Stocator: A High Performance Object Store Connector for
Spark:

Gil Vernik, Michael Factor, Elliot K.
Kolodner, Effi Ofer
IBM Research — Haifa
{gilv, factor, kolodner, effio}@il.ibom.com

CCS Concepts

eInformation systems — MapReduce-based systems;
Cloud based storage;

Data is the natural resource of the 21st century. It is
being produced at dizzying rates, e.g., for genomics by se-
quencers, for Media and Entertainment with very high res-
olution formats, and for Internet of Things (IoT) by multi-
tudes of sensors. Object Stores such as AWS S3, Azure Blob
storage, and IBM Cloud Object Storage, are highly scalable
distributed storage systems that offer high capacity, cost ef-
fective storage for this data. But it is not enough just to
store data; we also need to derive value from it. Apache
Spark is the leading big data analytics processing engine. It
runs up to one hundred times faster than Hadoop MapRe-
duce and combines SQL, streaming and complex analytics.
In this poster we present Stocator, a high performance stor-
age connector, that enables Spark to work directly on data
stored in object storage systems.

Current connectors to object stores for Spark, e.g., S3a [1]
and the Hadoop Swift Connector [2] are notorious for their
poor performance for write workloads. The poor perfor-
mance of these connectors follows from their assumption of
file system semantics, which is natural given that their model
of operation is based on the way that Hadoop interacts with
its original storage system, HDFS. In particular, Spark and
Hadoop achieve fault tolerance and enable speculative exe-
cution by creating temporary files and then renaming these
files. This paradigm avoids interference between threads do-
ing the same work and thus writing output with the same
name. Notice, however, that rename is not a native object
store operation; not only is it not atomic, but it must be im-
plemented using a costly copy operation, followed by delete.

Others have tried to improve the performance of object
store connectors, e.g., the DirectOutputCommitter [4] for
S3a introduced by Databricks, but have failed to preserve the
fault tolerance and speculation properties of the temporary
file/rename paradigm. There are also recommendations in

*The research leading to these results has received funding from
the European Union Horizon 2020 Research and Innovation Pro-
gramme (grant agreement 644182 — IOStack).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SYSTOR ’17 Haifa, Israel

(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5035-8/17/05.

DOL: http://dx.doi.org/10.1145/3078468.3078496

Pietro Michiardi, Francesco Pace
. Eurecom
{pietro.michiardi,

francesco.pace}@eurecom.fr

the Hadoop open source community to abandon speculation
and employ an optimization [5] that renames files when tasks
complete instead of waiting for the completion (commit) of
the entire job. However, incorrect executions, though rare,
can still occur even with speculation turned off.

Stocator takes advantage of object store semantics to achieve
both high performance and fault tolerance. It eliminates the
rename paradigm by writing each output object to the ob-
ject’s final name. The name includes both the part and
attempt numbers, so that multiple attempts to write the
same part use different object names. By leveraging the in-
herent atomicity of object creation we obtain fault tolerance
and enable speculative execution; by avoiding the rename
paradigm we greatly decrease the complexity of the connec-
tor and the number of operations on the object store. Our
connector also takes advantage of HTTP Chunked Transfer
Encoding, streaming output data to the object store as it
is produced, thereby avoiding the need to write objects to
local storage prior to writing them to the object store.

We have implemented our connector for the OpenStack
Swift API and shared it in open source [3]. We have com-
pared its performance with the S3a and Hadoop Swift con-
nectors over a ranges of workloads and found that it executes
far less operations on the object store, in some cases as little
as one thirtieth of the operations. Since the price for an
object store service typically includes charges based on the
number of operations executed, this reduction in operations
lowers the costs for clients in addition to reducing the load on
client software. It also reduces costs and load for the object
store provider since it can serve more clients with the same
amount of processing power. Stocator also substantially in-
creases performance for Spark workloads running over object
storage, especially for write intensive workloads, where it is
as much as 18 times faster.

REFERENCES

[1] Hadoop-AWS Module: Integration with Amazon Web
Services. https://hadoop.apache.org/docs/current/
hadoop-aws/tools/hadoop-aws/index.html.

[2] Hadoop OpenStack Support: Swift Object Store.
http://hadoop.apache.org/docs/current /
/hadoop-openstack/index.html.

[3] IBM Stocator Source Code.
https://github.com/SparkTC /stocator.

[4] [SPARK-10063][SQL] Remove
DirectParquetOutputCommitter.
https://github.com/apache/spark/pull/12229.

[5] Using Apache Spark with Amazon S3.
https://docs.hortonworks.com/HDPDocuments/
HDCloudAWS/HDCloudAWS-1.11.0/bk_hdcloud-aws/
content/s3-spark/index.html.



