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ABSTRACT

Most artificial bandwidth extension (ABE) algorithms are
based on the classical source-filter model of speech produc-
tion. This approach generally requires the dual extension of
each component through independent processing. Alternative
approaches reported recently operate on the spectrum. With
human perception thought to be largely insensitive to phase,
most such approaches focus on the extension of the magni-
tude spectrum alone and rely on Fourier spectral analysis.
This paper reports an approach to ABE based on the constant
Q transform (CQT), a more perceptually motivated approach
to spectral analysis. A Gaussian mixture model is used to
estimate missing highband components from available nar-
rowband components before resynthesis with phase estimates
obtained from the upsampled narrowband signal. Objective
assessment shows that energy normalisation is critical to per-
formance. These findings and the appeal of CQT for ABE
are confirmed through informal subjective tests based on the
mean opinion score.

Index Terms— bandwidth extension, constant Q trans-
form

1. INTRODUCTION

There is a fundamental link between the perceived quality of a
speech signal and its bandwidth [1]. While wider bandwidths
usually correspond to higher quality speech [2], this comes at
the cost of higher bit rates [3]. As a result, speech signals are
usually bandwidth-limited, often to either 4kHz or 8kHz.

Unvoiced phonemes typically exhibit significant energy
across the wideband spectrum [1]. The higher frequency
components are crucial to quality, with wideband speech
signals yielding higher mean opinion scores approximately
1.4 times those of narrowband speech [1]. Even so, most
legacy telephone networks operate within the 300-3400Hz
range referred to as narrowband (NB). As a result, artificial
bandwidth extension (ABE) algorithms have been developed
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to compensate for the consequential loss in intelligibility and
quality by estimating the missing highband (HB) components
above 3400Hz from the available NB components, thereby
producing an estimated wideband (WB) signal.

Most ABE algorithms are based upon the classical source-
filter model of speech production where a NB speech signal
is represented by an excitation source and a vocal tract filter.
The frequency content of these two components can be ex-
tended through independent processing before a WB signal
is resynthesised. In practice, however, most approaches fo-
cus on the extension of the spectral envelope since it has the
dominant impact on speech quality [1].

The use of many different feature representations has been
reported, e.g. linear prediction coefficients (LPC) [4], line
spectral frequencies (LSF) [5] and mel-frequency cepstral co-
efficients (MFCC) [6]. A mixed approach reported in [1] uses
NB auto-correlation coefficients to estimate WB cepstral co-
efficients. All of these methods learn a mapping between
NB and HB frequency components according to their correla-
tion [7]. This relationship has been studied in terms of mutual
information [8] and in combination with entropy [9] and with
separability [10].

Other ABE algorithms which operate on the complex
speech spectrum have also been reported. Notable examples
include: a spectral folding approach and a shaping function
learned from neural networks [11]; an adaptive spline neural
network to estimate directly the missing HB spectral coef-
ficients [12]; a deep neural network (DNN)-based approach
using log-power spectrum features [13]; a sum-product net-
work for the estimation of missing HB components [14], and
a joint-dictionary approach which exploits sparsity [15].

Most of these approaches employ the short-time Fourier
transform (STFT) for spectral analysis. The STFT has a fixed
frequency resolution. This is equivalent to a bank of filters
with variable Q factors. The latter is a measure of filter se-
lectivity and is defined as the ratio of centre frequency and
bandwidth. By contrast, the human auditory system exhibits
constant Q characteristics between 500Hz to 20kHz [16].

This hypothesis is supported by [8] which shows that per-



ceptually inspired approaches to ABE may produce more nat-
ural speech than those which focus solely on the correlation
between NB and HB components. Being a more perceptually
motived approach to frequency analysis than Fourier counter-
parts, this paper thus reports our attempts to harness the CQT
for bandwidth extension.

The rest of the paper is organised as follows: Section 2
presents the CQT; Section 3 describes its use for ABE; Sec-
tion 4 describes objective and subjective assessments; conclu-
sions are presented in Section 5.

2. THE CONSTANT Q TRANSFORM

Introduced by Youngberg and Boll [17] in 1978 and redefined
by Brown [18] in 1991, the constant Q transform (CQT) is a
perceptually motivated approach to time-frequency analysis.
In contrast to Fourier-based analysis, CQT bin centres are ge-
ometrically distributed following the equal-tempered scale of
Western music [19]. The CQT is popular in the field of music
processing, e.g. [20, 21] and was recently applied to a number
of speech processing problems [22, 23, 24].

The so-called Q factor reflects the selectivity of a filter
used in time-frequency analysis and is defined as the ratio of
its centre frequency and bandwidth:

Q =
fk

fk+1 − fk
(1)

where k = 1, 2, ...,K is the frequency bin index and where fk
is the centre frequency of bin k. When the bin frequencies are
geometrically distributed as in the CQT transform, then Eq. 1
is simplied to Q = (21/B − 1)−1 [18] where B is the num-
ber of bins per octave. The centre frequencies fk are defined
according to:

fk = f12
(k−1)/B

where f1 is the centre frequency of the lowest bin. B thus de-
termines the time-frequency resolution trade-off. Compared
to the STFT, the CQT has a greater frequency resolution for
lower frequencies but a greater temporal resolution for higher
frequencies.

The CQT of a discrete signal x(n) is defined by:

XCQ(k, n) =

n+⌊Nk/2⌋∑
j=n−⌊Nk/2⌋

x(j)a∗k(j − n+Nk/2)

where ak(n) are basis functions, ∗ is the complex conjugate
and Nk is a variable window length. Full details of the CQT,
including definitions of ak and the inverse-CQT (ICQT) are
presented in [25, 26] with efficient implementations.

3. ARTIFICAL BANDWIDTH EXTENSION

This section describes our approach to ABE using the CQT.
The algorithm is illustrated in Fig. 1. ABE is performed using

Gaussian mixture models (GMMs) learned using a database
of parallel NB and WB speech utterances. Features are log-
magnitude spectral estimates. Resynthesis is performed using
artificially extended HB magnitude estimates and HB phase
estimates obtained from the upsampled NB signal. Details of
each step are given in the following.

3.1. Training

CQT feature extraction is applied exclusively to WB signal
sampled at 16kHz. NB signals sampled at 16kHz are obtained
from the treatment of WB signals with mobile station input
(MSIN) highpass filtering [27] followed by lowpass filtering
and level adjustment to active speech level of -26 dBov [28].
For NB signals (top pipeline of the training block in Fig. 1),
features are extracted for NB components according to:

XNB = ln|XCQ(k, n)|,∀n, ∀k = {k : fkϵ[f1, 3700] Hz}
(2)

For WB signals, features are extracted for HB components
only according to:

Y HB = ln|Y CQ(k, n)|, ∀n, ∀k = {k : fkϵ[3700, 8000] Hz}
(3)

The CQT is applied with values of B = 48 bins per oc-
tave, a lowest bin frequency of f1 = 250Hz and a maximum
bin frequency of fmax = 8000Hz. This gives features of
dimensions 187 and 52 for NB and WB signals respectively
which are mean and variance normalised (mvn) to give fea-
tures XNB

mvn and Y HB
mvn. The two components are concatenated

to give Z = [XNB
mvn, Y

HB
mvn], 239-variate feature vectors which

are modeled as a mixture of 512 Gaussian components with
full covariance matrices.

3.2. Extension

NB signals are first upsampled to 16kHz (x̂) before feature
extraction is applied as in Eq. 2. For every available nor-
malised feature vector X̂mvn, the missing normalised HB
component Ŷmvn is estimated so as to minimise the mean
square error (MSE):

MSE = E

[∥∥∥Ŷmvn − F (X̂mvn)
∥∥∥2]

where F is the mapping function obtained from the GMM
of joint vectors Z. This standard mapping operation is de-
scribed in [4]. Inverse mean and variance normalisation
(mvn−1) is then applied, using means and variances obtained
from the training data, to obtain the HB log-magnitude esti-
mate Ŷ .

3.3. Resynthesis

Time-domain speech signals are resynthesised using the
ICQT. The magnitude component M is a concatenation
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Fig. 1. Block diagram of the CQT-based ABE system.

of the original NB component MNB = exp(X̂NB) and
the artifically generated and gain-adjusted HB component
MHB = G ∗ exp(Ŷ HB). The phase component is extracted
from an upsampled version of the NB input signal. This
condition is referred to later as estimated phase (EP):

EP = ̸ X̂CQ(k, n), ∀n, ∀k = {k : fkϵ[f1, 8000] Hz}

The extended signal is resynthesised by performing the ICQT
on the vector Ẑ = Mexp(jEP ). In order to gauge the degra-
dation incurred as a result of using EP, contrastive ABE ex-
periments were performed using oracle phase components ex-
tracted from the application of CQT to original WB signals.
This condition is referred to as oracle phase (OP):

OP = ̸ Y CQ(k, n),∀n, ∀k = {k : fkϵ[3700, 8000] Hz}

Resynthesis is then performed using the concatenated phase
of the upsampled NB signal with OP defined above.

The gain adjustment G corrects for differences between
the energy of estimated and original HB components and is
estimated as follows. Estimates of the HB i.e. Ŷ HB

train were
obtained from XNB for the entire training set. A polyno-
mial regression [29] of order 4 was then performed between

the root mean-square (RMS) values
√
EHB

oracle and
√
ÊHB

train

where EHB
oracle =

∑
|Y CQ|2 is the true HB energy calculated

from the original WB signal and ÊHB
train =

∑
(exp(Ŷ HB

train))
2

is the energy of estimated HB for the training data.
During resynthesis, estimated gain is then given by

G =
√
EHB

reg /Ê
HB (4)
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Fig. 2. Spectrograms of an upsampled NB speech (top), artificially
extended WB speech (middle) and original WB speech (bottom).

where
√
EHB

reg is obtained through regression from
√
ÊHB

and ÊHB =
∑

(exp(Ŷ HB))2 is the energy of estimated HB.
Two further experimental conditions aim to assess the benefit
of gain adjustment. The first is performed with the gain es-
timated as described above. This condition is referred to as
estimated gain (EG). A contrastive condition uses the oracle

gain (OG) given by
√
EHB

oracle/Ê
HB . Spectrograms of NB,

artifically extended and original WB utterances are illustrated



in Fig. 2.

4. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup and results for
both objective and subjective assessments.

4.1. Database

ABE experiments are performed using the TSP speech
database [30] which consists of 1378 phonetically balanced
Harvard sentences spoken by 12 male and 12 female speak-
ers and recorded with a sampling frequency of 48kHz. WB
versions were created by downsampling the original files to
16kHz. For training, parallel NB speech signals were created
as described in Section 3.1.

4.2. Objective metrics

Objective assessments were first performed using the RMS
log-spectral distortion (RMS-LSD) [31] which is known to
correlate well with subjective assessment results [32]. It is
given by:

RMS-LSD =

√√√√ 1

△F

∫
△F

[
20log10

∣∣∣∣∣ g

H(f)
− ĝ

Ĥ(f)

∣∣∣∣∣
]2

df

where △F = [3700, 8000]Hz, H(f) and Ĥ(f) are the origi-
nal and estimated envelopes calculated in the frequency range
△F using linear prediction analysis and where g and ĝ are the
gains of their respective excitation components. In practice, a
summation is used to calculate the integral.

Table 1 shows RMS-LSD assessment results for ABE
using oracle and estimated gain and phase. Without gain
normlisation, the RMS-LSD is high. As expected, the lowest
RMS-LSD is achieved when using OG and OP. The increase
in RMS-LSD is greater when EG is used in place of OG.
There is little difference between RMS-LSD obtained using
OP and EP, thereby indicating greater sensitivity to gain than
phase. This result is not suprising given the relative insen-
sitivity of human perception to phase. The practical ABE
system with EG and EP gives RMS-LSD figures of 2.46 and
4.64dB for training and testing sets respectively. These fig-
ures are marginally higher than those of 1.89 and 3.13dB for
OG and OP.

4.3. Subjective listening test

Subjective assessments were performed using comparison-
based mean-opinion score (MOS) tests [31]. Tests were per-
formed for artificially extended WB signals through compari-
son to NB and original WB signals, using EG-EP and OG-EP
configurations. Tests were performed with 10 listeners who

Table 1. RMS-LSD results (in dB) with and without gain normal-
ization and different phase extensions. OG - oracle gain, EG - esti-
mated gain, OP - oracle phase, EP - estimated phase. EG-EP is the
proposed method.

Gain Phase Train Test
Mean (σ) Mean (σ)

- OP 3.01 (0.72) 5.28 (1.51)
- EP 3.21 (0.71) 5.39 (1.49)

OG OP 1.89 (0.37) 3.13 (0.67)
OG EP 2.16 (0.38) 3.30 (0.67)
EG OP 2.46 (0.40) 4.64 (1.06)
EG EP 2.66 (0.42) 4.77 (1.05)

Table 2. Comparison based MOS for EP with EG and OG. EG-EP
is the proposed method.

Comparison B → A MOS

EG-EP → NB 1.12
OG-EP → NB 1.14
EG-EP → WB -1.42
OG-EP → WB -1.03

were asked to compare the quality of 10 pairs of speech sig-
nals A and B. They were asked to rate the quality of signal B
with respect to A according to the following scale: -3 (much
worse), -2 (slightly worse), -1 (worse), 0 (about the same), 1
(slightly better), 2 (better), 3 (much better). All speech files
used for subjective tests are available online1.

MOS scores are illustrated in Table 2. While both EG-
EP and OG-EP systems were rated poorer than original WB
signals, they were rated better than NB speech signals. As
expected, the OG-EP system gave higher MOS scores than the
EG-EP system, althought the difference is modest. Lastly, the
improvement in MOS scores correlates with the improvement
in objective RMS-LD scores.

5. CONCLUSIONS

The constant Q transform (CQT) is a perceptually motivated
approach to time-frequency analysis. This paper reports its
first application to artificial bandwidth extention (ABE). Both
objective and subjective experimental results show that the
proposed approach using the CQT produces higher-quality,
higher-bandwidth speech signals. While phase is shown to
be relatively unimportant, the accurate estimation of spectral
magnitude and gain is critical. Future work should target bet-
ter approaches to gain estimation and the optimisation of CQT
analysis for ABE. Alternative narrowband to wideband map-
ping or regression techniques such as those rooted in deep
learning may also deliver further improvements.

1http://audio.eurecom.fr/content/media
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