ing the full Cholesky decomposition of Ky or B.

Alongside these approaches for optimizing kernel param-
eters without approximation, we also evaluate the per-
formance of approximate GP methods. For this experi-
ment, we chose to compare against approximations found
in the software package GPstuff (Vanhatalo et al., 2013),
namely the fully and partial independent training condi-
tional approaches (FITC, PITC), and the sparse variational
GP (VAR) (Titsias, 2009). In order to match the compu-
tational cost of CG/PCG, which is in O(n2), we set the
number of inducing points for the approximate methods to
be n2/3.

All methods are initialized from the same set of kernel pa-
rameters, and the curves are averaged over 5 folds (3 for
the Protein and EEG datasets). For the sake of integrity, we
ran each method in the comparison individually on a work-
station with Intel Xeon E5-2630 CPU having 16 cores and
128GB RAM. We also ensured that all methods reported

Preconditioning Kernel Matrices

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
04

0.
08

0.
12

Spam − ARD kernel

log10(seconds)

E
rr

or
 R

at
e

−1 0 1 2 3
15

20
25

30
35

40

Spam − ARD kernel

log10(seconds)
N

eg
at

iv
e

Te
st

 L
og

−
Li

k
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
18

0.
20

0.
22

Power Plant − ARD kernel

log10(seconds)

R
M

S
E

0 1 2 3

−
40

−
30

−
20

−
10

0

Power Plant − ARD kernel

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

1.0 1.5 2.0 2.5 3.0 3.5

0.
05

0.
15

0.
25

EEG − ARD kernel

log10(seconds)

E
rr

or
 R

at
e

0 1 2 3 4

20
30

40
50

60

EEG − ARD kernel

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

1.5 2.0 2.5 3.0 3.5 4.0

0.
60

0.
64

0.
68

0.
72 Protein − ARD kernel

log10(seconds)

R
M

S
E

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

20
0

25
0

30
0

35
0

40
0

Protein − ARD kernel

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

PCG CG CHOL FITC PITC VAR

Figure 2. RMSE and negative log of the likelihood on
√

n held out test data over time. GP models employ the ARD kernel in eq. 1.
GP classification: Spam dataset (n = 4601, d = 57) and EEG dataset (n = 14979, d = 14). GP regression: Power Plant dataset
(n = 9568, d = 4) and Protein dataset (n = 45730, d = 9). Curves are averaged over multiple repetitions.

in the comparison used optimized linear algebra routines
exploiting the multi-core architecture. This diligence for
ensuring fairness gives credence to our assumption that the
timings are not affected by external factors other than the
actual implementation of the algorithms. The CG, PCG and
CHOL approaches have been implemented in R; the fact
that the approximate methods were implemented in a dif-
ferent environment (GPstuff is written in Matlab/Octave)
and by a different developer may cast some doubt on the
correctness of directly comparing results. However, we be-
lieve that the key point emerging from this comparison is
that preconditioning feasibly enables the use of iterative ap-
proaches for optimization of kernel parameters in GPs, and
the results are competitive with those achieved using pop-
ular GP software packages.

For the reported experiments, it was possible to store the
kernel matrix K for all datasets, making it possible to com-
pare methods against the baseline GP where computations
use Cholesky decompositions. We stress, however, that it-
erative approaches based on CG/PCG can be implemented
without the need to store K, whereas this is not possible for
approaches that attempt to factorize K exactly. It is also
worth noting that for the CG/PCG approach, calculating
the log-likelihood on test data requires solving one linear
system for each test point; this clearly penalizes the speed
of these methods given the set-up of the experiment, where
predictions are carried out every fixed number of iterations.

6. Discussion and Conclusions
Careful attention to numerical properties is essential in
scaling machine learning to large and realistic datasets.
Here we have introduced the use of preconditioning to the
implementation of kernel machines, specifically, predic-
tion and learning of kernel parameters for GPs. Our novel
scheme permits the use of any likelihood that factorizes
over the data points, allowing us to tackle both regression
and classification. We have shown robust performance im-
provements, in both accuracy and computational cost, over
a host of state-of-the-art approximation methods for kernel
machines. Notably, our method is exact in the limit of itera-
tions, unlike approximate alternatives. We have also shown
that the use of PCG is competitive with exact Cholesky de-
composition in modestly sized datasets, when the Cholesky
factors can be feasibly computed. When data and thus the
kernel matrix grow large enough, Cholesky factorization
becomes unfeasible, leaving PCG as the optimal choice.

One of the key features of a PCG implementation is that
it does not require storage of any O(n2) objects. We plan
to extend our implementation to compute the elements of
K on the fly in one case, and in another case store K in
a distributed fashion (e.g. in TensorFlow/Spark). Further-
more, while we have focused on solving linear systems, we
can also use preconditioning for other iterative algorithms
involving the K matrix, e.g., those to solve log(K)v and
K1/2v (Chen et al., 2011), as is often useful in estimating
marginal likelihoods for probabilistic kernel models like
GPs.

Preconditioning Kernel Matrices

Acknowledgements
KC and MF are grateful to Pietro Michiardi and Daniele
Venzano for assisting the completion of this work by pro-
viding additional computational resources for running the
experiments. JPC acknowledges support from the Sloan
Foundation, The Simons Foundation (SCGB#325171 and
SCGB#325233), and The Grossman Center at Columbia
University.

References
Anitescu, M., Chen, J., and Wang, L. A Matrix-free

Approach for Solving the Parametric Gaussian Process
Maximum Likelihood Problem. SIAM Journal on Scien-
tific Computing, 34(1):A240–A262, 2012.

Ashby, S. F. and Falgout, R. D. A Parallel Multigrid Pre-
conditioned Conjugate Gradient algorithm for Ground-
water Flow Simulations. Nuclear Science and Engineer-
ing, 124(1):145–159, 1996.

Asuncion, A. and Newman, D. J. UCI Machine Learning
Repository, http://archive.ics.uci.edu/ml, 2007.

Candela, J. Q. and Rasmussen, C. E. A Unifying View of
Sparse Approximate Gaussian Process Regression. Jour-
nal of Machine Learning Research, 6:1939–1959, 2005.

Chalupka, K., Williams, C. K. I., and Murray, I. A frame-
work for evaluating approximation methods for Gaus-
sian process regression. Journal of Machine Learning
Research, 14, 2013.

Chen, J., Anitescu, M., and Saad, Y. Computing f(A)b via
Least Squares Polynomial Approximations. SIAM Jour-
nal on Scientific Computing, 33(1):195–222, 2011.

Chen, K. Matrix Preconditioning Techniques and Appli-
cations. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press,
2005.

Davies, A. Effective Implementation of Gaussian Process
Regression for Machine Learning. PhD thesis, Univer-
sity of Cambridge, 2014.

Duchi, J., Hazan, E., and Singer, Y. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimiza-
tion. Journal of Machine Learning Research, 12:2121–
2159, July 2011.

Filippone, M. and Engler, R. Enabling scalable stochastic
gradient-based inference for Gaussian processes by em-
ploying the Unbiased LInear System SolvEr (ULISSE).
In Blei, D. and Bach, F. (eds.), Proceedings of The
32nd International Conference on Machine Learning,
pp. 1015–1024. JMLR Workshop and Conference Pro-
ceedings, 2015.

Filippone, M., Zhong, M., and Girolami, M. A compara-
tive evaluation of stochastic-based inference methods for
Gaussian process models. Machine Learning, 93(1):93–
114, 2013.

Flaxman, S., Wilson, A., Neill, D., Nickisch, H., and
Smola, A. Fast Kronecker inference in Gaussian pro-
cesses with non-Gaussian likelihoods. In Blei, D. and
Bach, F. (eds.), Proceedings of The 32nd International
Conference on Machine Learning, pp. 607–616. JMLR
Workshop and Conference Proceedings, 2015.

Gibbs, M. N. Bayesian Gaussian processes for regression
and classification. PhD thesis, University of Cambridge,
1997.

Gilboa, E., Saatci, Y., and Cunningham, J. P. Scaling Mul-
tidimensional Inference for Structured Gaussian Pro-
cesses. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 37(2):424–436, 2015.

Golub, G. H. and Van Loan, C. F. Matrix computations.
The Johns Hopkins University Press, 3rd edition, Octo-
ber 1996.

Halko, N., Martinsson, P. G., and Tropp, J. A. Finding
Structure with Randomness: Probabilistic Algorithms
for Constructing Approximate Matrix Decompositions.
SIAM Review, 53(2):217–288, May 2011.

Kuss, M. and Rasmussen, C. E. Assessing Approximate
Inference for Binary Gaussian Process Classification.
Journal of Machine Learning Research, 6:1679–1704,
2005.

Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen,
C. E., and Figueiras-Vidal, A. R. Sparse Spectrum Gaus-
sian Process Regression. Journal of Machine Learning
Research, 11:1865–1881, 2010.

Murray, I., Adams, R. P., and MacKay, D. J. C. Elliptical
slice sampling. Journal of Machine Learning Research -
Proceedings Track, 9:541–548, 2010.

Nickisch, H. and Rasmussen, C. E. Approximations for
Binary Gaussian Process Classification. Journal of Ma-
chine Learning Research, 9:2035–2078, October 2008.

Notay, Y. Flexible Conjugate Gradients. SIAM Journal on
Scientific Computing, 22(4):1444–1460, 2000.

Rahimi, A. and Recht, B. Random Features for Large-Scale
Kernel Machines. In Platt, J. C., Koller, D., Singer, Y.,
and Roweis, S. T. (eds.), Advances in Neural Informa-
tion Processing Systems 20, pp. 1177–1184. Curran As-
sociates, Inc., 2008.

Rasmussen, C. E. and Williams, C. Gaussian Processes for
Machine Learning. MIT Press, 2006.

Preconditioning Kernel Matrices

Robbins, H. and Monro, S. A Stochastic Approximation
Method. The Annals of Mathematical Statistics, 22:400–
407, 1951.

Schölkopf, B. and Smola, A. J. Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. MIT Press, Cambridge, MA, USA, 2001.

Snelson, E. and Ghahramani, Z. Local and global sparse
Gaussian process approximations. In Meila, M. and
Shen, X. (eds.), Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics, vol-
ume 2 of JMLR Proceedings, pp. 524–531. JMLR.org,
2007.

Srinivasan, B. V., Hu, Q., Gumerov, N. A., Murtugudde,
R., and Duraiswami, R. Preconditioned Krylov solvers
for kernel regression, August 2014. arXiv:1408.1237.

Stein, M. L., Chen, J., and Anitescu, M. Difference Filter
Preconditioning for Large Covariance Matrices. SIAM
Journal on Matrix Analysis Applications, 33(1):52–72,
2012.

Titsias, M. K. Variational Learning of Inducing Variables in
Sparse Gaussian Processes. In Dyk, D. A. and Welling,
M. (eds.), Proceedings of the 12th International Confer-
ence on Artificial Intelligence and Statistics, volume 5 of
JMLR Proceedings, pp. 567–574. JMLR.org, 2009.

Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P.,
Tolvanen, V., and Vehtari, A. Gpstuff: Bayesian model-
ing with gaussian processes. Journal of Machine Learn-
ing Research, 14(1):1175–1179, 2013.

Williams, C. K. I. and Seeger, M. Using the nyström
method to speed up kernel machines. In Leen, T. K., Di-
etterich, T. G., and Tresp, V. (eds.), Advances in Neural
Information Processing Systems 13, pp. 682–688. MIT
Press, 2001.

Wilson, A. and Nickisch, H. Kernel Interpolation for Scal-
able Structured Gaussian Processes (KISS-GP). In Blei,
D. and Bach, F. (eds.), Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pp. 1775–1784.
JMLR Workshop and Conference Proceedings, 2015.

Preconditioning Kernel Matrices

A. Other results not included in the paper
In fig. 3 we report some of the runs that we did not include
in the main text for lack of space. The figure reports plots
on the error vs. time for the same regression cases con-
sidered in the main text but with an isotropic kernel, and
results on the concrete dataset with isotropic and ARD ker-
nels.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
18

0.
20

0.
22

0.
24

0.
26

Credit − ARD kernel

log10(seconds)

E
rr

or
 R

at
e

−2 −1 0 1 2

16
18

20
22

Credit − ARD kernel

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

−1.0 0.0 0.5 1.0 1.5 2.0 2.5

0.
3

0.
4

0.
5

0.
6

Concrete − ARD kernel

log10(seconds)

R
M

S
E

−2 −1 0 1 2

10
15

20
25

30

Concrete − ARD kernel

log10(seconds)

N
eg

at
iv

e
Te

st
 L

og
−

Li
k

PCG CG CHOL FITC PITC VAR

Figure 3. RMSE and negative log of the likelihood on
√

n held
out test data over time. GP models employ the ARD kernel in
eq. 1. GP classification: Credi dataset (n = 1000, d = 24). GP
regression: Concrete dataset (n = 1029, d = 8). Curves are
averaged over multiple repetitions.

B. Gaussian Processes with non-Gaussian
likelihood functions

In this section we report the derivations of the quanti-
ties needed to compute an unbiased estimate of the log-
marginal likelihood given by the Laplace approximation
for GP models with non-Gaussian likelihood functions.
Throughout this section, we assume a factorizing likeli-
hood

p(y|f) =
n∏

i=1

p(yi|fi).

and we specialize the equations to the probit likelihood

p(yi | fi) = Φ(yifi). (3)

where Φ denotes the cumulative function of the Gaussian
density. The latent variables f are given a zero mean GP
prior f ∼ N (f |0,K).

For a given value of the hyperparameters θ, define

Ψ(f) = log[p(y | f)] + log[p(f | θ)] + const. (4)

as the logarithm of the posterior density over f . Performing
a Laplace approximation amounts in defining a Gaussian
q(f | y, θ) = N (f | f̂ , Σ̂), such that

f̂ = arg max
f

Ψ(f) and Σ̂−1 = −∇f∇fΨ(f̂).

(5)
As it is not possible to directly solve the maximization
problem in equation 5, an iterative procedure based on the
following Newton-Raphson formula is usually employed,

fnew = f − (∇f∇fΨ(f))−1∇fΨ(f), (6)

starting from some initial f until convergence. The gradient
and the Hessian of the log of the target density are

∇fΨ(f) = ∇f log[p(y | f)] − K−1f and (7)

∇f∇fΨ(f) = ∇f∇f log[p(y | f)] − K−1 = −W − K−1,
(8)

where we have defined W = −∇f∇f log[p(y | f)], which
is diagonal because the likelihood factorizes over observa-
tions. Note that if log[p(y | f)] is concave, such as in probit
classification, Ψ(f) has a unique maximum.

Standard manipulations lead to

fnew = (K−1 + W)−1(W f + ∇f log[p(y | f)]).

We can rewrite the inverse of the negative Hessian using
the matrix inversion lemma:

(
K−1 + W

)−1
= K − KW

1
2 B−1W

1
2 K,

where
B = I + W

1
2 KW

1
2 .

This means that each iteration becomes:

fnew = (K − KW
1
2 B−1W

1
2 K)(W f + ∇f log[p(y | f)]).

We can define b = (W f + ∇f log[p(y | f)]) and rewrite
this expression as:

fnew = K(b − W
1
2 B−1W

1
2 Kb).

From this, we see that at convergence

a = K−1f̂ = (b − W
1
2 B−1W

1
2 Kb).

As we will see later, the definition of a is useful for the
calculation of the gradient and for predictions.

Proceeding with the calculations from right to left we see
that in order to complete a Newton-Raphson iteration the
expensive operations are: (i) carry out one matrix-vector
multiplication Kb, (ii) solve a linear system involving the

Preconditioning Kernel Matrices

Algorithm 2 Laplace approximation for GPs
1: Input: data X , labels y, likelihood function p(y | f)
2: f = 0
3: repeat
4: Compute diag(W), b, W

1
2 Kb

5: solve(B,W
1
2 Kb)

6: Compute a, Ka
7: Compute fnew

8: until convergence
9: return f̂ , a

B matrix, and (iii) carry out one matrix-vector multiplica-
tion involving K and the vector in the parenthesis. Calcu-
lating b and performing any multiplications of W

1
2 with

vectors cost O(n).

All these operations can be carried out without the need to
store K or any other n × n matrices. The linear system
in (ii) can be solved using the CG algorithm that involves
repeatedly multiplying B (and therefore K) with vectors.

B.1. Stochastic gradients

The Laplace approximation yields an approximate log-
marginal likelihood in the following form:

log[p̂(y | θ, X)] = −1

2
log |B|−1

2
f̂⊤K−1f̂+log[p(y | f̂)]

(9)
Handy relationships that we will be using in the remainder
of this section are:

log |B| = log |I + W
1
2 KW

1
2 | = log |I + KW |;

(I + KW)−1 = W− 1
2 B−1W

1
2 .

The gradient of the log-marginal likelihood with respect to
the kernel parameters θ requires differentiating the terms
that explicitly depend on θ and those that implicitly depend
on it because a change in the parameters reflects in a change
in f̂ . Denoting by gi the ith component of the gradient of
∂ log[p̂(y|θ)]

∂θi
, we obtain

gi = −1

2
Tr

(
B−1 ∂B

∂θi

)

+
1

2
f̂⊤K−1 ∂K

∂θi
K−1f̂

+
[
∇f̂ log[p̂(y|θ)]

]⊤ ∂ f̂

∂θi
(10)

The trace term cannot be computed exactly for large n so
we propose a stochastic estimate:

−1

2

˜[
Tr

(
B−1

∂B

∂θi

)]
= − 1

2Nr

Nr∑

i=1

(r(i))⊤B−1 ∂B

∂θi
r(i).

Algorithm 3 Stochastic gradients for GPs

1: Input: data X , labels y, f̂ , a
2: solve(B, r(i)) for i = 1, . . . , Nr

3: Compute first term of g̃i

4: Compute second term of g̃i

5: solve(B,W
1
2 Kr(i)) for i = 1, . . . , Nr

6: Compute ũ
7: solve(B,W

1
2

∂K
∂θi

∇f̂ log[p(y | f̂)])
8: Compute third term of g̃i

9: return g̃

By noticing that the derivative of B is W
1
2

∂K
∂θi

W
1
2 , this

simplifies to

− 1

2Nr

Nr∑

i=1

(r(i))⊤B−1W
1
2
∂K

∂θi
W

1
2 r(i),

so we need to solve Nr linear systems involving B.

The second term contains the linear system K−1f̂ that we
already have from the Laplace approximation and is a.

The third term is slightly more involved and will be dealt
with in the next sub-section.

B.1.1. IMPLICIT DERIVATIVES

The last (implicit) term in the last equation can be simpli-
fied by noticing that:

log[p̂(y | θ)] = Ψ(f̂) − 1

2
log |B|

and that the derivative of the first term wrt f̂ is zero because
f̂ maximizes Ψ(f̂). Therefore:

[
∇f̂ log[p̂(y | θ)]

]⊤ ∂ f̂

∂θi
= −1

2

[
∇f̂ log |B|

]⊤ ∂ f̂

∂θi

The components of
[
∇f̂ log |B|

]
can be obtained by con-

sidering the identity log |B| = log |I + KW |, so differen-
tiating log |B| wrt the components of f̂ becomes:

∂ log |I + KW |
∂(f̂)j

= Tr

(
(I + KW)−1K

∂W

∂(f̂)j

)

We can rewrite this by gathering K inside the inverse and,
due to the inversion of the matrix product, K cancels out:

∂ log |I + KW |
∂(f̂)j

= Tr

(
(K−1 + W)−1 ∂W

∂(f̂)j

)

We notice here that the resulting trace contains the inverse
of the same matrix needed in the iterations of the Laplace
approximation and that the matrix ∂W

∂(f̂)j
is zero everywhere

Preconditioning Kernel Matrices

except in the jth diagonal element where it attains the
value:

∂W

∂(f̂)j

=
∂3 log[p(y | f̂)]

∂(f̂)3j

For this reason, it would be possible to simplify the trace
term as the product between the jth diagonal element of
(K−1 + W)−1 and ∂3 log[p(y|f̂)]

∂(f̂)3j
. Bearing in mind that we

need n of these quantities, we could define

D = diag
[
diag

[
(K−1 + W)−1

]]

(d)j =
∂3 log[p(y | f̂)]

∂(f̂)3j

and rewrite

−1

2

[
∇f̂ log |B|

]
= −1

2
Dd

which is the standard way to proceed when computing the
gradient of the approximate log-marginal likelihood using
the Laplace approximation (Rasmussen & Williams, 2006).
However, this would be difficult to compute exactly for
large n, as this would require inverting K−1 + W first
and then compute its diagonal. Using the matrix inversion
lemma would not simplify things as there would still be an
inverse of B to compute explicitly. We therefore aim for a
stochastic estimate of this term starting from:

∂ log |I + KW |
∂(f̂)j

= Tr

(
(K−1 + W)−1 ∂W

∂(f̂)j

)

= Tr

(
(K−1 + W)−1 ∂W

∂(f̂)j

E[rr⊤]

)

(11)

where we have introduced the r vectors with the property
E[rr⊤] = I . So an unbiased estimate of the trace for each
component of f̂ is:

(ũ)j =

˜[
∂ log |I + KW |

∂(f̂)j

]

=
1

Nr

Nr∑

i=1

(r(i))⊤(K−1 + W)−1 ∂W

∂(f̂)j

r(i)

(12)

which requires solving Nr linear systems involving the B
matrix:

(K−1 + W)−1r(i) = K(r(i) − W
1
2 B−1W

1
2 Kr(i))

The derivative of f̂ wrt θi can be obtained by differentiating
the expression f̂ = K∇f̂ log[p(y | f̂)]:

∂ f̂

∂θi
=

∂K

∂θi
∇f̂ log[p(y | f̂)] + K∇f̂∇f̂ log[p(y | f̂)] ∂ f̂

∂θi

Algorithm 4 Prediction for GPs with Laplace approxima-
tion without Cholesky decompositions

1: Input: data X , labels y, test input x∗, f̂ , a
2: Compute µ∗
3: solve(B,W

1
2 k∗)

4: Compute s2
∗, Φ

(
m∗√
1+s2

∗

)

5: return Φ

(
m∗√
1+s2

∗

)

Given that ∇f̂∇f̂ log[p(y | f̂)] = −W we can rewrite:

(I + KW)
∂ f̂

∂θi
=

∂K

∂θi
∇f̂ log[p(y | f̂)]

which yields:

∂ f̂

∂θi
= (I + KW)−1 ∂K

∂θi
∇f̂ log[p(y | f̂)]

So an unbiased estimate of the implicit term in the gradient
of the approximate log-marginal likelihood becomes:

−1

2
ũ⊤(I + KW)−1 ∂K

∂θi
∇f̂ log[p(y | f̂)]

Rewriting the inverse in terms of B yields:

−1

2
ũ⊤W− 1

2 B−1W
1
2
∂K

∂θi
∇f̂ log[p(y | f̂)]

Putting everything together, the components of the stochas-
tic gradient are:

g̃i = − 1

2Nr

Nr∑

i=1

(r(i))⊤B−1W
1
2
∂K

∂θi
W

1
2 r(i)

+
1

2
a⊤ ∂K

∂θi
a

−1

2
ũ⊤W− 1

2 B−1W
1
2
∂K

∂θi
∇f̂ log[p(y|f̂)](13)

B.2. Predictions

To obtain an approximate predictive distribution, condi-
tioned on a value of the hyperparameters θ, we can com-
pute:

p(y∗ | y, θ) =

∫
p(y∗ | f∗)p(f∗ | f ,θ)q(f | y, θ)df∗df .

(14)

Given the properties of multivariate normal variables, f∗
is distributed as N (f∗ | µ∗, β2

∗) with µ∗ = k⊤
∗ K−1f and

β2
∗ = k∗∗ − k⊤

∗ K−1k∗. Approximating p(f | y, θ) with

Preconditioning Kernel Matrices

a Gaussian q(f | y, θ) = N (f | µq, Σq) makes it possible
to analytically perform integration with respect to f in eq.
14. In particular, the integration with respect to f yields
N (f∗ | m∗, s2

∗) with

m∗ = k⊤
∗ K−1f̂

and
s2

∗ = k∗∗ − k⊤
∗ (K + W−1)−1k∗

These quantities can be rewritten as:

m∗ = k⊤
∗ a

and
s2

∗ = k∗∗ − k⊤
∗ W

1
2 B−1W

1
2 k∗

This shows that the mean is cheap to compute, whereas the
variance requires solving another linear system involving
B for each test point.

The univariate integration with respect to f∗ follows ex-
actly in the case of a probit likelihood, as it is a convolution
of a Gaussian and a cumulative Gaussian
∫

p(y∗ | f∗)N (f∗ | m∗, s
2
∗)df∗ = Φ

(
m∗√
1 + s2∗

)
.

(15)

B.3. Low rank preconditioning

When a low rank approximation of the matrix K is avail-
able, say K̂ = ΦΦ⊤, the inverse of the preconditioner can
be rewritten as:

(I + W
1
2 K̂W

1
2)−1 = (I + W

1
2 ΦΦ⊤W

1
2)−1

By using the matrix inversion lemma we obtain:

(I+W
1
2 ΦΦ⊤W

1
2)−1 = I−W

1
2 Φ(I+Φ⊤WΦ)−1Φ⊤W

1
2

Similarly to the GP regression case, the application of this
preconditioner is in O(m3), where m is the rank of Φ.

MCMC for Variationally Sparse Gaussian Processes

James Hensman
CHICAS, Lancaster University

james.hensman@lancaster.ac.uk

Alexander G. de G. Matthews
University of Cambridge
am554@cam.ac.uk

Maurizio Filippone
EURECOM

maurizio.filippone@eurecom.fr

Zoubin Ghahramani
University of Cambridge
zoubin@cam.ac.uk

Abstract

Gaussian process (GP) models form a core part of probabilistic machine learning.
Considerable research effort has been made into attacking three issues with GP
models: how to compute efficiently when the number of data is large; how to ap-
proximate the posterior when the likelihood is not Gaussian and how to estimate
covariance function parameter posteriors. This paper simultaneously addresses
these, using a variational approximation to the posterior which is sparse in sup-
port of the function but otherwise free-form. The result is a Hybrid Monte-Carlo
sampling scheme which allows for a non-Gaussian approximation over the func-
tion values and covariance parameters simultaneously, with efficient computations
based on inducing-point sparse GPs. Code to replicate each experiment in this pa-
per is available at github.com/sparseMCMC.

1 Introduction

Gaussian process models are attractive for machine learning because of their flexible nonparametric
nature. By combining a GP prior with different likelihoods, a multitude of machine learning tasks
can be tackled in a probabilistic fashion [1]. There are three things to consider when using a GP
model: approximation of the posterior function (especially if the likelihood is non-Gaussian), com-
putation, storage and inversion of the covariance matrix, which scales poorly in the number of data;
and estimation (or marginalization) of the covariance function parameters. A multitude of approx-
imation schemes have been proposed for efficient computation when the number of data is large.
Early strategies were based on retaining a sub-set of the data [2]. Snelson and Ghahramani [3] in-
troduced an inducing point approach, where the model is augmented with additional variables, and
Titsias [4] used these ideas in a variational approach. Other authors have introduced approximations
based on the spectrum of the GP [5, 6], or which exploit specific structures within the covariance
matrix [7, 8], or by making unbiased stochastic estimates of key computations [9]. In this work, we
extend the variational inducing point framework, which we prefer for general applicability (no spe-
cific requirements are made of the data or covariance function), and because the variational inducing
point approach can be shown to minimize the KL divergence to the posterior process [10].

To approximate the posterior function and covariance parameters, Markov chain Monte-Carlo
(MCMC) approaches provide asymptotically exact approximations. Murray and Adams [11] and
Filippone et al. [12] examine schemes which iteratively sample the function values and covariance
parameters. Such sampling schemes require computation and inversion of the full covariance ma-
trix at each iteration, making them unsuitable for large problems. Computation may be reduced
somewhat by considering variational methods, approximating the posterior using some fixed fam-
ily of distributions [13, 14, 15, 16, 1, 17], though many covariance matrix inversions are generally
required. Recent works [18, 19, 20] have proposed inducing point schemes which can reduce the

1

Table 1: Existing variational approaches

Reference p(y | f) Sparse Posterior Hyperparam.

Williams & Barber[21] [also 14, 17] probit/logit 7 Gaussian (assumed) point estimate
Titsias [4] Gaussian 3 Gaussian (optimal) point estimate
Chai [18] softmax 3 Gaussian (assumed) point estimate
Nguyen and Bonilla [1] any factorized 7 Mixture of Gaussians point estimate
Hensman et al. [20] probit 3 Gaussian (assumed) point estimate
This work any factorized 3 free-form free-form

computation required substantially, though the posterior is assumed Gaussian and the covariance
parameters are estimated by (approximate) maximum likelihood. Table 1 places our work in the
context of existing variational methods for GPs.

This paper presents a general inference scheme, with the only concession to approximation being
the variational inducing point assumption. Non-Gaussian posteriors are permitted through MCMC,
with the computational benefits of the inducing point framework. The scheme jointly samples the
inducing-point representation of the function with the covariance function parameters; with suffi-
cient inducing points our method approaches full Bayesian inference over GP values and the covari-
ance parameters. We show empirically that the number of required inducing points is substantially
smaller than the dataset size for several real problems.

2 Stochastic process posteriors

The model is set up as follows. We are presented with some data inputs X = {xn}Nn=1 and responses
y = {yn}Nn=1. A latent function is assumed drawn from a GP with zero mean and covariance
function k(x,x′) with (hyper-) parameters θ. Consistency of the GP means that only those points
with data are considered: the latent vector f represents the values of the function at the observed
points f = {f(xn)}Nn=1, and has conditional distribution p(f |X,θ) = N (f |0,Kff), where Kff

is a matrix composed of evaluating the covariance function at all pairs of points in X. The data
likelihood depends on the latent function values: p(y | f). To make a prediction for latent function
value test points f? = {f(x?)}x?∈X? , the posterior function values and parameters are integrated:

p(f? |y) =
∫ ∫

p(f? | f ,θ)p(f ,θ |y) dθ df . (1)

In order to make use of the computational savings offered by the variational inducing point frame-
work [4], we introduce additional input points to the function Z and collect the responses of the
function at that point into the vector u = {um = f(zm)}Mm=1. With some variational posterior
q(u,θ), new points are predicted similarly to the exact solution

q(f?) =

∫ ∫
p(f? |u,θ)q(u,θ) dθ du . (2)

This makes clear that the approximation is a stochastic process in the same fashion as the true pos-
terior: the length of the predictions vector f? is potentially unbounded, covering the whole domain.

To obtain a variational objective, first consider the support of u under the true posterior, and for
f under the approximation. In the above, these points are subsumed into the prediction vector f?:
from here we shall be more explicit, letting f be the points of the process at X, u be the points of
the process at Z and f? be a large vector containing all other points of interest1. All of the free
parameters of the model are then f?, f ,u,θ, and using a variational framework, we aim to minimize
the Kullback-Leibler divergence between the approximate and true posteriors:

K , KL[q(f?, f ,u,θ)||p(f?, f ,u,θ |y)] = −E
q(f?,f ,u,θ)

[
log

p(f? |u, f ,θ)p(u | f ,θ)p(f ,θ |y)
p(f? |u, f ,θ)p(f |u,θ)q(u,θ)

]
(3)

1The vector f? here is considered finite but large enough to contain any point of interest for prediction. The
infinite case follows Matthews et al. [10], is omitted here for brevity, and results in the same solution.

2

where the conditional distributions for f? have been expanded to make clear that they are the same
under the true and approximate posteriors, and X,Z and X? have been omitted for clarity. Straight-
forward identities simplify the expression,

K = −Eq(f ,u,θ)

[
log

p(u | f ,θ)p(f |θ)p(θ)p(y | f)/p(y)
p(f |u,θ)q(u,θ)

]

= −Eq(f ,u,θ)

[
log

p(u |θ)p(θ)p(y | f)
q(u,θ)

]
+ log p(y) ,

(4)

resulting in the variational inducing-point objective investigated by Titsias [4], aside from the inclu-
sion of θ. This can be rearranged to give the following informative expression

K = KL

[
q(u,θ)||p(u |θ)p(θ) exp{Ep(f |u,θ)[log p(y | f)]}

C

]
− logC + log p(y). (5)

Here C is an intractable constant which normalizes the distribution and is independent of q. Mini-
mizing the KL divergence on the right hand side reveals that the optimal variational distribution is

log q̂(u,θ) = Ep(f |u,θ) [log p(y | f)] + log p(u |θ) + log p(θ)− logC. (6)
For general likelihoods, since the optimal distribution does not take any particular form, we intend to
sample from it using MCMC, thus combining the benefits of variationally-sparse Gaussian processes
with a free-form posterior. Sampling is feasible using standard methods since log q̂ is computable
up to a constant, using O(NM2) computations. After completing this work, it was brought to our
attention that a similar suggestion had been made in [22], though the idea was dismissed because
“prediction in sparse GP models typically involves some additional approximations”. Our presenta-
tion of the approximation consisting of the entire stochastic process makes clear that no additional
approximations are required. To sample effectively, the following are proposed.

Whitening the prior Noting that the problem (6) appears similar to a standard GP for u, albeit
with an interesting ‘likelihood’, we make use of an ancillary augmentation u = Rv, with RR> =
Kuu, v ∼ N (0, I). This results in the optimal variational distribution

log q̂(v,θ) = Ep(f |u=Rv) [log p(y | f)] + log p(v) + log p(θ)− logC (7)

Previously [11, 12] this parameterization has been used with schemes which alternate between sam-
pling the latent function values (represented by v or u) and the parameters θ. Our scheme uses
HMC across v and θ jointly, whose effectiveness is examined throughout the experiment section.

Quadrature The first term in (6) is the expected log-likelihood. In the case of factorization across
the data-function pairs, this results in N one-dimensional integrals. For Gaussian or Poisson likeli-
hood these integrals are tractable, otherwise they can be approximated by Gauss-Hermite quadrature.
Given the current sample v, the expectations are computed w.r.t. p(fn |v,θ) = N (µn, γn), with:

µ = A>v; γ = diag(Kff −A>A); A = R−1Kuf ; RR> = Kuu, (8)

where the kernel matrices Kuf ,Kuu are computed similarly to Kff , but over the pairs in
(X,Z), (Z,Z) respectively. From here, one can compute the expected likelihood and it is subse-
quently straightforward to compute derivatives in terms of Kuf , diag(Kff) and R.

Reverse mode differentiation of Cholesky To compute derivatives with respect to θ and Z we use
reverse-mode differentiation (backpropagation) of the derivative through the Cholesky matrix de-
composition, transforming ∂ log q̂(v,θ)/∂R into ∂ log q̂(v,θ)/∂Kuu, and then ∂ log q̂(v,θ)/∂θ.
This is discussed by Smith [23], and results in a O(M3) operation; an efficient Cython implemen-
tation is provided in the supplement.

3 Treatment of inducing point positions & inference strategy

A natural question is, what strategy should be used to select the inducing points Z? In the original in-
ducing point formulation [3], the positions Z were treated as parameters to be optimized. One could
interpret them as parameters of the approximate prior covariance [24]. The variational formulation

3

[4] treats them as parameters of the variational approximation, thus protecting from over-fitting as
they form part of the variational posterior. In this work, since we propose a Bayesian treatment of
the model, we question whether it is feasible to treat Z in a Bayesian fashion.

Since u and Z are auxiliary parameters, the form of their distribution does not affect the marginals of
the model. The term p(u |Z) has been defined by the consistency with the GP in order to preserve
the posterior-process interpretation above (i.e. u should be points on the GP), but we are free to
choose p(Z). Omitting dependence on θ for clarity, and choosing w.l.o.g. q(u,Z) = q(u |Z)q(Z),
the bound on the marginal likelihood, similarly to (4) is given by

L = Ep(f |u,Z)q(u |Z)q(Z)

[
log

p(y | f)p(u |Z)p(Z)
q(u |Z)q(Z)

]
. (9)

The bound can be maximized w.r.t p(Z) by noting that the term only appears inside a (negative) KL
divergence: −Eq(Z)[log q(Z)/p(Z)]. Substituting the optimal p(Z) = q(Z) reduces (9) to

L = Eq(Z)

[
Ep(f |u,Z)q(u |Z)

[
log

p(y | f)p(u |Z)
q(u |Z)

]]
, (10)

which can now be optimized w.r.t. q(Z). Since no entropy term appears for q(Z), the bound is
maximized when the distribution becomes a Dirac’s delta. In summary, since we are free to choose
a prior for Z which maximizes the amount of information captured by u, the optimal distribution
becomes p(Z) = q(Z) = δ(Z− Ẑ). This formally motivates optimizing the inducing points Z.

Derivatives for Z For completeness we also include the derivative of the free form objective with
respect to the inducing point positions. Substituting the optimal distribution q̂(u,θ) into (4) to give
K̂ and then differentiating we obtain

∂K̂
∂Z

= −∂ logC
∂Z

= −Eq̂(v,θ)

[
∂

∂Z
Ep(f |u=Rv) [log p(y | f)]

]
. (11)

Since we aim to draw samples from q̂(v,θ), evaluating this free form inducing point gradient using
samples seems plausible but challenging. Instead we use the following strategy.

1. Fit a Gaussian approximation to the posterior. We follow [20] in fitting a Gaussian approxi-
mation to the posterior. The positions of the inducing points are initialized using k-means clustering
of the data. The values of the latent function are represented by a mean vector (initialized randomly)
and a lower-triangular matrix L forms the approximate posterior covariance as LL>. For large prob-
lems (such as the MNIST experiment), stochastic optimization using AdaDelta is used. Otherwise,
LBFGS is used. After a few hundred iterations with the inducing points positions fixed, they are
optimized in free-form alongside the variational parameters and covariance function parameters.
2. Initialize the model using the approximation. Having found a satisfactory approximation, the
HMC strategy takes the optimized inducing point positions from the Gaussian approximation. The
initial value of v is drawn from the Gaussian approximation, and the covariance parameters are ini-
tialized at the (approximate) MAP value.
3. Tuning HMC. The HMC algorithm has two free parameters to tune, the number of leapfrog
steps and the step-length. We follow a strategy inspired by Wang et al. [25], where the number of
leapfrog steps is drawn randomly from 1 to Lmax, and Bayesian optimization is used to maximize
the expected square jump distance (ESJD), penalized by

√
Lmax. Rather than allow an adaptive (but

convergent) scheme as [25], we run the optimization for 30 iterations of 30 samples each, and use
the best parameters for a long run of HMC.
4. Run tuned HMC to obtain predictions. Having tuned the HMC, it is run for several thousand
iterations to obtain a good approximation to q̂(v,θ). The samples are used to estimate the integral in
equation (2). The following section investigates the effectiveness of the proposed sampling scheme.

4 Experiments

4.1 Efficient sampling using Hamiltonian Monte Carlo

This section illustrates the effectiveness of Hamiltonian Monte Carlo in sampling from q̂(v,θ). As
already pointed out, the form assumed by the optimal variational distribution q̂(v,θ) in equation (6)
resembles the joint distribution in a GP model with a non-Gaussian likelihood.

4

For a fixed θ, sampling v is relatively straightforward, and this can be done efficiently using HMC
[12, 26, 27] or Elliptical Slice Sampling [28]. A well tuned HMC has been reported to be extremely
efficient in sampling the latent variables, and this motivates our effort into trying to extend this
efficiency to the sampling of hyper-parameters as well. This is also particularly appealing due to the
convenience offered by the proposed representation of the model.

The problem of drawing samples from the posterior distribution over v,θ has been investigated in
detail in [11, 12]. In these works, it has been advocated to alternate between the sampling of v and
θ in a Gibbs sampling fashion and condition the sampling of θ on a suitably chosen transformation
of the latent variables. For each likelihood model, we compare efficiency and convergence speed of
the proposed HMC sampler with a Gibbs sampler where v is sampled using HMC and θ is sampled
using the Metropolis-Hastings algorithm. To make the comparison fair, we imposed the mass matrix
in HMC and the covariance in MH to be isotropic, and any parameters of the proposal were tuned
using Bayesian optimization. Unlike in the proposed HMC sampler, for the Gibbs sampler we did
not penalize the objective function of the Bayesian optimization for large numbers of leapfrog steps,
as in this case HMC proposals on the latent variables are computationally cheaper than those on
the hyper-parameters. We report efficiency in sampling from q̂(v,θ) using Effective Sample Size
(ESS) and Time Normalized (TN)-ESS. In the supplement we include convergence plots based on
the Potential Scale Reduction Factor (PSRF) computed based on ten parallel chains; in these each
chain is initialized from the VB solution and individually tuned using Bayesian optimization.

4.2 Binary Classification

We first use the image dataset [29] to investigate the benefits of the approach over a Gaussian ap-
proximation, and to investigate the effect of changing the number of inducing points, as well as
optimizing the inducing points under the Gaussian approximation. The data are 18 dimensional: we
investigated the effect of our approximation using both ARD (one lengthscale per dimension) and an
isotropic RBF kernel. The data were split randomly into 1000/1019 train/test sets; the log predictive
density over ten random splits is shown in Figure 1.

Following the strategy outlined above, we fitted a Gaussian approximation to the posterior, with Z
initialized with k-means. Figure 1 investigates the difference in performance when Z is optimized
using the Gaussian approximation, compared to just using k-means for Z. Whilst our strategy is not
guaranteed to find the global optimum, it is clear that it improves the performance.

The second part of Figure 1 shows the performance improvement of our sampling approach over the
Gaussian approximation. We drew 10,000 samples, discarding the first 1000: we see a consistent
improvement in performance once M is large enough. For small M , The Gaussian approximation
appears to work very well. The supplement contains a similar Figure for the case where a single
lengthscale is shared: there, the improvement of the MCMC method over the Gaussian approxi-
mation is smaller but consistent. We speculate that the larger gains for ARD are due to posterior
uncertainty in the lengthscales, which is poorly represented by a point in the Gaussian/MAP approx-
imation.

The ESS and TN-ESS are comparable between HMC and the Gibbs sampler. In particular, for 100
inducing points and the RBF covariance, ESS and TN-ESS for HMC are 11 and 1.0 · 10−3 and for
the Gibbs sampler are 53 and 5.1 · 10−3. For the ARD covariance, ESS and TN-ESS for HMC are
14 and 5.1 · 10−3 and for the Gibbs sampler are 1.6 and 1.5 · 10−4. Convergence, however, seems
to be faster for HMC, especially for the ARD covariance (see the supplement).

4.3 Log Gaussian Cox Processes

We apply our methods to Log Gaussian Cox processes [30]: doubly stochastic models where the
rate of an inhomogeneous Poisson process is given by a Gaussian process. The main difficulty for
inference lies in that the likelihood of the GP requires an integral over the domain, which is typically
intractable. For low dimensional problems, this integral can be approximated on a grid; assuming
that the GP is constant over the width of the grid leads to a factorizing Poisson likelihood for each
of the grid points. Whilst some recent approaches allow for a grid-free approach [19], these usually
require concessions in the model, such as an alternative link function, and do not approach full
Bayesian inference over the covariance function parameters.

5

Zoptimized Zk-means

5 10 20 50 100 5 10 20 50 100

−0.4

−0.2

number of inducing points

lo
g
p
(y
?
) [

M
C

M
C
]

Zoptimized Zk-means

5 10 20 50 100 5 10 20 50 100

0

2

4
·10−2

number of inducing points

lo
g
p
(y
?
) [

M
C

M
C
]
−

lo
g
p
(y
?
) [

G
au

ss
.]

Figure 1: Performance of the method on the image dataset, with one lengthscale per dimension.
Left, box-plots show performance for varying numbers of inducing points and Z strategies. Optimiz-
ing Z using the Gaussian approximation offers significant improvement over the k-means strategy.
Right: improvement of the performance of the Gaussian approximation method, with the same in-
ducing points. The method offers consistent performance gains when the number of inducing points
is larger. The supplement contains a similar figure with only a single lengthscale.

1860 1880 1900 1920 1940 1960
0

1

2

time (years)

ra
te

VB+Gaussian
VB+MCMC

MCMC

V
B

+M
C

M
C

0 20 40 60

lengthscale

M
C

M
C

0 2 4

variance

Figure 2: The posterior of the rates for the coal mining disaster data. Left: posterior rates using our
variational MCMC method and a Gaussian approximation. Data are shown as vertical bars. Right:
posterior samples for the covariance function parameters using MCMC. The Gaussian approxima-
tion estimated the parameters as (12.06, 0.55).

Coal mining disasters On the one-dimensional coal-mining disaster data. We held out 50% of
the data at random, and using a grid of 100 points with 30 evenly spaced inducing points Z, fitted
both a Gaussian approximation to the posterior process with an (approximate) MAP estimate for the
covariance function parameters (variance and lengthscale of an RBF kernel). With Gamma priors
on the covariance parameters we ran our sampling scheme using HMC, drawing 3000 samples.
The resulting posterior approximations are shown in Figure 2, alongside the true posterior using
a sampling scheme similar to ours (but without the inducing point approximation). The free-form
variational approximation matches the true posterior closely, whilst the Gaussian approximation
misses important detail. The approximate and true posteriors over covariance function parameters
are shown in the right hand part of Figure 2, there is minimal discrepancy in the distributions.

Over 10 random splits of the data, the average held-out log-likelihood was −1.229 for the Gaussian
approximation and −1.225 for the free-form MCMC variant; the average difference was 0.003, and
the MCMC variant was always better than the Gaussian approximation. We attribute this improved
performance to marginalization of the covariance function parameters.

Efficiency of HMC is greater than for the Gibbs sampler; ESS and TN-ESS for HMC are 6.7 and
3.1 · 10−2 and for the Gibbs sampler are 9.7 and 1.9 · 10−2. Also, chains converge within few
thousand iterations for both methods, although convergence for HMC is faster (see the supplement).

6

Figure 3: Pine sapling data. From left to right: reported locations of pine saplings; posterior mean
intensity on a 32x32 grid using full MCMC; posterior mean intensity on a 32x32 grid (with sparsity
using 225 inducing points), posterior mean intensity on a 64x64 grid (using 225 inducing points).

Pine saplings The advantages of the proposed approximation are prominent as the number of grid
points become higher, an effect emphasized with increasing dimension of the domain. We fitted a
similar model to the above to the pine sapling data [30].

We compared the sampling solution obtained using 225 inducing points on a 32 x 32 grid to the
gold standard full MCMC run with the same prior and grid size. Figure 3 shows that the agreement
between the variational sampling and full sampling is very close. However the variational method
was considerably faster. Using a single core on a desktop computer required 3.4 seconds to obtain
1 effective sample for a well tuned variational method whereas it took 554 seconds for well tuned
full MCMC. This effect becomes even larger as we increase the resolution of the grid to 64 x 64,
which gives a better approximation to the underlying smooth function as can be seen in figure 3. It
took 4.7 seconds to obtain one effective sample for the variational method, but now gold standard
MCMC comparison was computationally extremely challenging to run for even a single HMC step.
This is because it requires linear algebra operations using O(N3) flops with N = 4096.

4.4 Multi-class Classification

To do multi-class classification with Gaussian processes, one latent function is defined for each of
the classes. The functions are defined a-priori independent, but covary a posteriori because of the
likelihood. Chai [18] studies a sparse variational approximation to the softmax multi-class likelihood
restricted to a Gaussian approximation. Here, following [31, 32, 33], we use a robust-max likelihood.
Given a vector fn containing K latent functions evaluated at the point xn, the probability that the
label takes the integer value yn is 1 − ε if yn = argmax fn and ε/K − 1 otherwise. As Girolami
and Rogers [31] discuss, the ‘soft’ probit-like behaviour is recovered by adding a diagonal ‘nugget’
to the covariance function. In this work, ε was fixed to 0.001, though it would also be possible to
treat this as a parameter for inference. The expected log-likelihood is Ep(fn |v,θ)[log p(yn | fn)] =
p log(ε)+(1−p) log(ε/(K−1)), where p is the probability that the labelled function is largest, which
is computable using one-dimensional quadrature. An efficient Cython implementation is contained
in the supplement.

Toy example To investigate the proposed posterior approximation for the multivariate classifica-
tion case, we turn to the toy data shown in Figure 4. We drew 750 data points from three Gaussian
distributions. The synthetic data was chosen to include non-linear decision boundaries and ambigu-
ous decision areas. Figure 4 shows that there are differences between the variational and sampling
solutions, with the sampling solution being more conservative in general (the contours of 95% con-
fidence are smaller). As one would expect at the decision boundary there are strong correlations
between the functions which could not be captured by the Gaussian approximation we are using.
Note the movement of inducing points away from k-means and towards the decision boundaries.

Efficiency of HMC and the Gibbs sampler is comparable. In the RBF case, ESS and TN-ESS for
HMC are 1.9 and 3.8 · 10−4 and for the Gibbs sampler are 2.5 and 3.6 · 10−4. In the ARD case, ESS
and TN-ESS for HMC are 1.2 and 2.8 · 10−3 and for the Gibbs sampler are 5.1 and 6.8 · 10−4. For
both cases, the Gibbs sampler struggles to reach convergence even though the average acceptance
rates are similar to those recommended for the two samplers individually.

MNIST The MNIST dataset is a well studied benchmark with a defined training/test split. We used
500 inducing points, initialized from the training data using k-means. A Gaussian approximation

7

Figure 4: A toy multiclass problem. Left: the Gaussian approximation, colored points show the
simulated data, lines show posterior probability contours at 0.3, 0.95, 0.99. Inducing points positions
shows as black points. Middle: the free form solution with 10,000 posterior samples. The free-form
solution is more conservative (the contours are smaller). Right: posterior samples for v at the same
position but across different latent functions. The posterior exhibits strong correlations and edges.

Figure 5: Left: three k-means centers used to initialize the inducing point positions. Center: the
positions of the same inducing points after optimization. Right: difference.

was optimized using minibatch-based optimization over the means and variances of q(u), as well
as the inducing points and covariance function parameters. The accuracy on the held-out data was
98.04%, significantly improving on previous approaches to classify these digits using GP models.

For binary classification, Hensman et al. [20] reported that their Gaussian approximation resulted in
movement of the inducing point positions toward the decision boundary. The same effect appears
in the multivariate case, as shown in Figure 5, which shows three of the 500 inducing points used
in the MNIST problem. The three examples were initialized close to the many six digits, and after
optimization have moved close to other digits (five and four). The last example still appears to be
a six, but has moved to a more ‘unusual’ six shape, supporting the function at another extremity.
Similar effects are observed for all inducing-point digits. Having optimized the inducing point
positions with the approximate q(v), and estimate for θ, we used these optimal inducing points to
draw samples from v and θ. This did not result in an increase in accuracy, but did improve the
log-density on the test set from -0.068 to -0.064. Evaluating the gradients for the sampler took
approximately 0.4 seconds on a desktop machine, and we were easily able to draw 1000 samples.
This dataset size has generally be viewed as challenging in the GP community and consequently
there are not many published results to compare with. One recent work [34] reports a 94.05%
accuracy using variational inference and a GP latent variable model.

5 Discussion

We have presented an inference scheme for general GP models. The scheme significantly reduces
the computational cost whilst approaching exact Bayesian inference, making minimal assumptions
about the form of the posterior. The improvements in accuracy in comparison with the Gaussian
approximation of previous works has been demonstrated, as has the quality of the approximation
to the hyper-parameter distribution. Our MCMC scheme was shown to be effective for several
likelihoods, and we note that the automatic tuning of the sampling parameters worked well over
hundreds of experiments. This paper shows that MCMC methods are feasible for inference in large
GP problems, addressing the unfair sterotype of ‘slow’ MCMC.

Acknowledgments JH was funded by an MRC fellowship, AM and ZG by EPSRC grant
EP/I036575/1 and a Google Focussed Research award.

8

References
[1] T. V. Nguyen and E. V. Bonilla. Automated variational inference for Gaussian process models. In NIPS,

pages 1404–1412, 2014.
[2] L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural comp., 14(3):641–668, 2002.
[3] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In NIPS, pages 1257–

1264, 2005.
[4] M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS, pages

567–574, 2009.
[5] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. Figueiras-Vidal. Sparse spectrum

Gaussian process regression. JMLR, 11:1865–1881, 2010.
[6] A. Solin and S. Särkkä. Hilbert space methods for reduced-rank Gaussian process regression. arXiv

preprint 1401.5508, 2014.
[7] A. G. Wilson, E. Gilboa, A. Nehorai, and J. P. Cunningham. Fast kernel learning for multidimensional

pattern extrapolation. In NIPS, pages 3626–3634. 2014.
[8] S. Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge University Press, 2013.
[9] M. Filippone and R. Engler. Enabling scalable stochastic gradient-based inference for Gaussian processes

by employing the Unbiased LInear System SolvEr (ULISSE). ICML 2015, 2015.
[10] A. G. D. G. Matthews, J. Hensman, R. E. Turner, and Z. Ghahramani. On sparse variational methods and

the KL divergence between stochastic processes. arXiv preprint 1504.07027, 2015.
[11] I. Murray and R. P. Adams. Slice sampling covariance hyperparameters of latent Gaussian models. In

NIPS, pages 1732–1740, 2010.
[12] M. Filippone, M. Zhong, and M. Girolami. A comparative evaluation of stochastic-based inference meth-

ods for Gaussian process models. Mach. Learn., 93(1):93–114, 2013.
[13] M. N. Gibbs and D. J. C. MacKay. Variational Gaussian process classifiers. IEEE Trans. Neural Netw.,

11(6):1458–1464, 2000.
[14] M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural comp., 21(3):

786–792, 2009.
[15] M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classifica-

tion. JMLR, 6:1679–1704, 2005.
[16] H. Nickisch and C. E. Rasmussen. Approximations for binary Gaussian process classification. JMLR, 9:

2035–2078, 2008.
[17] E. Khan, S. Mohamed, and K. P. Murphy. Fast Bayesian inference for non-conjugate Gaussian process

regression. In NIPS, pages 3140–3148, 2012.
[18] K. M. A. Chai. Variational multinomial logit Gaussian process. JMLR, 13(1):1745–1808, June 2012.
[19] C. Lloyd, T. Gunter, M. A. Osborne, and S. J. Roberts. Variational inference for Gaussian process modu-

lated poisson processes. ICML 2015, 2015.
[20] J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classification. In

AISTATS, pages 351–360, 2014.
[21] C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE Trans. Pattern

Anal. Mach. Intell., 20(12):1342–1351, 1998.
[22] Michalis K Titsias, Neil Lawrence, and Magnus Rattray. Markov chain monte carlo algorithms for gaus-

sian processes. In D. Barber, A. T. Chiappa, and S. Cemgil, editors, Bayesian time series models. 2011.
[23] S. P. Smith. Differentiation of the cholesky algorithm. J. Comp. Graph. Stat., 4(2):134–147, 1995.
[24] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process

regression. JMLR, 6:1939–1959, 2005.
[25] Z. Wang, S. Mohamed, and N. De Freitas. Adaptive Hamiltonian and Riemann manifold Monte Carlo. In

ICML, volume 28, pages 1462–1470, 2013.
[26] J. Vanhatalo and A. Vehtari. Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology. In

Gaussian processes in practice, volume 1, pages 73–89, 2007.
[27] O. F. Christensen, G. O. Roberts, and J. S. Rosenthal. Scaling limits for the transient phase of local

MetropolisHastings algorithms. JRSS:B, 67(2):253–268, 2005.
[28] I. Murray, R. P. Adams, and D. J. C. MacKay. Elliptical slice sampling. In AISTATS, volume 9, 2010.
[29] G. Rätsch, T. Onoda, and K-R Müller. Soft margins for adaboost. Mach. Learn., 42(3):287–320, 2001.
[30] J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log Gaussian Cox processes. Scand. stat., 25(3):

451–482, 1998.
[31] M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process

priors. Neural Comp., 18:2006, 2005.
[32] H. Kim and Z. Ghahramani. Bayesian Gaussian Process Classification with the EM-EP Algorithm. IEEE

TPAMI, 28(12):1948–1959, 2006.
[33] D. Hernández-Lobato, J. M. Hernández-Lobato, and P. Dupont. Robust multi-class Gaussian process

classification. In NIPS, pages 280–288, 2011.
[34] Y. Gal, M. Van der Wilk, and Rasmussen C. E. Distributed variational inference in sparse Gaussian

process regression and latent variable models. In NIPS. 2014.

9

Supplementary material for:

MCMC for Variationally Sparse GPs

5.1 Coal data

Figure 6 replicates Figure 1, but with a single lengthscale shared across each input.

Zopt
10

Zopt
20

Zopt
50

Zopt
100

Zfix
10

Zfix
20

Zfix
50

Zfix
100

−0.5

−0.4

−0.3

−0.2

−0.1

Z fixed, number inducing points]

lo
g
p
(y
?
)

Zopt
10

Zopt
20

Zopt
50

Zopt
100

Zfix
10

Zfix
20

Zfix
50

Zfix
100

−1

0

1

2

·10−3

Z fixed, number inducing points]

M
C

M
C

im
pr

ov
em

en
to

ve
rG

au
ss

ia
n

V
B

Figure 6: Performance of the method on the image dataset, with a single lengthscale.

5.2 Convergence plots

Convergence of the samplers on the Image dataset is reported in fig. 7 and shows the evolution of
the PSRF for the twenty slowest parameters for HMC and the Gibbs sampler in the case of RBF and
ARD covariances. The figure shows that HMC consistently converges faster than the Gibbs sampler
for both covariances, even when the ESS of the slowest variable is comparable.

Fig. 7 shows the convergence analysis on the coal dataset. In this case, HMC converges faster than
the Gibbs sampler and efficiency is comparable.

Convergence of the samplers on the toy multi-class dataset is reported in fig. 9. HMC converges
much faster than the Gibbs sampler even though efficiency measured through ESS is comparable.

10

2,000 4,000

2

4

6

8

10

iteration

PS
R

F

2,000 4,000

2

4

6

8

10

iteration

HMC
Gibbs

Figure 7: Image dataset - Evolution of the PSRF of the twenty least efficient parameter traces for
HMC (blue) and the Gibbs sampler (red). Left panel: RBF case - minimum ESS and TN-ESS for
HMC are 11 and 1.0 · 10−3 and for the Gibbs sampler are 53 and 5.1 · 10−3. Right panel: ARD case
- minimum ESS and TN-ESS for HMC are 14 and 5.1 · 10−3 and for the Gibbs sampler are 1.6 and
1.5 · 10−4.

2,000 4,000

2

4

6

8

10

iteration

PS
R

F

Figure 8: Coal dataset - Evolution of the PSRF of the twenty least efficient parameter traces for
HMC (blue) and the Gibbs sampler (red). Minimum ESS and TN-ESS for HMC are 6.7 and 3.1 ·
10−2 and for the Gibbs sampler are 9.7 and 1.9 · 10−2.

2,000 4,000

2

4

6

8

10

iteration

PS
R

F

2,000 4,000

2

4

6

8

10

iteration

HMC
Gibbs

Figure 9: Multiclass dataset - Evolution of the PSRF of the twenty least efficient parameter traces
for HMC (blue) and the Gibbs sampler (red). Left panel: RBF case - minimum ESS and TN-ESS
for HMC are 1.9 and 3.8 · 10−4 and for the Gibbs sampler are 2.5 and 3.6 · 10−4. Right panel: ARD
case - minimum ESS and TN-ESS for HMC are 1.2 and 2.8 · 10−3 and for the Gibbs sampler are
5.1 and 6.8 · 10−4.

11

5.3 Pine saplings

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

Figure 10: A larger version of Figure 3. Top right: gold standard MCMC 32x32 grid. Bottom left:
Variational MCMC 32x32 grid. Bottom right: Variational MCMC 64x64 grid, with 225 inducing
points in the non-exact case.

12

Random Feature Expansions for Deep Gaussian Processes

Kurt Cutajar 1 Edwin V. Bonilla 2 Pietro Michiardi 1 Maurizio Filippone 1

Abstract
The composition of multiple Gaussian Processes
as a Deep Gaussian Process (DGP) enables a deep
probabilistic nonparametric approach to flexibly
tackle complex machine learning problems with
sound quantification of uncertainty. Existing in-
ference approaches for DGP models have lim-
ited scalability and are notoriously cumbersome
to construct. In this work we introduce a novel
formulation of DGPs based on random feature
expansions that we train using stochastic varia-
tional inference. This yields a practical learn-
ing framework which significantly advances the
state-of-the-art in inference for DGPs, and en-
ables accurate quantification of uncertainty. We
extensively showcase the scalability and perfor-
mance of our proposal on several datasets with
up to 8 million observations, and various DGP ar-
chitectures with up to 30 hidden layers.

1. Introduction
Given their impressive performance on machine learn-
ing and pattern recognition tasks, Deep Neural Networks
(DNNs) have recently attracted a considerable deal of atten-
tion in several applied domains such as computer vision
and natural language processing; see, e.g., LeCun et al.
(2015) and references therein. Deep Gaussian Processes
(DGPs; Damianou & Lawrence, 2013) alleviate the out-
standing issue characterizing DNNs of having to specify
the number of units in hidden layers by implicitly working
with infinite representations at each layer. From a gener-
ative perspective, DGPs transform the inputs using a cas-
cade of Gaussian Processes (GPs; Rasmussen & Williams,
2006) such that the output of each layer of GPs forms the
input to the GPs at the next layer, effectively implementing
a deep probabilistic nonparametric model for compositions
of functions (Neal, 1996; Duvenaud et al., 2014).

1Department of Data Science, EURECOM, France
2School of Computer Science and Engineering, Univer-
sity of New South Wales, Australia. Correspondence to:
Kurt Cutajar <kurt.cutajar@eurecom.fr>, Pietro Michiardi
<pietro.michiardi@eurecom.fr>, Edwin V. Bonilla Cuta-
jar <e.bonilla@unsw.edu.au>, Maurizio Filippone <maur-
izio.filippone@eurecom.fr>.

Because of their probabilistic formulation, it is natural to
approach the learning of DGPs through Bayesian inference
techniques; however, the application of such techniques
to learn DGPs leads to various forms of intractability. A
number of contributions have been proposed to recover
tractability, extending or building upon the literature on ap-
proximate methods for GPs. Nevertheless, only few works
leverage one of the key features that arguably make DNNs
so successful, that is being scalable through the use of mini-
batch-based learning (Hensman & Lawrence, 2014; Dai
et al., 2016; Bui et al., 2016). Even among these works,
there does not seem to be an approach that is truly appli-
cable to large-scale problems, and practical beyond only a
few hidden layers.

In this paper, we develop a practical learning framework for
DGP models that significantly improves the state-of-the-art
on those aspects. In particular, our proposal introduces two
sources of approximation to recover tractability, while (i)
scaling to large-scale problems, (ii) being able to work with
moderately deep architectures, and (iii) being able to accu-
rately quantify uncertainty. The first is a model approxima-
tion, whereby the GPs at all layers are approximated using
random feature expansions (Rahimi & Recht, 2008); the
second approximation relies upon stochastic variational in-
ference to retain a probabilistic and scalable treatment of
the approximate DGP model.

We show that random feature expansions for DGP models
yield Bayesian DNNs with low-rank weight matrices, and
the expansion of different covariance functions results in
different DNN activation functions, namely trigonometric
for the Radial Basis Function (RBF) covariance, and Rec-
tified Linear Unit (ReLU) functions for the ARC-COSINE
covariance. In order to retain a probabilistic treatment of
the model we adapt the work on variational inference for
DNNs and variational autoencoders (Graves, 2011; Kingma
& Welling, 2014) using mini-batch-based stochastic gradi-
ent optimization, which can exploit GPU and distributed
computing. In this respect, we can view the probabilistic
treatment of DGPs approximated through random feature
expansions as a means to specify sensible and interpretable
priors for probabilistic DNNs. Furthermore, unlike popu-
lar inducing points-based approximations for DGPs, the re-
sulting learning framework does not involve any matrix de-
compositions in the size of the number of inducing points,

Random Feature Expansions for Deep Gaussian Processes

but only matrix products. We implement our model in Ten-
sorFlow (Abadi et al., 2015), which allows us to rely on
automatic differentiation to apply stochastic variational in-
ference.

Although having to select the appropriate number of ran-
dom features goes against the nonparametric formulation
favored in GP models, the level of approximation can be
tuned based on constraints on running time or hardware.
Most importantly, the random feature approximation en-
ables us to develop a learning framework for DGPs which
significantly advances the state-of-the-art. We extensively
demonstrate the effectiveness of our proposal on a variety
of regression and classification problems by comparing it
with DNNs and other state-of-the-art approaches to infer
DGPs. The results indicate that for a given DGP architec-
ture, our proposal is consistently faster at achieving lower
errors compared to the competitors. Another key obser-
vation is that the proposed DGP outperforms DNNs trained
with dropout on quantification of uncertainty metrics.

We focus part of the experiments on large-scale prob-
lems, such as MNIST8M digit classification and the AIR-
LINE dataset, which contain over 8 and 5 million observa-
tions, respectively. Only very recently there have been at-
tempts to demonstrate performance of GP models on such
large data sets (Wilson et al., 2016; Krauth et al., 2017),
and our proposal is on par with these latest GP methods.
Furthermore, we obtain impressive results when employ-
ing our learning framework to DGPs with moderate depth
(few tens of layers) on the AIRLINE dataset. We are not
aware of any other DGP models having such depth that can
achieve comparable performance when applied to datasets
with millions of observations. Crucially, we obtain all these
results by running our algorithm on a single machine with-
out GPUs, but our proposal is designed to be able to exploit
GPU and distributed computing to significantly accelerate
our deep probabilistic learning framework (see supplement
for experiments in distributed mode).

In summary, the most significant contributions of this work
are as follows: (i) we propose a novel approximation of
DGPs based on random feature expansions that we study
in connection with DNNs; (ii) we demonstrate the ability
of our proposal to systematically outperform state-of-the-
art methods to carry out inference in DGP models, espe-
cially for large-scale problems and moderately deep archi-
tectures; (iii) we validate the superior quantification of un-
certainty offered by DGPs compared to DNNs.

1.1. Related work

Following the original proposal of DGP models in Dami-
anou & Lawrence (2013), there have been several attempts
to extend GP inference techniques to DGPs. Notable ex-
amples include the extension of inducing point approxi-

mations (Hensman & Lawrence, 2014; Dai et al., 2016)
and Expectation Propagation (Bui et al., 2016). Sequen-
tial inference for training DGPs has also been investigated
in Wang et al. (2016). A recent example of a DGP “na-
tively” formulated as a variational model appears in Tran
et al. (2016). Our work is the first to employ random fea-
ture expansions to approximate DGPs as DNNs. The expan-
sion of the squared exponential covariance for DGPs leads
to trigonometric DNNs, whose properties were studied in
Sopena et al. (1999). Meanwhile, the expansion of the arc-
cosine covariance is inspired by Cho & Saul (2009), and it
allows us to show that DGPs with such covariance can be
approximated with DNNs having ReLU activations.

The connection between DGPs and DNNs has been pointed
out in several papers, such as Neal (1996) and Duvenaud
et al. (2014), where pathologies with deep nets are investi-
gated. The approximate DGP model described in our work
becomes a DNN with low-rank weight matrices, which have
been used in, e.g., Novikov et al. (2015); Sainath et al.
(2013); Denil et al. (2013) as a regularization mechanism.
Dropout is another technique to speed-up training and im-
prove generalization of DNNs that has recently been linked
to variational inference (Gal & Ghahramani, 2016).

Random Fourier features for large scale kernel machines
were proposed in Rahimi & Recht (2008), and their ap-
plication to GPs appears in Lázaro-Gredilla et al. (2010).
In the case of squared exponential covariances, variational
learning of the posterior over the frequencies was proposed
in Gal & Turner (2015) to avoid potential overfitting caused
by optimizing these variables. These approaches are spe-
cial cases of our DGP model when using no hidden layers.

In our work, we learn the proposed approximate DGP model
using stochastic variational inference. Variational learning
for DNNs was first proposed in Graves (2011), and later
extended to include the reparameterization trick to clamp
randomness in the computation of the gradient with respect
to the posterior over the weights (Kingma & Welling, 2014;
Rezende et al., 2014), and to include a Gaussian mixture
prior over the weights (Blundell et al., 2015).

2. Preliminaries
Consider a supervised learning scenario where a set of in-
put vectors X = [x1, . . . ,xn]> is associated with a set of
(possibly multivariate) labels Y = [y1, . . . ,yn]>, where
xi ∈ RDin and yi ∈ RDout . We assume that there is an un-
derlying function fo(xi) characterizing a mapping from the
inputs to a latent representation, and that the labels are a re-
alization of some probabilistic process p(yio|fo(xi)) which
is based on this latent representation.

In this work, we consider modeling the latent func-
tions using Deep Gaussian Processes (DGPs; Damianou &

Random Feature Expansions for Deep Gaussian Processes

Lawrence, 2013). Let variables in layer l be denoted by
the (l) superscript. In DGP models, the mapping between
inputs and labels is expressed as a composition of functions

f(x) =
(
f (Nh−1) ◦ . . . ◦ f (0)

)
(x),

where each of the Nh layers, is composed of a (possi-
bly transformed) multivariate Gaussian process (GP). For-
mally, a GP is a collection of random variables such that
any subset of these are jointly Gaussian distributed (Ras-
mussen & Williams, 2006). In GPs, the covariance between
variables at different inputs is modeled using the so-called
covariance function.

Given the relationship between GPs and single-layered neu-
ral networks with an infinite number of hidden units (Neal,
1996), the DGP model has an obvious connection with
DNNs. In contrast to DNNs, where each of the hidden lay-
ers implements a parametric function of its inputs, in DGPs
these functions are assigned a GP prior, and are therefore
nonparametric. Furthermore, because of their probabilistic
formulation, it is natural to approach the learning of DGPs
through Bayesian inference techniques that lead to princi-
pled approaches for both determining the optimal settings
of architecture-dependent parameters, such as the number
of hidden layers, and quantification of uncertainty.

While DGPs are attractive from a theoretical standpoint, in-
ference is extremely challenging. Denote by F (l) the set
of latent variables with entries f (l)

io = f
(l)
o (xi), and let

p(Y |F (Nh)) be the conditional likelihood. Learning and
making predictions with DGPs requires solving integrals
that are generally intractable. For example, computing the
marginal likelihood to optimize covariance parameters θ(l)

at all layers entails solving

p(Y |X,θ) =

∫
p
(
Y |F (Nh)

)
p
(
F (Nh)|F (Nh−1),θ(Nh−1)

)

× . . .× p
(
F (1)|X,θ(0)

)
dF (Nh) . . . dF (1).

In the following section we use random feature approxi-
mations to the covariance function in order to develop a
scalable algorithm for inference in DGPs.

2.1. Random Feature Expansions for GPs

We start by describing how random feature expansions
can be used to approximate the covariance of a single GP
model. Such approximations have been considered previ-
ously, for example by Rahimi & Recht (2008) in the con-
text of non-probabilistic kernel machines. Here we focus
on random feature expansions for the radial basis function
(RBF) covariance and the ARC-COSINE covariance, which
we will use in our experiments.

For the sake of clarity, we will present the covariances with-
out any explicit scaling of the features or the covariance it-

self. After explaining the random feature expansion associ-
ated with each covariance, we will generalize these results
in the context of DGPs to include scaling the covariance by
a factor σ2, and scaling the features for Automatic Rele-
vance Determination (ARD) (Mackay, 1994).

2.1.1. RADIAL BASIS FUNCTION COVARIANCE

A popular example of a covariance function, which we con-
sider here, is the Radial Basis Function (RBF) covariance

krbf(x,x
′) = exp

[
−1

2
‖x− x′‖>

]
. (1)

Appealing to Bochner’s theorem, any continuous shift-
invariant normalized covariance function k(xi,xj) =
k(xi−xj) is positive definite if and only if it can be rewrit-
ten as the Fourier transform of a non-negative measure
p(ω) (Rahimi & Recht, 2008). Denoting the spectral fre-
quencies by ω, while assigning ι =

√
−1 and δ = xi−xj ,

in the case of the RBF covariance in equation 1, this yields:

krbf(δ) =

∫
p(ω) exp

(
ιδ>ω

)
dω, (2)

with a corresponding non-negative measure p(ω) =
N (0, I). Because the covariance function and the non-
negative measures are real, we can drop the unnecessary
complex part of the argument of the expectation, keeping
cos(δ>ω) = cos((xi − xj)

>ω) that can be rewritten as
cos(x>i ω) cos(x>j ω) + sin(x>i ω) sin(x>j ω).

The importance of the expansion above is that it allows us
to interpret the covariance function as an expectation that
can be estimated using Monte Carlo. Defining z(x|ω) =
[cos(x>ω), sin(x>ω)]>, the covariance function can be
therefore unbisedly approximated as

krbf(xi,xj) ≈
1

NRF

NRF∑

r=1

z(xi|ω̃r)>z(xj |ω̃r), (3)

with ω̃r ∼ p(ω). This has an important practical impli-
cation, as it provides the means to access an approximate
explicit representation of the mapping induced by the co-
variance function that, in the RBF case, we know is infinite
dimensional (Shawe-Taylor & Cristianini, 2004). Various
results have been established on the accuracy of the random
Fourier feature approximation; see, e.g., Rahimi & Recht
(2008).

2.1.2. ARC-COSINE COVARIANCE

We also consider the ARC-COSINE covariance of order p,
which is defined as:

k(p)
arc (x,x′) =

1

π
(‖x‖ ‖x′‖)p Jp

(
cos−1

(
x>x′

‖x‖‖x′‖

))
,

(4)

Random Feature Expansions for Deep Gaussian Processes

θ(0) θ(1)

Φ(0)X F (1) Φ(1) F (2) Y

Ω(0) W (0) Ω(1) W (1)

Figure 1. The proposed DGP approximation. At each hidden layer
GPs are replaced by their two-layer weight-space approximation.
Random-features Φ(l) are obtained using a weight matrix Ω(l).
This is followed by a linear transformation parameterized by
weights W (l). The prior over Ω(l) is determined by the covari-
ance parameters θ(l) of the original GPs.

where we have defined

Jp(α) = (−1)p(sinα)2p+1

(
1

sinα

∂

∂α

)p(
π − α
sinα

)
.

Let H(·) be the Heaviside function. Following Cho & Saul
(2009), an integral representation of this covariance is:

k(p)
arc (x,x′) = 2

∫
H(ω>x)

(
ω>x

)p
H(ω>x′)

(
ω>x′

)p

×N (ω|0, I)dω. (5)

This integral formulation immediately suggests a random
feature approximation for the ARC-COSINE covariance in
equation (4), noting that it can be seen as an expectation
of the product of the same function applied to the inputs to
the covariance. As before, this provides an approximate ex-
plicit representation of the mapping induced by the covari-
ance function. Interestingly, for the ARC-COSINE covari-
ance of order p = 1, this yields an approximation based on
popular Rectified Linear Unit (ReLU) functions. We note
that for the the ARC-COSINE covariance with degree p = 0,
the resulting Heaviside activations are unsuitable for our
inference scheme, given that they yield systematically zero
gradients.

3. Random Feature Expansions for DGPs
In this section, we present our approximate formulation of
DGPs which, as we illustrate in the experiments, leads to
a practical learning algorithm for these deep probabilistic
nonparametric models. We propose to employ the random
feature expansion at each layer, and by doing so we ob-
tain an approximation to the original DGP model as a DNN
(Figure 1).

Assume that the GPs have zero mean, and define F (0) :=
X . Also, assume that the GP covariances at each layer

are parameterized through a set of parameters θ(l). The
parameter set θ(l) comprises the layer-wise GP marginal
variances (σ2)(l) and lengthscale parameters Λ(l) =
diag((`21)(l), . . . , (`2

D
(l)
F

)(l)).

Considering a DGP with RBF covariances, taking a “weight-
space view” of the GPs at each layer, and extending the
results in the previous section, we have that

Φ
(l)
rbf =

√
(σ2)(l)

N
(l)
RF

[
cos
(
F (l)Ω(l)

)
, sin

(
F (l)Ω(l)

)]
,

(6)
and F (l+1) = Φ

(l)
rbfW

(l). At each layer, the priors over the

weights are p
(

Ω
(l)
·j

)
= N

(
0,
(
Λ(l)

)−1
)

and p
(
W

(l)
·i

)
=

N (0, I).

Each matrix Ω(l) has dimensions DF (l) × N
(l)
RF. On the

other hand, the weight matrices W (l) have dimensions
2N

(l)
RF×DF (l+1) (weighting of sine and cosine random fea-

tures), with the constraint that DF (Nh) = Dout.

Similarly, considering a DGP with ARC-COSINE covari-
ances of order p = 1, the application of the random feature
approximation leads to DNNs with ReLU activations:

Φ(l)
arc =

√
2(σ2)(l)

N
(l)
RF

max
(

0, F (l)Ω(l)
)

, (7)

with Ω
(l)
·j ∼ N

(
0,
(
Λ(l)

)−1
)

, which are cheaper to eval-
uate and differentiate than the trigonometric functions re-
quired in the RBF case. As in the RBF case, we allowed
the covariance and the features to be scaled by (σ2)(l) and
Λ(l), respectively. The dimensions of the weight matrices
Ω(l) are the same as in the RBF case, but the dimensions of
the W (l) matrices are N (l)

RF ×DF (l+1) .

3.1. Low-rank weights in the resulting DNN

Our formulation of an approximate DGP using random
feature expansions reveals a close connection with DNNs.
In our formulation, the design matrices at each layer are
Φ(l+1) = γ

(
Φ(l)W (l)Ω(l+1)

)
, where γ(·) denotes the

element-wise application of covariance-dependent func-
tions, i.e., sine and cosine for the RBF covariance and ReLU
for the ARC-COSINE covariance. Instead, for the DNN case,
the design matrices are computed as Φ(l+1) = g(Φ(l)Ω(l)),
where g(·) is a so-called activation function. In light of this,
we can view our approximate DGP model as a DNN. From a
probabilistic standpoint, we can interpret our approximate
DGP model as a DNN with specific Gaussian priors over
the Ω(l) weights controlled by the covariance parameters
θ(l), and standard Gaussian priors over the W (l) weights.
Covariance parameters act as hyper-priors over the weights
Ω(l), and the objective is to optimize these during training.

Random Feature Expansions for Deep Gaussian Processes

Another observation about the resulting DGP approxima-
tion is that, for a given layer l, the transformations given
by W (l) and Ω(l+1) are both linear. If we collapsed
the two transformations into a single one, by introduc-
ing weights Ξ(l) = W (l)Ω(l+1), we would have to learn
O
(
N

(l)
RF ×N

(l+1)
RF

)
weights at each layer, which is con-

siderably more than learning the two separate sets of
weights. As a result, we can view the proposed approxi-
mate DGP model as a way to impose a low-rank structure
on the weights of DNNs, which is a form of regularization
proposed in the literature of DNNs (Novikov et al., 2015;
Sainath et al., 2013; Denil et al., 2013).

3.2. Variational inference

In order to keep the notation uncluttered, let Θ be the col-
lection of all covariance parameters θ(l) at all layers. Also,
consider the case of a DGP with fixed spectral frequencies
Ω(l) collected into Ω, and let W be the collection of the
weight matrices W (l) at all layers. For W we have a prod-
uct of standard normal priors stemming from the approxi-
mation of the GPs at each layer p(W) =

∏Nh−1
l=0 p(W (l)),

and we propose to treat W using variational inference fol-
lowing Kingma & Welling (2014) and Graves (2011), and
optimize all covariance parameters Θ. We will consider Ω
to be fixed here, but we will discuss alternative ways to treat
Ω in the next section. In the supplement we also assess the
quality of the variational approximation over W, with Ω
and Θ fixed, by comparing it with MCMC techniques.

The marginal likelihood p(Y |X,Ω,Θ) involves intractable
integrals, but we can obtain a tractable lower bound using
variational inference. Defining L = log [p(Y |X,Ω,Θ)]
and E = Eq(W) (log [p (Y |X,W,Ω,Θ)]), we obtain

L ≥ E −DKL [q(W)‖p (W)] , (8)

where q(W) acts as an approximation to the posterior over
all the weights p(W|Y,X,Ω,Θ).

We are interested in optimizing q(W), i.e. finding an op-
timal approximate distribution over the parameters accord-
ing to the bound above. The first term can be interpreted as
a model fitting term, whereas the second as a regularization
term. In the case of a Gaussian distribution q(W) and a
Gaussian prior p(W), it is possible to compute the DKL
term analytically (see supplementary material), whereas
the remaining term needs to be estimated. Assume a Gaus-
sian approximating distribution that factorizes across layers
and weights:

q(W) =
∏

ijl

q
(
W

(l)
ij

)
=
∏

ijl

N
(
m

(l)
ij , (s

2)
(l)
ij

)
. (9)

The variational parameters are the mean and the variance
of each of the approximating factors m(l)

ij , (s
2)

(l)
ij , and we

aim to optimize the lower bound with respect to these as
well as all covariance parameters Θ.

In the case of a likelihood that factorizes across observa-
tions, an interesting feature of the expression of the lower
bound is that it is amenable to fast stochastic optimization.
In particular, we derive a doubly-stochastic approximation
of the expectation in the lower bound as follows. First,
E can be rewritten as a sum over the input points, which
allows us to estimate it in an unbiased fashion using mini-
batches, selecting m points from the entire dataset:

E ≈ n

m

∑

k∈Im
Eq(W)(log[p(yk|xk,W,Ω,Θ)]). (10)

Second, each of the elements of the sum can be estimated
using Monte Carlo, yielding:

E ≈ n

m

∑

k∈Im

1

NMC

NMC∑

r=1

log[p(yk|xk,W̃r,Ω,Θ)], (11)

with W̃r ∼ q(W). In order to facilitate the optimization,
we reparameterize the weights as follows:

(W̃ (l)
r)ij = s

(l)
ij ε

(l)
rij +m

(l)
ij . (12)

By differentiating the lower bound with respect to Θ and
the mean and variance of the approximate posterior over
W, we obtain an unbiased estimate of the gradient for the
lower bound. The reparameterization trick ensures that the
randomness in the computation of the expectation is fixed
when applying stochastic gradient ascent moves to parame-
ters of q(W) and Θ (Kingma & Welling, 2014). Automatic
differentiation tools enabled us to compute stochastic gra-
dients automatically, which is why we opted to implement
our model in TensorFlow (Abadi et al., 2015).

3.3. Treatment of the spectral frequencies Ω

So far, we have assumed the spectral frequencies Ω to
be sampled from the prior and fixed throughout, whereby
we employ the reparameterization trick to obtain Ω

(l)
ij =

(β2)
(l)
ij ε

(l)
rij + µ

(l)
ij , with (β2)

(l)
ij and µ(l)

ij determined by the

prior p
(

Ω
(l)
·j

)
= N

(
0,
(
Λ(l)

)−1
)

. We then draw the

ε
(l)
rij’s and fix them from the outset, such that covariance

parameters Θ can be optimized along with q(W). We re-
fer to this variant as PRIOR-FIXED.

Inspired by previous work on random feature expansions
for GPs, we can think of alternative ways to treat these pa-
rameters, e.g., Lázaro-Gredilla et al. (2010); Gal & Turner
(2015). In particular, we study a variational treatment of
Ω; we refer the reader to the supplementary material for
details on the derivation of the lower bound in this case.

Random Feature Expansions for Deep Gaussian Processes

1 1.5 2 2.5 3 3.5

0.2

0.4

log10(RFs)

RMSE

1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

log10(RFs)

MNLL

prior-fixed var-fixed var-resampled

Figure 2. Performance of different strategies for dealing with Ω as
a function of the number of random features. These can be fixed
(PRIOR-FIXED), or treated variationally (with fixed randomness
VAR-FIXED and resampled at each iteration VAR-RESAMPLED).

When being variational about Ω we introduce an approxi-
mate posterior q(Ω) which also has a factorized form. We
use the reparameterization trick once again, but the coef-
ficients (β2)

(l)
ij and µ

(l)
ij to compute Ω

(l)
ij are now deter-

mined by q(Ω). We report two variations of this treatment,
namely VAR-FIXED and VAR-RESAMPLED. In VAR-FIXED,
we fix ε(l)

rij in computing Ω throughout the learning of the
model, whereas in VAR-RESAMPLED we resample these at
each iteration. We note that one can also be variational
about Θ, but we leave this for future work.

In Figure 2, we illustrate the differences between the strate-
gies discussed in this section; we report the accuracy of the
proposed one-layer DGP with RBF covariances with respect
to the number of random features on one of the datasets that
we consider in the experiment section (EEG dataset). For
PRIOR-FIXED, more random features result in a better ap-
proximation of the GP priors at each layer, and this results
in better generalization. When we resample Ω from the
approximate posterior (VAR-RESAMPLED), we notice that
the model quickly struggles with the optimization when in-
creasing the number of random features. We attribute this
to the fact that the factorized form of the posterior over Ω
and W is unable to capture posterior correlations between
the coefficients for the random features and the weights
of the corresponding linearized model. Being determinis-
tic about the way spectral frequencies are computed (VAR-
FIXED) offers the best performance among the three learn-
ing strategies, and this is what we employ throughout the
rest of this paper.

3.4. Computational complexity

When estimating the lower bound, there are two main
operations performed at each layer, that is F (l)Ω(l) and
Φ(l)W (l). Recalling that this matrix product is done for
samples from the posterior over W (and Ω when treated
variationally) and given the mini-batch formulation, the
former costs O

(
mD

(l)
F N

(l)
RFNMC

)
, while the latter costs

O
(
mN

(l)
RFD

(l)
F NMC

)
.

Because of feature expansions and stochastic variational
inference, the resulting algorithm does not involve any
Cholesky decompositions. This is in sharp contrast with
stochastic variational inference using inducing-point ap-
proximations (see e.g. Dai et al., 2016; Bui et al., 2016),
where such operations could significantly limit the number
of inducing points that can be employed.

4. Experiments
We evaluate our model by comparing it against relevant al-
ternatives for both regression and classification, and assess
its performance when applied to large-scale datasets. We
also investigate the extent to which such deep compositions
continue to yield good performance when the number of
layers is significantly increased.

4.1. Model Comparison

We primarily compare our model to the state-of-the-art
DGP inference method presented in the literature, namely
DGPs using expectation propagation (DGP-EP; Bui et al.,
2016). We originally intended to include results for the
variational auto-encoded DGP (Damianou & Lawrence,
2013); however, the results obtained using the available
code were not competitive with DGP-EP and we thus de-
cided to exclude them from the figures. We also omit-
ted DGP training using sequential inference (Wang et al.,
2016) given that we could not find an implementation of
the method and, in any case, the performance reported in
the paper is inferior to more recent approaches. We also
compare against DNNs in order to present the results in a
wider context, and demonstrate that DGPs lead to better
quantification of uncertainty. Finally, to substantiate the
benefits of using a deep model, we compare against the
shallow sparse variational GP (Hensman et al., 2015b) im-
plemented in GPflow (Matthews et al., 2016).

We use the same experimental set-up for both regression
and classification tasks using datasets from the UCI repos-
itory (Asuncion & Newman, 2007), for models having one
hidden layer. The results for architectures with two hid-
den layers are included in the supplementary material. The
specific configurations for each model are detailed below:

DGP-RBF, DGP-ARC : In the proposed DGP with an RBF
kernel, we use 100 random features at every hidden layer
to construct a multivariate GP with D

(l)
F = 3, and set

the batch size to m = 200. We initially only use a sin-
gle Monte Carlo sample, and halfway through the allo-
cated optimization time, this is then increased to 100 sam-
ples. We employ the Adam optimizer with a learning rate
of 0.01, and in order to stabilize the optimization proce-
dure, we fix the parameters Θ for 12, 000 iterations, before
jointly optimizing all parameters. As discussed in Sec-

Random Feature Expansions for Deep Gaussian Processes

REGRESSION CLASSIFICATION

Powerplant Protein Spam EEG MNIST
(n = 9568, d=4) (n = 45730, d=9) (n = 4061, d=57) (n = 14979, d=14) (n = 60000, d=784)

2 2.5 3 3.5
0.2

0.3

0.4

0.5

log10(sec)

RMSE

2 2.5 3 3.5

0.7

0.8

log10(sec)

RMSE

1 1.5 2 2.5 3 3.5

0.05

0.1

log10(sec)

Error rate

2 2.5 3 3.5
0

0.1

0.2

log10(sec)

Error rate

3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

log10(sec)

Error rate

2 2.5 3 3.5

0

0.5

1

log10(sec)

MNLL

2 2.5 3 3.5

1

1.1

1.2

log10(sec)

MNLL

1 1.5 2 2.5 3 3.5
0

1

2

3

log10(sec)

MNLL

2 2.5 3 3.5

0.2

0.4

log10(sec)

MNLL

3 3.5 4 4.5
0

1

2

3

log10(sec)

MNLL

dgp-rbf dgp-arc dgp-ep dnn var-gp

Figure 3. Progression of error rate (RMSE in the regression case) and MNLL over time for competing models. Results are shown for
configurations having 1 hidden layer, while the results for models having 2 such layers may be found in the supplementary material.

tion 3.3, Ω are optimized variationally with fixed random-
ness. The same set-up is used for DGP-ARC, the variation
of our model implementing the ARC-COSINE kernel;

DGP-EP 1: For this technique, we use the same architec-
ture and optimizer as for DGP-RBF and DGP-ARC, a batch
size of 200 and 100 inducing points at each hidden layer.
For the classification case, we use 100 samples for approx-
imating the Softmax likelihood;

DNN : We construct a DNN configured with a dropout rate
of 0.5 at each hidden layer in order to provide regular-
ization during training. In order to preserve a degree of
fairness, we set the number of hidden units in such a way
as to ensure that the number of weights to be optimized
match those in the DGP-RBF and DGP-ARC models when
the random features are taken to be fixed.

We assess the performance of each model using the error
rate (RMSE in the regression case) and mean negative log-
likelihood (MNLL) on withheld test data. The results are
averaged over 3 folds for every dataset. The experiments
were launched on single nodes of a cluster of Intel Xeon
E5-2630 CPUs having 32 cores and 128GB RAM.

Figure 3 shows that DGP-RBF and DGP-ARC consistently
outperform competing techniques both in terms of con-
vergence speed and predictive accuracy. This is particu-
larly significant for larger datasets where other techniques
take considerably longer to converge to a reasonable error
rate, although DGP-EP converges to superior MNLL for the
PROTEIN dataset. The results are also competitive (and
sometimes superior) to those obtained by the variational
GP (VAR-GP) in Hensman et al. (2015b). It is striking to

1Code obtained from:
github.com/thangbui/deepGP_approxEP

see how inferior uncertainty quantification provided by the
DNN (which is inherently limited to the classification case,
so no MNLL reported on regression datasets) is compared
to DGPs, despite the error rate being comparable.

By virtue of its higher dimensionality, larger configurations
were used for MNIST. For DGP-RBF and DGP-ARC, we use
500 random features, 50 GPs in the hidden layers, batch
size of 1000, and Adam with a 0.001 learning rate. Simi-
larly for DGP-EP, we use 500 inducing points, with the only
difference being a slightly smaller batch size to cater for is-
sues with memory requirements. Following Simard et al.
(2003), we employ 800 hidden units at each layer of the
DNN. The DGP-RBF peaks at 98.04% and 97.93% for 1
and 2 hidden layers respectively. It was observed that the
model performance degrades noticeably when more than
2 hidden layers are used (without feeding forward the in-
puts). This is in line with what is reported in the literature
on DNNs (Neal, 1996; Duvenaud et al., 2014). By simply
re-introducing the original inputs in the hidden layer, the
accuracy improves to 98.2% for the one hidden layer case.

Recent experiments on MNIST using a variational GP with
MCMC report overall accuracy of 98.04% (Hensman et al.,
2015a), while the AutoGP architecture has been shown
to give 98.45% accuracy (Krauth et al., 2017). Using a
finer-tuned configuration, DNNs were also shown to obtain
98.5% accuracy (Simard et al., 2003), whereas 98.6% has
been reported for SVMs (Schölkopf, 1997). In view of this
wider scope of inference techniques, it can be confirmed
that the results obtained using the proposed architecture
are comparable to the state-of-the-art, even if further ex-
tensions may be required for obtaining a proper edge. Note
that this comparison focuses on approaches without prepro-
cessing, and excludes convolutional neural nets.

Random Feature Expansions for Deep Gaussian Processes

Table 1. Performance of our proposal on large-scale datasets.

Dataset Accuracy
RBF ARC

MNLL
RBF ARC

MNIST8M 99.14% 99.04% 0.0454 0.0465
AIRLINE 78.55% 72.76% 0.4583 0.5335

4.2. Large-scale Datasets

One of the defining characteristics of our model is the abil-
ity to scale up to large datasets without compromising on
performance and accuracy in quantifying uncertainty. As
a demonstrative example, we evaluate our model on two
large-scale problems which go beyond the scale of datasets
to which GPs and especially DGPs are typically applied.

We first consider MNIST8M, which artificially extends the
original MNIST dataset to 8+ million observations. We
trained this model using the same configuration described
for standard MNIST, and we obtained 99.14% accuracy
on the test set using one hidden layer. Given the size of
this dataset, there are only few reported results for other
GP models. Most notably, Krauth et al. (2017) recently
obtained 99.11% accuracy with the AutoGP framework,
which is comparable to the result obtained by our model.

Meanwhile, the AIRLINE dataset contains flight informa-
tion for 5+ million flights in the US between Jan and Apr
2008. Following the procedure described in Hensman et al.
(2013) and Wilson et al. (2016), we use this 8-dimensional
dataset for classification, where the task is to determine
whether a flight has been delayed or not. We construct the
test set using the scripts provided in Wilson et al. (2016),
where 100, 000 data points are held-out for testing. We
construct our DGP models using 100 random features at
each layer, and set the dimensionality to DF (l) = 3. As
shown in Table 1, our model works significantly better
when the RBF kernel is employed. In addition, the results
are also directly comparable to those obtained by Wilson
et al. (2016), which reports accuracy and MNLL of 78.1%
and 0.457, respectively. These results give further credence
to the tractability, scalability, and robustness of our model.

4.3. Model Depth

In this final part of the experiments, we assess the scala-
bility of our model with respect to additional hidden layers
in the constructed model. In particular, we re-consider the
AIRLINE dataset and evaluate the performance of DGP-RBF
models constructed using up to 30 layers. In order to cater
for the increased depth in the model, we feed-forward the
original input to each hidden layer, as suggested in Duve-
naud et al. (2014).

2 3 4 5

0.2

0.3

0.4

0.5

log10(sec)

Error rate

2 3 4 5

0.45

0.5

0.55

0.6

log10(sec)

MNLL

2 10 20 30

2.6

2.7

·106

Layers

Neg. Lower Bound

2 layers 10 layers 20 layers 30 layers SV-DKL

Figure 4. Left and central panels - Performance of our model on
the AIRLINE dataset as function of time for different depths. The
baseline (SV-DKL) is taken from Wilson et al. (2016). Right
panel - The box plot of the negative lower bound, estimated over
100 mini-batches of size 50, 000, confirms that this is a suitable
objective for model selection.

Figure 4 reports the progression of error rate and MNLL
over time for different number of hidden layers, using the
results obtained in Wilson et al. (2016) as a baseline (re-
portedly obtained in about 3 hours). As expected, the
model takes longer to train as the number of layers in-
creases. However, the model converges to an optimal state
in every case in less than a couple of hours, with an im-
provement being noted in the case of 10 and 20 layers over
the shallower 2-layer model. The box plot within the same
figure indicates that the negative lower bound is a suitable
objective function for carrying out model selection.

5. Conclusions
In this work, we have proposed a novel formulation of
DGPs which exploits the approximation of covariance func-
tions using random features, as well as stochastic varia-
tional inference for preserving the probabilistic representa-
tion of a regular GP. We demonstrated how inference using
this model is not only faster, but also frequently superior
to other state-of-the-art methods, with particular empha-
sis on competing DGP models. The results obtained for
both the AIRLINE dataset and the MNIST8M digit recogni-
tion problem are particularly impressive since such large
datasets have been generally considered to be beyond the
computational scope of DGPs. We perceive this to be a
considerable step forward in the direction of scaling and
accelerating DGPs.

The results obtained on higher-dimensional datasets
strongly suggest that approximations such as Fastfood (Le
et al., 2013) could be instrumental in the interest of using
more random features. We are also currently investigating
ways to mitigate the decline in performance observed when
optimizing Ω variationally with resampling. The obtained
results also encourage the extension of our model to in-
clude residual learning or convolutional layers suitable for
computer vision applications.

Random Feature Expansions for Deep Gaussian Processes

References
Abadi, Martı́n, Agarwal, Ashish, Barham, Paul, et al. Ten-

sorFlow: Large-scale machine learning on heteroge-
neous systems, 2015.

Asuncion, Arthur and Newman, David J. UCI machine
learning repository, 2007.

Blundell, Charles, Cornebise, Julien, Kavukcuoglu, Koray,
and Wierstra, Daan. Weight Uncertainty in Neural Net-
work. In Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Con-
ference Proceedings, pp. 1613–1622. JMLR.org, 2015.

Bui, Thang D., Hernández-Lobato, Daniel, Hernández-
Lobato, José M., Li, Yingzhen, and Turner, Richard E.
Deep Gaussian Processes for Regression using Approx-
imate Expectation Propagation. In Proceedings of the
33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceed-
ings, pp. 1472–1481. JMLR.org, 2016.

Chen, Jianmin, Monga, Rajat, Bengio, Samy, and Joze-
fowicz, Rafal. Revisiting distributed synchronous sgd.
https://arxiv.org/abs/1604.00981, 2016.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project adam: Building an efficient and scalable deep
learning training system. In USENIX Symposium on Op-
erating Systems Design and Implementation, October 6-
8, 2014, Broomfield, Colorado, USA, 2014.

Cho, Youngmin and Saul, Lawrence K. Kernel methods for
deep learning. In Advances in Neural Information Pro-
cessing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009. Proceedings of a
meeting held 7-10 December 2009, Vancouver, British
Columbia, Canada., pp. 342–350, 2009.

Dai, Zhenwen, Damianou, Andreas, González, Javier, and
Lawrence, Neil. Variational auto-encoded deep gaussian
processes. In Proceedings of the Fourth International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, 2-4 May, 2016, 2016.

Damianou, Andreas C. and Lawrence, Neil D. Deep Gaus-
sian Processes. In Proceedings of the Sixteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics, AISTATS 2013, Scottsdale, AZ, USA, April 29 - May
1, 2013, volume 31 of JMLR Proceedings, pp. 207–215.
JMLR.org, 2013.

Denil, Misha, Shakibi, Babak, Dinh, Laurent, Ranzato,
Marc’Aurelio, and de Freitas, Nando. Predicting Param-
eters in Deep Learning. In Advances in Neural Informa-
tion Processing Systems 26: 27th Annual Conference on

Neural Information Processing Systems 2013. Proceed-
ings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pp. 2148–2156, 2013.

Duvenaud, David K., Rippel, Oren, Adams, Ryan P., and
Ghahramani, Zoubin. Avoiding pathologies in very deep
networks. In Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics, AISTATS 2014, Reykjavik, Iceland, April 22-25,
2014, volume 33 of JMLR Workshop and Conference
Proceedings, pp. 202–210. JMLR.org, 2014.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a
Bayesian Approximation: Representing Model Uncer-
tainty in Deep Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, vol-
ume 48 of JMLR Workshop and Conference Proceed-
ings, pp. 1050–1059. JMLR.org, 2016.

Gal, Yarin and Turner, Richard. Improving the Gaussian
Process Sparse Spectrum Approximation by Represent-
ing Uncertainty in Frequency Inputs. In Proceedings of
the 32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6-11 July 2015, vol-
ume 37 of JMLR Workshop and Conference Proceed-
ings, pp. 655–664. JMLR.org, 2015.

Graves, Alex. Practical Variational Inference for Neural
Networks. In Shawe-Taylor, J., Zemel, R. S., Bartlett,
P. L., Pereira, F., and Weinberger, K. Q. (eds.), Advances
in Neural Information Processing Systems 24, pp. 2348–
2356. Curran Associates, Inc., 2011.

Hensman, James and Lawrence, Neil D. Nested Varia-
tional Compression in Deep Gaussian Processes, De-
cember 2014.

Hensman, James, Fusi, Nicoló, and Lawrence, Neil D.
Gaussian processes for big data. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial In-
telligence, UAI 2013, Bellevue, WA, USA, August 11-15,
2013, 2013.

Hensman, James, de G. Matthews, Alexander G., Fil-
ippone, Maurizio, and Ghahramani, Zoubin. MCMC
for variationally sparse gaussian processes. In Ad-
vances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pp. 1648–1656, 2015a.

Hensman, James, de G. Matthews, Alexander G., and
Ghahramani, Zoubin. Scalable variational Gaussian pro-
cess classification. In Proceedings of the Eighteenth
International Conference on Artificial Intelligence and
Statistics, AISTATS 2015, San Diego, California, USA,
May 9-12, 2015, pp. 351–360, 2015b.

Random Feature Expansions for Deep Gaussian Processes

Kingma, Diederik P. and Welling, Max. Auto-Encoding
Variational Bayes. In Proceedings of the Second Inter-
national Conference on Learning Representations, ICLR
2014, Banff, Canada, April 14-16, 2014, 2014.

Krauth, Karl, Bonilla, Edwin V., Cutajar, Kurt, and Fil-
ippone, Maurizio. AutoGP: Exploring the capabilities
and limitations of Gaussian process models. In AISTATS,
2017.

Lázaro-Gredilla, M., Quinonero-Candela, J., Rasmussen,
C. E., and Figueiras-Vidal, A. R. Sparse Spectrum Gaus-
sian Process Regression. Journal of Machine Learning
Research, 11:1865–1881, 2010.

Le, Quoc V., Sarls, Tams, and Smola, Alexander J. Fast-
food - computing hilbert space expansions in loglinear
time. In ICML (3), volume 28 of JMLR Workshop and
Conference Proceedings, pp. 244–252. JMLR.org, 2013.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep
learning. Nature, 521(7553):436–444, 2015.

Mackay, D. J. C. Bayesian methods for backpropagation
networks. In Domany, E., van Hemmen, J. L., and Schul-
ten, K. (eds.), Models of Neural Networks III, chapter 6,
pp. 211–254. Springer, 1994.

Matthews, Alexander G. de G., van der Wilk, Mark, Nick-
son, Tom, Fujii, Keisuke., Boukouvalas, Alexis, León-
Villagrá, Pablo, Ghahramani, Zoubin, and Hensman,
James. GPflow: A Gaussian process library using Ten-
sorFlow. arXiv preprint 1610.08733, October 2016.

Murray, Iain, Adams, Ryan P., and MacKay, David J. C.
Elliptical slice sampling. Journal of Machine Learning
Research - Proceedings Track, 9:541–548, 2010.

Neal, Radford M. Bayesian Learning for Neural Networks
(Lecture Notes in Statistics). Springer, 1 edition, August
1996. ISBN 0387947248.

Novikov, Alexander, Podoprikhin, Dmitry, Osokin, Anton,
and Vetrov, Dmitry P. Tensorizing Neural Networks. In
Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pp. 442–450, 2015.

Rahimi, Ali and Recht, Benjamin. Random Features for
Large-Scale Kernel Machines. In Platt, J. C., Koller, D.,
Singer, Y., and Roweis, S. T. (eds.), Advances in Neu-
ral Information Processing Systems 20, pp. 1177–1184.
Curran Associates, Inc., 2008.

Rasmussen, Carl E. and Williams, Christopher. Gaussian
Processes for Machine Learning. MIT Press, 2006.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wierstra,
Daan. Stochastic backpropagation and approximate in-
ference in deep generative models. In Proceedings of
the 31th International Conference on Machine Learn-
ing, ICML 2014, Beijing, China, 21-26 June 2014, vol-
ume 32 of JMLR Workshop and Conference Proceed-
ings, pp. 1278–1286. JMLR.org, 2014.

Sainath, Tara N., Kingsbury, Brian, Sindhwani, Vikas,
Arisoy, Ebru, and Ramabhadran, Bhuvana. Low-rank
matrix factorization for Deep Neural Network training
with high-dimensional output targets. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2013, Vancouver, BC, Canada, May 26-
31, 2013, pp. 6655–6659. IEEE, 2013. doi: 10.1109/
ICASSP.2013.6638949.

Schölkopf, Bernhard. Support vector learning. PhD thesis,
Berlin Institute of Technology, 1997.

Shawe-Taylor, John and Cristianini, Nello. Kernel Methods
for Pattern Analysis. Cambridge University Press, New
York, NY, USA, 2004.

Simard, Patrice Y., Steinkraus, Dave, and Platt, John C.
Best Practices for Convolutional Neural Networks Ap-
plied to Visual Document Analysis. In Proceedings
of the Seventh International Conference on Document
Analysis and Recognition - Volume 2, ICDAR ’03, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Sopena, J. M., Romero, E., and Alquezar, R. Neural net-
works with periodic and monotonic activation functions:
a comparative study in classification problems. In Arti-
ficial Neural Networks, 1999. ICANN 99. Ninth Interna-
tional Conference on (Conf. Publ. No. 470), volume 1,
1999. doi: 10.1049/cp:19991129.

Tran, Dustin, Ranganath, Rajesh, and Blei, David M. The
Variational Gaussian Process. In Proceedings of the
Fourth International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, 2-4 May,
2016, 2016.

Wang, Yali, Brubaker, Marcus A., Chaib-draa, Brahim, and
Urtasun, Raquel. Sequential inference for deep gaussian
process. In Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics, AISTATS
2016, Cadiz, Spain, May 9-11, 2016, pp. 694–703, 2016.

Wilson, Andrew Gordon, Hu, Zhiting, Salakhutdinov, Rus-
lan, and Xing, Eric P. Stochastic variational deep kernel
learning. In Advances in Neural Information Process-
ing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 2586–2594, 2016.

Random Feature Expansions for Deep Gaussian Processes

A. Additional Experiments
Using the experimental set-up described in Section 4, Figure 5 demonstrates how the competing models perform with
regards to the RMSE (or error rate) and MNLL metric when two hidden layers are incorporated into the competing models.
The results follow a similar progression to those reported in Figure 3 of the main paper. The DGP-ARC and DGP-RBF
models both continue to perform well after introducing this additional layer. However, the results for the regularized DNN
are notably inferior, and the degree of overfitting is also much greater. To this end, the MNLL obtained for the MNIST
dataset is not shown in the plot as it was vastly inferior to the values obtained using the other methods. DGP-EP was also
observed to have low scalability in this regard whereby it was not possible to obtain sensible results for the MNIST dataset
using this configuration.

REGRESSION CLASSIFICATION

Powerplant Protein Spam EEG MNIST
(n = 9568, d=4) (n = 45730, d=9) (n = 4061, d=57) (n = 14979, d=14) (n = 60000, d=784)

2 2.5 3 3.5
0.2

0.3

0.4

0.5

log10(sec)

RMSE

2 2.5 3 3.5
0.65

0.7

0.75

0.8

0.85

log10(sec)

RMSE

1 2 3
0

0.1

0.2

0.3

0.4

log10(sec)

Error rate

2 2.5 3 3.5
0

0.2

0.4

log10(sec)

Error rate

3 3.5 4 4.5
0

0.1

0.2

0.3

log10(sec)

Error rate

2 2.5 3 3.5

0

0.5

1

log10(sec)

MNLL

2 2.5 3 3.5
1

1.1

1.2

log10(sec)

MNLL

1 2 3

0

2

4

log10(sec)

MNLL

2 2.5 3 3.5

0.2

0.4

0.6

log10(sec)

MNLL

3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

log10(sec)

MNLL

dgp-rbf dgp-arc dgp-ep dnn var-gp

Figure 5. Progression of RMSE and MNLL over time for competing models. Results are shown for configurations having 2 hidden layers.
There is no plot for DGP-EP on MNIST because the model did not produce sensible results within the allocated time.

In Section 3.3, we outlined the different strategies for treating Ω, namely fixing them or treating them variationally, where
we observed that the constructed DGP model appears to work best when these are treated variationally while fixing the
randomness in their computation throughout the learning process (VAR-FIXED). In Figures 6 and 7, we compare these three
approaches on the complete set of datasets reported in the main experiments for one and two hidden layers, respectively.
Once again, we confirm that the performance obtained using the VAR-FIXED strategy yields more consistent results than the
alternatives. This is especially pertinent to the classification datasets, where the obtained error rate is markedly superior.
However, the variation of the model constructed with the ARC-COSINE kernel and optimized using VAR-FIXED appears to
be susceptible to some overfitting for higher dimensional datasets (SPAM and MNIST), which is expected given that we are
optimizing several covariance parameters (ARD). This would motivate trying to be variational about Θ too.

B. Comparison with MCMC

Figure 8 shows a comparison between the variational approximation and MCMC for a two-layer DGP model applied to
a regression dataset. The dataset has been generated by drawing 50 data points from N (y|h(h(x)), 0.01), with h(x) =
2x exp(−x2). We experiment with two different levels of precision in the DGP approximation by using 10 and 50 fixed
spectral frequencies, respectively, so as to assess the impact on the number of random features on the results. For MCMC,
covariance parameters are fixed to the values obtained by optimizing the variational lower bound on the marginal likelihood
in the case of 50 spectral frequencies.

We obtained samples from the posterior over the latent variables at each layer using MCMC techniques. In the case of a
Gaussian likelihood, it is possible to integrate out the GP at the last layer, thus obtaining a model that only depends on the GP
at the first. As a result, the collapsed DGP model becomes a standard GP model whose latent variables can be sampled using
various MCMC samplers developed in the literature of MCMC for GPs. Here we employ Elliptical Slice Sampling (Murray
et al., 2010) to draw samples from the posterior over the latent variables at the first layer, whereas latent variables at the
second can be sampled directly from a multivariate Gaussian distribution. More details on the MCMC sampler are reported

Random Feature Expansions for Deep Gaussian Processes

REGRESSION CLASSIFICATION

Powerplant Protein Spam EEG MNIST
(n = 9568, d=4) (n = 45730, d=9) (n = 4061, d=57) (n = 14979, d=14) (n = 60000, d=784)

2 2.5 3 3.5
0.2

0.3

0.4

0.5

log10(sec)

RMSE

2 2.5 3 3.5

0.7

0.8

log10(sec)

RMSE

1 2 3

0.05

0.1

log10(sec)

Error rate

2 2.5 3 3.5
0

0.2

0.4

log10(sec)

Error rate

3 3.5 4 4.5
0

0.05

0.1

0.15

log10(sec)

Error rate

2 2.5 3 3.5

0

0.5

1

log10(sec)

MNLL

2 2.5 3 3.5

1

1.1

1.2

log10(sec)

MNLL

1 2 3

0.2

0.4

0.6

0.8

1

log10(sec)

MNLL

2 2.5 3 3.5
0

0.2

0.4

0.6

log10(sec)

MNLL

3 3.5 4 4.5
0

0.5

1

log10(sec)

MNLL

dgp-ep dgp-rbf-var-resampled dgp-rbf-prior-fixed dgp-rbf-var-fixed dgp-arc-var-resampled dgp-arc-prior-fixed dgp-arc-var-fixed var-gp

Figure 6. Progression of RMSE and MNLL over time for different optimisation strategies for DGP-ARC and DGP-RBF models. Results are
shown for configurations having 1 hidden layer.

REGRESSION CLASSIFICATION

Powerplant Protein Spam EEG MNIST
(n = 9568, d=4) (n = 45730, d=9) (n = 4061, d=57) (n = 14979, d=14) (n = 60000, d=784)

2 2.5 3 3.5
0.2

0.3

0.4

0.5

log10(sec)

RMSE

2 2.5 3 3.5
0.65

0.7

0.75

0.8

0.85

log10(sec)

RMSE

1 2 3

0.1

0.2

0.3

0.4

log10(sec)

Error rate

2 2.5 3 3.5
0

0.2

0.4

log10(sec)

Error rate

3 3.5 4 4.5
0

2

4

6

8

·10−2

log10(sec)

Error rate

2 2.5 3 3.5

0

0.5

1

log10(sec)

MNLL

2 2.5 3 3.5

1

1.1

1.2

log10(sec)

MNLL

1 2 3

0.2

0.4

0.6

0.8

1

log10(sec)

MNLL

2 2.5 3 3.5

0.2

0.4

0.6

log10(sec)

MNLL

3 3.5 4 4.5
0

0.1

0.2

0.3

log10(sec)

MNLL

dgp-ep dgp-rbf-var-resampled dgp-rbf-prior-fixed dgp-rbf-var-fixed dgp-arc-var-resampled dgp-arc-prior-fixed dgp-arc-var-fixed var-gp

Figure 7. Progression of RMSE and MNLL over time for different optimisation strategies for DGP-ARC and DGP-RBF models. Results are
shown for configurations having 2 hidden layers.

at the end of this section.

The plots depicted in Figure 8 illustrate how the MCMC approach explores two modes of the posterior of opposite sign.
This is due to the output function being invariant to the flipping of the sign of the weights at the two layers. Conversely, the
variational approximation over W accurately identifies one of the two modes of the posterior. The overall approximation is
accurate in the case of more random Fourier features, whereas in the case of less, the approximation is unsurprisingly char-
acterized by out-of-sample oscillations. The variational approximation seems to result in larger uncertainty in predictions
compared to MCMC; we attribute this to the factorization of the posterior over all the weights.

B.1. Details of MCMC sampler for a two-layer DGP with a Gaussian likelihood

We give details of the MCMC sampler that we used to draw samples from the posterior over latent variables in DGPs. In the
experiments, we regard this as the gold-standard against which we compare the quality of the proposed DGP approximation
and inference. For the sake of tractability, we assume a two-layer DGP with a Gaussian likelihood, and we fix the hyper-
parameters of the GPs. Without loss of generality, we assume Y to be univariate and the hidden layer to be composed of a

Random Feature Expansions for Deep Gaussian Processes

La
ye

r
1

−
2

0
2

−10 −5 0 5 10

La
ye

r
2

−
1

0
1

●

●
●●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

−10 −5 0 5 10

●

●
●●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

−10 −5 0 5 10

●

●
●●●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

Variational − 10 RFF Variational − 50 RFF MCMC

La
ye

r
1

La
ye

r
2

Figure 8. Comparison of MCMC and variational inference of a two-layer DGP with a single GP in the hidden layer and a Gaussian
likelihood. The posterior over the latent functions is based on 100 MCMC samples and 100 samples from the variational posterior.

single GP. The model is therefore as follows:

p
(
Y
∣∣∣F (2), λ

)
= N

(
Y
∣∣∣F (2), λI

)

p
(
F (2)

∣∣∣F (1),θ(1)
)

= N
(
F (2)

∣∣∣0,K
(
F (1),θ(1)

))

p
(
F (1)

∣∣∣X,θ(0)
)

= N
(
F (1)

∣∣∣0,K
(
X,θ(0)

))

with λ, θ(1), and θ(0) fixed. In the model specification above, we denoted by K
(
F (1),θ(1)

)
and K

(
X,θ(0)

)
the co-

variance matrices obtained by applying the covariance function with parameters θ(1), and θ(0) to all pairs of F (1) and X ,
respectively.

Given that the likelihood is Gaussian, it is possible to integrate out F (2) analytically

p
(
Y
∣∣∣F (1), λ,θ(1)

)
=

∫
p
(
Y
∣∣∣F (2), λ

)
p
(
F (2)

∣∣∣F (1),θ(1)
)
dF (2)

obtaining the more compact model specification:

p
(
Y
∣∣∣F (1), λ,θ(1)

)
= N

(
Y
∣∣∣0,K

(
F (1),θ(1)

)
+ λI

)

p
(
F (1)

∣∣∣X,θ(0)
)

= N
(
F (1)

∣∣∣0,K
(
X,θ(0)

))

For fixed hyper-parameters, these expressions reveal that the observations are distributed as in the standard GP regression
case, with the only difference that the covariance is now parameterized by GP distributed random variables F (1). We can
interpret these variables as some sort of hyper-parameters, and we can attempt to use standard MCMC methods to samples
from their posterior.

In order to develop a sampler for all latent variables, we factorize their full posterior as follows:

p
(
F (2), F (1)

∣∣∣Y,X, λ,θ(1),θ(0)
)

= p
(
F (2)

∣∣∣Y, F (1), λ,θ(1)
)
p
(
F (1)

∣∣∣Y,X, λ,θ(1),θ(0)
)

which suggest a Gibbs sampling strategy to draw samples from the posterior where we iterate

1. sample from p
(
F (1)

∣∣Y,X, λ,θ(1),θ(0)
)

2. sample from p
(
F (2)

∣∣Y, F (1), λ,θ(1)
)

Step 1. can be done by setting up a Markov chain with invariant distribution given by:

p
(
F (1)

∣∣∣Y,X, λ,θ(1),θ(0)
)
∝ p

(
Y
∣∣∣F (1), λ,θ(1)

)
p
(
F (1)

∣∣∣X,θ(0)
)

We can interpret this as a GP model, where the likelihood now assumes a complex form because of the nonlinear way in
which the likelihood depends on F (1). Because of this interpretation, we can attempt to use any of the samplers developed
in the literature of GPs to obtain samples from the posterior over latent variables in GP models.

Random Feature Expansions for Deep Gaussian Processes

Step 2. can be done directly given that the posterior over F (2) is available in closed form and it is Gaussian:

p
(
F (2)

∣∣∣Y, F (1), λ,θ(1)
)

= N
(
F (2)

∣∣∣∣K(1)
(
K(1) + λI

)−1

Y,K(1) −K(1)
(
K(1) + λI

)−1

K(1)

)

where we have defined
K(1) := K

(
F (1),θ(1)

)

C. Derivation of the lower bound
For the sake of completeness, here is a detailed derivation of the lower bound that we use in variational inference to learn
the posterior over W and optimize Θ, assuming Ω fixed:

log[p(Y |X,Ω,Θ)] = log

[∫
p(Y |X,W,Ω,Θ)p(W)dW

]

= log

[∫
p(Y |X,W,Ω,Θ)p(W)

q(W)
q(W)dW

]

= log

[
Eq(W)

p(Y |X,W,Ω,Θ)p(W)

q(W)

]

≥ Eq(W)

(
log

[
p(Y |X,W,Ω,Θ)p(W)

q(W)

])

= Eq(W) (log[p(Y |X,W,Ω,Θ)]) + Eq(W)

(
log

[
p(W)

q(W)

])

= Eq(W) (log[p(Y |X,W,Ω,Θ)])−DKL[q(W)||p(W)]

D. Learning Ω variationally
Defining Ψ = {W,Ω}, we can attempt to employ variational inference to treat the spectral frequencies Ω variationally as
well as W. In this case, the detailed derivation of the lower bound is as follows:

log [p(Y |X,Θ)] = log

[∫
p(Y |X,Ψ,Θ)p(Ψ|Θ)dΨ

]

= log

[∫
p(Y |X,Ψ,Θ)p(Ψ|Θ)

q(Ψ)
q(Ψ)dΨ

]

= log

[
Eq(Ψ)

p(Y |X,Ψ,Θ)p(Ψ|Θ)

q(Ψ)

]

≥ Eq(Ψ)

(
log

[
p(Y |X,Ψ,Θ)p(Ψ|Θ)

q(Ψ)

])

= Eq(Ψ) (log[p(Y |X,Ψ,Θ)]) + Eq(Ψ)

(
log

[
p(Ψ|Θ)

q(Ψ)

])

= Eq(Ψ) (log[p(Y |X,Ψ,Θ)])−DKL[q(Ψ)||p(Ψ|Θ)]

Again, assuming a factorized prior over all weights across layers

p(Ψ|θ) =

Nh−1∏

l=0

p(Ω(l)|θ(l))p(W (l)) =
∏

ijl

q
(

Ω
(l)
ij

)∏

ijl

q
(
W

(l)
ij

)
, (13)

we optimize the variational lower bound using variational inference following the mini-batch approach with the reparame-
terization trick explained in the main paper. The variational parameters then become the mean and the variance of each of
the approximating factors

q
(
W

(l)
ij

)
= N

(
m

(l)
ij , (s

2)
(l)
ij

)
, (14)

Random Feature Expansions for Deep Gaussian Processes

q
(

Ω
(l)
ij

)
= N

(
µ

(l)
ij , (β

2)
(l)
ij

)
, (15)

and we optimize the lower bound with respect to the variational parameters m(l)
ij , (s

2)
(l)
ij , µ

(l)
ij , (β

2)
(l)
ij .

E. Expression for the DKL divergence between Gaussians
Given p1(x) = N (µ1, σ

2
1) and p2(x) = N (µ2, σ

2
2), the KL divergence between the two is:

DKL (p1(x)‖p2(x)) =
1

2

[
log

(
σ2

2

σ2
1

)
− 1 +

σ2
1

σ2
2

+
(µ1 − µ2)2

σ2
2

]

F. Distributed Implementation
Our model is easily amenable to a distributed implementation using asynchronous distributed stochastic gradient de-
scent Chilimbi et al. (2014). Our distributed setting, based on TensorFlow, includes one or more Parameter servers (PS),
and a number of Workers. The latter proceed asynchronously using randomly selected batches of data: they fetch fresh
model parameters from the PS, compute the gradients of the lower bound with respect to these parameters, and push those
gradients back to the PS, which update the model accordingly. Given that workers compute gradients and send updates
to PS asynchronously, the discrepancy between the model used to compute gradients and the model actually updated can
degrade training quality. This is exacerbated by a large number of asynchronous workers, as noted in Chen et al. (2016).

We focus our experiments on the MNIST dataset, and study how training time and error rates evolve with the number of
workers introduced in our system. The parameters for the model are identical to those reported for the previous experi-
ments.

MNIST

0.5

1

1.5

2

1 5 10

Workers

Tr
ai

ni
ng

tim
e
lo
g

1
0
(h
)

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

E
rr

or
R

at
e

Training time Error Rate

Figure 9. Comparison of training time and error rate for asynchronous DGP-RBF with 1, 5 and 10 workers.

We report the results in Figure 9, and as expected, the training time decreases in proportion to the number of workers, albeit
sub-linearly. On the other hand, the increasing error rate confirms our intuition that imprecise updates of the gradients
negatively impact the optimization procedure. The work in Chen et al. (2016) corroborates our findings, and motivates
efforts in the direction of alleviating this issue.

128

Chapter 4

Conclusions

The topic of nonparametric modeling through kernel methods has gained considerable atten-

tion in Machine Learning since the development of Support Vector Machines [8] and Gaussian

processes [40] in the ’90s. After that, a huge number of contributions have been proposed

to scale kernel-based learning. While these approaches have proven successful and offer an

elegant framework for nonparametric modeling and, in the case of gps, for quantification of

uncertainty, recent years have seen the rise of deep learning as the preferred way to tackle

large-scale Machine Learning problems, given the impressive performance in various tasks

[26]. Regarding several model approximations and lack of scalability as the limiting factors

for gps, the contributions gathered in this thesis aim to render the applicability of gp model-

ing more practical and scalable. By developing these techniques further, the aim is to be able

to use gp models on large-scale problems where an effective comparison with deep learning

techniques can be attempted. Some works are already pointing to the ability of kernel meth-

ods to perform on-par with deep neural networks [27, 21], so there is hope that this is actually

possible. My research agenda will explore these ideas in the context of gps and quantification

of uncertainty.

My current ongoing research is investigating a number of extensions as follows:

• Probabilistic numerics for large scale gp learning: One line of work that I am

currently pursuing in collaboration with the University of Oxford is in probabilistic

numerics, that is an emerging area in Machine Learning and Statistics. The key idea is

to reinterpret calculation as estimation, so that expensive or intractable computations

are replaced by estimates based on evidence that is easier to gather. As a result, these

methods offer a way to quantify the uncertainty in the calculation due to the lack

of computational resources, and when these calculations are part of some statistical

models, this uncertainty can be propagated forward to model predictions and analysis.

We recently applied this to the Bayesian inference of log-determinants of large dense

matrices showing the impact of using a small number of matrix-vector products on its

129

uncertainty.

• Structured Gaussian matrices: Kernel methods using random feature expansions

struggle to cope effectively with large-dimensional input space due to the introduction

of O(DNRF) parameters, where D is the dimension of the input space and NRF is the

number of random features. For simplicity, assuming NRF = D, this means dealing with

O(D2) parameters leading to time complexity that is also O(D2). In the literature there

has been work to deal with the quadratic scaling in D by using structured random ma-

trices [34, 42], leading to space complexity of O(D) and time complexity O(D log(D)).

We are starting a collaboration with the authors of [42] at Google Research in NYC to

apply these ideas to the approximation of dgps, that should therefore provide us with

the possibility to obtain better gp and dgp approximations.

• Better variational approximations: The framework for large-scale inference of dgps

is based on stochastic variational inference, where the assumption is that the posterior

over model parameters factorizes. This is a restrictive assumption that affects the qual-

ity of the inference, and it would be sensible to obtain better variational approximations

that are still amenable to mini-batch learning. There have been some works that yield

tighter bounds for the marginal likelihood [5], and the idea is to study these in the

context of large-scale learning of gps and dgps.

• Distributed linear algebra: In the context of inference or optimization of covariance

parameters of gps, it would be interesting to be able to solve these without any approx-

imations. In particular, this would entail being able to solve large dense linear systems

exactly. We are currently investigating how to do this exploiting large-scale computing

facilities, by extending previous work on parallel algebra. We are currently looking into

the development of efficient distributed Cholesky factorization algorithms, as well as

iterative (preconditioned) algorithms to solve large dense linear systems.

I envisage immediate impact of the results of my research in a number of areas where non-

parametric models are commonly employed, such as the emulation of the output of expensive

models. The applicability of Gaussian processes is currently limited by the scalability issues

discussed above, and scaling computations without sacrificing accuracy would make an enor-

mous impact in this community. I am starting a collaboration with a former colleague at

UCL that uses statistical models to emulate the output of simulators implementing climate

and Tsunami models, and I am planning to capitalize on this soon, as the work on scaling

Bayesian computations for Gaussian processes is mature enough.

I also envisage immediate impact in life sciences. Currently, inferring parameters of math-

ematical models describing regulatory interactions and signaling processes in living cells is

extremely challenging, and accurately modeling the development of neurological disorders

from neuroimaging data is very difficult. Challenges arise because of the necessity to simulate

expensive models forward in time, and because of the huge dimensionality of the data. By

130

scaling Bayesian computations for Gaussian processes it will be truly possible to draw mean-

ingful conclusions from the analysis of data in these domains. I am currently involved in a

collaboration with biologists at Glasgow, UK, and, as an example, this research could yield a

deeper understanding of potential factors in the development of cardiovascular diseases and

diabetes. I am also collaborating with scientists at the Donders Institute of Neuroscience, The

Netherlands, that is a center of excellence in the analysis of neuroimaging data. I’ve recently

been awarded an AXA Chair for the duration of seven years to investigate these topics in

greater detail.

131

132

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015.

[2] C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo

computations. The Annals of Statistics, 37(2):697–725, Apr. 2009.

[3] N. Babaguchi, K. Aizawa, J. R. Smith, S. Satoh, T. Plagemann, X.-S. Hua, and R. Yan,

editors. Proceedings of the 20th ACM Multimedia Conference, MM ’12, Nara, Japan,

October 29 - November 02, 2012. ACM, 2012.

[4] C. M. Bishop. Pattern recognition and machine learning. Springer, 1st ed. 2006. corr.

2nd printing 2011 edition, Aug. 2006.

[5] Y. Burda, R. B. Grosse, and R. Salakhutdinov. Importance weighted autoencoders.

CoRR, abs/1509.00519, 2015.

[6] E. Canestrelli, P. Canestrelli, M. Corazza, M. Filippone, S. Giove, and F. Masulli. Local

learning of tide level time series using a fuzzy approach. In IJCNN, pages 1813–1818.

IEEE, 2007.

[7] C. Carota, M. Filippone, R. Leombruni, and S. Polettini. Bayesian nonparametric dis-

closure risk estimation via mixed effects log-linear models. Annals of Applied Statistics,

9(1):525–546, 2015.

[8] C. Cortes and V. Vapnik. Support Vector Networks. Machine Learning, 20:273–297,

1995.

[9] K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random feature expansions

for deep Gaussian processes, 2016. arXiv:1610.04386.

[10] K. Cutajar, M. A. Osborne, J. P. Cunningham, and M. Filippone. Preconditioning kernel

matrices. In Proceedings of the 32nd International Conference on Machine Learning,

ICML 2016, New York City, USA, June 19-24, 2016, 2016.

133

[11] A. C. Damianou and N. D. Lawrence. Deep Gaussian Processes. In Proceedings of the

Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS

2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, volume 31 of JMLR Proceedings,

pages 207–215. JMLR.org, 2013.

[12] M. Dell’Amico, M. Filippone, P. Michiardi, and Y. Roudier. On user availability predic-

tion and network applications. IEEE Transactions on Networking, 2014.

[13] F. Dondelinger, M. Filippone, S. Rogers, and D. Husmeier. ODE parameter inference

using adaptive gradient matching with Gaussian processes. In AISTATS, 2013.

[14] D. K. Duvenaud, O. Rippel, R. P. Adams, and Z. Ghahramani. Avoiding pathologies in

very deep networks. In Proceedings of the Seventeenth International Conference on Arti-

ficial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014,

volume 33 of JMLR Workshop and Conference Proceedings, pages 202–210. JMLR.org,

2014.

[15] M. Filippone and R. Engler. Enabling scalable stochastic gradient-based inference for

Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE). In

Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,

Lille, France, July 6-11, 2015, 2015.

[16] M. Filippone and M. Girolami. Pseudo-marginal Bayesian inference for Gaussian pro-

cesses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2214–

2226, 2014.

[17] M. Filippone, A. F. Marquand, C. R. V. Blain, S. C. R. Williams, J. Mourão-Miranda,

and M. Girolami. Probabilistic Prediction of Neurological Disorders with a Statistical

Assessment of Neuroimaging Data Modalities. Annals of Applied Statistics, 6(4):1883–

1905, 2012.

[18] M. Filippone, M. Zhong, and M. Girolami. A comparative evaluation of stochastic-based

inference methods for Gaussian process models. Machine Learning, 93(1):93–114, 2013.

[19] M. N. Gibbs. Bayesian Gaussian processes for regression and classification. PhD thesis,

University of Cambridge, 1997.

[20] J. Hensman, A. G. de G. Matthews, M. Filippone, and Z. Ghahramani. MCMC for

variationally sparse Gaussian processes. In Advances in Neural Information Process-

ing Systems 28: Annual Conference on Neural Information Processing Systems 2015,

December 7-12 2015, Montreal, Quebec, Canada, 2015.

[21] P. Huang, H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhadran. Kernel methods

match deep neural networks on TIMIT. In IEEE International Conference on Acoustics,

Speech and Signal Processing, 2014.

134

[22] S. Kim, M. Filippone, F. Valente, and A. Vinciarelli. Predicting the conflict level in tele-

vision political debates: an approach based on crowdsourcing, nonverbal communication

and Gaussian processes. In Babaguchi et al. [3], pages 793–796.

[23] S. Kim, F. Valente, M. Filippone, and A. Vinciarelli. Predicting continuous conflict per-

ception with Bayesian Gaussian processes. IEEE Transactions on Affective Computing,

5(2):187–200, 2014.

[24] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proceedings of

the Second International Conference on Learning Representations, ICLR 2014, Banff,

Canada, April 14-16, 2014, 2014.

[25] K. Krauth, E. V. Bonilla, K. Cutajar, and M. Filippone. AutoGP: Exploring the capa-

bilities and limitations of Gaussian process models, 2016. arXiv:1610.05392.

[26] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[27] Z. Lu, A. May, K. Liu, A. B. Garakani, D. Guo, A. Bellet, L. Fan, M. Collins, B. Kings-

bury, M. Picheny, and F. Sha. How to scale up kernel methods to be as good as deep

neural nets. CoRR, abs/1411.4000, 2014.

[28] A. F. Marquand, M. Filippone, J. Ashburner, M. Girolami, J. Mourao-Miranda, G. J.

Barker, S. C. R. Williams, P. N. Leigh, and C. R. V. Blain. Automated, High Accuracy

Classification of Parkinsonian Disorders: A Pattern Recognition Approach. PLoS ONE,

8(7):e69237+, July 2013.

[29] L. Mohamed, B. Calderhead, M. Filippone, M. Christie, and M. Girolami. Population

MCMC methods for history matching and uncertainty quantification. Computational

Geosciences, 16(2):423–436, 2012.

[30] G. Mohammadi, A. Origlia, M. Filippone, and A. Vinciarelli. From speech to personality:

mapping voice quality and intonation into personality differences. In Babaguchi et al.

[3], pages 789–792.

[31] R. M. Neal. Bayesian Learning for Neural Networks (Lecture Notes in Statistics).

Springer, 1 edition, Aug. 1996.

[32] M. Niu, S. Rogers, M. Filippone, and D. Husmeier. Fast inference in nonlinear dynamical

systems using gradient matching. In Proceedings of the 32nd International Conference

on Machine Learning, ICML 2016, New York City, USA, June 19-24, 2016, 2016.

[33] A. D. O’Harney, A. Marquand, K. Rubia, K. Chantiluke, A. B. Smith, A. Cubillo,

C. Blain, and M. Filippone. Pseudo-marginal Bayesian multiple-class multiple-kernel

learning for neuroimaging data. In 22nd International Conference on Pattern Recog-

nition, ICPR 2014, Stockholm, Sweden, August 24-28, 2014, pages 3185–3190. IEEE,

2014.

135

[34] A. Rahimi and B. Recht. Random Features for Large-Scale Kernel Machines. In J. C.

Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information

Processing Systems 20, pages 1177–1184. Curran Associates, Inc., 2008.

[35] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT

Press, 2006.

[36] J. M. Rondina, M. Filippone, M. Girolami, and N. S. Ward. Decoding post-stroke motor

function from structural brain imaging. NeuroImage: Clinical, 12:372–380, 2016.

[37] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15(1):1929–1958, 2014.

[38] M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes.

In D. A. Dyk and M. Welling, editors, Proceedings of the Twelfth International Confer-

ence on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida,

USA, April 16-18, 2009, volume 5 of JMLR Proceedings, pages 567–574. JMLR.org, 2009.

[39] M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dy-

namics. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International

Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 -

July 2, 2011, pages 681–688. Omnipress, 2011.

[40] C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20:1342–1351, 1998.

[41] X. Xiong, M. Filippone, and A. Vinciarelli. Looking good with flickr faves: Gaussian

processes for finding difference makers in personality impressions. In ACM Multimedia,

2016.

[42] F. X. Yu, A. T. Suresh, K. M. Choromanski, D. Holtmann-Rice, and S. Kumar. Or-

thogonal random features. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon,

and R. Garnett, editors, Advances in Neural Information Processing Systems 29: An-

nual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,

Barcelona, Spain, pages 1975–1983, 2016.

136

	Chapter Introduction
	Motivation
	Bayesian Gaussian Processes for Quantification of Uncertainty
	Plan of the thesis

	Chapter Bayesian inference for Gaussian process models
	Article: A comparative evaluation of stochastic-based inference methods for Gaussian process models
	Article: Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities
	Article: Pseudo-Marginal MCMC for Gaussian Processes

	Chapter Large-Scale Gaussian process learning
	Article: Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
	Article: Preconditioning Kernel Matrices
	Article: MCMC for Variationally Sparse Gaussian Processes
	Article: Random Feature Expansions for Deep Gaussian processes

	Chapter Conclusions
	Bibliography

