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ABSTRACT
End-to-end security in the cloud has gained even more im-
portance after the outbreak of data breaches and massive
surveillance programs around the globe last year. While the
community features a number of cloud-based security mech-
anisms, existing solutions either provide security at the ex-
pense of the economy of scale and cost effectiveness of the
cloud (i.e., at the expense of resource sharing and dedupli-
cation techniques), or they meet the latter objectives at the
expense of security (e.g., the customer is required to fully
trust the provider).

In this paper, we shed light on this problem, and we ana-
lyze the challenges in reconciling security and functional re-
quirements in existing multi-tenant clouds. We also explore
the solution space to effectively enhance the current security
offerings of existing cloud storage services. As far as we are
aware, this is the first contribution which comprehensively
explores possible avenues for reconciling the current cloud
trends with end-to-end security requirements.

Keywords: Cloud security, multi-tenancy, secure dedu-
plication, resource isolation, shared ownership.

1. INTRODUCTION
With the ever increasing amount of data produced world-

wide, the cloud offers a cheaper and a more reliable alter-
native to local storage. Existing cloud service providers
such as Amazon S3 and Microsoft Azure, or backup ser-
vice providers like Dropbox and Memopal guarantee a good
trade-off between quality of service and cost effectiveness.
Cost effectiveness in the cloud is typically achieved through
the extensive use of multi-tenancy solutions combined with
efficient distributed algorithms that run on top of simple
hardware, which ensure high levels of scalability and elastic-
ity. The combination of multi-tenancy solutions with stor-
age efficiency techniques (e.g., compression, deduplication)
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promises drastic cost reductions and high service availabil-
ity.

The advent of cloud storage and computation services,
however, comes at the expense of data security and user pri-
vacy. Indeed, most cloud providers nowadays deploy stan-
dard security solutions by which they retain full control over
the customers’ data in order to ensure that their offerings
can leverage the multitude of benefits originating from the
adoption of multi-tenancy and storage efficiency techniques.
This entails retaining cryptographic keying material, choos-
ing the underlying cryptographic primitives, etc. This strat-
egy does not only increase the profitability of the cloud, but
also ensures that cloud providers can offer cheap services to
users at relatively small costs. Unfortunately, in this model,
customers of cloud services have no means to control and
verify, how data is processed or stored.

Ideally, cloud customers would like to gain back full con-
trol over their services without having to depend on the
best-effort mechanisms deployed by cloud providers. This is
especially true after the outbreak of the PRISM revelations.
These revelations unearthed the details of a massive surveil-
lance program which was not restricted to one geographical
area, nor was it mitigated by the various security counter-
measures already deployed within the targeted services. As
a consequence, companies and individuals which make use of
clouds are less keen to rely on standard cloud security solu-
tions and call for end-to-end security whereby only end-users
and authorized parties can have access to their data/services
and no-one else.

However, achieving end-to-end security in existing cloud
services is not straightforward. Notably, end-to-end security
aims at ensuring that end-users are the only entities able to
decrypt their encrypted data outsourced to the cloud. This
implies that cloud service providers may not be able to of-
fer standard APIs to efficiently process customers’ data, nor
may they be able to take full advantage of cost-effective
storage solutions which rely on existing deduplication and
compression mechanisms. In addition to data confidential-
ity, users also call for resource isolation solutions that enable
tenants to have a secure and “isolated” environment. Al-
though implementing resource isolation in the cloud would
indeed deter threats originating from unknown vulnerabili-
ties and the subsequent loss of data governance, these mea-
sures typically come at odds with multi-tenancy and re-
source sharing—which would in turn prevent a successful
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and cost-effective instantiation of the current multi-tenant
cloud model.

Existing state of the art solutions completely give up one
requirement for the other. That is, they either rely on stan-
dard solutions at the expense of end-to-end security and gov-
ernance, or provide end-to-end security but renounce any
form of resource sharing or storage efficiency techniques.
This explains the reason for which, none of today’s cloud
storage services provide security guarantees in their Service
Level Agreements (SLAs) [1], in spite of the plethora of cloud
security solutions that populate the literature.

While customers’ needs are associated with an end-to-end
secure and isolated platform, cloud service providers always
look for means to minimize their expenditures either by com-
pressing the data or by sharing the resources among multiple
tenants. Table 1 highlights the main tension between secu-
rity and functional requirements in the cloud.

In this paper, we shed light on each challenge depicted in
this table and explore the solution space for reconciling secu-
rity and functional requirements in the cloud. More specifi-
cally, we outline the shortcomings of existing data confiden-
tiality and multi-tenancy resource isolation solutions in the
literature for supporting the functional requirements of to-
day’s required cost-effective clouds. We then sketch a num-
ber of solutions for enhancing security and data governance
in the cloud without compromising storage efficiency and
resource sharing.

We summarize our contributions as follows:

• We analyze the tension between data confidentiality,
and storage efficiency solutions that are currently adopted
in modern multi-tenant clouds and sketch a number of
potential solutions addressing this problem.

• We review existing techniques for isolating resources
in multi-tenant cloud environments and outline their
limitations in enabling resource sharing among various
tenants.

• We explore the tradeoffs between resource isolation
and shared ownership in the cloud, and we outline a so-
lution that supports shared ownership in existing cloud
platforms (which enforce isolation).

The remainder of this paper is organized as follows. In
Section 2, we review current secure deduplication technolo-
gies and analyze their application to the cloud model. In
Section 3, we discuss and analyze the tension between re-
source isolation and resource sharing in multi-tenant clouds.
In Section 4, we explore the tradeoffs between resource isola-
tion and shared ownership in the cloud. Finally, we conclude
the paper in Section 5.

2. CONFIDENTIALITY VS. STORAGE EF-
FICIENCY AND MULTI-TENANCY

Multi-tenant cloud service providers always seek means to
save their storage costs. One way to maximize their storage
space is to perform cross-user deduplication which consists of
detecting duplicate data segments among several customers’
data and storing only one copy of them together with the
information about whom they belong to (cf. Figure 1). Re-
cent studies show that cross-user data deduplication can save
storage costs by more than 50% in standard file systems [11],
and by up to 90-95% for back-up applications [11]. Such
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Figure 1: Example of deduplication. Here, exact file
copies are only stored once.

techniques are already adopted by large providers, such as
Dropbox, IBM, EMC, Microsoft, Oracle, etc. Notice that
additional savings can be achieved through client-side dedu-
plication which effectively occurs before the actual upload of
their data. Here, customers check the existence of this data
on the cloud server (by sending a hash of the data) and send
the non-existent data only—thus considerably reducing their
bandwidth and storage consumption.

In [7], Harnik et al. describe a number of threats posed
by client-side data deduplication, in which an adversary can
learn if a file is already stored in a particular cloud by guess-
ing the hashes of predictable messages. This leakage can be
countered using Proofs of Ownership schemes (PoW), which
enable a client to prove it possesses the file in its entirety.
PoW are inspired by Proofs of Retrievability and Data Pos-
session (POR/PDP) schemes [8], with the difference that
PoW do not have a pre-processing step at setup time. The
literature features a number of PoW-based solutions lever-
aging Merkle trees, Bloom filters, etc.

Even if the privacy leakage associated with data dedupli-
cation can be addressed by relying on PoW schemes, data
deduplication nevertheless conflicts with one of the most
important cloud security requirement: data confidentiality.
Recall that data confidentiality is generally satisfied through
encryption. However, existing encryption solutions are in-
compatible with data deduplication since two identical data
segments belonging to two different users become indistin-
guishable once they are encrypted—and hence cannot be
deduplicated anymore.

In this section, we analyze this tension and discuss a num-
ber of possible avenues to reconcile confidentiality with effi-
ciency for multi-tenant cloud storage services.

2.1 Message-Locked Encryption: The Good
and The Bad

With the rise of privacy concerns, data encryption be-
comes compulsory for cloud storage solutions. As mentioned
earlier, current encryption schemes however come at odds
with the multi-tenant cloud storage technology which re-
lies on the use of data deduplication techniques to maximise
space savings. For instance, two tenants T1 and T2 wishing
to upload the same file F to an untrusted cloud server, ini-
tially encrypt the data with their own keying material K1

and K2, respectively. When using randomized encryption,
such an operation results in two different ciphertexts C1 and
C2, and therefore renders deduplication ineffective.

The most prominent proposal to address confidentiality
and storage efficiency is to rely on deterministic Message-
Locked Encryption (MLE). Message-locked encryption was
first formalized in [4]; an MLE scheme is a tuple (P,K, E ,D)



Storage efficiency through data reduction Multi-tenancy and Resource sharing
Data encryption Deduplication over encrypted data (Section 2) No conflicts
Access control Proofs of ownership (Section 2) Shared ownership (Section 4)
Resource isolation Secure reference monitor implementation (Section 3)

Table 1: Requirements for efficient and secure cloud storage.

of algorithms, where (K, E ,D) are deterministic algorithms.
Parameter generation algorithm P outputs a public param-
eter P—common to all users of the system. To encrypt
a message M , the user first needs to generate a message
derived key K ← K(P,M), and further computes the corre-
sponding ciphertext C ← E(P,K,M). C can be decrypted
into M ← D(P,C,K). In MLE, security requires that no ef-
ficient attacker can distinguish ciphertexts of unpredictable
messages from random strings except with negligible prob-
ability.

The most prominent instantiation of MLE is convergent
encryption [6] which encrypts data with a unique key that is
derived from the data itself. Here, tenants first compute the
encryption key by hashing the data segment and further en-
crypt this data with the computed key using a deterministic
encryption algorithm. Similar to other MLE instantiations,
convergent encryption suffers from a number of attacks such
as dictionary attacks [7]; here, if the cloud server can pre-
dict the content of a message/file, then it can derive the
corresponding encryption key and decrypt the message.

Therefore, the challenge lies in encrypting data segments
deterministically with the same encryption key, while, on the
other hand, preventing the cloud server from discovering this
key—even when the message content are predictable.

2.2 Towards Secure Data Deduplication
A number of solutions for secure data deduplication in the

cloud [2,3,13,18] recently emerged with the goal of enhancing
the provisions of message-locked encryption schemes. Most
of these solutions rely on the existence of an additional party
that assists in the key generation phase, or even performs
data encryption. In what follows, we discuss these solutions
in greater details.

Popularity-based Solutions
Recall that the use of semantically secure encryption effec-
tively prevents the detection of duplicate copies and hence
restrains the deduplication ratio. To reconcile data dedu-
plication with data encryption, recent contributions [13, 18]
propose the reliance on different encryption techniques based
on the popularity of the data. Namely, they assume that
whenever a data segment is shared among more than t users
(t being large), such “popular” data may not be considered
as being sensitive, and as such can be encrypted with conver-
gent encryption. On the other hand, less popular data, such
as users’ personal data, is likely to remain unique; such data
can be encrypted using semantically secure encryption with
a user-generated pseudo-random key. With time, whenever
unpopular data becomes popular, the encryption could be
converted to its convergent encrypted variant.

For example, Stanek et al. initially propose [18] to upload
users’ data encrypted with two layers of encryption: conver-
gent encryption and threshold encryption. Whenever data
becomes popular the outer layer (i.e., threshold encryption)
is peeled off with the aid of a trusted third party—which

allows it to be effectively deduplicated owing to the reliance
on convergent encryption in the inner layer. Notice that
this solution requires the client to upload another version
of the same data—encrypted with a symmetric encryption
solution—to cater for the case where the data remains un-
popular. These semantically secure copies are removed from
the server whenever the popularity threshold is reached.

In order to avoid the need to store two encrypted copies
of unpopular data for the same user, PerfectDedup [13] fur-
ther assists the user in discovering the popularity of the
data prior to choosing the appropriate encryption mecha-
nism. This process unfolds as follows: the user first sends a
lookup request for the convergent encrypted version of the
data. If the lookup succeeds, then the user learns that this
data segment is popular and is subject to deduplication; on
the other hand, if the convergent encrypted version does
not exist, the user will encrypt it with a symmetric encryp-
tion scheme and upload it to the server. To counter dictio-
nary attacks on the lookup process, PerfectDedup leverages
a privacy-preserving popularity detection mechanism that
relies on perfect hashing which yields well-distributed col-
lisions for unpopular data. Thanks to this primitive, the
user can decide which encryption solution to use to protect
her data prior to its upload, without leaking any meaning-
ful information to the untrusted cloud server. Compared
to [18], PerfectDedup significantly reduces the storage and
communication overhead by storing a single copy of each
data segment being it popular or unpopular ; the computa-
tional overhead is also optimized due to the use of symmetric
encryption instead of a threshold encryption.

Notice that both solutions however rely on a third party,
dubbed index server, in order to follow the popularity of
each data segment. Indeed, since the cloud server cannot
distinguish similar unpopular data, the index server keeps
track of data uploads and counts duplicate data. For exam-
ple, in [13], whenever a user discovers that her data is not
popular yet, she contacts the index server who increases the
popularity count for this particular data.

Solutions based on Server-aided Key Generation
Another approach of protecting deduplicated data is to pro-
tect the secrecy of the message-locked encryption key itself.
A number of solutions, such as [2,3] generate this encryption
key based on the data and a common secret key generated
by an assisting trusted key server using a verifiable obliv-
ious key generation protocol. For instance, in [3], a user
executes an oblivious pseudo-random function (OPRF) pro-
tocol based on blind RSA signatures with the key server in
order to generate the encryption key. Although the user’s in-
put to this protocol is a message-locked key (the hash of the
data to be uploaded), the key server will contribute with
its own secret key. As a result, the proposed scheme ob-
structs offline dictionary attacks by forcing the cloud server
to contact the key server whenever it makes a guess for an
uploaded file.



The benefits of the key generation module of [2, 3] are
twofold:

• Since the protocol is oblivious, it ensures that the cloud
provider does not learn any information about the files
(e.g., about the file hash) during the process. On the
other hand, this protocol enables the client to check the
correctness of the computation performed by the cloud
provider (i.e., verify the cloud provider’s signature).

• By involving the key server in the key generation mod-
ule, brute-force attacks on predictable messages can be
slowed down by rate-limiting key-generation requests.

Building on the same idea, Armknecht et al. [2] suggest
ClearBox, which unlike [3], implements an OPRF based on
blind BLS signatures. The rationale here is that although
the verification of BLS signatures is more expensive than its
RSA counterpart, BLS signatures are considerably shorter
than RSA signatures, and are faster to compute by the key
server. This, in turn, improves the scalability of the key
server (w.r.t. the number of keys generated per second). In
addition, ClearBox leverages novel cryptographic accumula-
tors in order to allow a storage service provider to transpar-
ently attest to its customers the deduplication patterns of
the (encrypted) data that it is storing. By doing so, Clear-
Box enables cloud users to verify the effective storage space
that their data is occupying in the cloud, and consequently
to check whether they qualify for benefits such as price re-
ductions, etc.

ClearBox can be integrated with existing cloud storage
providers such as Amazon S3 and Dropbox without any
modifications, and motivates a new cloud pricing model which
takes into account the level of deduplication undergone by
data. Such a model does not threaten the profitability of the
cloud business and—on the contrary—gives considerable in-
centives for users to store large and popular data such as
music and video files in the cloud (since the storage costs of
popular data might be cheaper).

Solutions based on User Collaboration
Notice that solutions based on server-aided key generation
do not prevent a curious key server from performing brute-
force searches on predictable messages, acquiring the hash,
and the corresponding key. In this sense, the security offered
by such schemes in the presence of a curious key server re-
duces to that of existing MLE schemes. To remedy this
issue, Liu et al. [10] suggest a solution that does not rely
on any independent server but on the collaboration of the
users uploading the same file. Indeed, a cloud user encrypts
a file with the same encryption key that was used by previ-
ous uploaders of the same file. Owing to the use of an addi-
tively homomorphic encryption, password-authenticated key
exchange (PAKE), and a short hash function, the solution
achieves deduplication with better security guarantees com-
pared to previous solutions. More specifically, whenever a
file is uploaded for the first time, the data owner also up-
loads a short hash of its cleartext version (10-20 bits long).
The cloud server pairs this hash value with a list of all users
whose files map to it. Given this, a data uploader can de-
tect the potential data owners of its to-be-deduplicated data
without revealing the cleartext version to the cloud. The up-
loader further runs a single round PAKE protocol together
with each of these cloud users whereby the password is set as

Figure 2: Possibilities for sharing and isolating
computational resources. Isolation is strongest on
dedicated hardware, while sharing is most efficient
within an application.

the (low-entropy) hash of their files. The protocol delivers
to the new uploader the actual file encryption key whenever
both files are identical, and a random key otherwise. By
leveraging the PAKE-based protocol, the proposed scheme
prevents dictionary attacks without the aid of any additional
server.

Summary
Table 2 summarizes our findings. Namely, existing solu-
tions either require third parties (e.g., assisting service or
index server) to ensure resilience to dictionary attacks (only
against the cloud provider), or require online user presence
to prevent dictionary attacks. Devising secure deduplication
technologies that achieve full resistance against dictionary
attacks without requiring online user presence thus emerges
as an interesting research direction.

3. MULTI-TENANCY VS. RESOURCE ISO-
LATION

In addition to the existing conflict between data confiden-
tiality and storage efficiency (cf. Section 2), cloud providers
that offer multi-tenancy solutions face another inevitable
dilemma. On the one hand, they have to ensure that ten-
ants’ resources are well isolated from one another, because
a breach in resource isolation can result in information leak-
age or even compromise. On the other hand, this contradicts
a cloud provider’s incentive of making efficient use of their
resources—resources that are not shared might lie idle, such
as a CPU core that is not in use or a disk that holds only a
small amount of data.

Sharing can be implemented for different resources, at
different granularities and in different layers of the soft-
ware stack. In a multi-tenant cloud scenario, we are pri-
marily interested in computing, network, and storage re-
sources. From bottom to top, those resources can be shared
at the hardware, the hypervisor, the operating system, or
the application layer. In the context of computational re-
sources, the sharing granularity ranges from a tenant being
assigned a dedicated hardware node, a dedicated virtual ma-
chine within a node, a dedicated container within an OS, a
dedicated process within an OS, or just a dedicated context
within an application (Figure 2).

Clearly, the sharing of resources needs to be mediated by a
privileged entity. This entity, which is traditionally referred
to as the Reference Monitor, has the necessary privileges
to access all tenant resources, and is in charge of perform-
ing authentication and authorization of tenants. On top of
access control, the reference monitor needs to isolate the re-
sources sufficiently such that only entitled tenants can access



Resilience to Dictionary Attacks Requires online users Reliance on third parties
Convergent Encryption No No No
Popularity-based Solutions Only for unpopular data No Requires an index server
Server-assisted Solutions Only against the cloud storage No Requires an assisting server
Solutions based on user collaboration Yes Yes No

Table 2: Comparison of existing secure deduplication techniques.

a requested resource. For instance, when sharing compu-
tational resources at the application layer, the application
logic needs to ensure that tenants are not able to access an-
other tenant’s memory region. Often the reference monitor
will work together with features of the underlying hardware
to implement resource isolation. For example, CPUs offer
the possibility to run code in different privilege levels (rings)
and virtual memory is enabled by the memory management
unit.

From a security point of view, the degree to which re-
sources are shared becomes a pivotal aspect. The lower the
level of sharing, the smaller is the privileged code base, yet
at the same time the more severe are the consequences of a
bypass. For example, a bypass at the process level, will just
be able to go as far as the privileges of the process reach,
e.g., on Unix systems it will only be able to access memory
of processes within the same group – but the attack surface
is potentially relatively large, including the whole operating
system. On the other hand, hypervisors with their typically
small code base expose little attack surface, yet a bypass
allows access to the actual hardware.

3.1 Vulnerabilities, Misconfigurations and Side
Channels

Building a secure multi-tenant solution entails multiple
challenges. Foremost, the solution should provide each ten-
ant with a software and hardware stack that appears to be
exclusive per tenant. This goal needs to be well-balanced
with resource isolation at a level that maximizes resource
sharing for the cloud provider. Finally, resource isolation
needs to be implemented in a manner such that it cannot
be bypassed.

A fundamental problem is that the reference monitor’s
own code is often vulnerable, e.g., to memory corruption at-
tacks. Privileged components tend to grow in size as they
become widely used—which increases the number of vul-
nerabilities that could be exploited by attackers to escalate
privileges. For instance, OS kernels are reference monitors
for enforcing discretionary-access-control-based process sep-
aration. However, commodity operating systems such as
Linux have grown to sizes in the order of tens of millions of
lines of code over the year, and have dozens of vulnerabili-
ties found each year. Out of these vulnerabilities, a few can
be exploited to elevate privileges and completely bypass the
isolation enforced by the OS. Another example are runtime
environments such as Java virtual machine implementations.
The security properties of managed code, which can be help-
ful in writing secure multi-tenant applications, are enforced
by the JVM—vulnerabilities in the execution environment
allow for bypasses.

Notice that software vulnerabilities are not the sole reason
for weak resource isolation. Misconfigurations and lax per-
missions are serious threats to security, and cannot be allevi-
ated by implementing completely bug-free resource isolation.
In addition, side-channels established through co-location of

two tenant’s resources can leak sensitive information [14].
Side-channels can be both software- and hardware based.
Memory deduplication at the hypervisor level can be lever-
aged to leak data across VM boundaries; at the operating
system level the same issue applies to containers and pro-
cesses [5]. On the hardware side, cache side channels can be
used to attack cryptographic software.

3.2 Secure Resource Isolation in Multi-tenant
Settings

One way is to ensure that the code that performs access
control is secure, as vulnerabilities in this code would allow
for access control checks to be bypassed and resource isola-
tion to be breached. There are three steps to securing code:
reducing the amount of bugs, reducing the attack surface
and hardening. While testing is typically associated with
the functional aspects of a program, vulnerability-targeted
testing aims at revealing security-critical bugs. A popu-
lar approach is fuzz testing, feeding random input to the
program to trigger memory corruption bugs. At the mo-
ment, Driller [15] is one of the state-of-the-art approaches
in this area, combining fuzz testing with symbolic execu-
tion to explore and test critical parts of application code.
However, cloud software stacks might be well beyond what
application-level fuzz testing tools are capable of. For in-
stance, native distributed systems code that runs in a priv-
ileged mode is less than straightforward to instrument and
binary non-standard communication protocols often do not
come with extensive test suites that would be required for
efficient testing.

In addition to testing, the attack surface of the code, i.e.,
the code paths traversable by an attacker, should be re-
duced as much as possible. Applications running on top of
a cloud software stack might only use a subset of the soft-
ware stack’s capabilities. There are two important aspects
to why reducing attack surface is desirable: On one hand,
the unused code might provide functionality that is useful to
an attacker, making exploitation easier. On the other hand,
unused code might contain vulnerabilities that allow for a
successful exploit in the first place. Serving as the reference
monitor for both process isolation as well as container iso-
lation, the Linux kernel is an important piece of software.
Ktrim [9] performs attack surface reduction on the Linux
kernel for a given application.

Since neither testing nor attack surface reduction are truly
effective in deterring attacks, the exploitation of the remain-
ing vulnerabilities needs to be mitigated through code hard-
ening. In addition to well-established techniques such as
ASLR, which has been improved over the years to the point
where research prototypes apply it at runtime, software fault
isolation instruments code to contain the impact of exploits
and has been employed to sandbox browser extensions [20].
Further, recent advances in control flow integrity protec-
tion are now available in compilers [19]. Unfortunately the
more elaborate hardening techniques such as CFI tend to



Low Sharing Degree Frequent Migration Encryption Vulnerability-targeted Testing Attack-Surface Hardening
Side Channels Yes Yes Yes No No
Privilege Escalation Yes No No Yes Yes

Table 3: Threats to resource isolation and the effectiveness of possible countermeasures.

cause a non-negligible performance overhead. Approaches
to cut these overheads down by lowering the precision of
those methods have been shown to be misguided, as the re-
sulting implementations were too ineffective. Instead, we
believe that knowing the attack surface is key to efficient
hardening, because precise and effective approaches can be
selectively applied to those parts of the code that actually
process attacker-controlled data.

An orthogonal building block to achieve secure resource
isolation is encryption. While not being able to prevent an
attacker from corrupting or deleting data on its own, it can
be used to keep data confidential. This does not only apply
to data at rest: In combination with computation, PrivExec
has shown how encryption can be used to prevent leakage
of process runtime data by encrypting it whenever memory
is paged out to disk [12]. The most thorough solution that
combines encryption and access control for private execu-
tion is the recently released Intel SGX. With SGX, so-called
enclaves are isolated environments in which code can be ex-
ecuted in a completely private manner. Through CPU and
MMU hardware support, the memory used by enclaves is en-
crypted and not directly accessible from outside an enclave,
including the operating system. Hardware support for mem-
ory isolation has also been implemented by ARM’s memory
domains and been subject to recent academic research [16].

Aside from specific solutions, side channel mitigation largely
remains an open problem. For example, hardware that com-
bines isolation with encryption can mitigate side channels,
yet software solutions that build upon these features are lim-
ited to this specific hardware. One generic mitigation of side
channels in the cloud is frequent migration, i.e. switching
to a separate set of the underlying resources. An example
is moving VMs from one physical host to another in short
intervals.

Finally, choosing the right methods to achieve efficient re-
source isolation depends on the task at hand. For example
containers might be the right pick for scenarios that require
multiple process groups to have separate namespaces, but
potentially add unnecessary complexity where resource iso-
lation can be better performed by an application’s runtime.

Summary
Table 3 summarizes our findings. The biggest threats to
secure resource isolation are vulnerabilities in the reference
monitor and side channels. Clearly, the best countermeasure—
isolating resources at a very low level using dedicated hardware—
is not desirable. Side channels can be mitigated by frequent
migration, but in practice this approach requires multiple
physical hosts and sufficiently small transfer intervals. This
makes encryption—potentially enabled by hardware such as
SGX—a suitable countermeasure against side channels. To
build a secure reference monitor, privilege escalation vulner-
abilities need to be avoided. Vulnerability-targeted testing
is essential, yet current solutions do not scale to distributed
software stacks. Combining the use of hardening measures
with attack-surface reduction ensures that the performance
overhead of powerful hardening mechanisms remains low—

even for reference monitors with a large code base such as
OS kernels.

4. RESOURCE ISOLATION VS. DATA OWN-
ERSHIP

Tenant isolation, due to its nature, hinders collaboration
between the tenants. Cloud services, however, are often uti-
lized to bootstrap collaboration platforms. Clearly, in order
to collaborate, tenants should be able to interact and ex-
change data while remaining isolated from the other tenants.
This creates a tension between collaboration and isolation—
which might lead to shortcomings with respect to function-
ality or security.

One example for the need of collaboration is the notion of
shared file ownership [17]. As cloud platforms allow collab-
oration on files, they should also allow collaborative access
control decisions on these files. In contrast, if just one ten-
ant hosts the collaboration account, this tenant is the sole
data owner who unilaterally makes access control decisions.

There are two main arguments why shared ownership may
be preferred to individual ownership in existing clouds. First,
a sole owner can abuse his rights by unilaterally making ac-
cess control decisions. The community features a number
of anecdotes where malicious users revoke access to shared
files from other collaborators. Second, even if tenants are
willing to elect and trust one of them to make access con-
trol decisions, the elected owner may not want to be held
accountable for collecting and correctly evaluating other ten-
ants’ policies. For example, incorrect evaluations may incur
a negative reputation or financial penalties.

4.1 The Notion of Shared Ownership
To define the notion of shared ownership, Soriente et al.

introduce the shared ownership access control model, called
SOM [17]. In SOM, certain tenants become owners. These
owners have to approve every file operation. An operation
is approved if at least t owners support it. An overview of
SOM is shown in Figure 3.

Since cloud platforms currently do not support shared
ownership, the tenants have to achieve the notion of shared
ownership using existing access control mechanisms. The
supported access control policies focus on providing isola-
tion; isolation is of paramount importance since secret/sen-
sitive material should not leak to unauthorized tenants.

SOM requires different kinds of isolation to protect against
different adversaries. For instance, performing access control
using data encryption alone is not sufficient, since shared
ownership demonstrates the need for higher-level isolation
mechanisms. That is, shared ownership should be resistant
to key leakage and collusion attempts. If the file key is
(inadvertently) leaked by one file owner, a user without read
permission should not be able to read the corresponding file.

4.2 Enforcing Shared Ownership in the Cloud
In order to instantiate SOM and achieve shared owner-

ship, centralized enforcement is not well suited, as it would



Access Control

Owners

Tenants Files

Subset
Of

Vote

File
Operations

Granted
Operations

Figure 3: Example of shared ownership in the cloud. Here, a subset of the tenants votes to jointly make
access control decisions on shared files.

depend on a central Policy Decision Point (PDP). The ten-
ant controlling this PDP could make unilateral access con-
trol decisions, which conflicts our previously outlined isola-
tion requirements. In practice, the shared ownership policy
agreed upon by the owners could always be bypassed, and
thus the notion of shared ownership nullified.

Any effective enforcement solution should be distributed,
since it must grant an operation if and only if t owners sepa-
rately support the grant decision. To effectively realize dis-
tributed enforcement with isolation guarantees, owners have
separate accounts on potentially different cloud platforms.
These cloud platforms do not allow the deployment of cus-
tom enforcement components, which makes the enforcement
even more difficult. Instead, cloud platforms only support
basic access control policies via Access Control Lists (ACLs).

To this end, Soriente et al. [17] propose, Commune, the
first concrete proposal to instantiate shared ownership atop
agnostic cloud platforms. Commune supports read and write
operations on files. To write a file to the shared repository,
the writer encodes the file into tokens and distributes the
tokens to the owners’ accounts. A file is written to the shared
repository if and only if the writer successfully distributes
the file’s tokens onto at least t owners’ accounts. That is, a
write access granted to the shared repository is equivalent
to write access to at least t of the owners’ accounts. Read
access works analogously. Such basic access control policies
can be implemented using ACLs.

To protect tokens’ confidentiality from curious cloud providers,
Commune proposes to encrypt the tokens using a collusion-
resistant secret sharing scheme. Namely, to isolate tenants
from each other and thereby protect the system from col-
lusion, the key shares are cryptographically bound to the
target tenant and cannot be combined with shares of an-
other tenant. This is due to the fact that each key share is
blinded by the user ID and the blinding can only be removed
by combining the correct shares.

Commune additionally enforces shared ownership as fol-
lows: (any parts of the) file contents can be recovered if
and only if t file tokens and t key shares are available. In
particular, given t − 1 file tokens and t key shares or t file
tokens and t − 1 key shares, no file contents can be recov-
ered. To achieve this property, the file tokens are encoded
using a special all-or-nothing encoding, which cryptograph-
ically links the different tokens with each other through an
encryption scheme.

Summary
Table 4 summarizes our findings. Namely, previous solutions
do not provide all the required isolation guarantees. We
require isolation against a curious server (confidentiality),
against a misbehaving member (revocation), against par-
tially authorized, colluding members (collusion resistance)
and against an unfair administration (fairness). The work
in [17] is able to satisfy all the isolation requirements, while
providing the functional requirements based on agnostic cloud
platforms that only offer basic access control functionalities.
Extending Commune [17] to support a richer set of access
control operations and improving the overall system perfor-
mance emerges as an interesting research problem.

5. OUTLOOK
In this paper, we explored the solution space to reconcile

security and functional requirements in the cloud. In this
respect, we described a number of solutions that achieve
data confidentiality in the cloud—while supporting dedupli-
cation. We also reviewed and analyzed existing techniques
for isolating resources in multi-tenant cloud environments.
Based on this analysis, we postulate that existing cloud stor-
age platforms are still too weak when it comes to isolating
tenants and containing attacks, and argue that the threat of
unknown vulnerabilities and the subsequent loss of data gov-
ernance is still one of the main reasons why businesses still
shy away from using the cloud. Yet, without resource shar-
ing, the cloud model cannot be successfully implemented.
Indeed, we motivate this tension between resource sharing
and isolation by introducing the notion of shared ownership,
and we discuss a number of practical solutions to bootstrap
shared ownership within existing cloud storage platforms.

We still expect other hazards to arise with respect to de-
signing storage-efficient cloud security primitives for multi-
tenant settings. For instance, cloud customers typically re-
quire some guarantees on the integrity and retrievability of
their data—which can be ensured through recently designed
solutions called proofs of retrievability [8]. Existing PoR so-
lutions assume a single-tenant setting, and as such cannot
be directly integrated in a multi-tenant cloud environment
that enforces data deduplication. This clearly hinders the
large-scale adoption of PoR solutions by cloud providers.

Given the current trends in designing secure cloud solu-
tions, our findings motivate the need to consider functional
requirements, such as multi-tenancy, data deduplication, re-
source sharing, in all aspects of the design of security primi-
tives for the cloud. We can identify a number of reasons why



Confidentiality Revocation Collusion Resistance Fairness Efficiency
Centrally-managed Repository Yes Yes Yes No Yes
Cloud Storage with ACLs Yes Yes No No Yes
Commune [17] Yes Yes Yes Yes No

Table 4: Comparison of existing collaborative storage techniques.

it might be beneficial to embed such functional requirements
in the design of future security primitives: (i) supporting
functional requirements would only increase the adoption
and integration of cloud security primitives within existing
cloud platforms at marginal costs, (ii) this, in turn, would
lay down the basic foundations to secure cloud-based busi-
nesses, and protect users from surveillance, loss or exposure
of sensitive data. We therefore hope that our findings moti-
vate further research in this area.
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