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Abstract—In this work, we propose a general-purpose
coordinator-master-worker (GP-CMW) model to enable efficient
and scalable simulation. The model supports distributed, and
parallel simulation over a heterogeneous computing node ar-
chitecture with both multi-core CPUs and GPUs. The model
aims at maximizing the hardware activity rate while reducing
the overall management overhead. The proposed model includes
five components: coordinator, priority abstraction layer (PAL),
master, hardware abstraction layer (HAL), and worker. The
proposed model is mainly optimized for large-scale simulation
that relies on massive parallelizable events.

Extensive set of experiment results show that GP-CMW
provides a significant gain from medium to intensive simulation
load by exploiting heterogeneous computing resources including
CPU and GPU. Regarding simulation runtime, the proposed GP-
CMW model delivers a speedup of 3.6 times faster than the CMW
model.

Index Terms—Heterogeneous Computing; Large scale simula-
tion; Master-worker model; GPGPU; CUDA; PADS.

I. INTRODUCTION

Stochastic simulation is used to study a wide range of appli-
cations from medical systems to the wireless communication
networks. The simulation of such systems may have various
objectives ranging from analyzing the system behavior to the
validation of new concepts. Thus, the simulation becomes
an essential tool on the development cycle of modern tech-
nologies. Even if simulation provides reproducible results, the
scalability and applicability remain key challenges. In fact,
increasing the size and more generally the realism level of the
simulated system leads to a nonlinear increase in the required
resources and the execution time, which in turn reduces sig-
nificantly the simulation efficiency (Righter & Walrand 1989).

To speedup a large scale simulation, there are two main
approaches: (1) parallelism and/or distribution of the simula-
tion over several instances (also known as a logical process
LP), and (2) usage of a dedicated accelerator to handle the
bottleneck. The distribution of a simulation over multiple
computing instances delivers a significant scalability gain at
the cost of higher complexity and overhead. In particular,
the ratio of overhead to guarantee the simulation correctness
remains significant. In the literature, flat software architecture
is initially used to define a parallel and distributed event
simulation (PDES), where multiple LPs collaborate to perform
the simulation. Such a design is widely used for small to

medium scales (in term of number of LPs). However, its
relative overhead depends on how applications are mapped
to PDES and how the lookahead and the synchronization
mechanisms are utilized. The overhead could rapidly increase
as the simulation scale in terms of number of nodes, mobility
rate, and traffic load becomes large.

To reduce such residual overhead when targeting a large-
scale simulation, we introduce a two-levels hierarchical ar-
chitecture, where a dedicated process (also known as the
server) ensures the management of the simulation. The in-
volvement of that process varies from one implementation
to another. The master-worker (MW) model is an example
of two-level hierarchical architecture that handles efficiently
meta-computing systems (Park & Fujimoto 2012). Such a
design is optimized for recent hardware; however, specific
considerations must be taken to (i) increase the computing,
data, and communication localities, and (ii) exploit the capa-
bility of a heterogeneous computing node. To deal with the
MW limitations while coping with computational challenges
of heterogeneous computing node architecture, a hierarchical
approach was proposed in (Aaby, Perumalla & Seal 2010).
Authors propose a new concept based on the interaction
between CPU-based and GPU-based component. In addition,
a specific consideration for the data locality was introduced.
Nevertheless, that approach does not address the GPU memory
restriction and induces a constant synchronization delay (Chen,
Huang & Zhang 2012).

In this paper, we propose a general-purpose coordinator-
master-worker (GP-CMW) simulation model, as an extension
to our previous work (Romdhanne & Nikaein 2013), to rad-
ically increase the simulation efficiency when the number of
events becomes large. The novel contributions of this paper
are:

• managing the communication across multiple simulation
instances through priority abstraction layer (PAL) to
increase simulation stability,

• exploiting computing, data, and communication locality
through hardware abstraction layer (HAL) to maximize
simulation efficiency.

The proposed model considers the meta-computing system
composed of several interconnected heterogeneous computing
nodes as a system of subsystems. The main rule is to maximize
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the interactions inside a computing node while minimizing
the communication outside. In GP-CMW, at the top level,
the coordinator ensures the global time synchronization and
the load balancing among the masters. The master locally
manages the time synchronization and event scheduling among
the workers and interacts with the coordinator and other
masters through PAL. The workers are the executing threads
performing tasks communicating with master through HAL.
Each addressing space has a dedicated HAL, which performs
event scheduling across heterogeneous computing resources.
From the coordinator point of view, the master manages
one simulation instance, which is why the master-worker
subsystem is refereed as an extended logical process (ELP).
Note that in GP-CMW, the pair CM manages simulation across
different addressing space (distributed simulation) while the
pair MW manages the simulation within the same addressing
space (parallel simulation).

The remainder of the paper is organized as follows. In
Section II, we summarize the related works. In Section III,
we describe the design elements and architecture of the GP-
CMW model as well as its features. In Section III, we describe
the design elements and architecture of the GP-CMW model
as well as its features. Section IV presents the benchmarking
scenarios and validation results for the GP-CMW model in
comparison with the basic CMW model and MW. Section V
discusses the applicability of the GP-CMW model for different
type of simulations. Finally, Section VI concludes the paper
and provides a summary of the contribution of this work.

II. RELATED WORK

The digital simulation was introduced since the second
world war for the requirements of the Manhattan project.
The necessity of such a rapid and efficient validation tool
was closely related to the computer usage. Since then, com-
puter hardware has been evolved considerably from CPU-
RAM-HDD, to a group of heterogeneous computing resources
collaborating to perform a task. In parallel to this, the com-
plexity of digital simulation has been significantly increased
to provide a higher realism level and more reliable results.
This calls for an efficient simulation capable of exploit-
ing all the available computing resources to maximize the
hardware activity rate. In the literature, various optimization
techniques have been proposed that can be classified into
four classes(Perumalla 2006): architectural optimization, local
optimization, bottlenecks acceleration and hybrid optimization.

The architectural optimization attempts to efficiently paral-
lelize and distribute the simulation over a set of computing
nodes. In the flat design, different LPs are considered to be
equivalent, and they collaborate to perform the simulation in
a distributed fashion (Liu 2009). In fact, while previous works
proof the scalability of the flat design, the mainstream of such
work relies on small-to-medium LPs. Moreover, the internal
communication inside each LP seems much more important
than that inter-LPs. The clock synchronization is also a major
scalability issue that was addressed earlier with the Chandy-
Misra-Bryant algorithm (Fujimoto & Nicol 1992). Such algo-
rithm copes well with both flat and hierarchical organization.

Nevertheless, the scalability remains an issue in the flat
design when the number of LPs increase (Fujimoto, Perumalla,
Park, Wu, Ammar & Riley 2003). In the literature several
optimizations, such as the lookahead (Fujimoto 1988) and the
opportunistic and combined synchronization (Perumalla 2006),
are proposed to reduce the idle time induced by the synchro-
nization process. The two-level hierarchical design provides a
solution to the scalability issue by introducing a centralized
management service (called the server or master) in charge
of synchronization and job assignment processes. The well-
known example is the master/worker model compatible with
meta-computing systems (Park & Fujimoto 2009). The main
challenge here is the communication overhead caused by the
non-locality of the master with respect to the worker when
the simulation becomes large (i.e. in the order of several
millions of simulated components). Furthermore, the master
remains the critical bottleneck in such a setup as it drives the
entire simulation. The multi-tier design addresses the scalabil-
ity for heterogeneous computing nodes by partitioning them
into several non-overlapping subsystems with one dedicated
master (Wenjie, Yiping & Feng 2012). The number of tiers
depends on the setup and available resources, which could
potentially cause large synchronization delay due to cascading
masters. This concept is extended to support GPU (Aaby
et al. 2010), where the synchronization and communication
overhead is significantly reduced in term of the number of
exchanged messages. However, the delay remains an open
issue in multi-tier architecture. Furthermore, the state vector
mechanism remains existing and introduces a significant de-
lay since each master manages larger works than traditional
LPs (Pennycook, Hammond, Jarvis & Mudalige 2011, Chen
et al. 2012), thus the latency issue needs to be addressed.

The local optimization aims at improving the efficiency of
each LP in its environment. We distinguish two main trends:
local parallelism and engineering optimization.

In general local parallelism acts at the event/instruction
level to maximize the usage of multi-core CPUs or GPUs.
The parallel event scheduling over CPU presents a reasonable
tradeoff between the backward compatibility and the efficiency
since it uses all available cores to execute in parallel future
events(Liu & Wainer 2012). However, this approach relays on
a unique central events list and one scheduler, which remains
the bottleneck when targeting larger CPUs (e.g. INTEL MIC
with 80 cores) (Satish, Kim, Chhugani, Nguyen, Lee, Kim
& Dubey 2010). A similar approach introduced by Park et
all (Park & Fishwick 2011, Park & Fishwick 2010) proposes
to use the GPU as a multi-core computing co-processor. It
relays on one central events list (CEL) and 8 threads, each
of which runs on one core of the GPU and pops events from
the CEL independently. However, that approach has two major
limitations: first, it uses a central event queue which becomes
inevitably the system bottleneck with larger GPUs, second,
it considers a GPU core as a CPU one while the GPU is
essentially based on SIMD architecture, where all threads must
achieve the same routine. To handle this restriction, a dedicated
GPU scheduling approach was proposed in (Romdhanne &
Nikaein 2012), where authors use the event clustering ap-
proach to maximize the GPU usage while simplifying the
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scheduling work. Nevertheless, this approach supports only
one GPU that limits its scalability by that of the GPU in use.
On the other hand, engineering optimization aims to maximize
the usage of new hardware capabilities such as the different
memory levels on the CPU and vectorial units. It acts mainly
at the process/instruction level (i.e. the usage of the AVX in-
structions that allow the processing of 8 words per clock cycle
maximize the performance of the re-wrote routines). A smart
usage of that capabilities allows a significant performance
gain (April, Glover, Kelly & Laguna 2003). Nonetheless, that
approach is closely related to the implementation of each
solution on one side and to the considered hardware on the
other side.

Bottlenecks acceleration improves the simulation efficiency
by offloading the computationally intensive tasks (typically
identified through profiling) to a dedicated hardware such
as DSPs, FPGAs or GPUs. The DSP is mainly used for
signal processing and presents a real gain when the simulation
considers physical phenomena such as radio signal simulation
but does not offer a rich programming model suitable to per-
form the entire simulation. The FPGA provides a reasonable
tradeoff between the efficiency and programming flexibility,
and thus it is largely used to accelerate existing solutions. For
example, Steenkister et all (Borries, Judd, Stancil & Steenkiste
2009) used the FPGA as a signal accelerator for wireless net-
work simulation. The OpenAirInterface (Romdhanne, Nikaein,
Knopp & Bonnet 2011) wireless technology platform pro-
vides an SDR implementation of LTE/LTE-A system using
a full GPP model and uses FPGA to interact with the RF
subsystem. The GPU offers a carrier solution that combines
programmability and large computing power but requires a
specific software architecture as its programming model is
not fully x86 compliant. Despite this limitation, Perumalla
et all (Perumalla 2009) demonstrate the feasibility of using
the GPU as a simulation context and several works proof
its efficiency as signal processing accelerator (Abdelrazek,
Kaschub, Blankenhorn & Necker 2009, Bai & Nicol 2010).
Other efforts have been given to provide an efficient processing
solution based system-on-chip (SoC) and network-on-chip
(NOC) or even a larger computing solution proposed recently
by INTEL (Cramer, Schmidl, Klemm & Mey 2012). In par-
ticular, the XEON Phi co-processor (Jeffers & Reinders 2013)
provides up to 64 CPU computing core per device. Such
solution seems promising, and several recent works assert that
its development-cost/gain tradeoff is interesting (Saule, Kaya
& Catalyurek 2013, Heinecke, Vaidyanathan, Smelyanskiy,
Kobotov, Dubtsov, Henry, Shet, Chrysos & Dubey 2013).

Hybrid optimization combines the benefits of the above-
mentioned approached to achieve the simulation efficiency.
This could be achieved through a new software architecture
with massively local optimization and optimized libraries
exploiting the heterogeneous computing resources. In this
perspective, NS-3 is a well-known network simulator that
combines new software architecture with massively optimized
code (Lacage 2010). Further, new frameworks that rely on
virtualized resources combine both architectural and local
optimization to perform optimal usage of virtual and real
resources (Yoginath, Perumalla & Henz 2012). Nevertheless,

GPU and hardware acceleration solutions, in general, remain
relatively new and weakly considered in such approaches.
The CMW simulation model (Romdhanne & Nikaein 2013)
follows the hybrid approach differently since it combines mod-
ified software architecture with the usage of heterogeneous
computing resources including multi-cores CPUs and GPUs.

III. THE GENERAL PURPOSE
COORDINATOR-MASTER-WORKER MODEL:

ARCHITECTURE AND FEATURES

The GP-CMW model is a software architecture that consid-
ers a distributed large-scale simulation across heterogeneous
meta-computing resources. It is designed around five compo-
nents, as described below:

• Coordinator (C) is a top-level simulation CPU process
with two essential tasks: load balancing and synchroniza-
tion among all the active masters. In addition, coordinator
provides user interfaces and simulation data collection
services.

• Priority abstraction layer (PAL) manages the communi-
cation between the coordinator and masters as well as
between masters. It separates the simulation control plane
from the data plane.

• Master (M) is a CPU process and represents an intermedi-
ate entity of the simulation. It manages workers operating
potentially on different computing resources within the
same shared memory context and communicates with the
coordinator and others masters through the PAL.

• Hardware abstraction layer (HAL) is a unique process
per addressing space that manages the event scheduling
through workers while the master generates events. In
addition, the HAL configures the communication between
different processes within the same addressing space to
maximize the usage of the internal communication bus.

• Worker (W) is the elementary actor of the GP-CMW that
performs the simulation routines and interacts with the
input and output data. Typically, each worker is modeled
with a finite states machine (FSM), has its own working
data and handle incoming events according to its process.

In the GP-CMW, there is only one coordinator operating
on N masters, each of which manages K workers. We denote
each master and its associated K workers as an extended
logical process (ELP). In the GP-CMW model, the simulation
is first distributed over a certain number of workers (simulated
components in common terminology) for the considered sim-
ulation scenario. Then, workers are partitioned into separate
simulation instance according to the user-defined spatial and/or
operating policies. Each simulation instance is managed by
one master, and all workers interact with the outside world
uniquely through the master, i.e. each simulated instance is
performed by one master on one computing nodes. To maintain
the simulation stability, the PAL gives the highest priority to
the control plan communication, in particular, synchronization
messages. It relies on MPI primitives. The HAL incorporates
a dedicated event scheduler per execution target, namely
different GPUs and multicore CPUS, and determines for each
event the most suitable execution target depending on current
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load and the type of event so as to maximize the hardware
activity rate (Romdhanne, Bouksiaa, Nikaein & Bonnet 2013).
Figure 1 illustrates the hierarchical architecture of the GP-
CMW model.

Fig. 1. GP-CMW simulation model

In the following section, we first detail the event man-
agement model, with particular attention to the concept of
event-flow. Then, we present the synchronization mechanisms
followed by hierarchical communication model.

A. Events Management: Modeling, Scheduling, and Execution

In discrete event simulation(DES), an event represents the
execution of one state, activity, model or algorithm with
particular parameters. A main activity of the simulation pro-
cess consists of the management of events. A typical event
life cycle in DES includes at least four steps: generation,
scheduling, buffering and execution (see Figure 2(a)). By
agreement, there are two types of generated events: those
defined by the user scenario (i.e. periodic events) and that
generated recursively due a previous event execution. In both
cases, an event has specific timestamps that define when
it must be executed refereeing to the simulation time. A
sequential scheduling process consists of sorting incoming
events based on their timestamps and buffering them into a
FIFO list to be executed. A basic parallel scheduling process
aims to execute events in parallel without violating the event
casualty (conservative approach) or allowing violations within
the lookahead horizon and recover from them (optimistic
approach) (Fujimoto 1990, Som & Sargent 1998, Quaglia &
Cortellessa 2000, Deelman, Bagrodia, Sakellariou & Adve
2001). Advanced parallel scheduling algorithms analyze events
dependency to maximize the parallelism rate while conserving
the simulation correctness (Wenjie et al. 2012). In the case of
parallel scheduling for multiple execution targets, a central
scheduler becomes an imminent bottleneck. In fact, such a
situation can be modeled as a workflow with many consumers,
and one producer [1: N], where consumers are the execution
processors, and the producer is the scheduler. Therefore,
increasing the number of consumers with one-to-one exchange
order results inevitably in a famine situation at the consumers
level and a bottleneck at the producer level. Moreover, one
critical issue of parallel scheduling process remains its high
cost that increases rapidly as a function of the number of

events and the number of execution processors. Thereby, the
majority of parallel schedulers deal with limited numbers of
simulated elements (thousands per LP) and execution proces-
sors ( typically 6-64 in the current state of the art).

In contrast to traditional approaches, the GP-CMW event
management introduces three new features: (1) the separation
between the event modeling, scheduling, and execution, (2)
the events flow, and (3) the event grouping/ungrouping. In
fact, events are modeled using an enhanced descriptor that
includes event dependency meta-data, in addition to common
information, which in turn simplifies the parallel scheduling
process. In the remainder, we denoted the creation of the event
descriptor and its enhancement with additional data as the
event modeling. Indeed, the events management process on the
GP-CMW separates physically between the event modeling,
the scheduling, and its execution in that the modeling is
achieved by the master, the scheduling is performed by the
HAL and the execution by the pool of workers. Furthermore,
it relies on the massive parallelism concept which is a suitable
software model for SIMD hardware, and in particular for
GPGPU programming. The main idea consists of generating
cloned events, each of which performs the same operation
on independent data. The GP-CMW model combines the
generation of cloned independents events (CIE) with the
detection of foreign independent events (FIE) that differs in
both operation and data if they can be executed in parallel
to maximize the simulation efficiency. Finally, to bypass any
potential bottleneck due to the increasing event rate, the GP-
CMW model allows compression of CIE events into one entry.
This simple yet efficient technique provides a significant gain
in terms of scheduling cost and time complexity. To realize
this approach, we propose to modify the event life cycle with
three independents stages: the events modeling, the events
scheduling, and the events execution (see Figure 2). These
stages are interconnected through intermediate buffers that
maintain a continuous events flow between the event producer
and consumer in order to increase the system stability.

1) Events Modeling Stage: On the event modeling stage,
the master preprocesses incoming and generated events in
order to reduce the complexity of scheduling stage. Thereby, it
includes four steps: the generation, the buffering, the grouping
and the enhanced description. First, the master generates initial
events according to the user-defined simulation scenario. In
particular, the desired timestamp of each event is generated.
In parallel, it processes incoming events during the simulation.
These events can be recursively generated by other events
under execution or received from outside. On the second
step, the master groups CIE into one entry. The main issue
of the grouping step is to be lossless and reversible. In
particular, the inclusion of events parameters determines the
efficiency of the procedure. Figure 3 presents two grouping
cases, case A is non-optimized and generates additional work
while the case B is optimized and simplifies both the grouping
and ungrouping step. We assume that the user must provide
identical parameters for CIE when describing the simulation.
In the last step, the master extends the event descriptor with
additional information, including (i) event dependency infor-
mation, (ii) event execution timestamp, (iii) I/O data access,
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Fig. 2. Events Life Cycle

(iv) event structure information, and (v) execution targets.
Event dependency defines if an event has one or multiple
dependencies (needs current output as input) that fall within
the same time interval (Romdhanne et al. 2013). The event
execution timestamp identifies which events can be scheduled
in parallel for a given timestamp and is calculated based on the
current timestamp and the safety lookahead. We note, however,
that the HAL will compute this timestamp at the execution
stage according to the GP-CMW design. This presents a main
contrast with the basic CMW model and highlights a complete
separation between the event description and execution. The
I/O data access defines the permissions given to an event to
read and/or write a shared memory area. Finally, the execution
target defines where an event could be executed, CPU, GPU
or both. Once creation steps concluded, the event descriptor
will be buffered into a FIFO buffer (technically denoted as a
future event list: FEL).

Grouping

Move P1T1Id=0

Move P2T1Id=1

Move P3T1Id=2

Move P4T1Id=3

<0,3> Move T1 P1 P2 P3 P4 <0,3> Move T1 P*

Grouping

Move P*T1Id=0

Move P*T1Id=1

Move P*T1Id=2

Move P*T1Id=3

Fig. 3. This figure presents two grouping cases: (1) if the events to be grouped
have different parameters, then the grouping process will concatenate them
sequentially, and (2) if all events have the same parameter (e.g. share the
same pointer to a common structure), then the grouping process generates
one parameter for all

2) Events Scheduling Stage: On the event scheduling stage,
the scheduler decides where and when each event will be
executed. The decision is quite complex due to two reasons:
first, execution targets may have different inherent character-
istics including computing power, memory, and parallelism
nature. Second, attributing a new execution timestamps to
different events while maintaining the simulation correctness
implies the usage of sophisticated algorithms. In contrast
with the basic CMW model, the GP-CMW introduces a
hardware abstraction layer (HLA) that ensures the scheduling
task. It incorporates the H-scheduler that has been presented
on (Romdhanne et al. 2013). The H-scheduler is composed of
four main processes: the dispatcher, the injector, the GPU-
scheduler, and the CPU-scheduler, where events are flow-
ing(see Figure 4). In fact, the event flow concept is a main
feature of the H-scheduler. It consists of detecting any eventual
bottleneck in the fly and resolving it. Typically, each process
has one (or more) input buffer and one or more output buffer.
The divergence between their respective feeling rates indicates
the existence of a bootblack in the concerned process. Thus,
a rapid algorithm is activated to maximize the events flow
through that process until reaching a stationary load.

The entry point of the scheduling stage is the dispatcher that
pops events descriptors from the intermediate buffer(s) and
pushes them to the correct place of a 3-dimensional buffering
data structure called the 3D-AL. It includes a list of sub-
lists, each of which represents a time interval that includes
a group of parallelizable events. A sub-list is defined by a
beginning time(bTime) and an ending time (eTime). An entry
of a sub-list is either grouped events (CIE) or a unique one,
according to its generation method. Entries of the same sub-
list are assumed to be parallelizable even if they have different
timestamps. Two events are dependent if that information is
explicitly included into their descriptor or if they share data.
The resolution of data dependency can be done using three
methods: (1) splitting the sub-list, (2) merging dependents
events into one sequential entry and (3) transforming the sub-
list into a time ordered one. This step is denoted as the
reordering step since each event will have a new execution
timestamps. The next step is the switching, it consists of



6

choosing the most adequate execution target of each entry.
Concretely the injector process pops events descriptors from
the 3D-AL and injects them into the corresponding secondary
array list denoted as 2DAL. Each execution target has its own
sub-scheduler and 2DAL. The injector can distribute events
of one sub-list through available resources. In such case, it
uses a checkpoint system to synchronize the simulation. The
switching decision relies on the parallelism level to choose
the target class (CPU or GPU) and the hardware usage rate to
choose an instance of the class (GPU1 or GPU2 for example).
The 2DAL data structure is particularly optimized for the
parallel execution over heterogeneous computing resources. It
has to be mentioned that there is two different type of 2DAL,
one for CPU targets and one for GPUs. To conclude this stage,
each dedicated sub-scheduler manages its own 2DAL without
any timing control according to a best-effort algorithm. It
ensures event execution and presents in that sense a transversal
process between the scheduling and the execution stage.

In simpler words, during the scheduling stage, the H-
scheduler pops events from the FEL and switches them to
one of the dedicated sub-schedulers. The dynamic strategy
of the execution target choosing is a central feature of the
H-scheduler. It relies on two parameters: the parallelism size
of CIE entry and the saturation rate of computing resources.
Thus, extremely large CIE are automatically switched to GPU
while FIE are directed to CPU. The interpretation of what
is extremely large relies on the GPU capabilities. On the
other side, if the system includes different GPUs the switching
step will rely on several thresholds, such that all computing
resources will be feeds on the correct rate to avoid both famine
and saturation states.

ES

ED

EE

3D-ALInjector

2D-AL 2D-AL 2D-AL ...

CPU

Sched

GPU

Sched

GPU

Sched

Dispatcher

FEL N

FEL 2

FEL 1

FEL 0
Incoming Events

...

feedback

Fig. 4. Design elements of the H-scheduler, where the incoming events present
what the event scheduler receives from outside, including what it receives from
the master, and the feedback mechanism that drivs the injector decision.

3) Events Execution Stage: On the event execution stage,
all sub-schedulers act simultaneously to increase the event
processing rate. In what concerns the CPU-scheduler, it first
creates as many threads as available cores. Then, it pops events
from the corresponding 2DAL and assigns them to the first
available thread. If the CPU-scheduler detects grouped events
in its 2D-AL, it relies on the OpenMP API to ensure their

parallel execution. If an executed event generates a new event,
such event might be re-executed by the sub-scheduler in the
same time window of the active time interval if the simulation
correctness can be maintained. Otherwise, the newly generated
events will be fed into FEL for future execution. It has to
be mentioned that the basic CMW model relies only on the
second approach and that a non-negligible speed up of up to
10% in term of runtime and 4% in term of hardware activity
rate can be achieved.

The GPU-scheduler is slightly different since it relies on a
hybrid software-hardware scheduling mechanism. At the soft-
ware level, it handles always grouped entries that are translated
to the CUDA calls with predefined generic parameters. The
CUDA driver will then generate the corresponding threads
and sending them to the GPU. At the hardware level, the
embedded GPU GigaThread-scheduler first distributes events
threads blocks to various SMs and second assigns each thread
to an SP inside the corresponding SM.

B. The GP-CMW Synchronization Mechanism

When targeting distributed simulation, the system synchro-
nization guarantees that there is an independent mechanism
that ensures the time coherence of the simulation across dif-
ferent machines. Such a mechanism defines a reference time to
be synchronization and a clock-advancement to drive the sim-
ulation. In general purpose simulation that uses discrete events
concept, there are three distinct notions of time: (i) the physical
time, representing the duration of the physical phenomena that
we model or the time that the modeled real event requires to be
performed (ii) the simulation time, representing the physical
time in the simulation, and (iii) the wallclock or execution
time, which is the elapsed real time during the execution of the
simulation as measured by the hardware clock. Accordingly,
the majority of the existing conservative mechanisms proposed
to synchronize the simulation time. In what concerns the
simulation time advancement, there are two methods relative
to the DES: the time-driven and the event-driven. In the time-
driven simulation, the clock increases sequentially from one
value to the next with a predefined granularity which defines
a kind of time interval. In distributed context, that model
relies on the acknowledgment of each elapsed interval by
each involved process. The acknowledgment can be explicit
using NULL message or implicit using the communication
timestamps. In the event-driven simulation, the clock jumps
from the current event-timestamp to the next. Such a model
avoids crossing empty intervals but implies a sophisticated
synchronization mechanism in a distributed context. In general
purpose distributed simulation the lookahead is the key ingre-
dient for all conservative synchronization methods, which can
be defined as the ability of a simulation instance (also known
as a logical process in the literature) to predict future behavior
when modifying the event lists of other instances (LPs). More
precisely, an instance P has a lookahead with respect to an
instance Q if the simulation clock of the instance P is at time
s, and yet P can determine that under no circumstances an
event will be inserted or deleted from the event list of the
instance Q with timestamps t > s (Nicol 1996).
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In the GP-CMW model, we aim at maximizing the ef-
ficiency of the distributed simulation while minimizing the
management overhead. Therefore, we adopt a hybrid and
hierarchical synchronization mechanism where we separate the
coordinator-master plan from the master-worker plan. Each
component of the model has its own clock which progresses
independently. The coordinator clock advances according to
a time driven model. It defines a group of checkpoints that
must be acknowledged by all active masters. The elapsed time
between two consecutive checkpoints represents one work unit
(WU) of the distributed simulation.

Regarding the coordinator-master plan, there are three main
messages: S, E, and R. The message S is initiated by the
coordinator and used to notify the masters to start a new
WU. The duration of each WU is indicated in the message
parameter. During the execution of a given WU, the master
may request a specific duration for the next work-unit based
on the synchronization algorithm of the master-workers plan.
At the end of the current work-unit, each master sends an E
message back to the coordinator to acknowledge the end of
WU. The duration of each WU can be either static defined
at the beginning of the simulation or dynamic calculated at
each WU (indicated by the R message). When receiving an
R message requesting a WU duration, the coordinator re-
computes the duration of the next WUs according to maximize
the global efficiency. Several user-defined policies can be
applied to compute the WU duration, such as min, max,
average, and the most requested.

This active and conservative process implies a significant
overhead, but it simplifies the management and control of the
distributed system. Nevertheless, an adaptive WU length may
reduce the impact of such overhead (i.e. in network simulation
benchmarking (Romdhanne, Nikaein & Bouksiaa 2012) using
a small WU of 1 second induces a runtime increase of 10%
compared with a WU of 10 seconds).

The master clock is also time driven and is incremented ac-
cording to the time intervals computed by the events scheduler.
Each master provides a list of CIE and FIE related to the cur-
rent WU to HAL. Based on WU duration, HAL determines a
set of independent and contiguous intervals used to (i) execute
events belonging to the same interval timestamps even if their
timestamps are different, and (ii) to advance the master clock
(implicit synchronization). It has to be mentioned that during a
WU, each master can progress according to its inherent speed,
which in turn may not guarantee the simulation correctness.
Therefore, we apply an optimized lookahead protocol to ensure
the correctness among all ELPs (Shmueli & Feitelson 2003).
Finally, the worker clock is the unique element which is event
driven. When a worker is assigned to execute an event, it leaves
the idle state to become active and then updates its clock with
that of the master clock. Thus, the worker clock advances on
per event-basis (only the clock of active workers are updated),
and that the clock jumps from the current timestamps to the
next one similar to traditional event-driven simulations.

C. GP-CMW Communication Model
In GP-CMW, the communication between different simu-

lation entities is done through the message passing. It imple-

ments a hierarchical communication model allowing workers
belonging to the same (local) and different (foreign) simula-
tion instance(s) to interact among each other. The GP-CMW
extends the basic CMW model and exploits locality through
dedicated resources (e.g. bus, memory, ram) with the same
addressing space. Four cases are possible as describes below:

1) If both workers are in the same GPU block, the message
is written on the GPU shared memory and a reference
is given to the destination. If there is more than one
destination, the message is written to the in-buffer of
the destinations ensuring that each worker has the entire
control of its message.

2) If both workers are on the same GPU but on foreign
blocks, the message is written on the GPU global
memory, and a reference is given to the destination.
Multiple destinations will receive distinct messages as
in the first case.

3) If both workers are in the same ELP (i.e. the same
memory space), the message is written on the destination
in-buffer using direct (CUDA) communication. In this
case, the destination can either be a CPU worker or a
worker in a different GPU.

4) If both workers are in two different ELPs, the source
worker writes the message on an intern out-buffer of the
master. The source’ master will transfer the message to
the destination master.

It has to be mentioned that the HAL incorporates a routing
table that includes the identity of workers and their physical
location, and it used to select the appropriate communication
method. Such information might be cached at the worker to
reduce the latency before communication can be established.

1) Further Considerations: To further optimize the com-
munication model, PAL implements three additional methods,
namely packet aggregation, priority management, and multi-
cast message passing. With the packet aggregation method, a
master does not initiate a communication with other masters
for every single request. Instead, it will start the communi-
cation when the waiting time window expires, or the number
of buffered packets reaches the given threshold. While such
method introduces an addition delay to accumulate multiple
packets into a single packet before being transmitted, it pays
off when a large amount of small packets are exchanged
among several ELPs. Please note such an operation is trans-
parent to a master in that PAL constructs an aggregated packet
on per destination (i.e. master) basis and that it performs
the disaggregation operation before a packet is received by
a master.

The priority management method is used to separate sim-
ulation control plane from the data plane by associating and
managing different priorities flows. In particular, synchroniza-
tion, communication management, and load balancing control
plane message flows have a higher priority than the date
plane flows. Through this method, PAL ensures the timely
delivery of critical flows under a heavy load and maintains
the simulation stability (Lacage & Henderson 2006).

The last method, multicast message passing, handles packet
duplication for each destination identified by the multicast
address. Two approaches exist, namely smart pointer and real
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independent copies, where the latter minimizes the memory us-
age with the risk of bottleneck creation and the former avoids
central management at the cost of a memory usage (Wolf,
Cai, Huang & Schwan 2002). The GP-CMW adopts the real
independent copies to remain natively compliant with both
CPU and GPU. As in the previous case, the packet duplica-
tion process is performed by PAL and remain transparent to
masters.

IV. PERFORMANCE EVALUATION

Previous studies on the performance of CMW demonstrate
that a significant gain is achievable compared to existing sim-
ulation models, namely flat and master-worker (Romdhanne
& Nikaein 2013, Romdhanne et al. 2012). While the bench-
marking scenario used in CMW is based on a grid network
with a flooding protocol, in this work, we consider a complex
scenarios with extremely high event generation rate that sim-
ulates a popular massively multi-players on-line game named
as Command and conquer, Tiberius alliance.

We evaluate the performance of the proposed GP-CMW
with the CMW (denoted as basic CMW) and the baseline
master-worker model operating on multicore CPU (denoted as
MW-CPU) using Cunetsim framework.To analyze the benefit
of PAL and HAL, we present the results for two additional
configurations, namely CMW-PAL and CMW-HAL. Note that
GP-CMW incorporates CMW, HAL, and PAL within the
same simulation model. For comparison, the following metrics
are considered including simulation runtime, synchronization
delay, communication latency, and hardware activity rate.

In the following subsections, we present the game model,
simulation scenarios, and setup followed by the experimenta-
tion results for the considered metrics.

A. Game Model

The command and conquer game is defined by a group
of independent worlds, each of which is represented by a
1000∗1000 grid. A world is initially occupied by the forgotten,
which have their own infrastructure to manage resources. They
have several types of military bases with increasing complexity
level, from 1 to 50. The ultimate goal of the game is to
control the world. When a player integrates a world he/she has
one initial base with limited resources and must develop the
base, army and defense over time. Players can create, integrate
or leave an alliance. Members of a given alliance share the
controlled resources and infrastructure. However, the alliance
size is limited to 50 players creating a competition to control
resources and infrastructures across the worlds. Moreover,
alliances can define a diplomatic relationship with others. The
development of players can rely on free available resources,
though limited on time, or on paid resource packets 1. The
Financial stock of the game is to sell such packets during the
life of a world, which may last up to one year. Predict the
evolution of a world using analytical tools is a complex task
as a large number of parameters are evolving over time based
on the player and alliance interactions. For example, a war

1www.ea.com/fr/sports

between two alliances may double the number of connections,
the connection duration and also the number of sold packets.

When monitoring the evolution of the game, we notice
that a significant fluctuation in gaming experience related
to server availability, e.g. during a three-month observation,
servers error and maintenance happened 20 times lasting 30
minutes, the website was offline two times for 3 hours. This
calls for an accurate prediction of game dynamics to allow
(quasi-)real-time servers and resources provisioning under a
massive number of players with a high rate of interactions.

To simulate such a scenario, we extend the Cunetsim
framework with new models to capture the game dynamics.
Two agents are defined: (1) a player, which simulates the
behavior of an individual user in terms of mobility model,
communication pattern with other players, and number of
connections with the backend servers, and (2) an alliance,
which simulate the behaviors of a group of players as a
whole in terms of diplomatic relationship pattern, and resource
control. To increase the accuracy of the models, we observe
the behavior of 1000 players and 30 alliances which evolve in
French worlds number 2,6,7 and 10 and apply a trace-driven
modeling methodology to fit the models.

B. Experimentation Scenarios and Setup

Two reference scenarios are designed ranging from medium-
to-high (scenario 1) to high-to-intensive (scenario 2) simu-
lation load. Both scenarios simulate 144 worlds during one
year, where each timestamp represents 1 minute (i.e. 525600
total timestamps). The number of base per player is uniformly
distributed between 1 to 20. Only 10% of players communicate
with different worlds. For the first scenario, the number of
players per Worlds is set to be uniformly distributed between
2k to 5k, while for the second scenario is between 25k-50k.

All the experimentation are carried out using the largest
European GPU-based super-calculator, the TGCC Curie in-
frastructure. In our setup, each world is represented by one
independent ELP and all simulation instances are synchronized
at each timestamp, which in turn allows monitoring the impact
of game dynamics in all worlds with the granularity of
timestamps.

C. Results

1) Simulation Runtime: The simulation runtime is a mea-
surement of the physical time needed to perform the totality
of a given simulation and represents a global simulation
efficiency. In the first scenario, the average number of total
players is 350k, and the average number of the total alliance
is 10k, which generates approximately 2 Tera events for the
entire simulation time. In the second scenario, the total of 2M
agents including players and alliances exist generating up to
50 Tera events during the simulation.

Figure 5 illustrates the simulation runtime of GP-CMW,
basic CMW, CMW-PAL, CMW-HAL, and MW-CPU as de-
scribed at the beginning of Section IV. When comparing the
relative gain with respect to the basic CMW, we observe that
CMW-PAL and CMW-HAL improve the simulation runtime
by 12% and 7% for the first scenario, and 50% and 100% in
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Fig. 5. Simulation runtime and the impact of the PAL and HAL.

the second scenario. When comparing the basic CMW with the
GP-CMW, we notice when both PAL and HAL are enabled,
an improvement of 19% for the first scenario and 260% for
the second scenario are achieved. The results show that both
PAL and HAL provide a significant gain in simulation runtime
especially when the event rate becomes enormous. It can be
seen from the figures that the gain obtained through HAL is
higher (almost twice) in both scenarios. This is because HAL
exploits both data and communication localities across all the
available computing resources when scheduling events, which
in turn maximizes the hardware activity rate. When comparing
with GP-CMW, the gain of both layers are preserved indicating
their complementarity.

2) Synchronization Delay: Synchronization delay is defined
as the elapsed wallclock time between the reception of the first
and the last acknowledgment of the current WU. It represents
the maximum waiting time experienced by the masters and
all its workers (entire ELP) and is measured at the coordi-
nator level. Figure 6 shows the statistics of synchronization
delay for the considered scenarios and configurations. We
observe a relatively constant synchronization delay ranging
from 0.26ms to 0.28ms with 0.19ms variance for medium-to-
high simulation load, and more variability, ranging from 0.48
to 2mn with 1ms variance, for the high-to-intensive simulation
load. This proves the effect of load on the synchronization
delay, and consequently on the activity rate of the masters. In
the high load scenarios, such a variability in synchronization
delay is one of the main cause of simulation instability that
has to be managed. In both scenarios when PAL is applied,
such variability is not observed, and the synchronization delay
remains constant, i.e. between 0.26ms and 0.28ms.

Fig. 6. Synchronization delay. We use the candle-sticks representation, where
the box presents 95% of measured values during the simulation. The average
value is the line in the middle of the box while the max and the min values
give an overview of the overall variability during the simulation.

3) Communication latency: We define the communication
latency as the elapsed time between the transmission of a
message by the sender and its reception by the receiver. This is
a real time value, relative to the simulation framework behavior
and performance. In a distributed and parallel simulation,
we distinguish between two communication categories: (i)
between distinct ELPs known as inter-ELP communication

and (ii) between simulated entities of the same ELP known as
intra-ELP communication. We compute two values for each
worker (player and alliance) and master (ELP). We rely on a
statistical representation that summarizes the communication
latency for both scenarios.

Figure 7 presents the measurement of inter-ELP commu-
nication for the considered configurations. We observe that
the basic CMW requires on average 5 ms to exchange a
message between two distinct ELPs, whereas when PAL is
applied the delay becomes five times lower. This is due
to the two additional methods supported by PAL, namely
packet aggregation and multicast message passing, allowing
to increase the performance among ELPs. As for HAL, the
performance remains the same as basic CMW but with lower
variability.

Figure 8 shows the measurement of intra-ELP communi-
cation for the considered configurations. We observe that the
basic CMW model requires on average about 5 us to exchange
message within an ELP, while with HAL, the performance
is significantly improved, ie. up to 10 times faster. This is
because HAL exploits the direct memory access and dedi-
cated memories allowing workers to collaborate without CPU
involvement.

From both figures, it can be seen that HAL and PAL are
complementary allowing to achieve a significant gain in both
parallel and distributed context.

Fig. 7. Average Inter-ELP communication latency.

Fig. 8. Average intra-ELP communication latency.

4) Hardware Activity Rate: The hardware activity rate is a
parameter that measures the activity rate of available resources
during the software execution. In this study, we focus on four
components: the CPU, the GPU, the RAM and the GDRAM.
We rely on the OS primitives to evaluate the activity rate, and
we compute the average value during the simulation.

Figure 9 and Figure 10 present the average CPU and CPU
activity rate during the simulation. We observe that when HAL
is enabled, both GPU and CPU activity rate also increase. This
is mainly due to the efficiency of the hybrid scheduler that
(i) exploits all the available cores to perform the simulation,
and (b) schedules events by taking into account the event
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type, CIE or FIE, as well as the instantaneous load of each
target. By design, HAL schedules the FIE events, i.e. isolated
and/or recursive events, for CPU target, and CIE events, newly
generated event that only differ in data, for GPU target. Please
note that the basic CMW does not distinguish between CIE
and FIE, and thus schedules all events either to CPU or GPU.

Figure 11 presents the CPU memory load (RAM) during
the simulation. It can be seen from the figure that the memory
usage rate is load-dependent, and as expected the GP-CMW
requires up to 50% more memory than the basic CMW under
high-to-intensive simulation load. This is mainly due to the
usage of intermediate buffers, used to maintain the events flow
stability. Nonetheless, the memory load remains below 100%
for scenario 2 indicating that inter-ELP communication may
not be fully loaded. Please note that only 10% of the players
communications with outside worlds. The GPU memory load
(GDRAM) is shown in Figure 12. We observe the same trend
as in case of RAM except that the memory usage is maximized
for all configuration in scenario 2.

Fig. 9. Average CPU activity rate.

Fig. 10. Average GPU activity rate.

Fig. 11. Average RAM usage rate.

Fig. 12. Average GRAM usage rate.

V. DISCUSSION

In the previous section, we highlight the advantage of using
a GP-CMW model to simulate a large scale online game char-
acterized by a massive inter-ELP communication and sporadic

intra-ELP communication. In this section, we identify under
which simulation scenarios the proposed GP-CMW model
presents performance gain when compared to CMW and MW.
For benchmarking, we reuse the Cunetsim framework as it
supports not only GP-CMW and CMW but also MW for both
CPU and GPU. The hardware platform consists of six standard
workstations with the following configuration: Intel i7 6950X
CPU core, 64 GB of ECC DDR4 RAM, 2 GPUs one K80 and
one P100, and 1Gb and 10Gb Ethernet interfaces. We rely on
the Intel core i family rather than XEON in order to adjust the
CPU frequency on-the-fly (also known as dynamic frequency
scaling or CPU throttling) from 1GHz to 4.5Ghz.

The benchmarking scenario is a large scale wireless mesh
network with no node mobility in a flat area of 90km x
60 km, divided into six subzones of 30km x 30km each.
There are 24k nodes randomly distributed in the space. Each
subzone will be simulated in one LP or ELP depending on the
considered architecture, and each one will simulate 4k nodes.
Each simulated node implements one http server and one
client; each http client is attempting to connect to a random
server. Three parameters are considered to benchmark CMW
and MW based simulation models, namely (i) the density of
CIE, (ii) the density of recessive events, and (iii) the frequency
of CPU, which are evaluated in the following subsections.

A. Density of CIE

In this experiment, we vary the density of CIE over all the
simulated events. The density is defined as a percentage of the
grouped events in the simulation. Note that the grouped events
can be represented using one event descriptor, but their density
remains the same. The hardware is configured with 3GHz
CPU frequency and 10Gb network interface. The simulation
is executed only one time to avoid recursive events.

Fig. 13 summarizes the simulation time for each simulation
model as a function of the CIE density. It can be seen that
GP-CMW becomes very efficient only when the density of
CIE events becomes larger that 95%. This suggests that event
grouping is a key to lower the simulation time for high CIE
density regime and that GPU-based simulations, GP-CMW
and GPU-MW, become significantly efficient. For medium
CIE density, CMW has the lowest simulation time as it makes
use of both GPU and CPU to schedule CIE and FIE events
but with lower overhead than that of GP-CMW. However for
low CIE density (below 40%), CPU-based simulation proves
to outperform GPU-based. It can be seen that the CPU-MW
achieves the lowest simulation time with a small gain when
compared to CMW.

B. Density Of Recursive Events

A recursive event is an event that is generated due to the
execution of anther event during the course of simulation. In
this experiment, the recursive events are introduced by varying
the wireless channel quality over time. This will increase the
probability of losing packets due to wireless error causing
the packets to go through the TCP retransmissions, which in
this experiment represents the recursive events. Because the
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Fig. 13. Impact of CIE density on the performance of the simulation model

recursive events concern only FIE, we keep the rate of CIE
constant with high density and vary the rate of FIE.

Fig. 14 shows the impact of recursive event density on the
simulation time. In can be observed that the GP-CMW model
achieves the lowest simulation time for different densities of
recursive events. This is mainly due to the event scheduling
algorithm of the GP-CMW allowing a rapid execution of
recursive events with no causality. While in CMW and MW,
a recursive event is re-injected to the event queue as a new
event, in GP-CMW, the scheduler attempts to execute such
recursive events immediately without reordering them. It has to
be mentioned that most of the optimized scheduling algorithms
require O(Nlog(N)) to reorder the events in the event queue to
retain the simulation consistency, which in turn increases the
simulation time.
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Fig. 14. Impact of recursive event density on the performance of the
simulation model

C. Frequency of CPU

In this experiment, we analyze the impact of CPU frequency
on the total simulation time. We set the CPUs frequency across
the six workstations to be 1.5, 2, 2.5, 3.5, 4 and 4.5 GHz. The
simulation scenario evolves 6 ELPs with an identical load at
the beginning of the simulation.

It can be observed from Fig. 15 that the GP-CMW not only
has the lowest simulation time but also lowest variability as the
CPU frequency changes (30% for GP-CMW, 80% for CMW,
and 100% for MW-CPU). This flexibility is mainly due to
the elasticity of the WU in GP-CMW as each ELP requests
WU length as a function of its load. The coordinator may then
adapt the length of the global WU based on the performance of
each ELP to minimize the overall inactivity time. It is worth
mentioning that the most efficient solution to deal with the
heterogeneity of compute nodes can be obtained through a
load balancing mechanism among ELPs.
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Fig. 15. Impact of CPU frequency on the performance of the simulation
model

VI. CONCLUSION

Parallel and distributed simulations are considered as the
main approach to improve the efficiency for large and extra-
large scale simulation. However, existing simulation models
do not take into account the heterogeneous computing node
architecture combining multi-core CPU with powerful GPUs,
which represents key ingredients for a parallel and distributed
simulation given a massive number of events. In this context,
one of the central challenges is to find an optimal tradeoff
between computing, data, and communication locality. At the
same time, meta-computing systems composed of several in-
terconnected heterogeneous computing nodes emerge as a real
alternative to traditional expensive and complex datacenter.
However, to increase the efficiency of such infrastructure,
simulation models have to maximize the interactions within
each computing node while minimizing the communication
and synchronization overhead with other computing nodes.

To address this requirement, we propose a three-level gen-
eral purpose coordinator-master-worker simulation model. The
proposed model is based the commonly used master-worker
model and introduces a third top-level process denoted as
the coordinator to manage multiple simulation instances in
different addressing space. With respect to basic CMW, GP-
CMW introduces two optimization layers, namely priority
abstraction layer (PAL) to manage the communication across
multiple simulation instances, and hardware abstraction layer
(HAL) to exploit computing, data, and communication local-
ities. Experimentation results confirm that GP-CMW signifi-
cantly improves the simulation efficiency in both parallel and
distributed context when compared to CMW and MW.
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