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Abstract—This paper presents an iterative Variational
Bayes (VB) algorithm that allows sparse recovery of the
desired transmitted vector. The VB algorithm is derived
based on the latent variables introduced in the Bayesian
model in hand. The proposed algorithm is applied to
the Angle-of-Arrival (AoA) estimation problem and sim-
ulations demonstrate the potential of the proposed VB
algorithm when compared to existing sparse recovery
and compressed sensing algorithms, especially in the case
of closely spaced sources. Furthermore, the proposed
algorithm does not require prior knowledge of the number
of sources and operates with only one snapshot.

Index Terms—Sparse Recovery, Variational Bayes, Iter-
ative, Latent Variables, Angle-of-Arrival

I. INTRODUCTION

The estimation of the angles of arrival, or AoAs,
of multiple sources is a well known problem in the
context of array signal processing. In fact, this problem
is important in many applications such as positioning,
radar, sonar, public safety, etc. [1]. The Maximum
Likelihood [2] was one of the first techniques to be
investigated, however, it involves a q−dimensional
search, where q is the number of present sources.
To cope with this issue, a tradeoff has been done
between complexity and performance, hence suboptimal
techniques with reduced complexity have dominated
the field. The most famous ones are: Multiple Signal
Classification (MUSIC) developed in [3] and [4],
independently. Also, less complex algorithms were
implemented to replace the 1-D search of MUSIC by a
polynomial root finding process [5], or a least squares
fit [6]. The performance of these algorithms are inferior
to the ML technique.

Recently, sparse recovery optimisation and
compressed sensing algorithms have become popular
and found many applications in diverse areas in signal
processing, speech, imaging, coding, and so forth. The
area of compressed sensing was initiated in 2006 by
two ground breaking papers, namely [7] by Donoho
and [8] by Candes, Romberg, and Tao.

Consider the following linear model, which will be
oriented towards the AoA estimation problem in the next
section:

xxx =AAAsss+nnn (1)

where AAA ∈ CN×K is a known overcomplete dictionary.
Each column of AAA is referred to as an atom. The vector
sss ∈ CK×1 is composed of unknown coefficients that we
would like to retrieve using the observed vector xxx ∈
CN×1. In general, this problem is underdetermined and
therefore ill-posed. However, a typical remedy for this
indeterminacy is to pose a sparse constraint on sss, which
leads to the following sparse optimisation problem:

ŝ̂ŝs = arg min
sss

‖xxx−AAAsss‖2 + λ‖sss‖p (2)

where ‖sss‖p is the lp norm of sss and 0 < p ≤ 2. Note
that we have excluded p = 0 since l0 is a pseudo-norm
(the distance property of norms is not satisfied), which
counts the number of non-zero elements. Also note that
‖xxx‖2 = ‖xxx‖.

Sparsity is most favored when p = 0. However, the
above optimisation problem will become NP-hard [9].
As a response to this issue, greedy algorithms have
been implemented to solve the above optimisation
problem under the l0 constraint, such as Matching



Pursuit (MP) [10] and Orthogonal MP (OMP) [11].
An alternative to the NP-hard problem is to relax the
constraint so as the problem is convex, i.e. this happens
when p ≥ 1 [12]. Popular algorithms that are used for
the l1 optimisation problem are the Iterative Shrinkage
Thresholding Algorithm (ISTA) [13] and the Basis
Pursuit Denoising (BPDN) [14]. Note that as opposed
to classical approaches, i.e. subspace methods, the
sparse approach could resolve coherent sources and
does not require the knowledge of the number of sources.

Inspired by the papers [16]–[18], we take a
Bayesian approach. The papers [16]–[18] focus on
introducing latent, or hidden, variables and imposing
prior distributions on these variables that favor sparsity.
In this paper, we also introduce the latent variables
discussed in [16]–[18], which leads to an iterative
Variational Bayes [20] algorithm that allows recovering
sss from a single observation xxx with the help of the latent
variables that are introduced. The algorithm iterates
between parameters related to the latent variables and
the variables of interest, i.e. sss. In addition, the proposed
algorithm could discriminate closely spaced sources
due to the excellent sparse solution it provides. This is
shown in simulations when compared to other existing
and popular algorithms.

This paper is organised as follows: Section II presents
the System Model. In Section III, we take a Bayesian
approach and introduce the latent variables as done
in [17]. A Recap of Variational Bayes (VB) and the
proposed algorithm based on VB is presented in Section
VI. Section V demonstrates our simulation results. We
conclude the paper in Section VI.

Notations: Upper-case and lower-case boldface let-
ters denote matrices and vectors, respectively. (.)T and
(.)H represent the transpose and the transpose-conjugate
operators. Ex{.} is the statistical expectation over the
distribution of the random variable x. The operator tr
denotes ”trace”. Finally, |z| denotes the magnitude of
z ∈ C.

II. SYSTEM MODEL

Consider a planar array composed of N antennas and
assume q < N narrowband sources impinge the array
from different directions, i.e. θ1 . . . θq. Sampling at an
arbitrary time instance, we can express a single snapshot
as [15]

xxx = AAAttt+nnn (3)

where xxx ∈ CN×1 is the observed vector at the output of
the antenna array. The vector ttt ∈ Cq×1 is the q×1 source
vector. The steering manifold, AAA ∈ CN×q is composed of
q steering vectors, i.e. AAA = [aaa(θ1) . . . aaa(θq)]. Each vector
aaa(θi) is the response of the array to a source attacking
the antenna array from angle θi. For arbitrary arrays,
aaa(θ) is given as

aaa(θ) =
1√
N

 e
−j wc

c
(x̄1sin(θ)+ȳ1cos(θ))

...
e−j

wc
c

(x̄N sin(θ)+ȳN cos(θ))

 (4)

where (x̄i, ȳi) is the position of the ith antenna. The term
wc = 2πfc is the angular frequency, and c is the speed
of light in vacuum. The vector nnn ∈ CN×1 is background
noise. The noise is modelled as a white circular complex
Gaussian process of zero mean and covariance σ2IIIN and
independent from the source signals.

Now, we recast the problem statement in (3) to the
following

xxx =AAAsss+nnn (5)

where AAA ∈ CN×K is an overcomplete dictionary given
as

AAA = [aaa(θ1) . . . aaa(θK)] (6)

and sss ∈ CK×1 is a q−sparse (only q elements of sss are
not set to zero) vector. Note that the non-zero elements
of sss are equal to the corresponding elements of ttt.

III. A BAYESIAN APPROACH

In this section, we shall take a Bayesian approach, i.e.
the vector sss is random and not an unknown deterministic
vector. Adopting the Bayesian criterion is equivalent to
optimising the maximum aposteriori (MAP) [15], which
is given as

ŝ̂ŝs = arg max
sss

p(sss|xxx) = arg max
sss

p(xxx|sss)p(sss)
p(xxx)

(7)

where p(xxx|sss) is known as the likelihood function and
p(sss) is referred to as the prior. It was noted in [16] and
[17] that the following type of prior favors sparsity

p(sss) =

K∏
k=1

p(sk), p(sk) = p(sk|βk)φ(βk) (8)

where β1 . . . βK are referred to as latent variables and

p(sk|βk) = N (sk; 0, β−1
k ) (9)

and φ(βk) is a nonnegative function. Now, the latent
variables β1 . . . βK , which are treated as random vari-
ables, should have appropriate corresponding pdfs, i.e.



φ(β1) . . . φ(βK), respectively. As explained in [19], the
pdf φ(βK) should be chosen as the conjugate to the
Gaussian distribution. One possibility is the Gamma
function, i.e.

φ(βk) = Γ(βk; γ, δ) (10)

Moreover, let ν = 1
σ2 be the inverse of the noise variance.

Also, we allow ν to follow a Gamma prior, viz.

p(ν) = Γ(ν; ζ, η) (11)

The MAP criterion, with the formulation from equa-
tions (8) till (11) is now

p(sss,βββ, ν|xxx) =
p(xxx|sss,βββ, ν)p(sss,βββ, ν)

p(xxx)
(12)

with βββ = [β1 . . . βK ]. Assuming independency between
the signal vector sss and the noise, we can say that

p(sss,βββ, ν) = p(sss|βββ)p(βββ)p(ν) (13)

Finally, we notice that the normalisation factor in equa-
tion (13) given as

p(xxx) =

∫
p(xxx|sss, ν)p(sss|βββ)p(βββ)p(ν)dsssdνdβββ (14)

does not have a closed-form expression; hence we pro-
pose to use the Variational Bayes methodology.

IV. VARIATIONAL BAYES

A. Methodology

Let yyy = [βββ, ν]. The log-likelihood function that does
not take into account the latent variables yyy, is given as
follows [20]

log p(xxx|sss) =

∫
q(yyy) log

(p(xxx,yyy|sss)
q(yyy)

)
dyyy + KL

(
q||p)

(15)
where KL

(
q||p) is the Kullback-Leilbler divergence be-

tween p(yyy|xxx,sss) and q(yyy). Since KL
(
q||p) ≥ 0, then

log p(xxx|sss) ≥
∫
q(yyy) log

(p(xxx,yyy|sss)
q(yyy)

)
dyyy (16)

The methodology of Variational Bayes lies in maximis-
ing the lower bound in equation (16) by imposing a
factorised structure on yyy as follows [20]

q(yyy) =

K+1∏
k=1

qk(yk) (17)

Table 1: Proposed Variational Bayes algorithm for
AoA Estimation

INPUT:
Given the observed vector xxx =AAAsss+nnn.
INITIALISATION:
• Fix

γ = δ = ζ = η = 10−6

n = 0

• Initialise
m

(0)
βk

= 105 for all k

m(0)
ν =

1

σ2
n

MAIN LOOP:
while ‖Θ̂̂Θ̂Θ(n+1) − Θ̂̂Θ̂Θ(n)‖ > ξ (Pre-defined Threshold)
do

• Form
ΩΩΩ(n) = diag [m

(n)
β1
. . .m

(n)
βK

]

• Compute ΣΣΣ as in equation (25)

ΣΣΣ(n) =
(
ΩΩΩ(n) +m(n)

ν AAAHAAA
)−1

• Compute msmsms using (26)

msmsms
(n) = m(n)

ν ΣΣΣ(n)AAAHxxx

• For all k = 1 . . .K, compute mβk
using (30)

m
(n+1)
βk

=
2γ + 1

2δ + |(msmsms
(n))k|2 + ΣΣΣ

(n)
k,k

• Compute mν using (31)

m(n+1)
ν =

2ζ + 1

2η + ‖xxx−AAAm(n)
sm
(n)
sm
(n)
s ‖2 + tr {AAAΣ(n)Σ(n)Σ(n)AAAH}

• Increment n
n← n+ 1

OUTPUT:
The estimate of sss is

ŝss = msmsms
(n)

Substituting the form of q(yyy) in (16) and following [20],
this lower bound could be expressed as follows:∫

q(yyy) log
(p(xxx,yyy|sss)

q(yyy)

)
dyyy

= −
K+1∑
k=1
k 6=i

∫
qk(yk) log qk(yk)dyk − KL(qi||p̄i)

(18)



with

p̂i , Eyk 6=yi
{

log p(xxx,sss,yyy)
}

=

∫
log
(
p(xxx,sss,yyy)

)K+1∏
k=1
k 6=i

qk(yk)dyk
(19)

It is straightforward to see that the lower bound is
maximising when KL(qi||p̄i) = 0. In other words, each
qi(yi) should be chosen as

log qi(yi) = Eyk 6=yi
{

log p(xxx,sss,yyy)
}

+ C (20)

where C is a normalisation constant. Now, following
[21], one could solve for sss, in a Variational Expectation-
Maximisation (EM) iterative manner as follows:

• Variational E-step: Given sss(n) (i.e. the value of sss
at iteration n), compute q

(n)
i (yi) for all i using

equation (20).
• Variational M-step: Given q(n)

i (yi) for all i, compute
sss(n+1) that maximises equation (18).

Now, we are ready to apply the Variational Bayes
methodology to the problem in hand.

B. Variational Bayes AoA Estimation

We first start off by deriving the expressions of qi(yi)
and q(sss). Following the factorised structure of yyy in
equation (17) and the independency between sss and yyy,
we can say that the posterier factorises as follows

p(sss,yyy|xxx, γ, δ, ζ, η) = p(sss)p(yyy) = p(sss)p(βββ)p(ν) (21)

With the help of equation (20), we now analytically
evaluate q(sss) as follows

log q(sss) = Eβββ,ν
{

log p(xxx,sss,yyy)
}

= Eβββ,ν
{

log p(xxx|sss, ν)p(sss|βββ)
}

= −1

2
Eβββ,ν

{
ν‖xxx−AAAsss‖2 +

K∑
k=1

βk|sk|2
} (22)

With some abuse of notation, Eβββ,ν is the average over
the joint distributions q(βββ) and q(ν). In addition, we
have omitted the constant in equation (22) for the sake
of compact presentation. Now, assuming that βββ and ν
are independent, we can say

log q(sss) = −mν

2
‖xxx−AAAsss‖2 − 1

2

K∑
k=1

mβk
|sk|2 (23)

where mν = E{ν} and mβk
= E{βk}. With some

mathematical steps, one could show that q(sss) is given
as follows

log q(sss) = −1

2

(
sss−msmsms

)H
ΣΣΣ−1

(
sss−msmsms

)
(24)

where
ΣΣΣ−1 = ΩΩΩ +mνAAAHAAA (25)

and
msmsms = mνΣΣΣAAAHxxx (26)

where ΩΩΩ = diag[mβ1
. . .mβK

]. Now, we compute q(βββ)

log q(βββ)

= Esss,ν
{

log p(xxx,sss,yyy)
}

= Esss,ν
{ K∑
k=1

(
log p(βk)

)
+ log p(sss|βββ)

}
=

K∑
k=1

(
(γ − 1)log βk − δβk +

1

2
log βk − βkE|sk|2

)
(27)

where the terms (γ − 1)log βk and δβk appear due
to K independent Gamma distributions, i.e. p(βk) for
k = 1 . . .K. Again, with some abuse of notation, we
have ommited constant terms for the sake of compact
presentation. With some straightforward algebra, we
could say that

q(βk) = Γ
(
βk;

2γ + 1

2
,
2δ + |(msmsms)k|2 + ΣΣΣk,k

2

)
(28)

where (msmsms)k is the kth entry of vector msmsms and ΣΣΣk,k is
the element found in the kth diagonal of ΣΣΣ. In a similar
manner, we could show that

q(ν) = Γ
(
ν;

2ζ + 1

2
,
2η + ‖xxx−AAAmsmsms‖2 + tr {AAAΣΣΣAAAH}

2

)
(29)

Knowing that for any random variable following a
Gamma distribution with parameters λ and µ, i.e. X ∼
Γ(x;λ, µ), the mean of X , say mX , is given as mX = λ

µ .
Therefore, it is easy to see from equation (28) that

mβk
=

2γ + 1

2δ + |(msmsms)k|2 + ΣΣΣk,k
(30)

Similarly, equation (29) implies that

mν =
2ζ + 1

2η + ‖xxx−AAAmsmsms‖2 + tr {AAAΣΣΣAAAH}
(31)

Before presenting the algorithm in Table 1, we find the
following notation useful

ΘΘΘ = [mβ1
. . .mβK

,mν , sss] (32)
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Fig. 1: Two sources impinging the array from directions θ1 = 0◦

and θ2 = 30◦. The number of antennas is 10.
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Fig. 2: Two sources impinging the array from directions θ1 = 0◦

and θ2 = 10◦. The number of antennas is 10.
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Fig. 3: Two sources impinging the array from directions θ1 =
0◦ and θ2 = 5◦. The number of antennas is 10.

Furthermore, let x(n) denote the value of the quantity x
at iteration n. For convenience, x(0) is the initial value
of x. Now, we are ready to state the iterative algorithm
that is based on Variational EM as explained in Section
IV.A. The algorithm is given in Table 1.

V. SIMULATION RESULTS

In this section, we present our simulation results with
emphasis on closely spaced sources. In all the experi-

ments done, we fix the following: Consider a Uniform
Linear Antenna array composed of N = 10 antennas
spaced at half a wavelength. Furthermore, assume q = 2
sources attacking the array from directions θ1 = 0◦ and
θ2. The dictionary AAA is composed of K = 91 atoms
discretized from −45◦ till +45◦ as follows

AAA = [aaa(−45), aaa(−44) . . . aaa(0) . . . aaa(44), aaa(45)] (33)

Define the Mean Squared Error (MSE) as follows

MSE =
1

qM

q∑
i=1

M∑
k=1

(θi − θ̂i,k)2 (34)

where θ̂i,k is the estimate of the ith AoA (i.e. θi) at the
kth Monte-Carlo trial and M is the number of Monte-
Carlo trials. All our experiments are done using M =
200 trials.

We would strongly like to note the following: Gener-
ally, in compressive sensing and sparse recovery algo-
rithms, the estimates θ̂1 . . . θ̂q are obtained by choosing
the corresponding q largest magnitudes of the sparse re-
covered vector ŝ̂ŝs that activate the atoms in the dictionary.
Indeed, these estimates vary according to the size and
elements of the dictionary.

In the 3 experiments, we plot the MSE vs. SNR for
different values of θ2. Furthermore, we compare with
MP, BPDN, ISTA, and Continuous Exact l0 Penalty
(CELO), which was recently introduced in [22] and
applied to the AoA Estimation problem in [23].



In experiment 1, i.e. Figure 1, θ2 is chosen to be
30◦. In experiment 2, i.e. Figure 2, θ2 is brought closer
to θ1 = 0◦ and chosen to be θ2 = 10◦. Finally, in
experiment 3 (Figure 3), θ2 is even more close to θ1

and is tuned to be θ2 = 5◦. We notice that the proposed
VB algorithm is able to resolve closely spaced sources,
whereas all other algorithms fail in doing so. This is
due to the high MSE error (MSE > 5 dB) present in all
algorithms even at high SNR.

VI. CONCLUSION

In this paper, and with the help of latent variables and
Variational Bayes, we have derived an iterative algorithm
that could estimate the Angles of Arrival (AoA) of the
incoming sources with a single snapshot, without the
knowledge of the number of sources, and with closely
spaced sources at high SNR.

Future work may be oriented towards performance
analysis of the proposed Variational Bayes algorithm
and towards taking into account prior knowledge of
the number of source signals, which may improve the
performance of this algorithm.
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