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Introduction

The purpose of this manuscript is to provide an overview of my research activities during the
last ten years in the broad domain of privacy and security. With the significant progress achieved
since many years in hardware and software technologies, communication among people became
much easier and much cheaper. The ease of communication resulted in an exchange of large
amount of information. The rapid changes in information technology which refers to the storage
and processing of such information have raised serious security and privacy challenges and led to
loss of users’ control over their data.

The main goal of my research activities was (and still is) to come up with novel security and
privacy solutions dedicated to new technologies. The methodology that has been applied with
the upcoming new technology consists of first analyzing the security and privacy issues raised by
the new technology and further designing and evaluating new and dedicated security or privacy
preserving primitives.

The document first starts with the identification of the security and privacy challenges of op-
portunistic networks which leverage any "opportunity" to transmit communication packets to the
destined nodes. Given the mobility of the nodes and the diversity of information used at the com-
munication layer, such networks are exposed to various security and privacy threats within an
environment without any a-prior trust relationship. Chapter 1 overviews various privacy preserv-
ing primitives proposed for different opportunistic forwarding strategies. This research work was
jointly carried out with Dr. Abdullatif Shikfa, the first Ph.D. student I was co-advising with Prof.
Refik Molva.

Chapter 2 gives an overview of the problem of privacy protection in online social networks.
It mainly describes a study we conducted together with Dr. Leucio Antonio Cutillo and Prof.
Refik Molva on the impact of social graph theory on the privacy of distributed online social net-
works. The chapter further outlines a dedicated privacy preserving primitive for picture sharing
applications.

Finally, in chapters 3 and 4 the document focuses on the cloud computing technology which
helps customers to outsource their massive data and computation with the various advantages of
higher availability, reliability and flexibility. This new paradigm comes with high security and pri-
vacy exposures and the document briefly describes some solutions proposed not only to protect the
privacy of the user but also to increase transparency with respect to the services of cloud providers.
While chapter 3 mainly studies the problem of privacy preserving word search and describes three
different solutions with different user settings, it also reviews two secure deduplication solutions
designed together with Dr. Pasquale Puzio and Prof. Refik Molva. Chapter 4 tackles the problem
of verifiability and reviews a verifiable storage and a verifiable word search solution jointly pro-
posed with Dr. Kaoutar Elkhiyaoui and Monir Azraoui, the second Ph.D student I supervised with
Prof. Refik Molva.
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Chapter 1

Security and Privacy in Opportunistic
Communications

In this chapter we focus on the problem of security and privacy in opportunistic communications
which aim at exploiting all available communication opportunities to eventually deliver a message
to its destination. Users’ physical mobility is considered as an additional opportunity of bringing
messages closer to the destination. This new communication model relying on users’ cooperation
and context information raises several security and privacy challenges which will be analyzed in
this chapter. Section 1.1 introduces the different security and privacy problems for which the next
sections briefly describe potential solutions: While section 1.2 tackles the problem of cooperation
enforcement and presents a solution dedicated to a specific opportunistic forwarding algorithm,
sections 1.3 and 1.4 focus on the problem of privacy and introduce two solutions that address the
problem of user privacy while ensuring the opportunistic communication among nodes.

1.1 Problem Statement

1.1.1 Opportunistic forwarding

Opportunistic networks can be seen as an extension or a follow-up to mobile ad-hoc networks
(MANETs) [1]. They inherit many of their characteristics such as:

• the lack of infrastructure: nodes form a temporary network without the help of any infras-
tructure and without any a-priori trust relationship. Therefore all nodes participate in the
underlying communication operations.

• the scarcity of resources: mobile nodes are assumed to have limited resources (such as
memory or battery) and therefore constantly need to optimize their usage.

On the other hand, although considered as mobile, MANETs very loosely support mobility: packet
routing rely on a fixed path between the source and the destination and any modification of the
network topology during the communication requires the recomputation of the entire path. On
the contrary, opportunistic networks consider node mobility as an advantage since it is a new op-
portunity for messages to be delivered in an efficient manner. Opportunistic communication fol-
lows the store, carry and forward principle: when a communicating device receives a message, it
stores it, carries it by using physical mobility, and forwards it when a communication opportunity
arises. Therefore, opportunistic networks do not rely on the existence of end-to-end connectiv-
ity and thus are delay-tolerant. Furthermore, since messages are disseminated, destinations are



4 1. SECURITY AND PRIVACY IN OPPORTUNISTIC COMMUNICATIONS

sometimes implicitly defined by their interests or their context rather than by an explicit address.
Opportunistic forwarding solutions can be classified under three categories:

• oblivious forwarding protocols: such protocols can be considered as classical routing proto-
cols where destination of messages is defined by an address. The approach is mainly based
on epidemic forwarding which basically consists in forwarding a packet to all encountered
nodes. The main advantage of epidemic forwarding is that it achieves almost always 100%
delivery ratio with very few information required; on the other hand, the disadvantage is
either the huge bandwidth waste or a potentially high delivery time. Solutions thus focus on
limiting the flooding.

• context-based forwarding: in such protocols, the destination is defined through its context.
The context of a message mainly consists of the profile of the destination. The profile of a
node consists of information related to the physical node and includes personal information
about the user, its location, its activities, social relations, etc. Based on this contextual
information, forwarding nodes decide on which next hop matches the context of the message
the best and forward the message to this particular node. Messages eventually reach the
destination which matches all the context.

• content-based forwarding: in such a communication paradigm, messages do not define a
destination at all: content is forwarded based on nodes’ interests. Such protocols rely on a
collapsed architecture where information concerning the application or the network opera-
tion is at the same level.

1.1.2 Security issues

The specific constraints of opportunistic networks, namely, the lack of infrastructure, the lack of
end-to-end connectivity and the collapsed architecture, raise new challenges in terms of security,
trust and privacy.

• trust and cooperation: opportunistic communications (especially, oblivious forwarding
protocols) do not assume a routing infrastructure and messages are forwarded by all com-
municating devices, hence cooperation between devices is crucial. On the other hand, these
devices having limited resources, may require some incentives to cooperate and enable the
communication.

• confidentiality and privacy: applying traditional encryption primitives is not straightfor-
ward since while data often needs to be encrypted in an end-to-end way, encryption will
hinder basic communication mechanisms such as packet forwarding that need to be able to
parse the content of packets.

• authentication and integrity: because of the underlying collapsed architecture, the in-
tegrity of messages becomes crucial for the correct delivery of the messages. The lack of a
security infrastructure increases the problem of authentication even more.

The next sections tackle these problems and propose a secure forwarding solution dedicated to
each category of forwarding protocols.
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Figure 1.1: The basic hot potato forwarding mechanism

1.2 Cooperation Enforcement

As in MANETs, opportunistic networks involve all available nodes on packet forwarding. Scarcity
of resources would inherently foster them to behave selfishly. In order to reduce the effect of self-
ishness which may have a strong impact on the performance of the network [2], in [3], we propose
a new cooperation enforcement scheme which is based on a simple technique called the hot-potato
forwarding whereby, to receive a packet, potential recipients must first pay the sender a reward
without prior knowledge about the packet. Additionally, the underlying optimistic fair exchange
protocol designed for this forwarding solution resolves the fairness problem that is inherent to peer
rewarding schemes.

1.2.1 Solution Overview

We propose a new forwarding technique whereby as in existing incentive mechanisms such as [4]
or [5], to receive a packet, each node must first deliver an advance reward to the sender without
any prior knowledge about the packet. Upon reception of the packet, if the recipient is not the
destination, the recipient forwards the packet to the next hop en route to the destination in order
to recover its rewarding amount. This new approach is illustrated with a simple protocol in figure
1.1. The motivating idea behind this approach is quite similar to hot potato routing [6] where
packets must keep on moving until they reach their destination. The hot potato approach enforces
cooperation among nodes since potential recipient nodes are motivated to deliver the reward for a
packet based on the fact that this is the only way they can receive traffic destined to themselves
and in case packet is destined to another node the rational recipient is also motivated to forward it
to recover the reward.

1.2.2 Security Requirements

The simple version of the protocol depicted in figure 1.1 can be a potential target for Denial of
Service: an attacker may generate some bogus messages in order to earn some rewards and use the
resources of other legitimate nodes; moreover, an intermediate node may also forward the same
message to several nodes. On the other hand, once a certain node receives the reward, it may
refrain from forwarding the message and end the exchange protocol. Based on these observations,
four specific security requirements are defined:

• cooperation enforcement: when a node paid for a packet and received it, it must forward
it;
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• protection against poisoning attacks: nodes must be prevented from sending bogus pack-
ets;

• protection against cheating actions: nodes must be prevented from unduly earning rewards
by sending the same packet several times;

• fairness: transmission of a packet subsequently to the reception of the corresponding reward
must be assured.

1.2.3 The rewarding mechanism

We consider the scenario whereby a source node S wishes to send a packet m to a destination
D. We assume that node S as well as all intermediate nodes can find out the next hop en route
to the destination node D. The proposed protocol also relies on the existence of a trusted third
party (TTP). However, the TTP does not initiate any communication and is only required in case
of conflicts; it is also responsible of crediting and debiting nodes with respect to their rewards.
All nodes store the TTP’s public key as well as an individual pair of public and private keys in
their memory. When S wishes to send m to D, the first intermediate node I1 pays S for a certain
amount r. Then, in order to get a compensation, when I1 contacts the next intermediate node
I2, it asks for a larger amount r + c. When the packet reaches D, D recovers its rewards by
further contacting the TTP which credits D and debits S for the corresponding amount. Thanks
to the proposed rewarding mechanism, intermediate nodes that forward packets are rewarded to
compensate the energy they deploy to do so. The reward paid by a node A to another node B
for a message M is denoted by reward(A,B,H(M), r) where H denotes a cryptographic hash
function. The underlying rewarding mechanism exhibits the following properties:

• No anonymity: a reward is tightly bound with the payer’s and payee’s identities and the
hash value of the corresponding message.

• No double-spending and non forgeability: rewards resulting from duplication or copying
of valid rewards or forging will be detected and funding of such rewards by the TTP will be
prevented.

• No re-usability: each reward is tightly bound to a single message exchange. Nodes period-
ically contact the TTP in order to transform earned rewards into usable rewards. Only the
TTP can perform such operations.

Thanks to these properties and the existence of the TTP, a node cannot earn rewards by just sending
bogus packets to some other nodes and therefore poisoning attacks are inherently prevented.

1.2.4 The exchange protocol between two nodes

The exchange protocol is accomplished in five steps. The protocol is illustrated in Figure 1.2. As
an initial step, node A sends the hash value of m with the requested rewarding amount. These two
elements are signed with its private key. Upon reception of the request, node B first verifies the
signature and checks if this request is not a replay (B keeps a temporary history of previous hash
values). If the signature is valid and B has enough rewards and resources to receive the message,
then nodeB agrees to receivem and sends its signed agreement. Once nodeA successfully verifies
B’s signature, it selects a random secret key KA and encrypts m with this key using a symmetric
encryption algorithm such as AES [7]. It then encrypts KA with the public key of the TTP and
signs all these data pieces with its private key. At step 3, node B sends to node A the requested
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Figure 1.2: The exchange protocol between nodes A and B

reward. When A receives the reward corresponding to m, it verifies the validity of the reward. If
the reward is not valid, then node A contacts the TTP to resolve this conflict. Otherwise, node A
proceeds to step 4 at which it sends KA to node B who finally can decrypt and retrieve m; node
B verifies the integrity of m with respect to the reward using the digest value H(M) included in
the reward. If the message resulting from decryption does not match the reward, then B contacts
the TTP to resolve the conflict. Moreover, if B does not receive the key KA, then it can contact
the TTP in order to receive KA from the TTP. If on the other hand the decrypted message and the
reward match, the communication ends with success.

1.2.5 Evaluation

Thanks to the underlying rewarding mechanism, cooperation becomes mandatory: Nodes have no
choice but to accept receiving all incoming packets if they want to be sure to receive packets that
are intended to them. Once they received packets, they must forward those that are not intended
to them to recover rewards spent before the reception. If packets are not forwarded, then they
simply lose some rewards and thus are immediately punishing themselves. Additionally, since
only the source is charged for sending the packet, a node will not have any incentive to send
bogus messages for the purpose of poisoning. Furthermore, duplicate transmissions would also
be detected by the TTP due to the strong bounding between each message and the corresponding
reward. Finally, the proposed protocol is defined to be fair if at the end of the protocol, node A
receives its reward and node B receives the message. Nodes A or B contact the TTP only if a
problem occurs during the exchange. They also might cheat by contacting the TTP to reclaim the
resolution of an inexistent conflict. In order to evaluate the fairness of the protocol, we consider
all possible communications between the TTP and each of the nodes at the end of each step and
prove that the protocol is complete. More details can be found in [3].

1.2.6 Discussion

Existing optimistic fair exchange protocols such as those proposed in [8] usually implement a
verifiable escrow scheme whereby the public encryption of the exchanged message/signature is
binded with the context and enables the receiver to verify that it is indeed an escrow of the to-
be-exchanged message. To ensure a timely termination, the protocol also includes three sub-
protocols during which the TTP is contacted, namely: an abort protocol for the initiator and two
resolve protocols, one for each party. While the proposed forwarding solution could have used the
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fair exchange solution in [8] (especially, the solution for the fair exchange of digital content, see
section 8.2), we believe that the fairness of our solution is ensured thanks the assumptions made
on the underlying rewarding mechanism and on the role of the TTP:

• The reward is binded to the IDs of both parties and the exchanged message;

• As opposed to existing solutions, the TTP is also in charge of both crediting and debiting
nodes. Whenever A is credited with a certain reward from B, B will immediately be debited.
Additionally, A is only credited if she provides the message corresponding to the hash value
defined within the reward.

1.2.7 Summary

In conclusion, thanks to the newly proposed rewarding mechanism which forces nodes to place an
advance payment of rewards to receive traffic destined to themselves, cooperation among nodes
becomes mandatory. The reliance of the protocol on a trusted third party is alleviated by the fact
that the TTP is only involved in case of conflicts. While the fairness of the protocol is analyzed
using a logical chart enumerating all cases, As mentioned in the previous section, an existing fair
exchange protocol based on verifiable escrow schemes (such as the one in [8], section 8.2) could
have also been used as a black box. Additionally, it would have been interesting to analyze the
rewarding of the fair nodes given the recent invention of Bitcoin1.

1.3 Secure Context-based forwarding

In this section, we analyze the security and privacy challenges raised by context based forwarding
protocols which exploit any information including users’ profiles to transmit messages. We then
overview the solution proposed in [9] and further improved in [10].

1.3.1 Security and privacy requirements

As mentioned in section 1.1.1, context based forwarding [11, 12] consists of forwarding mes-
sages based on the context (e.g. location, workplace, social information, etc.) instead of explicit
addresses. Each message is associated with its context which corresponds to the profile of its des-
tination and nodes take their forwarding decisions by comparing their own profile and the profile
of their neighboring nodes with the context of the message: the larger the context shared with a
node, the higher the chances to reach the destination. Figure 1.3 illustrates a context based for-
warding protocol where message M2 is destined to nodes with profiles including the attributes
{(Name, Alice);(Workplace, INRIA); (Status, Student)} and whose payload is "I love you". The
first and foremost security requirement of any communication protocol including a context-based
forwarding protocol is confidentiality of the content of the message to be delivered: access to the
payload of the message should only be authorized to destined nodes. Therefore the payload of
the message should be encrypted. However, since context based forwarding cannot rely on any
security infrastructure and on any end-to-end key management mechanisms, source nodes should
be able to encrypt the data without sharing any key with the destination in advance. Furthermore,
a threat that is specific to context-based forwarding is privacy leakage: a node’s profile should
not be exposed to other nodes in clear, even if this helps forwarding. Therefore, an intermedi-
ate node should be able to detect matches between its profile and the destination of the message

1https://bitcoin.org
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Figure 1.3: Context based forwarding

only, and other non-matching attributes should remain secret. Hence, revealing to another node a
shared attribute is acceptable from a privacy perspective. Moreover, as for payload confidential-
ity, encryption of the header cannot rely on an end-to-end key management mechanism because
of the opportunistic nature of the communication medium. To summarize, in order to achieve data
confidentiality and user privacy, a secure context based forwarding protocol should implement the
following primitives:

• ENCRYPT_PAYLOAD which takes as input the payload of the message and some public
keying material and outputs an encrypted payload;

• ENCRYPT_HEADER which takes as input the header of the message and some public
keying material and outputs and encrypted header; this primitive should enable forward-
ing nodes to compare their profile with the encrypted context in order to correctly forward
packets;

• MATCH_HEADER which is executed by any forwarding node to determine matching at-
tributes without revealing any other information;

• DECRYPT_PAYLOAD which allows the decryption of the message only by nodes which
actually have the required attributes, hence the corresponding keying material for decryp-
tion.

1.3.2 Background

As previously mentioned, the ENCRYPT_PAYLOAD primitive should assure end-to-end confi-
dentiality without any interaction between the source and the destination. Attribute based encryp-
tion [13] nicely fits such requirements since it is an asymmetric mechanism where the encryption
key is public. We propose a simple attribute based encryption solution based on refinements of
identity based cryptography [14] to allow any node to compute an encrypted version of the mes-
sage. Note that any attribute based encryption solution can be used to assure payload confidential-
ity.
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1.3.2.1 Identity based encryption (IBE)

As previously introduced, Identity based encryption (IBE) [14] is an asymmetric cryptographic
encryption solution where the encryption public key is the node’s identity which is known and
represented by a string. Hence, IBE consists of the following algorithms:

• Setupibe: this randomized algorithm takes as input a security parameter ζ and returns a
master key MKibe that is only known by the party who generates private keys using the
subsequent Extractibe and some public parameters paramibe which basically define the
message spaces.

• Extractibe: given public parameters paramibe, master key MKibe and an arbitrary identity
id ∈ {0, 1}∗, this algorithm returns a private key SKid corresponding to id which is defined
as the public key.

• Encibe: this randomized algorithm encrypts a given message m with public key id and
returns an encrypted message c.

• Decibe: this deterministic algorithm takes as input ciphertext c, a private key SKid and
paramibe and returns a cleartext m which is the decryption of c which was early encrypted
with public key id.

1.3.2.2 Public Key Encryption with Keyword Search (PEKS)

Introduced by Boneh et al. in [15], PEKS allows a node to search if a keyword exists in an
encrypted data without disclosing any additional information than the result of the search. The
node can perform this test only if it possesses a correct trapdoor computed from its private key and
the word. PEKS consists of the following four algorithms:

• KeyGenPEKS : this first algorithm generates a pair of public and private keys (Apub, Apriv)
given a security parameter ζ.

• PEKS: this randomized algorithm takes as inputs public key Apub and a keyword ω and
returns ω′ a PEKS encryption of ω.

• Trapdoor: this randomized algorithm takes as inputs private keyApriv and a keyword ω and
returns trapdoor Tω.

• TestPEKS : this algorithm takes as input public key Apub, an encrypted keyword ω′ and the
corresponding trapdoor Tω and outputs 1 if Tω = Trapdoor(Apriv, ω) and ω′ = PEKS(Apub, ω).
Otherwise, the output is 0.

1.3.3 Privacy preserving context based forwarding

The proposed privacy preserving context based forwarding protocol is subdivided into three phases:

• Setup phase: during this phase each nodeNi holding a certain number of attributes {AttNi,j}
receives the corresponding secret keys {SKi,j} from a trusted third party (TTP).

• Forwarding phase: whenever node S wants to send a message m to destination D whose
profile is defined with k attributes that are {AttD,j}1≤j≤k, it encrypts the payload P with
ENCRYPT_PAYLOAD and the header with ENCRYPT_HEADER described in the next
sections. To make the forwarding decision, all candidate forwarding nodes receive the
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header H(m) and execute the MATCH_HEADER primitive in order to securely compare
their profile with the attributes in the header of the message: they compute the matching
ratio and send the result to the previous node together with some proof. The previous node
makes the forwarding decision accordingly.

• Message decryption phase: whenever m reaches its final destination D, ie. whenever the
matching ratio is 1, D decrypts the payload P(m) with DECRYPT_PAYLOAD.

1.3.3.1 Setup phase

Using Setupibe, TTP generates the master key and a pair of public/private keys (TTPpriv, TTPpub)
for itself. For each nodeNi holding attributeAttj , TTP first generates the private key SKAtti,j us-
ing Extractibe. TTP also generates all corresponding trapdoors {Ti,j} by calling Trapdoor(SKTTP , Atti,j)
and sends it to the corresponding user. TTP can now go offline and the forwarding phase can start.

1.3.3.2 Forwarding phase

The forwarding protocol first starts by encrypting the payload of the message with ENCRYPT_PAYLOAD
and the header regrouping attributes {AttD,j} with ENCRYPT_HEADER as follows:

• ENCRYPT_PAYLOAD: this algorithm takes as inputs the payload P(m) to be encrypted
together with a set of attributes {Atti} and simply calls Encibe with payload P(m) and the
sum of attributes, namely

∑
H1(Atti).

• ENCRYPT_HEADER: this algorithm takes as input the header H(m) of message m and
calls PEKS(TTPpub, AttD,j) for each attribute AttD,j in the header. All encrypted at-
tributes are concatenated and included in the new headerH(m′).

As the first forwarding node, S sends the encrypted header to neighboring nodes. Each neigh-
boring node computes the matching ratio between their profile and the encrypted header message
using MATCH_HEADER as follows:

• MATCH_HEADER: this algorithm executed by each candidate node Ni takes as input the
encrypted header H(m′) regrouping all encrypted attributes and all trapdoors {Ti,j} re-
ceived from TTP and calls TestPEKS(Ti,j , Att

′
D,j) for all combinations of pairs of trap-

doors and attributes in the message. Whenever TestPEKS returns 1, MATCH_HEADER
increments a counter r, initially set to 0, by 1. Finally, r is divided by the number of at-
tributes in the header. For example if two attributes out of 3 match with the header’s, then
MATCH_HEADER returns 2/3.

S further forwards the encrypted payload P(m′) to the node with the highest matching ratio. Each
node on the path to the destination enters this same phase which ends whenever the computed
matching ratio equals 1.

1.3.3.3 Decryption phase

When destination node D receives the encrypted payload, ie. the matching ratio equals 1, D calls
DECRYPT_PAYLOAD as follows:

• DECRYPT_PAYLOAD: this algorithm takes as inputs the ciphertext P(m′) and a set of
private keys SKD,i corresponding to attributes Atti and calls Decibe with P(m′) and the
addition of private keys, namely

∑
(SKD,i).
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1.3.4 Summary

Thanks to the use of a simple attribute based encryption which is an instantiation of identity based
cryptography in a multi-user setting, the proposed solution ensures data confidentiality defined as
payload confidentiality in this section. Concerning user privacy, the solution enables intermedi-
ate nodes to discover matching attributes between the context of a message and their own context,
while preserving the secrecy of non-matching attributes of the message. The solution is based on
a searchable encryption scheme. More details on the solution can be found in [9]. Additionally
in [10], we propose a mechanism to guarantee the computation of the matching ratios. The proof
of correctness is based on the preimage security properties of cryptographically secure hash func-
tions and on the use of counting Bloom filters [16] that efficiently prevent a malicious node from
tampering with the ratio computed over encrypted data.

1.4 Privacy preserving content based Publish/Subscribe networks

1.4.1 Privacy requirements

In this section, we focus on the problem of privacy and security in content based forwarding pro-
tocols. Messages in content-based communications are simply sent to all nodes interested in the
content. These interests are independent from the context (ie. nodes’ profiles) and are subject
to frequent changes. The Publish/Subscribe paradigm [17, 18] whereby communicating parties
are loosely coupled and where messages are forwarded based on the content solely, can be con-
sidered as a concrete example of content-based communication. Because the privacy preserving
context-based protocol described in the previous section, falls short in addressing the scalability
and dynamicity requirements, we define the privacy and security requirements dedicated to this
new paradigm and further describe a solution initially proposed in [19] and improved in [20].

1.4.2 Network model

In a typical Publish/Subscribe system a node can take three different roles:

• as a Publisher Pi, it publishes content through event notifications;

• as a Subscriber Si,j it declares its interests in a certain content through subscription filters;

• and finally as a Broker Bk it basically disseminates messages between publishers and sub-
scribers.

While publishers and subscribers can be considered as the end-users of the system, brokers are
intermediate nodes which actually deliver publishers’ content to the interested subscribers ef-
ficiently. Instead of using recipients’ addresses, brokers forward data segments based on their
content and on the interest of recipients. For the sake of simplicity, we consider a network with
one publisher and several subscribers and the network is modeled as a tree whose root node cor-
responds to publisher Pi: each leaf node is assigned to a subscriber Sj (whether interested in
Pi’s content or not) and intermediate nodes correspond to brokers. Note that a publisher Pi can
be considered as subscriber or broker in another tree. Brokers construct their forwarding tables
FTk through the Build_FT primitive based on subscribers’ subscription filters. Whenever broker
Bk receives an event notification e composed of an attribute defining the content and the actual
payload, it uses the Lookup_FT primitive to check whether e’s attribute is equal to one of FTk’s
rows corresponding to subscription filters. If e′s attribute is equal to one filter, then Bk forwards
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Figure 1.4: Content based Publish Subscribe Networks

the segment to the corresponding child node (defined in this row) in the path to the interested sub-
scriber. Figure 1.4 illustrates a simple publish subscribe network with a single publisher and five
subscribers. All subscribers except S5 are interested in P ’s content and brokers B1, B2, B3 and
B4 basically make sure that publisher P ’s notifications are delivered to subscribers S1, S2, S3 and
S4.

1.4.3 Privacy requirements

We assume that nodes do not trust each other and are considered as being honest-but-curious.
While nodes do not deviate from the designed protocol, they are interested to capture as much
information as possible on the content of the data and/or the interest of subscribers. Hence, privacy
of the nodes becomes an important concern in such a new communication paradigm. For example,
subscribers do not want to expose their interest against any other node (including publishers); on
the other hand, publishers do not want to reveal the content of their events to curious brokers
or other publishers. The main requirements to ensure nodes’ privacy also raised by [21] are the
following:

• Information confidentiality: Publishers’ event notifications should remain confidential
with respect to brokers and unregistered subscribers. Nevertheless, brokers should still be
able to evaluate these encrypted notification against subscription filters without leaking in-
formation on the corresponding content.

• Subscription confidentiality: Subscribers sending a subscription filter do not want to dis-
close their interests to any other node including publishers. Similarly to the previously
described requirement, brokers should nevertheless be able to match a content with an en-
crypted subscription without disclosing the subscription filter.

1.4.4 Security primitives for content based Publish/Subscribe networks

In order to assure these two requirements, a content based Publish/Subscribe protocol should de-
fine the following algorithms:

• Enc_f: this algorithm executed by a subscriber takes as input some keying material and a
subscription filter f and returns an encrypted subscription filer f ′.

• Enc_n: this algorithm used by a publisher outputs an encrypted version of a notification n′

given the cleartext notification n and some keying material.

• Build_FT: this algorithm allows a broker to build a forwarding table. Given a forwarding
table FT and an encrypted subscription filter f ′, this algorithm should return the resulting
updated routing table FT ′.
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• Lookup_FT: upon reception of an encrypted notification n′, a broker calls this algorithm
which takes the notification and the forwarding table FT on inputs and returns the id of the
child node to forward n′ to.

1.4.5 Background: Commutative encryption

The basic idea behind our solution is to use a new encryption primitive called multiple layer
commutative encryption (MLCE) to allow broker nodes in charge of routing protected messages
to perform secure transformations and transfer the message correctly without having access to it. A
multiple layer commutative encryption allows the encryption and decryption of data with multiple
keys at any order thanks to its commutative property. We define a multiple layer commutative
encryption (MLCE) with the following algorithms:

• KeyGenMLCE : This randomized algorithm takes as input a security parameter ζ and returns
a pair of encryption and decryption keys (EK,DK).

• EncMLCE : This algorithm takes as input an encryption key EK and a message m and
returns a ciphertext m′. Thanks to its commutativity, given two encryption keys EK1 and
EK2 we have:

EncMLCE(EK1,EncMLCE(EK2,m)) = EncMLCE(EK2,EncMLCE(EK1,m))

• DecMLCE : This algorithm takes as input a decryption keyDK corresponding to an encryp-
tion key EK and a ciphertext m′ and returns a decrypted message m such that:

DecMLCE(DK,EncMLCE(EK,m)) = m

Similarly to Enc Dec is also commutative; hence:

DecMLCE(DK1,DecMLCE(DK2, d)) = DecMLCE(DK2,DecMLCE(DK1,m
′))

For our privacy preserving publish/subscribe solution, as a concrete example, we use the Pohlig-
Hellman (PH) cryptosystem [22] which by definition is commutative:

• KeyGenPH takes as input a large prime number q and returns the pair (EK,DK) such that
EK.DK ≡ 1 mod (q − 1).

• Given message m and encryption key EK, EncPH returns encrypted message m′ = mEK

mod q.

• Similarly, given ciphertextm′ and decryption keyDK, DecPH returnsm = m′DK mod q.

1.4.6 Description of the solution

For the sake of simplicity, we propose to implement a privacy preserving Publish/Subscribe pro-
tocol with a two-layer commutative encryption scheme. As a first phase, every node Ni runs a key
agreement protocols with some other nodes as follows:

• If Ni is a leaf node, Ni shares a pair of encryption/decryption keys (EKi,j , DKi,j) with its
parent node Nj and another pair of keys (EKi,k, DKi,k) with its grand-parent node;
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• if Ni is an intermediate node, in addition to the keys shared with leaf nodes if these are its
children or grand-children, Ni also shares a pair of keys with this grand-parent only.

• if Ni is the root of the tree, ie. the publisher, it shares a different pair of keys with all its
children and its grand-children.

Subscribers Si located at leaf nodes first need to declare their interest f using Encf and broker
nodes construct their forwarding tables using BuildFT accordingly.

• Encf : executed by subscriber Si, this algorithm takes as input the two keys {EKi,j} that Si
shares with its parent and grand-parent nodes and filter fi and recursively calls EncMLCE .
Therefore, Encf returns a two-layer encryption of fi.

• BuildFT : on reception of an encrypted filter from Ni, Nj removes one encryption layer
using DecMLCE with the key it shares either with its child node (if this is a leaf node) or its
grand-child node and checks if this value already exists in its forwarding table RTj ; if it is
not the case it adds an additional row f ′i → Ni; otherwise it adds the id of Ni to the already
existing row. BuildFT further re-encrypts the filter with the encryption key shared with its
grand-parent node (with its parent node if this one is the root of the tree) and returns the new
table RT ′j and the partially encrypted filter f ′i . This filter is further forwarded to Ni’s parent
node.

Publisher Pi further encrypts its event notification ni using Encn and the content distribution phase
can start. Whenever broker nodes receive encrypted notifications, they run the Lookup_FT in order
to forward them to the destined subscribers.

• Encn: executed by publisher Pi for each of its grand-children nodes, this algorithm calls
EncMLCE(EKj ,EncMLCE(EKk, ni)) where ni is Pi’s event notification and EKi,j and
EKi,k are the encryption keys shared with the grand-child node and its parent node (ie., one
of its children node), respectively.

• Lookup_FT: this algorithm is called by an intermediate node Nj and takes as input its
forwarding table FTj , its keying material and some encrypted notification n′i received from
its parent node. It first calls DecMLCE with the encrypted notification n′i and decryption
key shared with its grand-parent node (or with its parent node if this one is the root of the
tree). Once one encryption layer is removed, Lookup_FT checks if the resulting partially
encrypted notification matches (is equal to) some partially encrypted subscription filter f ′l ;
if there is a match, the algorithm encrypts the notification with the key shared with the
corresponding grand child node.

1.4.7 Summary

Figure 1.5 illustrates the overall protocol. The security of the scheme relies on the number of
encryption layers and on the network topology. The MLCE scheme requires a topology-dependent
key management solution. More details on the solutions can be found in [20]. In [23], we describe
a solution to bootstrap security associations along with a secure neighborhood discovery. This
new key management solution enhances the security of the previously described solution.
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Figure 1.5: MLCE based content-based forwarding

1.5 Conclusion

This chapter analyzed the main security and privacy issues raised by different categories of op-
portunistic forwarding protocols. As forwarding of messages is performed by all nodes and not
by a dedicated infrastructure of routers, cooperation among nodes become mandatory. We sum-
marized the cooperation enforcement solution based on the hot-potato principle. We then focused
on the protection of the information used to correctly and efficiently forward the message to its
destination. The first solution allows intermediate nodes to forward packets based on the context
by securely computing a matching ratio between the attributes of the profile of the destination of
the packet and their profile. Such a computation is performed while preserving the confidentiality
of non matching attributes. The second solution aims at protecting content based forwarding algo-
rithms for Publish/Subscribe networks whereby packets are routed following subscription filters.
Thanks to the newly proposed multi-layer commutative encryption, brokers (intermediate nodes)
can perform secure transformations without having access to the data that is being transferred.
Intermediate nodes can indeed remove or add an encryption layer without destroying the others
and hence perform aggregation, routing tables building or look-up on private data protected by the
other layers.
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Chapter 2

Security and Privacy in P2P based
social networks

Online Social Networks (OSNs) are nowadays extremely popular and some of them such as Face-
book1 or LinkedIn2 are even inescapable with respect to the interpersonal communication. Unfor-
tunately such networks severely suffer from the centralized control on users’ data and its potential
misuse. As an answer, several distributed OSNs propose to design new applications based on a dis-
tributed peer-to-peer (P2P) architecture. Some of them leverage real life social links to construct
a network with trusted peers where the correct execution of any network/application operation de-
pends on users’ behavior. In this chapter, we analyze a particular P2P based online social network
called Safebook (section 2.1) and present a study (see section 2.2) that shows that the security and
privacy degree of such solutions strongly depends on the theoretical properties of the social graph
representing friendship relations between users. We further outline a dedicated usage control so-
lution for picture sharing applications in online social networks (section 2.3).

2.1 Safebook

In [24], authors porpose a P2P online social network named Safebook. The main aim of Safebook
is to avoid any centralized control over user data by service providers. Safebook relies on the
cooperation among its users. The correct execution of different services depends on the trust
relationships among nodes which are by definition deduced from real-life social links. In order to
protect users’ privacy, Safebook defines a particular structure named as Matryoshka ensuring end-
to-end confidentiality and providing distributed storage while preserving privacy. As illustrated in
figure 2.1, a user V is assigned to a Matryoshka which is composed of several nodes organized
in concentric shells. Nodes in the first shell are the real life friends of V and store her profile
data to guarantee its availability. For this reason, nodes in the innermost shell are also called
mirrors and serve requests if V is offline. Since this new storage solution inherently reveals who
U ’s friends are and therefore discloses some privacy sensitive information, several multihop paths,
chains of trusted friends, are built to protect such information: every user’s friend selects among
her own friends one or more next hops that are not yet part of the Matryoshka. The same process is
executed several times until reaching the depth of the tree and the nodes which lie in the outermost
shell are called the entrypoints. Regarding data retrieval, whenever a user U looks for V ’s data,
her request is served by the entrypoints of V ’s Matryoshka and forwarded to the mirrors along

1http://www.facebook.com
2http://www.linkedin.com
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Figure 2.1: The Matryoshka graph of a user V

these predefined path. The answer follows the same path in the opposite direction. To protect V ’s
and other users’ privacy expressed by the links in the Matryoshka, not even V (defined as the core
of the Matryoshka) knows its entire composition. Apart from the list of the entrypoints which is
publicly available, every node in the Matryoshka only knows the previous and next hops who by
definition, are their friends, anyway. Every user in Safebook is assigned to a unique Matryoshka
and can play different roles in different Matryoshkas. As previously mentioned, the list of the
entrypoints is public and is stored by the second component of Safebook, the P2P system. By
looking up for a hash value of a property of V , such as her full name, the P2P system provides the
list of the entrypoints of V ’s Matryoshka. Figure2.2 depicts the data lookup process in Safebook.

Figure 2.2: Data lookup in Safebook

2.2 Privacy analysis from the graph theory perspective

This section investigates the relationship between the topological properties of a social network
graph and the achievable users’ privacy in centralized or decentralized OSN. Social graph analysis
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has already proved its importance for studies such as sociology [25] and network performance[26].
A similar analysis is driven with respect to the impact of social network topology on privacy. In
[27], we show that there exists a strong relationship between a set of metrics and privacy properties.
More specifically, three graph metrics, namely the node degree, the clustering coefficient and the
mixing time, give fundamental insights on the privacy degree of the resulting OSN.

2.2.1 Graph theory vs. privacy

An Online Social Network can be represented as an undirected social graph G (V,E) comprising
a set V of users and a set E of edges representing social ties such as friendship. In this section we
define the three metrics, namely, the node degree, the clustering coefficient, and the mixing time
that will be analyzed with respect to privacy.

2.2.1.1 Node degree vs. user privacy

In graph theory, the degree of a vertex ν, denoted by deg(ν), is defined as the number of edges
incident to the vertex. Since in a social graph G (V,E), a vertex represents a user and the edges
represent friendship links, a user’s degree defines the number of friends a user has. Different stud-
ies have shown that OSN users are vulnerable to a series of social engineering attacks [28] often
caused by accepting contact requests. When a user ν establishes a relationship with a new friend,
with the increase of the degree, the probability of connecting to a misbehaving user increases. As-
sume pmal denotes the probability a new friend η of ν is a malicious user, and assume the events
of befriending a malicious user are independent. The number of malicious friends Fmal (ν) of ν
then follows a binomial distribution:

Fmal (ν) ∼ B (pmal, deg (ν))

In particular, the probability pν of having at least one misbehaving friend is:

pν = 1− pdeg(ν)mal (2.1)

The more a node has friends, the higher the probability of having a malicious friend which can
disclose sensitive personal data. Furthermore, if the correct execution of OSN applications such as
in [24] depends on the structure of the social graph, the probability of discovering nodes’ friends
increases with the malicious behavior as well.

2.2.1.2 Clustering coefficient vs. user privacy

In an undirected graph, the clustering coefficient c (ν) of a node ν having deg (ν) edges is defined
as the number of existing links between these nodes, denoted as edeg(ν), divided by the number of

possible links that could exist (deg(ν)(deg(ν)−1)2 ). We therefore have:

c (ν) =
2edeg(ν)

deg (ν) (deg (ν)− 1)
(2.2)

Knowing or estimating the clustering coefficient of a graph can give an idea on the impact of a
malicious friendship whenever it has information on nodes friendship and can further disclose
it. We can evaluate in a first approximation the average ratio Qν of ν’s friends that can obtain
sensitive information disclosed by a malicious friend η as follows:

Qν = pνc (ν) (2.3)

Therefore, similarly to the degree, the clustering coefficient has a direct effect on the disclosure of
users’ data. The tighter the friendset, the broader the disclosure of sensitive data.
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2.2.1.3 Mixing time vs. profile integrity

Random walks [29] in a graph have an important property: when the random walk approximates
its steady state distribution after a sufficient number of hops, the startpoint and endpoint of the
walk are uncorrelated. This number of hops is called mixing time, and the smaller it is, the faster
the above mentioned property is met.
We will introduce the mixing time starting from the steady state distribution.
The steady state distribution for a node θ represents the probability this random walk reaches
θ after a sufficient number of hops, and does not depend on the node where this random walk
originated from:

ssd (θ) =
deg (θ)

2‖E‖ (2.4)

The mixing time [29] τx (ε) is then computed as follows:

τx (ε) = min {h : ∆x (h) ≤ ε} (2.5)

where ∆x (h) is the variation distance between the random walk distribution Rh (x) after h hops,
and the steady state distribution ssd (x):

∆x (h) = ‖Rh − ssd‖ =
1

2

∑

x∈V
‖Rh (x)− ssd (x) ‖ (2.6)

In [30], authors found that mixing time is much higher in social networks where links represent
face-to-face interactions. The mixing time of a social network graph is directly related with both
profile integrity and communication untraceability as some OSNs rely on random walks to increase
users’ privacy and security. Indeed OSNs with a small mixing time will be considered as more
secure.

2.2.2 Conclusion: Safebook’s feasibility

Peer-to-peer based OSN applications implemented over social networks with high clustering co-
efficient and slow mixing time unfortunately show a lower privacy degree with respect to fast
mixing networks without strong local clustering. Additionally, the highest privacy degree that
can be reached given a social network is the one where h = h∞: increasing h after this optimal
value does not have an impact on the privacy level anymore. Privacy preserving OSN architec-
tures, including Safebook, should address this problem by discouraging the indiscriminate action
of adding friends. Moreover, the OSN should guarantee the fast mixing property to the network.
This can be done by ensuring the small world property of the social network graph, and encourag-
ing ‘long links’ connecting different clusters together, otherwise most of the random walks would
be confined to the originating cluster.

2.3 Usage control for privacy preserving picture sharing

In this section, we overview a usage control solution dedicated to picture sharing applications
within Safebook [31]. We consider a content management scenario where users would like to effi-
ciently store and share their content while still having the entire control on the access or the usage
of the corresponding content. Even though a generic usage control solution fitting all possible set-
tings seems infeasible, in a confined environment with a well defined set of subjects, resources and
operations, usage control can be achieved. The impact of leaving the system to violate some of the
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rules would be negligible. Following this specific approach, we propose a usage control enforce-
ment mechanism where the confined environment is defined Safebook. The proposed mechanism
targets a specific content management application which is picture sharing. Picture sharing tools
in online social networks allow users to upload any picture. Whenever a user uploads a picture,
she defines the corresponding access rules and optionally tags her friends in the picture. We as-
sume that each person whose face appears in any picture should decide whether her face in that
picture should be disclosed or not. The proposed usage control mechanism is enforced thanks
to the cooperation among multiple social network users: the idea of the proposed mechanism is
to exploit the distributed nature of Safebook and to leverage real-life social links to control the
access to pictures. The enforcement on the control of the pictures is assured thanks to a dedicated
multi-hop data forwarding protocol. Before reaching its final destination, content has to follow a
dedicated path of a sufficient number of intermediate nodes which automatically obfuscate the pic-
ture and follow the rules defined in the corresponding usage control policy. The length of this path
depends on the ratio of malicious nodes in the system: we assume that the cooperation of at least
t nodes would guarantee the correct execution of any operation. Thanks to the underlying privacy
preserving multi-hop forwarding protocol, cleartext pictures will be accessible to authorized users
only.

Figure 2.3: Picture publication steps for V , with V’s face fV made publicly available: 1- picture
input; 2- face detection; 3- face tagging; 4- face extraction; 5- face obfuscation; 6- picture and
publisher face publication.

2.4 Conclusion

Thanks to this collaborative multi-hop enforcement scheme where it is assumed that there is at
least one legitimate node which will execute the underlying algorithms correctly, an unauthorized
user will not discover protected faces in the picture. [31] analyzes the impact of collusion against
this disclosure. This analysis shows that the protection of the picture and the enforcement of this
control is only efficient in the confined environment of the distributed OSN and when pictures are
not encrypted by malicious nodes; on the other hand, it is also shown that the impact of attacks
launched outside this environment remains very limited if the majority of the users are within the
confined environment, the distributed OSN.
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Chapter 3

Data privacy in Cloud Computing

The cloud computing paradigm offers clients the ease of outsourcing the storage of their massive
data with the advantage of reducing cost. The advantages of cloud computing unfortunately come
with a high cost in terms of new security and privacy exposures. In this chapter, we mainly
focus on the problem of data privacy while considering the cloud server itself as being potentially
malicious. We consider a scenario whereby a client outsources her privacy sensitive data to the
cloud and delegates some computations over the data. As the first privacy requirement is data
encryption, the client should encrypt her data before the outsourcing operation. As traditional
encryption solutions fall short in addressing the requirement of processing over encrypted data,
we focus on the widely used word search primitive and describe three newly proposed privacy
preserving word search primitives designed under different settings. While the first solution is one
of the early privacy preserving word search solutions adapted to the MapReduce technology, the
second one allows the customer to delegate the search capabilities to authorized parties. Finally
the recently proposed third solution is targeting the multi-user setting.

3.1 Introduction

The cloud computing paradigm allows businesses and individuals to migrate their data and com-
putations to the cloud to reduce their costs. Clients almost get unlimited capacity of storage with
high availability and reliability guarantees. The process of backup and recovery is relatively much
easier. Customers can quickly scale up or scale down their usage of services on the cloud as
per market demands. They only pay for the applications and data storage they need. The cloud
provides users three different service models:

• Infrastructure as a Service (IaaS) clouds provide access to collections of virtualized com-
puter hardware resources including machines, network and storage;

• Platform as a Service (PaaS) clouds provide access to a programming environment in which
users develop and execute their own applications (Microsoft Azure1, Google App Engine2);

• Software as a Service (SaaS) clouds provide software application programs.

The Cloud Security Alliance 3 provided a report in 2013 on the top 9 threats against cloud comput-
ing 4 to inform cloud users and providers about the main risks. Among these threats, data breach

1https://azure.microsoft.com/
2https://cloud.google.com/appengine/
3https://cloudsecurityalliance.org/
4 http://www.cloudsecurityalliance.org/topthreats/
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where unauthorized parties have access to privacy sensitive data, is considered to be the top threat.
We therefore focus on this problem and assume the cloud being an honest-but-curious adversary
who runs the protocol or operations correctly but try to extract as much information as possible
about outsourced data or computations. The goal is therefore to come up with privacy preserving
solutions that scale with large amounts of data, take advantage of the massive parallelism offered
by cloud servers and do not request computationally intensive operations at the client side. As
previously mentioned, we focus on a scenario where a data owner outsources its large data to the
cloud and to preserve her privacy, she does not want any unauthorized party, including the cloud,
to discover the content of her data. In order not to cancel out the advantages of the cloud com-
puting technology, the challenge is to design a word search primitive over encrypted data without
revealing any additional information to unauthorized parties and without the need for the data
owner to download the entire data. We address the problem in an incremental way with respect
to the roles of the data owner and the data querier. In section 3.3, we describe an early privacy
preserving word search solution, PRISM, [32] that enables a data owner to lookup some words
without letting the cloud discover the data and the queries. The main novelty of the proposed solu-
tion consists in its compatibility with the Map Reduce paradigm and hence its efficiency. PRISM
takes advantage of the inherent parallelization akin to cloud computing and partitions the word
search problem into several parallel instances in small datasets. In section 3.4, we further present
a second solution described in [33] where in addition to the data owner, some authorized par-
ties can query the database under the same adversarial model. In addition to the main security
and privacy operations that classical search solutions include under a semi-honest (ie., honest-but-
curious) security model, such a privacy preserving delegated word search solution also defines the
delegation and revocation operations: the data owner should be able to efficiently authorize and
revoke the previously authorized party at any point in time. Finally, in section 3.5 we consider
the most general scenario where multiple users both store and query each others’ data following
their authorizations. The newly proposed solution [34] introduces a third party, called a proxy,
that transforms a user’s query into multiple ones each of them targeting one different data owner’s
document. We show that neither the proxy nor the cloud are trusted and the only assumption is
that these two parties cannot collude.

3.2 Privacy preserving word search

A privacy preserving word search involves the following parties:

• Data Owner Oi who outsources a file Fi with ni words to cloud server S in a secure way.

• Cloud Server S which stores an encrypted version of outsourced files {Fi}i∈{1,..,n} where
n is the number of users in the system. We assume that each user outsources one file only.

• QuerierQj who performs word search on some outsourced files if authorized. We note that
Qj corresponds to Oi if j = i and hence Oi wants to query her own data.

3.2.1 Main algorithms

A basic privacy preserving (key)word search solution consists of three phases:

• Upload phase:
During this phase, data owner Oi first prepares Fi with respect to the privacy requirements
(eg. authorized parties to search for words) and further uploads the encrypted file together
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with additional material to S. The uploaded data should not disclose any information on the
data. The main algorithms defined under this phase are the following:

– Setup: this algorithm is run by data ownerOi to generate a master keyMK which will
be used to mainly generate the data encryption key, some token to authorized queriers
and a set of public parameters param that will be used by subsequent algorithms.

– Encrypt: this algorithm takes as input master key MKi and file Fi and generates for
Oi an encryption F ′i of Fi.

– BuildIndex (optional): if needed, on input of MKi and Fi, Oi runs this algorithm in
order to construct an index Ii of distinct words present in file Fi.

• Lookup phase:
During this phase, querier Qj generates a query qi,j,l for word ωl in file Fi and sends the
query to S which processes it in an oblivious manner and sends the corresponding result
ri,j,l back to the querier. Note that S may even not discover the actual response to the
query (ie. whether ωl is in Fi or not). The main algorithms defined under this phase are the
following:

– Query: given word ωl and the appropriate keying materialQKi,j , querierQj generates
a corresponding query qi,j,l.

– Response: this algorithm executed by cloud server S processes the query Qj on file Fi
or index Ii following the nature of the solution and returns a response ri,j,l for querier
Qj .

• Result analysis phase:
Once ri,j,l is received by Qj , this latter can decide on the actual response. Querier Qj runs
the following algorithm:

– Verify: on input of response ri,j,l and the keying materialQKi,j , this algorithm outputs
1 if ωl is in Fi or 0 otherwise.

3.2.2 Privacy requirements

The main security requirements of a privacy preserving (key)word search solution are:

• storage privacy: given the stored encrypted files {Fi}, cloud server S should not discover
the content of files {Fi}; additionally, S should neither be able to mount statistical attacks
on the outsourced files (number of occurrences, similarity among files).

• query privacy: during the lookup phase, S should not derive any useful information from
the queries {qi,j,l} received from different queriers and their corresponding responses ri,j,l.
Namely, S should not be able to either tell whether two queries target the same word or
discover the response to a given query.

3.3 PRISM: Privacy preserving word search in MapReduce

In [32], we propose a solution in the single-user setting that allows a data owner Oi to perform
word search queries qi,i,l over her own data outsourced to the cloud server S. The proposed word
search operation builds on a Private Information Retrieval (PIR) technique [35] which is extended
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in order to generate intermediate search results (that are still encrypted). The database is mapped
into a binary matrix whereby each word corresponds to a unique position within the matrix and
the search operation consists in the retrieval of the bit corresponding to the word. The cloud,
assumed to be honest-but-curious, cannot learn any information about either the content it hosts
or the search queries performed. This implies both the encryption of data by the owner before
outsourcing and the oblivious processing of queries on encrypted data.

3.3.1 Preliminaries

Private information retrieval As previously mentioned, to ensure query privacy, PRISM uses
Private Information Retrieval (PIR). PIR allows a user to retrieve data from a server’s database
without disclosing any information about this particular data. Traditional PIR mechanisms require
the user to know the position of the data to be retrieved in the database and therefore are not
suitable to privacy preserving word search protocols as the user does not even know whether the
word exists or not. Therefore, the owner will first construct a bitmap using the words in the file and
then retrieve the bit corresponding to the particular word. To retrieve a certain bit from a database
a PIR protocol first represents the database by a (s, t) binary matrixM and the user would just
query the position (x, y) of the bit to be retrieved. Then the protocol by definition consists of three
algorithms:

• PIRQuery which on input of the position (x, y) of the to-be-retrieved bit, computes the
relevant PIR query pir_q for the user;

• PIRResponse which is run by the server over the matrix and returns a PIR response pir_r
to the user;

• PIRAnalysis which based on the server’s response retrieves bit b at position (x, y).

3.3.2 PRISM description

Figure 3.1 illustrates the proposed PRISM solution. During the upload phase of PRISM, data
owner Oi runs the Setup and Encrypt algorithms instantiated as follows:

• Setup(φ): the algorithm returns MKi which consists of the encryption key Ki. The public
parameters param comprise a symmetric encryption algorithm E : {0, 1}φ × {0, 1}∗ →
{0, 1}n such as AES [36] and a cryptographic hash function H : {0, 1}∗ → {0, 1}nH .

• Encrypt(Ki, Fi): for each unique word wi,l contained in file Fi, Oi first initializes a cor-
responding counter γi,l = 0; Oi further starts to parse file Fi. For each word wi,l, Oi incre-
ments γi,l by 1 and encrypts the pair (ωi,l, γi,l) using E. Thanks to the use of the counter,
the underlying encryption solution becomes stateful and thus S cannot discover whether a
given word appears several times in the file.

Once the encrypted version of file Fi is outsourced to the cloud, the lookup phase will begin as
follows:

• querier Qi who actually is Oi will prepare query for word wl by calling the Query with
inputs Ki and wl. This algorithm will first compute the position corresponding to this
word by simply computing E(wl, 1) and computing the position (xl, yl) such that xl||yl
corresponds to the bitmap of E(wl, 1). Further Qi computes q PIR queries {pir_qj} using
the PIRQuery algorithm on position (xl, yl).
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Figure 3.1: PRISM: Privacy preserving word search with Map Reduce

• upon reception of query qi,l cloud server S will first construct q matricesMj initialized with
"0"s in each cell; for each wordCk whose position is (xk, yk) in the matrix,Mj(xl, yl) takes
the value of bj that corresponds to the jth bit of H(Ck). S further launches PIRResponse
to compute the responses to the pir queries at position (xl, yl) corresponding to the queried
word wl in all q matrices.

Finally, querierQi launches algorithm V erify which basically calls PIRAnalysis q times for the q
different bits. It further computes the first q bits of H(Cl) and compares the results with response
received from S.

3.3.3 Summary

Thanks to the use of the stateful cipher which consists in encrypting the word with an incremental
counter, PRISM offers storage privacy where cloud server S can neither discover the content of
file Fi nor the number of occurrences of a given word. Query privacy is inherently assured thanks
to the use of PIR. Regarding the performance of the solution, PRISM easily parallelizes the
Response algorithm by splitting Fi into several InputSplits and executing Response over each
InputSplit in parallel. The solution is perfectly suitable to a MapReduce cloud where the Map
phase consists of executing Response to each InputSplit and during the Reduce phase, all inter-
mediate responses received from each mapper are simply summed up: thanks to the homomorphic
nature of the underlying PIR solution, the reduce phase does not have any impact on the correct-
ness of the overall response. Details on the security proofs and experimental results can be found
in [32].

3.4 Privacy preserving delegated word search

In this section, we extend the scenario tackled by PRISM and assume that querier Qj can be a
different party than data owner Oi and can search for some words only if authorized by Oi. In
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addition to all the algorithms defined in PRISM, a delegated word search mechanism should also
define Delegate and Revoke algorithms in order for data owner Oi to authorize a querier Qj to
perform the search operation and to remove this search capability at any point in time. Very few
solutions [37, 38] propose the ability to delegate the search operation to authorized third parties;
unfortunately, the delegation operation in all of these solutions is achieved by providing the data
encryption key to the authorized parties and hence causing a re-encryption of the entire data in
the case of revocation. Hence, the introduction of these two new algorithms, namely Delegate
and Revoke, should neither impact the performance of the overall search operation nor reduce its
security. In addition to the cloud, a revoked user should also be considered as potentially malicious
and the new solution should ensure that she cannot have access to any additional information
after her revocation. Similarly to PRISM, the newly proposed solution [33] also builds on private
information retrieval (PIR) to guarantee query privacy. PIR is combined with Cuckoo hashing [39]
which helps to efficiently construct a confidential searchable index where each word is assigned
to a unique position. The delegation operation is assured thanks to the use of attribute based
encryption (ABE) [13] which by definition only allows users holding certain "attributes" to search
for words. On the other hand, the revocation operation combines ABE with oblivious pseudo-
random functions [40, 41] which allow two parties to jointly compute the output of some pseudo-
random function without discovering each other’s input. With the use of OPRFs, the proposed
protocol allows the cloud server to generate a one-time token for the authorized user without
discovering the content of the query.

3.4.1 Preliminaries

Cuckoo hashing Cuckoo hashing [39] is a technique used to build efficient and practical data
indexes. It ensures worst-case constant look-up and deletion time and amortized constant insertion
time while minimizing the storage requirements. Cuckoo hashing is defined by the following two
algorithms:

• CuckooInsert: in order to store n elements in some index I, Cuckoo hashing uses two hash
functions H : {0, 1}∗ → {1, 2, ..., L} and H ′ : {0, 1}∗ → {1, 2, ..., L}. An element τi is
either stored in entry H(τi) in hash table T , or in entry H ′(τi) in hash table T ′ but never
in both. To insert a new element τi ∈ {0, 1}∗ into I, we first check whether the entry of
T at position H(τi) is empty. If it is the case, then τi is inserted in this entry of T and
the insertion algorithm converges. Otherwise, if that entry is already occupied by another
element τj , then τj will be removed from its current entry in T and relocated to its other
possible entry H ′(τj) in T ′. Now, if there is an element τk in the entry H ′(τj) of T ′, then τj
will be inserted in entry H ′(τj) in table T ′ while τk will be moved to its other possible entry
H(τk) in T . This insertion process is repeated iteratively until the insertion of all elements
in either T or T ′. If this process of insertion does not converge (i.e., there is an element
that cannot be inserted), or it takes too long to converge, then all the elements in I will be
rehashed with new hash functions H and H′.

• CuckooLookup: the lookup operation in I is simple: given an element τ ∈ {0, 1}∗, the two
entries at positions H(τi) and H ′(τi) are queried in tables T and T ′ respectively.

Oblivious Pseudo-Random function An oblivious pseudo-random function (ORPF) [40, 41]
is a two-party protocol that allows a sender S with input δ and a receiver R with input h to
jointly compute the function fδ(h) for some pseudo-random function family fδ, in such a way
that receiver R only learns the value fδ(h), whereas sender S learns nothing from the protocol
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interaction. In the following, we provide a quick overview of the generic algorithms underpinning
an OPRF that evaluates the output of fδ:

• Setupoprf : executed by sender S, this algorithm takes as input the security parameter ζ and
outputs an OPRF secret key δ and a set of public parameters Poprf that will be used by
subsequent algorithms.

• Queryoprf : this randomized algorithm that is called by receiver R takes as input an element
h ∈ {0, 1}κ and outputs a matching OPRF query Qoprf that will be sent later to sender S.

• Responseoprf : pperated by sender S, given OPRF query Qoprf , this algorithm returns the
corresponding OPRF response Roprf that will be forwarded to the receiver.

• Resultoprf : this final deterministic algorithm that is run by receiver R outputs fδ(h) based
on the received response Roprf for h ∈ {0, 1}κ.

3.4.2 Protocol Description

We consider a scenario where data ownerOi outsources Fi which contains n distinct words. Cloud
server S stores an encrypted version of Fi together with a searchable index I of the set of distinct
words present in Fi. An authorized querier Qj has access to a set of credentials that enables her to
perform search queries on Fi. This authorized user could for example be an auditor which as part
of its auditing task has to search the activity logs of Oi.

Upload phase During the upload phase, data owner Oi sequentially executes the following al-
gorithms:

• Setup: given security parameter ζ, the algorithm outputs the master key MK which regroups
a symmetric encryption key Kenc, a MAC key Kmac and an OPRF secret key δ; Setup also
returns public parameters that comprise a MAC function Hmac : {0, 1}ζ × {0, 1}∗ → Z∗N
(where N is a safe RSA modulus), a cryptographic hash function H : {0, 1}∗ → {0, 1}t
and the public parameters Poprf of the OPRF fδ(h) = g1/(δ+h).

• BuildIndexO: this algorithm computes a MAC hk of each word ωk in Fi with identifier fidi
such that hk = Hmac(Kmac, ωk||fidi). This is the very first step to compute the searchable
index. The next steps are outsourced to the cloud which will call BuildIndexS.

• Encrypt: on input of file Fi and encryption key Kenc, this algorithm outputs a simple sym-
metric encryption of Fi.

• Delegate: Oi first defines the access policy AP that will be associated with file Fi. To
delegate the word search capabilities on the encrypted file F to authorized querier Qj , Oi
encrypts its MAC key Kmac under the access policy APi using ABE. This algorithm there-
fore returns the resulting ciphertext Cmac = Encabe(Kmac,APi). We note that the authorized
userQj will possess a set of attributesA (and therewith a set of credentials cred) that satisfy
the access policy APi. Hence, Qj will be able to derive the MAC key Kmac which will be
used as an input to the furtherly described Query algorithm.

The outputs of BuildIndexO, Encrypt and Delegate together with public parameters param,
the access policyAPi and a secret OPRF key δ are forwarded (via a secure channel) to cloud server
S . This secret key is used to compute some tokens for the dedicated user. The computation of this
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token is performed using an oblivious pseudo-random function (OPRF) [41] which allows U and
S to jointly compute the output of some pseudo-random function without discovering each others’
input. Since OPRF is deemed to be demanding, O requests the cloud server to perform the more
computationally intensive operations (i.e. OPRF and Cuckoo Hashing) . Before starting the search
phase, cloud server S finalizes the construction of the searchable index using the BuildIndexS as
follows:

• BuildIndexS: this algorithm first calls the OPRF function on the received MAC values {hk}
using secret key δ and outputs {τk}. S further builds an index with the resulting values
using Cuckoo hashing. BuildIndexS outputs the searchable index Ii = {H,H ′,M,M′}
where H and H ′ are the two hash functions used by the Cuckoo hashing algorithm and
M = {M1,M2, ...,Mt} and M′ = {M′1,M′2, ...,M′t} correspond to the 2t matrices as
described in the previous section.

OPRF phase Before starting the actual search phase, an authorized user Qj first executes an
OPRF protocol with cloud server S . To search file Fi for some word ωl, the authorized user Qj
first needs to generate the proper token to construct the word search query. The token generation
consists of executing an OPRF protocol between the authorized user Qj and the cloud server S.
On inputs of the word ωl, the file identifier fidi and the MAC key Kmac, Qj first computes an
OPRF query Qoprf to evaluate fδ(h) = g1/(δ+h) and forwards it to cloud server S. Upon receipt
of Qoprf , S calls the OPRF algorithm Responseoprf . This algorithm uses the secret OPRF key δ
and the OPRF query Qoprf to output an OPRF response Roprf . Qj further computes the OPRF
response Roprf by decrypting the received ciphertext and deriving the word search token τi,j,l
using the OPRF algorithm.

Search phase After obtaining the token τi,j,l corresponding to the word ωl, Qj runs the algo-
rithm Query as follows:

• Query: to search file Fi for some word ωl given τi,j,l, this algorithm first computes H(τ) =
(x, y) and H ′(τ) = (x′, y′). Then, it computes two PIR queries (pir_q, pir_q′) to retrieve
the xth and the x′th row of a (s, t) binary matrix.

Cloud Server S proceeds by executing the following Response algorithm:

• Response: this algorithm runs PIRResponse over the received two queries (pir_q, pir_q′)
on the searchable index.

To verify whether ωl is in the file Fi, the authorized user Qj runs the algorithm PIRAnalysis and
accordingly checks whether ~b = H (τ) or ~b′ = H (τ). If it is the case, then Verify outputs 1
meaning that ωl ∈ Fi; otherwise, Verify outputs 0.

Revocation phase For the sake of simplicity, we assume that the revocation is attribute-based.
To revoke an attribute attj , Oi runs the algorithm Revoke as follows:

• Revoke: on input of attribute attj this algorithm simply outputs a new access policy AP′

that will further be sent to the cloud server S. For instance, if we assume that the initial
access policy AP of Oi states that auditors from EU and the US can perform word search
onOi’s files, then a revocation of attribute US will lead to a new access policy AP′ that says
that only auditors from the EU can perform word search. In this manner, auditors from the
US will no longer have access to Oi’s file.
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3.4.3 Evaluation

In order to evaluate the performance of the proposed solution, all the underlying algorithms were
implemented in python and ran on an Intel Core 2 Duo 2.80GHz with a RAM of 3.8GB under
Ubuntu 14.04 LTS. Several cases with different index sizes were considered: the number of words
per index varies from 1 to 800000. Each algorithm was executed 50 times for each scenario.

Figure 3.2 shows that the cost of the Setup phase both at the user and at the cloud side is linear
with respect to the number of words and remains affordable for a lightweight user (uploading
200000 words approximately takes 3 seconds).
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Figure 3.2: Cost of the setup phase at the user

The performance results shown in figure 3.3 consider the cost of the computation of the PIR
query, and the extraction of the PIR response at the user side. These figures show that the com-
putation of the PIR queries and responses at the user side depends on the size of the PIR matrix.
Finally, the revocation phase is very efficient since it does not require the re-encryption of the
outsourced files and only calls for an update of the access policy of the data owner at the cloud
server.

3.4.4 Summary

Existing privacy preserving delegated keyword search solutions provide the authorized user with
the data encryption key and therefore revocation of a user requires the re-encryption of the en-
tirely outsourced data and the distribution of this new key to the authorized users. Thanks to the
combination of ABE and OPRF, the revocation operation of the newly proposed solution does not
imply the re-encryption of the outsourced data and only requires an update of the access policy
by the data owner which can be considered as a negligible cost. Finally, the data owner in our
protocol is only required to perform symmetric operations, whereas the computationally intensive
computations are performed by the cloud server, and they can easily be parallelized.



32 3. DATA PRIVACY IN CLOUD COMPUTING

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
number of words

0

100

200

300

400

ex
ec

ut
io

n 
tim

e 
(m

s)
: m

ea
n,

 5
th

 a
nd

 9
5t

h 
ce

nt
ile

s

Search Query

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
number of words

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ex
ec

ut
io

n 
tim

e 
(m

s)
: m

ea
n,

 5
th

 a
nd

 9
5t

h 
ce

nt
ile

s

Search Response Extract

Figure 3.3: Cost of the search phase

3.5 Multi-user privacy preserving word search

As a follow-up to the previously described privacy preserving delegated word search soution,
this section focuses on solutions that can efficiently adapt to any scenario with respect to the
number of users and describes a dedicated solution proposed in [34]. In this multi-user setting,
many different users, named as "writers", upload their data encrypted with their own secret key
and many "readers" are allowed to search these different data. While such a scenario can easily
be implemented by setting up a parallel instantiation of the previously described delegated word
search solution for each data owner, this would incur a serious storage and computational cost
to the querier who for example would search for the same word in many documents: the querier
would need to store several keys (one per data owner) and generate one query per document.
Hence the additional requirement that comes up with multi-user privacy preserving word search is
scalability.

3.5.1 Overview

Similarly to the previously described solutions, this new solution [34] also builds up on PIR which
is combined with the use of bilinear pairings. As illustrated in figure 3.4, in addition to all the al-
gorithms defined for a delegated word search scheme, a multi-user searchable encryption (MUSE)
solution defines two new algorithms executed by an additional actor, namely the proxy P:

• QueryTransform: whenever P receives a query from Qj , it transforms it to a number of
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queries, each one targeting one data owner Oi through the execution of this algorithm.

• ResponseFilter: on reception of the corresponding responses, P runs this algorithm to pre-
process them and forwards the output to the querier Qj .

Figure 3.4: Multi-User Searchable Encryption - Overview

3.5.2 Building blocks

Bilinear pairings This new solution uses bilinear pairings as a building block for BuildIndex
and Delegate algorithms. By definition, given thatG1, G2 andGT are three groups of prime order
q and g1, g2 generators of G1 and G2 respectively, e : G1 ×G2 → GT is a bilinear map if e is:

• efficiently computable

• non-degenerate: if x1 generates G1 and x2 generates G2, then e(x1, x2) generates GT

• bilinear: e(ga1 , g
b
2) = e(g1, g2)

ab ∀(a, b) ∈ Z2

3.5.3 Description

During the upload phase, a user Ui first runs algorithm Setup to generate the required keying
material to become a "writer" (i.e. data owner, Oi ) on the one hand, and a "reader" (i.e. querier,
Qi) on the other hand:

• Setup: similarly to the previously described delegated word search solution, given security
parameter ζ, the algorithm outputs the master key MK and the public parameters param
defined as follows:

– MK regroups a symmetric encryption key Kenc, a secret writer key γi
$←− Z∗q , a private

reader key ρi
$←− Z∗q , a public reader key Pi = g

1
ρ

2 , and a transmission encryption key
Ki which is shared with cloud server S.

– public parameters param comprise the public parameters of a bilinear map e : G1 ×
G2 → GT and a cryptographic hash function H : GT → J0, n− 1K.

Then as a writer, data owner Oi executes the following Encrypt, Delegate and BuildIndex:
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• Encrypt: on input of file Fi and encryption key Kenc, this algorithm outputs a simple sym-
metric encryption of Fi.

• Delegate: provided with the public key Pj of reader Qj , Oi executes this algorithm using
its secret key γi to generate ∆i,j = P γij the authorization token that authorizesQj to search
index Ii. The output ∆i,j is sent to the proxy which adds it to the set Dj of authorized
tokens corresponding to querier Qj .

• BuildIndex: Oi executes this algorithm to encrypt each keyword ωk with her key γi. The
algorithm outputs all w̃k such that: w̃k = e(h(w)γi , g2).

At the end of the upload phase, while S receives the encrypted version of Fi, the secure index
Ii, P regroups all δi,j received from data owners in token sets Dj each of them corresponding to
one querier Qj . During the search phase, Querier Qj , Proxy P and server S respectively run the
following algorithms:

• Query: this algorithm is run by an authorized reader Qj to generate a query for keyword ωl
using its private reader key ρj . The algorithm draws a randomization factor ξ $←− Z∗q and
outputs qj = h(ω)ξρj .

• QueryTransform: whenever proxy P receives a reader’s query qj , it calls this algorithm
together with the set Dj regrouping the authorization tokens for Qj . For each authorized
document, the algorithm first computes x′i,j ||y′i,j =← H(q̃i,j) where q̃i,j ← e(qj ,∆i,j);
then it computes a PIR query for each position (x′i,j , y

′
i,j). The algorithm outputs {pir_q′i,j}

which are forwarded to the CSP together with the corresponding identifiers i of the indices.

• Response: on input of the PIR queries, the relevant documents identifiers i and the random-
ization factor xi, cloud server S processes each PIR query pir_q′i,j over a matrix Mi where,
given encrypted word w̃ ∈ Ii mapped to position (x, y) such that x||y = H(w̃ξ), M(x, y)
is set to "1" and the remaining cells are set to "0". These PIR responses r̃i,j are further
encrypted with algorithm Enc and the transmission key Kj of the querying reader. This
additional layer of encryption prevents the proxy from reading the result of the query.

Finally, before calling Verify, querier Qj receives the response pre-processed by proxy P using
algorithm ResponseFilter as follows:

• ResponseFilter: whenever the proxy receives the response from server S partly executes the
PIRAnalysis function to extract a filtered response which is much smaller than the original
response.

• Verify: on receiving the filtered response with the corresponding PIR keying material, Qj
executes this algorithm using her transmission key Kj . The algorithm further outputs the
value of the matrix cell corresponding to the searched word. If this value is 1 then the
algorithm outputs 1 and this means that the searched keyword is present, otherwise the
algorithm outputs 0.

3.5.4 Evaluation

The proposed scheme achieves a very low cost at the reader side since QueryCreate only consists
of one hash computation and one exponentiation and does not depend on the number of searched
documents. On the other hand, the ResponseProcess executed over each received response (one
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per searched document), only executes one decryption and a PIR of a single bit. Details on the
cost of each algorihtm can be found in [34]. Regarding the security analysis, we realize that
all existing multi-user searchable encryption schemes [42, 43, 44] suffer from the lack of access
pattern privacy (privacy of search responses). We further come up with a new adversary model
for MUSE that takes into account new security exposures introduced by the possible collusion of
some users with the cloud server and prove the security of MUSE under this new model while
considering both the cloud server and the proxy as an adversary. As opposed to existing solutions
[42, 43, 44], the proxy is not trusted and the only assumption that the solution makes is that these
two parties cannot collude.

3.6 Secure deduplication for cloud storage

With the potentially infinite storage space offered by cloud providers, cloud users tend to use as
much space as they can. On the other hand, cloud providers constantly look for techniques that
aim at minimizing redundant data and maximize space savings. A technique that is widely adopted
is cross-user deduplication where duplicate blocks are stored only once. In this section we show
that deduplication and encryption are two conflicting technologies and further provide an overview
of a recently proposed secure deduplication solution.

3.6.1 Deduplication vs. Confidentiality

As illustrated in figure 3.5, cloud server only store one copy of similar blocks (the yellow and green
boxes in this example). Recent experimental results show that deduplication achieve high cost
savings. Unfortunately, deduplication and encryption are two conflicting technologies: the result

Figure 3.5: Cross-user deduplication

of encryption is to make two identical blocks indistinguishable after their encryption. Although
an early proposed solution named convergent encryption [45] which derives the data encryption
key from the data itself seems to be a promising candidate, it unfortunately suffers from various
weaknesses including brute-force or dictionary attacks.

3.6.2 ClouDedup

We initially propose ClouDedup [46], depicted in figure 3.6 which while preserving the advan-
tages of deduplication and convergent encryption at the same time, ensures data privacy thanks
to its architecture whereby in addition to the basic storage provider, it involves a metadata man-
ager and an additional server that implements an additional encryption layer to cope with the
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weaknesses of convergent encryption together with a user authentication and an access control
mechanism. Therefore ClouDedup involves four parties:

• the cloud user’s role is to simply split the file into blocks, to encrypt them with convergent
encryption and to outsource the resulting encrypted file;

• the cloud storage provider (CSP) is the most simple component of the architecture as it
only store the data blocks;

• the gateway receiving the user’s storage request, first authenticates her and further adds an-
other layer of encryption to the data uploaded by the user. During the phase of file retrieval,
the server removes the additional layer of encryption before forwarding it to the intended
user. These encryption and decryption operations are totally transparent to the cloud user;

• the metadata manager(MM) stores metadata which include some encrypted keying mate-
rial and block signatures and is in charge of the deduplication operation. MM maintains a
linked list and a small database in order to keep track of file ownerships and file composition.

Figure 3.6: ClouDedup - Overview

Thanks to the additional encryption layer implementing a deterministic symmetric encryption al-
gorithm, ClouDedup is secure against all attacks that were successful against convergent encryp-
tion (such as dictionary attacks). The system can be compromised only if the involved components
collude. No component is completely trusted and the system is secure against each of them, indi-
vidually. A more detailed analysis of the security of the proposed solution can be found in [46].

3.6.3 PerfectDedup

Although the previously described scheme seems a promising solution to ensure deduplication and
data privacy at the same time, it relies on a complex architecture involving several different com-
ponents. Hence, we propose a more simple solution that similarly to [47], leverages the popularity
of the data segment to define the protection level of it. A data segment is defined to be popular
whenever it is shared among more than a threshold number of users. We assume that a popular data
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segment is likely to be non-confidential and subject to deduplication whereas unpopular (rare) data
may contain privacy sensitive information. The proposed solution named PerfectDedup [48] pro-
tects popular data segments with convergent encryption and uses semantically secure encryption
for unpopular ones. Nevertheless, this approach raises a new challenge: the users need to decide
about the popularity of each data segment before storing it and the mechanism through which
the decision is taken is exposed to attacks very similar to the ones against convergent encryption.
Therefore, PerfectDedup defines a privacy preserving popularity detection mechanism that relies
on the use of perfect hashing [49]. Thanks to this primitive, the user can decide which encryption
solution to use to protect her data without revealing any information to the untrusted cloud server.
Compared to [47], PerfectDedup significantly reduces the storage and communication overhead.

Figure 3.7: PerfectDedup - Overview

3.7 Conclusion and perspectives

This chapter studied the problem of data confidentiality and privacy whenever data is outsourced
to the cloud and processed by this untrusted server. While the problem of privacy preserving word
search data processing has received considerable attention from the research community, current
solutions can still be extended with advanced features such as the search for multiple keywords.
The combination of privacy preserving word search techniques with data reduction schemes can
raise new challenges. Furthermore, recent advances in secure deduplication show that it is possible
to come up with a secure solution without the need for convergent encryption. As a future work,
it would be interesting to study the compatibility of such solutions with other privacy preserving
or security primitives.
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Chapter 4

Verifiable Cloud Computing

In addition to data privacy, cloud service providers need to provide more transparency. Indeed, in
order not to loose the control over their data, cloud customers should have some means to verify
the correctness of the remote operations/services. Such a requirement is defined as verifiability. In
this chapter we first focus on the verifiability of the correct storage of customers’ data (section 4.1)
and overview a dedicated proof of retrievability solution. In section 4.2 we tackle the problem
of verifiable computation and describe a recently proposed solution ensuring verifiability for a
conjunctive keyword search primitive.

4.1 Verifiable data storage with proofs of retrievability

4.1.1 Introduction

Proofs of retrievability provide a client with the assurance that her previously outsourced data
segments are actually present in the remote storage. The obvious solution for that would be to send
the data back to the user but this obviously is not possible because of the large amount of data.
Data retrievability is a new form of integrity requirement in that the data owner does not keep or
get a copy of the data segment in order to get the assurance of its integrity. Early solutions [50, 51]
allow clients to verify the possession of the entire data but this remains very costly; recent solutions
assure that the server possesses parts (the majority) of the data. The verifier asks the server for
integrity proofs for randomly chosen blocks. Some researchers [52, 53] propose the generation of a
so-called tag to help the client to verify the possession of a specific block whereas some others [54,
55] secretly include some randomly generated blocks which are called sentinels and retrieve them
later on, by revealing their position. In this section, we present a solution named StealthGuard
[56] that combines the use of privacy preserving word search solution defined in section 3.3 with
the random insertion of randomly generated blocks named watchdogs. StealthGuard is similar to
the sentinel-based approach in that the client randomly inserts some watchdogs into the data; but
StealthGuard sends a search query for this watchdog in a privacy preserving manner in order not
to reveal the position of the watchdog to the server.

4.1.2 Problem statement

We consider a scenario whereby a data ownerO wants to outsource a large file F to a cloud server
S. Later a verifier V interacts with S in order to check whether S is still storing F . This verifier
can either be data owner O or any other party authorized by O. A POR scheme should ensure the
following security properties:
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• if S correctly stores F , V should be able to efficiently verify this correct storage.

• S cannot convince V on the retrievability of F if not correctly stored; furthermore, V should
rapidly detect such a malicious behavior.

• V should be able to check the retrievability of F at any time, and as many times as she
wants.

With these security goals, a POR scheme is defined in three phases:

• Upload phase:
During this phase, data owner O first generates some keying material to prepare F before
its upload to the cloud. The main algorithms defined under this phase are the following:

– Setup: given a security parameter ζ, this algorithm outputs a master key MK for data
owner O and some public parameters param that will be used by subsequent algo-
rithms.

– Encode: given MK generated by Setup and the file F to be outsourced, this algorithm
returns a unique file identifier fid and an encoded file F̂ . Thanks to this new version
of the file, verifier V will be able to launch the following POR phase.

• POR phase:
During this phase, verifier V generates a POR query qi for file F and sends the query to S
who processes it thanks to the Prove algorithm and sends the corresponding result pi back
to V . The main algorithms defined under this phase are the following:

– Query: this algorithm takes as input the master secret key MK and the file identifier
fid and returns a challenge qi that will be sent to S.

– Prove: this response algorithm takes as input the previously generated query qi and
the file identifier fid and returns a proof pi transmitted to verifier V .

• Result analysis phase:
At the end of the challenge-response protocol, verifier V runs the following algorithm to
check the validity of the proof sent by S:

– Verify: Given master key MK, file identifier fid, query qi and the proof pi, this algo-
rithm returns 1 if pi is a valid proof for query qi or 0 otherwise.

We note that if V receives at least γ correct responses from the cloud, then it can decide that F
is retrievable with very high probability. On the other hand, if V receives one response that is not
valid, then it is convinced that either the file is corrupted or even lost.

4.1.3 StealthGuard

4.1.3.1 Overview

In StealthGuard, before the upload of its data, the owner randomly inserts some watchdogs which
are pseudo-randomly generated using a secret key. The random position at which the watchdog
needs to be inserted is also computed using a secret key. By only keeping the secret key, the owner
does not need to remember the watchdogs or their position for further verification. Further, in
order not to let the cloud differentiate the random bogus data (the watchdogs) from the actual data,
all data blocks are encrypted and after some additional operations such as error-correcting codes,
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the data is uploaded to the cloud. The verifier further applies a privacy preserving word search
operation like the one described in section 3.3 to check whether the watchdogs still exist at the
given position. The cloud obliviously computes the responses on the existence of the requested
watchdogs and send them back to the user. If the verifier obtains 0, then she detects a storage
error and can ask for some remediation. Figure 4.1 depicts an overview of the different phases of
Stealthguard. The next section provides the details of the solution.

Figure 4.1: StealthGuard - Overview

4.1.3.2 Description

During the upload phase, data owner O first splits F into n splits Sj each of them comprising m
blocks. Then O sequentially calls the following instantiated algorithms:

• Setup(ζ): the algorithm returns MK = K which will be used to generated the keying
material for the further Encode, Query and Verify algorithms. The algorithm also returns
the following public parameters param: four cryptographic hash functions, namely Henc

used to derive a data encryption key; Hwdog used to generate pseudo-random watchdogs;
HpermF andHpermS used to generated two permutation keys to be used for two permutation
functions ΠF : {0, 1}ζ×[[1, n·D]]→ [[1, n·D]] and ΠS : {0, 1}ζ×[[1, C]]→ [[1, C]]. param
also comprises a pseudo-random function PRF : {0, 1}ζ × [[1, n]] × [[1, v]] × {0, 1}∗ →
{0, 1}l .

• Encode: this algorithm is subdivided into the following steps:

– Given master keyK,O first generates n+3 keys that are: Kenc = Henc(K),Kwdog =
Hwdog(K), KpermF = HpermF (K) and for all i ∈ [[1, n]],KpermS,i = HpermS(K, i).

– Each split Si is expanded with d − 1 blocks of redundancy thanks to the use of an
[m + d − 1,m, d] error correcting code ECC. Thus, the new splits are made of
D = m + d − 1 blocks. The use of ECC helps the owner to automatically correct
small errors in the data.
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– Each block of file F is further permuted using the permutation function ΠF . Each
block is further encrypted with Kenc using a symmetric encryption Enc such as AES
[36]. This step prevents an adversary to distinguish redundancy blocks from original
ones.

– For each split, v l-bit watchdogs are generated using the pseudo-random function
PRF . Since the watchdogs are pseudo-randomly generated and the blocks in the split
are encrypted, S cannot distinguish watchdogs from data blocks. These v watchdogs
are appended to each split.

– A split-level pseudo-random permutation is then applied to the blocks within the same
split in order to randomize the location of the watchdogs:

– Encode finally outputs the resulting F̂ and file identifier fid.

O stores master key K, publishes param and forwards F̂ and fid to cloud server S . the
setup phase is illustrated in figure 4.2.
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Figure 4.2: StealthGuard - Setup phase

The POR phase involving verifier V and cloud server S can now start with several interactive
Query and Prove algorithms respectively executed by V and S . Before the execution of these
two algorithms, verifier V generates all the required keys that are derived from master key K:

• Query(K, fid): this algorithm randomly selects the split and the watchdog to be verified and
computes the wdi = Hwdog(K, i). It further sends a word search query on w with a PIR
based privacy preserving word search solution such as the one described in section 3.3.

• Prove(fid, qi): on input of the word search query and the file identifier fid, S executes this
algorithm which simply calls the word search solution’s Response.

On reception of proof pi, V executes the final Verify algorithm as follows:

• Verify: this algorithm calls the Verify algorithm of the privacy preserving word search solu-
tion with the inputs wdi and pi and outputs the result.

If Verify outputs 1 then V concludes that wdi is found; otherwise, V detects a malicious behavior.



43

4.1.4 Summary and Discussion

Stealthguard is proved to be complete and sound. More details on the security and performance
evaluation can be found in [56]. The paper shows that given a file F of 4GB, verifier V needs to
send 1719 POR queries at least, to achieve a security degree of 1− 1

245
. These queries correspond

to 0.64% of the size of the original file F. On the other hand the proposed solution can also be
improved by considering the case whereby customers’ data need frequent updates. Because of the
complex Setup phase, StealthGuard cannot efficiently handle such updates; also, such an opera-
tion should not disclose any information regarding the watchdogs or their positions. While POR
schemes mostly focus on cost optimizations at the customer side (be it data owner O or verifier
V), it would be interesting to combine such schemes with data reduction techniques such as data
deduplication in order for them to additionally be cloud-friendly.

4.2 Verifiable keyword search

In this section, we summarize a verifiable word search mechanism proposed in [57], that helps a
user searching in an outsourced database to verify the correctness of the lookup result.

4.2.1 Introduction

In addition to get assurance on the storage of the data, a cloud customer would like to have some
guarantees on the integrity of the outsourced computations. Unfortunately, by moving her comput-
ing tasks to the cloud, the client inherently lends the control to this server which can be considered
as being potentially malicious. Indeed, to free-up some of its computational resources, the cloud
server can return bogus results. Verifiable computation aims at providing some tools to customers
in order to let them gain the control on their data back and therefore force the cloud server to per-
form the requested operations correctly. While homomorphic signatures [58] could be considered
as the perfect tool for verifiability, solutions targeting a specific computation primitive can some-
times be more efficient. More specifically, we focus on the keyword search primitive and design a
solution that assures the correctness of the search result.

4.2.2 Problem Statement

We consider a scenario whereby a data owner O outsources a set of files F to the cloud server
S and further allows any third party V to search for a number of words in an efficient manner.
Together with the search result, that is the list of files containing the queried words, cloud server S
also returns a proof p on the correctness of the search result. Similarly to all previously described
protocols, data ownerO should first prepare the to-be-uploaded data. Then, verifier V can start the
search phase followed by the verification phase during which she verifies the correctness of the
search result. Therefore a verifiable word search solution consists of five algorithms regrouped in
three phases:

• Upload phase:

– Setup: given a security parameter ζ and a set of files F , this algorithm outputs a
public key PKF , and a search key LKF which regroups the words contained in all
files received as an input in an index together with some additional information which
will further be used to prove the integrity of the index.

• Search phase:
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– Query: given the public key resulting from Setup and the set of words, this algorithm
constructs the query and the corresponding verification key. Vi sends this query to
cloud server S. The algorithm also returns a verification key V Kq in order to allow
any verifier, even different from Vi, to perform operations during the verification phase.

– Search: given the search key LKF and the encoded query received from verifier Vi,
server S executes this algorithm and computes the search result which consists of the
list of files that contain the requested words and the corresponding proof.

• Verification phase:

– Verify: This algorithm can be executed by any verifier Vj and takes as input the verifi-
cation key V Kq,the resulting list of files Fq and the proof of search correctness pq. If
pq is correct then, the algorithm outputs the same list of files; otherwise the output is
⊥.

4.2.3 Requirements

In order for the verifiable computation solution to adapt to the more general case, the generic
requirement of verifiability for outsourced computation can be split into two sub-requirements:

• public delegatability: any verifier Vi can issue search requests using Query without having
access to the data owner’s secret information;

• public verifiability: in addition to Vi, any verifier Vj 6= Vi can verify S’s response.

These requirements also assure that a verifier can issue as many queries as needed. Furthermore,
the major requirement of a verifiable computation solution is the efficiency of the operations per-
formed at the client: Query and Verify should need much less computational resources than the
Search algorithm. The proposed solution adopts the so-called amortized model where data owner
O engages one-time expensive Setup and BuildIndex algorithms which will be amortized over an
unlimited number of fast verifications.

4.2.4 Building blocks

Polynomial accumulators One way of achieving keyword search verifiability is by using cryp-
tographic accumulators [59] which guarantee the membership of an element in a given set. Using
polynomial accumulators, data owner O can define one polynomial for each file where the root of
the polynomial is one word present in the file; to check whether a word ω is in all the files, server
S would generate a proof of membership [60] or a proof of non-membership for each file. Hence,
a verifiable test of membership is defined with the following three algorithms:

• Acc: on input of a set S = {h1, .., hn}, generates an accumulator Acc(S) which will be
used by subsequent algorithms;

• GenerateWitness: on input of value h and a set S, computes the proof (which is generally
called witness) of πh (non-)membership of h with respect to S.

• VerifyMembership: this algorithm takes as input the actual queried value h, the accumulator
Acc(S), and the output πhof GenerateWitness, outputs h if h ∈ S or halts otherwise.

Additionally, polynomial-based accumulators give way to verify set intersections [61] which will
be helpful for efficiently searching over several files. A verifiable set of intersection consists of
three algorithms:
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• the previously defined accumulator function Acc;

• ProveIntersection: this algorithm takes as input k sets S1, .., Sk and returns their intersec-
tion I together with the proof ΠI of this result;

• VerifyIntersection: with the outputs of ProveIntersection, namely I and ΠI , the accumula-
tors of each set, {Acc(Si)}1≤i≤k and Acc(I), this algorithm outputs Accept if the intersec-
tion is correctly computed, or Reject otherwise.

Cuckoo hashing Since polynomial based accumulators can be very costly for the problem of
verifiable keyword search in the context of very large database, they are combined with the use
of the Cuckoo hashing technique (see section 3.4.1) to initially build an efficient index of the
keywords and hence perform an efficient search and further verify the integrity.

Merkle trees To improve the performance of the solution even more, the index of keywords
is authenticated thanks to the combination of polynomial accumulators with Merkle trees [62].
These binary trees of hashes are generally used to verify the integrity of a large file system in a
logarithmic time. While leaf nodes represent a hash of an element, each internal node stores the
hash of the concatenation of the values at each of its child nodes. The main algorithms used by
the newly proposed solution are the following:

• BuildMT: this algorithm builds the Merkle tree T based on the elements of set S and a hash
function H .

• GenerateMTproof: given a value h and the Merkle tree T , the algorithm outputs the au-
thentication path path which regroups all values of the sibling nodes on the path from the
corresponding leaf node to the root node.

• VerifyMTproof: given an authentication path for value h and the root value σ of tree T , the
algorithm returns Accept if h is correct and Reject otherwise.

4.2.5 Verifiable conjunctive keyword search - Description
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Figure 4.3: Verifiable conjunctive keyword search - Overview

In this section, we briefly describe the proposed solution also illustrated in figure 4.3. During
the upload phase, data owner O builds an index of words together with two Merkle trees: one
authenticating the index and the other authenticating the set of files containing a given word.
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• Setup: after generating public parameters of the protocol, this algorithm constructs an index
I of keywords present in the received set of filesF using CuckooInsert. This index is further
authenticated with the combination of accumulators and Merkle trees. For each bucket Bi
in index I , data owner O computes an accumulator Acc(Bi) and builds a Merkle tree TW
using BuildMT with all these accumulators. Additionally, the algorithm identifies the set
of files Fωi containing wi and builds the corresponding accumulators Acc(Fωi) in order
to finally construct a second Merkle tree TF . The algorithm outputs the public key PKF
regrouping all public parameters and the search key LKF which consists in the set of words
in F , the set of files Fωi containing word ωi, the resulting index I and the two Merkle trees
TW and TF .

A verifier Vi generates a conjunctive query using Query which is further received by cloud server
S who will process the query with Search as follows:

• Query: this algorithm simply returns the set of k words to be queried Eq = W and the
public verification key which regroups the previously computed public key PKF and the
set of wordsW in the query.

• Search: given the query Eq and the lookup key LKF , this algorithm starts to lookup all the
words inW using CuckooLookup.

– If all words are found in index I , then for each word ωi in the query, Search retrieves
the set of files Fωi containing this specific word and computes the intersection of these
sets FW and the proof of this intersection ΠW using ProveIntersection. It also returns
Merkle tree proofs for each accumulator of Fwi , computed with GenerateMTProof.
Therefore, if all words exist in F , Search returns:

ER = (FW ,ΠW , {(Acc(Fωi), pathωi)}1≤i≤k)

– If for a given word wj CuckooLookup returns false, then Search computes the corre-
sponding proof of non-membership by first calling GenerateWitness with hj and the
two buckets B1j and B2j in which the word wj is supposed to be (positions are com-
puted with the two hash functions H1 and H2 used by CuckooInsert). In addition to
Π1 and Π2, the algorithm also returns the proofs of membership for these two buckets
B1j and B2j by computing their corresponding accumulators Acc(B1j) and Acc(B2j)
and the Merkle Tree proofs path1 and path2 with respect to tree TW . Hence for the
first word ωj not found in F , Search returns:

ER = (∅, ωj , π1, π2,Acc(B1j),Acc(B2j), path1j , path1j)

Whenever Vj receives the response from server S it executes Verify with the verification key V Kqj

as follows:

• Verify: given the set of words in the query and ER, this algorithm proceeds as a follow-up
to the two previously described cases:

– if all words are found, ie. if ER = (FW ,ΠW , {(Acc(Fωi), pathωi)}1≤i≤k), the algo-
rithm uses VerifyIntersection to verify ΠW and VerifyMTProof to verify pathωi . If
all verifications succeed, then Verify outputs FW .

– if, on the other hand, ER = (∅, ωj , π1, π2,Acc(B1j),Acc(B2j), path1j , path1j), Verify
calls VerifyMembership on π1 and π2 using Acc(B1j) and Acc(B2j) respectively; it
also executes VerifyMTProof over path1j and path2j . If all verifications succeed,
then Verify outputs ∅.
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4.2.6 Summary and Discussion

As opposed to most existing solutions [63, 64, 65, 66], the one we propose does not support verifi-
able keyword search on encrypted data but satisfies public delegatability and verifiability instead:
indeed, any third party can perform search on the outsourced data and verify the correctness of the
result. The proposed solution is efficient as the verification complexity is logarithmic in the size of
the database. More details on the performance evaluation and the security analysis of the solution
can be found in [67]. Similarly to POR schemes, it would be interesting to support frequent data
updates in an efficient manner.

4.3 Conclusion

This chapter studied the problem of trust in cloud computing and reviewed some verifiability solu-
tions dedicated to specific cloud storage and computation operations. The two solutions described
in this chapter allow users to verify the correct storage of their data and the correctness of the
outsourced search operation, respectively. Such schemes will help build and foster trust between
cloud service providers and cloud customers. As a future work it would be interesting to reconcile
PORs with data deduplication by devising new solutions that operate correctly while ensuring that
cloud providers can still optimize their resource usage. On the other hand while the problem of
verifiable computation still remains open, the possibility of combining it with the privacy of the
data becomes even more challenging.
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Conclusions and Perspectives

This thesis outlined various security and privacy issues raised by the emergence of new technolo-
gies. Unlike traditional communication protocols, opportunistic protocols use additional informa-
tion to establish communication among parties: context-based and content-based communications
rely on the exchange of sensitive information such as the location of the node or the profile of the
forwarding nodes. Chapter 1 summarizes the main privacy preserving primitives dedicated to this
new communication paradigm. The thesis further focuses on the problem of privacy in online so-
cial networks which are sometimes considered as the first communication channel among people.
Chapter 2 analyzes the main privacy questions raised by distributed online social networks and
further describes a usage control solution for picture sharing in such distributed networks. Chap-
ters 3 and 4 tackle the different security and privacy challenges raised by the cloud computing
technology which allows customers to reduce their maintenance costs by outsourcing their data
to cloud servers. While chapter 3 overviews different privacy preserving word search primitives,
chapter 4 reports the newly proposed verifiability solutions that help increasing the trust towards
this new technology and convince customers on its adoption. Since these solutions only target
specific operations such as word search, we aim at analysing other operations outsourced to the
cloud and design dedicated privacy preserving and security primitives for them. The ultimate goal
would be to come up with generic solutions that can be used for arbitrary computations.

With the rapid advance of technology and the explosion of the amount of (personal) data ex-
changes between devices and people, the need for security measures and the protection of personal
data becomes mandatory. Indeed, smartphones are expected to remotely control various devices
such as smart meters, TVs or cars. The EU has already reported on the vulnerability of the Inter-
net of Things (IoT) and the lack of sufficient security measures [68]. On the other hand, crypto-
graphic techniques become more practical, efficient and thus user-friendly. While recent advances
on fully homomorphic encryption which allows the arbitraty computation over encrypted data are
encouraging, the suitability of such emerging cryptographic techniques to this new ecosystem also
remains an interesting and open question.
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Abstract. Private matching solutions allow two parties to find common
data elements over their own datasets without revealing any additional
private information. We propose a new concept involving an intermedi-
ate entity in the private matching process: we consider the problem of
broker-based private matching where end-entities do not interact with
each other but communicate through a third entity, namely the Bro-
ker, which only discovers the number of matching elements. Although
introducing this third entity enables a complete decoupling between end-
entities (which may even not know each other), this advantage comes at
the cost of higher exposure in terms of privacy and security. After defin-
ing the security requirements dedicated to this new concept, we propose
a complete solution which combines searchable encryption techniques to-
gether with counting Bloom filters to preserve the privacy of end-entities
and provide the proof of the matching correctness, respectively.

1 Introduction

Imagine that a company has an opening for a new position. The posting for
new position consists mainly of requirements in terms of education, professional
experience and skills. So the company has many selection criteria and is looking
for the best suited candidate. Since the company does not want to take care of
all the recruitment process itself, it delegates the search phase to a recruitment
agency, which is more capable in terms of publishing the posting for new position
on a large scale. Candidates are characterized first by their resume and they
apply through the recruiting agency if they think they are fit for the job. The
recruitment agency upon receiving a resume, looks at the matching ratio between
the candidate characteristics and the posting’s criteria and calls the best suited
candidates for an interview at the company. The best suited candidates are
either all candidates above a certain matching ratio threshold, or the top ten
candidates for example. In order to prevent resume fraud, candidates should be
able to prove the correctness of their resume, with diplomas from a university
or validation of experience from a governmental agency.

This interesting scenario raises many security issues. First of all, both com-
pany and candidates’ privacy should be preserved. The company does indeed
not want that competitors learn about the posting, especially if it concerns an
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important position because that would give a hint about the company’s strat-
egy. So the posting and more specifically the criteria expressed by the company
should remain secret from other companies, including the recruitment agency.
Candidates’ privacy should also be preserved, to enforce equal opportunities
among candidates. Therefore resumes should be confidential and anonymous to
prevent the recruiting agency from discriminating between candidates on a non-
professional basis. The problem is therefore to be able to compute the matching
ratio between the posting’s criteria and the candidates’ resumes while both are
encrypted. Furthermore it is important that candidates cannot forge their re-
sume to obtain a higher matching ratio. This problem is especially hard since
resumes cannot be checked directly in the case where they are encrypted: privacy
and verification present conflicting requirements.

At first glance this problem has a flavor of private matching or private set
intersection, whereby two parties want to learn only shared attributes without
learning any information about the remaining ones. There is yet an important
difference in the presented scenario which makes the problem more complex:
the parties owning the private data (the company and the candidates) do not
directly interact with each other, but they forward their secret data to a third
party. This third party has to take a decision on the matching ratio without
having any control or knowledge on the private data it received, and it should
not be able to learn anything about the private data of either party in the
process: it should just be able to securely compute the matching ratio (it should
not even be able to tell which of the encrypted data matched or not). This paper
therefore tackles with a new requirement for parties not to interact directly to
achieve the matching result thus calling for a non-interactive solution.

In this paper, we analyze the requirements for the non-interactive and private
computation of matching ratio and present a complete solution to address this
issue. The solution is based on a searchable encryption scheme introduced by
Boneh et al. in [3] used in a new mode of operation to allow the company to
issue a unique query for all potential (and unknown) candidates. The solution
further makes use of counting Bloom filters introduced by Fan et al. in [11],
but in a radically new approach: those counting Bloom filters are not used as
usual to prove the belonging of an element to a set but to compute the matching
ratio without leaking privacy and to provide evidence of the correctness of the
matching ratio computation. This solution presents the following advantages:
– it addresses the non-interactive scenario as it does not require the parties

owning the private data to interact with each other (such as setting up keys
prior to the matching process for example) or even to know each other,

– it allows a third party to compute the matching ratio and to get evidence of
its correctness,

– it preserves the privacy of data, because the third party processes encrypted
data blindly (in the sense that it handles encrypted data and does not learn
any information about it),

– it is efficient, because the third party, which has to process a lot of data from
several users, only needs to perform few and non-costly operations for the
computation of each matching ratio.
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The rest of the paper is structured as follows. Section 2 motivates the need
for a broker-based private matching protocol comparing it with the classical
two-party mechanisms, defines the security requirements and describes the un-
derlying mechanisms. In section 3, the overall protocol and its security primitives
are described in detail. The security and performance of the proposed protocol
are evaluated in section 4. Finally, section 5 discusses relevant related work.

2 Problem Statement

2.1 Private matching: introducing a third party

The classical private matching scheme is a two-party protocol that enables both
parties P1 and P2 to discover common data elements over their own datasets
without revealing any additional private information. Assuming that P1 and P2

respectively own datasets X1 and X2, at the end of the private matching protocol
P1 and P2 only learn X1 ∩X2.

In this paper, we propose a complete decoupling between these two parties
in order to perform the same operation when the two parties do not interact
and are even not aware of each other. The new protocol involves a third party,
the Broker, which is in charge of computing the cardinality of the matching
set without discovering any of its elements. Private and correct evaluation of
the cardinality of the matching set by a third party has many applications, in
particular for ranking, or finding friends in social networks or simply in dat-
ing sites, and compelling new applications are envisioned in the broad field of
cloud computing. All these applications require a third party to take decisions
while remaining oblivious to the matched information. This new broker-based
private matching protocol consists of three entities, namely the Query Issuer,
the Subject and the Broker, where the latter’s main role is to discover the
cardinality of the matching set originating from the other two entities’ datasets.
Each entity’s role in the new protocol is formally defined as follows:
– the Query Issuer QI issues a query Qi = 〈qi,1, ..., qi,n〉 consisting of n

selection criteria which are elements of D, the global dataset. In the recruit-
ment example, the company is the Query Issuer and an example of selection
criterion could be “Degree = MSc”.

– Subjects Sl (1 ≤ l ≤ c), answers a query Qi with a matching proof mpi,l
based on its profile. Each Subject is indeed characterized by a profile P l =〈
pl1, ..., p

l
m

〉
composed of m attributes which are elements of the same dataset

D. These attributes are evaluated with respect to the query defined by the
Query Issuer. In the aforementioned scenario, Subjects correspond to the
candidates in the recruitment process.

– the additional party, namely the Broker B, first publishes the query of QI
to Subjects and collects their answers. The Broker then selects the best
suited Subjects: B computes a matching ratio ρi,l between a query Qi and
the Subject’s answer mpi,l defined as the cardinality of the matching set
between the selection criteria and the attributes over the cardinality of the
selection criteria. In the example, the Broker is the recruiting agency.
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In summary, the major difference between classical private matching and the
broker-based private matching protocol is the fact that there is no direct inter-
action between the Query Issuer QI and Subjects Sl. All messages go through
the Broker B, which is an active entity in the protocol and not a simple relay:
the query Qi of QI is sent to B which then publishes it to {Sl}1≤l≤c; each
Subject Sl sends its answer mpi,l to B which decides which Subjects correspond
to the query the best. Therefore, QI should be able to send a query without
even knowing the Subjects {Sl}1≤l≤c: there is a complete decoupling between
these two entities, and B is in charge of gathering the necessary data and taking
the appropriate decision. Finally QI should be able to send a query with any
selection criteria and is not limited to a set that it owns.

2.2 Security requirements
The introduction of a third party in the private matching protocol requires to
revisit all security requirements defined for the two-party protocol.

First of all, we assume that the Query Issuer is interested in getting the best
suited Subjects; therefore QI is assumed to be honest. On the contrary, Subjects
are considered to be potentially malicious, because it is in their interest to exhibit
a high matching ratio in order to be selected by the Broker. Therefore Subjects
might attempt to cheat on their attributes or more generally in the answer they
send to B in order to lure B into computing a matching ratio higher than their
real matching ratio. However we consider that nodes are selfish and that they
do not collude with each other.

Concerning the Broker B, we assume it to be honest but curious: B correctly
executes the protocol and computes the matching ratio according to the data
it receives, and finally sends to QI the truly best suited Subjects according to
the matching ratio rankings. Yet, B is curious in the sense that it is interested
in unveiling information from the private data it receives, whether being the
selection criteria of the query of QI or the attributes of Subjects.

There are thus two main attacks to be considered:
– attacks by the Broker in an attempt to break the privacy of the other two

entities: B tries to discover and reveal the content of the query of QI, or to
discover the attributes of one or many Subjects,

– attacks by Subjects aiming at illegitimately increasing their matching ratio
with a given query.

This leads to the following two security requirements:
– Preserving the privacy of the end entities QI and Sl: queries issued

by QI and answers of Subjects are confidential and therefore encrypted. The
Broker should be able to compute the matching ratio using these two en-
crypted values without discovering any information about either the criteria
of QI or the Subject’s attributes: the protocol should be semantically secure.
Furthermore, as for classical private matching protocol, since the query is
forwarded by B to Subjects, these entities should not be able to derive in-
formation about non-matching criteria. These privacy properties can also
be formally defined by comparing the real situation in our protocol with an
ideal situation where the protocol is run by a trusted external entity, but we
do not add this formalization in this article for the sake of clarity.
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– Guaranteeing the correctness of the matching ratio: the answer mpi,l
of a Subject Sl should enable the Broker to correctly compute the matching
ratio between the query Qi and the attributes of Sl. This requirement is very
different from the privacy one, but the latter hardens the task of verifying the
correctness of the matching ratio. Indeed, a simple solution to this provably
correct matching ratio computation would consist in the Subjects sending
their attributes to the Broker, but this solution blatantly exposes the pri-
vacy of the Subjects. The challenge for the Broker is to be able to compute
the matching ratio corresponding to a set of attributes while verifying their
correctness without having access to their content.

2.3 Security primitives

Based on the security requirements of the broker-based private matching proto-
col, we define the following security primitives:
– SQE (Secure Query Encoding): in order to ensure the confidentiality of the

query Qi, this primitive, used by the Query Issuer QI, securely encodes Qi
and returns Q′i. QI can express its queries on any selection criteria in the
global dataset D, hence SQE should be a public function in that it should not
require any secret information on input. Furthermore, this function should
be randomized to prevent dictionary attacks.

– SLU (Secure Look-up): A Subject Sl uses this primitive to look-up its at-
tributes against an encoded query, and outputs the corresponding answer
mpi,l. This function should be public but requires secret information (cre-
dentials) to be processed.

– SMRC (Secure Matching Ratio Computation): on input of a Q′i and a corre-
sponding mpi,l, this primitive first verifies the correctness of mpi,l:
1. if mpi,l is invalid (Sl attempted to cheat), the process breaks;
2. otherwise, the primitive outputs the correct matching ratio ρi,l.

In the next section, these three primitives are formally described based on a
combination of different cryptographic mechanisms: searchable encryption and
counting Bloom filters.

3 Solution
We now present our solution by first introducing the underlying mechanisms and
further by formally describing the overall protocol divided into two phases.

3.1 Overview

In order to allow the correct execution of the new protocol, Subjects first need to
retrieve their credentials (private information corresponding to their profile) from
a certain authority that approves their validity. Therefore, a trusted authority
is initially available during a setup phase. This authority does not play any role
during the execution of the matching protocol, namely the runtime phase.

In this second phase, the broker-based private matching protocol actually
takes place, and it features four main steps:
1. Query: The Query Issuer QI issues a query Qi. It encodes this query using

the SQE primitive and sends the result Q′i to the Broker. Based on the query
Qi, QI also constructs a counting Bloom filter CBFi, called a matching
reference and sends it to the Broker along with the encoded query.
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2. Publish: The Broker publishes the encoded query Q′i to all Subjects. The
matching reference is not forwarded.

3. Look-up: Each subject Sl looks-up its credentials in the encoded query Q′i to
determine which conditions Sl matches. Based on these matched conditions,
Sl constructs another counting Bloom filter CBFi,l, called a matching proof.
This matching proof mpi,l is sent to the Broker.

4. Verify: The Broker compares the matching reference and the matching proof
to assess first whether the matching proof is valid or not, and then to compute
the matching ratio ρi,l. Finally, the Broker informs QI about the Subjects
best suited to its query Qi.

QI B Sl

1.QUERY
Q
i 1.Q'i

1.CBFi

2.Q'i

2.PUBLISH
3.LOOK-UP

3.CBFi,l

4.VERIFYMatching 
Reference

Credentials

Matching 
Proof

Encoded 
Query

4.ρi,l

Fig. 1. High level description of the protocol

The protocol is summarized in figure 1. A major advantage of our solution is
that it enables some computation on encrypted data to preserve end-entities pri-
vacy: the Broker is able to compute the matching ratio based on two encrypted
data structures, the matching reference and the matching proof. This compu-
tation on encrypted data is achieved thanks to an extension of a searchable
encryption mechanism that allows a third node to verify whether an encrypted
keyword is included in a database or not. This mechanism is also combined
with counting Bloom filters in order to prove the correctness of the computation
of the matching ratio. Before formally describing the new protocol, these two
mechanisms are briefly presented in the next section.

3.2 Background-Tools
Searchable encryption Searchable encryption is a general concept which en-
ables a third entity to store an encrypted list destined to a certain party and to
look-up encrypted keywords on behalf of this party without learning additional
information both on the keyword and the encrypted list.

One of the main searchable encryption approaches was proposed by Boneh
et al. in [3] and it uses three main operations:
– SE-Encrypt: a public encryption function used to encrypt the list that is

stored by the third party. This function requires the knowledge of the public
key of the destination.

– SE-Trapdoor: a private function which gives the capability of looking-up a
specific keyword, called a trapdoor. This function requires the private key of
the recipient and hence can only be computed by the recipient.

– SE-Test: on input of a trapdoor and an encrypted keyword, the third party
uses this operation to verify whether the private keyword is included in the
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list or not. Hence, this function returns 1 if the trapdoor corresponds to the
encrypted keyword and 0 otherwise.
Due to its non-interactivity this searchable encryption proposal looks appro-

priate for the new broker-based private matching scenario, where the SE-Test

operation can be implemented by the Broker while Query Issuers may encrypt
some keywords with SE-Encrypt and the Subjects run the SE-Trapdoor. Unfor-
tunately, the use of this mechanism is not straightforward because:
– As opposed to the SE-Test operation, the Broker should only be able to

compute the global matching ratio and not individual matching attributes;
– The Query Issuer does not know the Subjects in advance, hence it does not

have knowledge of their public keys and cannot use SE-Encrypt easily.
To circumvent these two main constraints, we propose to introduce a Trusted

Third Party which alleviates the requirement of the knowledge of the (unknown)
recipient’s public key in our scheme (see section 3.3).

Bloom filters A Bloom filter is a probabilistic data structure which was first
introduced by Burton Bloom ([5]). The classical use of Bloom filters is to test
whether an element is a member of a set in a space-efficient way. We focus on
an extension of Bloom filters called counting Bloom filters that were proposed
by Fan et al. in [11] to support the dynamic deletion of an element.

A counting Bloom filter CBF is an array of φ positions (also called
buckets) used to represent a set X with the aid of u hash functions {h1, .., hu}
mapping an element of X to one of the φ array positions. Counting Bloom filters
implement the following three functions:
– Insert(x,CBF ): on input of an element x, the digest of this element is

computed using each of the u hash functions. The values of the filter CBF
at these positions are incremented by 1.

– Query(x,CBF ): this function verifies with a certain probability whether x
is an element of the filter or not.

– Delete(x,CBF ): this operation consists of decrementing the value at each
of the u positions resulting from the hash functions evaluated over x, by 1.
In the sequel of this article, we denote by CBF(x1, ..., xn) the counting Bloom

filter obtained by inserting the elements xi for 1 ≤ i ≤ n.
The weight wCBF of a counting Bloom filter CBF is defined as the sum of

the values of all positions: wCBF =
∑

0≤i≤φ−1 CBF [i]. An important property
of counting Bloom filters is that the weight wCBF of a counting Bloom filter
CBF is linearly dependent on the number of elements inserted in it:

wCBF(x1,...,xn) = n · u.
Hence, counting Bloom filters are useful for our broker-based private match-

ing as they enable computing the cardinality of a set without revealing the
elements of the set (see section 3.3).

3.3 Construction

As mentioned in section 3.1, the solution features two phases: a setup phase
where Subjects retrieve their credentials, and a runtime phase where the private
matching protocol is executed.
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Setup phase Contrary to QI which can choose any selection criteria in Qi, Sl
should answer Q′i correctly based on their profile. Since the correctness of pri-
vate matching operations depends on the correctness of these profiles, the latter
should be certified, and we refer to the certified attributes as credentials. These
credentials are retrieved during a setup phase which features a fourth entity,
called the Authority A. This Authority is required to define general parame-
ters of the system and to provide Subjects with their matching credentials.

The general parameters are generated according to a security parameter
which impacts the size of the groups that are used, as well as the size of keys.
In particular, the Authority generates a private and public key pair skA/pkA.
In the recruitment example, universities delivering a diploma or governmental
agencies can be considered as authorities.

In addition to the three security primitives defined in section 2.3, we define
a fourth one, SCE (Secure Credential Extraction), which is used by A to provide
Sl with the credentials corresponding to its profile (this primitive is similar to
the private key extraction primitive in Identity-Based Encryption). On input of
a Subject’s profile, SCE returns a set of credentials. These credentials are used
as matching capabilities and correspond to trapdoors in searchable encryption.

To be more precise, Subjects Sl first contact the Authority A and show their
profile P l =

〈
pl1, ...p

l
m

〉
. A verifies the validity of P l (this verification step is

out of the scope of this paper), and then provides Sl with the corresponding
credentials T l which are computed using the SE-Trapdoor function applied over
the Subject’s attributes and the secret key of A. Hence, at the end of the setup
phase, each Sl receives the following set of credentials:

T l =
〈
tl1, ..., t

l
m

〉
= 〈SE-Trapdoor(pl1, skA), ..., SE-Trapdoor(plm, skA)〉.

Runtime phase As described in section 3.1, the runtime phase consists of four
main steps that we describe formally in the following:

1. Query: During this step, QI expresses a query Qi by choosing a set of
selection criteria and performs a secure encoding of the query using the SQE

primitive. The output of this primitive are the encoded query Q′i and the
matching reference mri: SQE(Qi, pkA) = (Q′i,mri).
As previously introduced, the SQE primitive should be a randomized public
cryptographic function, such as SE-Encrypt. However, SE-Encrypt requires
the public key of the recipient and this key is unknown to QI, hence we
propose a new configuration where the public key of A is used instead.
Therefore, the encoded query is computed as follows:

Q′i =
〈
q′i,1, ..., q

′
i,n

〉
= 〈SE-Encrypt(qi,1, pkA), ..., SE-Encrypt(qi,n, pkA)〉.

On the other hand, the matching reference should help the Broker to compute
the matching ratio correctly. To this extent, during the execution of the
SE-Encrypt algorithm, QI also retrieves some intermediate values which
can only be computed by itself or by the nodes that own the corresponding
trapdoors. Indeed, the SE-Encrypt primitive makes use of a cryptographic
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hash function H at the last step of the computation3. For 1 ≤ j ≤ n, we
denote the preimage of q′i,j by xi,j :

q′i,j = SE-Encrypt(qi,j , pkA) = H(xi,j).
Thanks to the inherent security of the hash functions with pseudorandom
inputs, a malicious user cannot compute xi,j based on the knowledge of q′i,j .
Hence, QI constructs the matching reference mri as a counting Bloom filter
CBFi, in which it inserts the elements xi,j for 1 ≤ j ≤ n:

mri = CBFi = CBF(xi,1, ..., xi,n).
At the end of this first step, QI sends mri and Q′i to the Broker.

2. Publish: The Broker forwards the encoded query Q′i to all Subjects but
keeps the matching reference mri.

3. Look-up: On input of an encoded query Q′i and a set of credentials T l, the
SLU primitive returns a matching proof mpi,l:

SLU(Q′i, T
l) = mpi,l.

By using the SE-Test function, Subjects can indeed detect selection criteria
corresponding to their profile: for 1 ≤ j ≤ n, 1 ≤ k ≤ m SE-Test(q′i,j , t

l
k)

returns 1 for matching elements and 0 for the others. Moreover, the Subject
can compute the corresponding preimage xi,j for matching criteria. Hence
Sl can construct a counting Bloom filter CBFi,l in which it includes all the
preimages that it managed to compute and which is used as matching proof
mpi,l = CBFi,l and sent to the Broker.

4. Verify: On input of a matching reference mri and a matching proof mpi,l
the primitive SMRC returns a matching ratio ρi,l.
The Broker first compares the counting Bloom filters CBFi and CBFi,l to
assess the validity of the latter. To this extent, the Broker checks whether:

– ∀0 ≤ i1 ≤ φ − 1, CBFi,l[i1] ≺ CBFi[i1] denoted as CBFi,l ≺ CBFi,
otherwise it means that CBFi,l was not constructed only with (a subset
of) xi,1, ...xi,n,

– the weight wCBFi,l of CBFi,l is a multiple of u, because each inserted
element leads to an increase of the weight by u.

If one of the verifications fails, the protocol aborts (the Subject attempted
to cheat), otherwise the Broker accepts the answer of Sl as being valid and
computes the matching ratio as follows:

SMRC(mri,mpi,l) =
wCBFi,l
wCBFi

.

The protocol is consistent in that:

Proposition 1. If CBFi,l is generated as specified in the protocol, then the
matching ratio between the query and the attributes of a Subject corresponds
to the output of SMRC:

ρi,l = SMRC(mri,mpi,l).

3 See [3] for the detailed construction of PEKS. We roughly have xi,j = ê(H1(qi,j), r ·
pkA), and q′i,j = 〈rP,H(xi,j)〉, where ê is a bilinear map, r a random scalar, and P
a point on an elliptic curve.
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This proposition is a direct consequence of the fact that the weight of a
counting Bloom filter is linearly dependent with the number of its elements.

This concludes the presentation of our solution, and we now evaluate its
security and performance.

4 Evaluation

The security of the new broker-based private matching protocol is analyzed based
on the attacker model and the security requirements defined in section 2.2. We
assume that the communication channels between QI and B and between B and
Sl are secured, hence eavesdroppers cannot access the messages exchanged in
the protocol in clear. They thus have less information than any of the entities
running the protocol, and we do not further take them into account.

4.1 Privacy
Privacy is the most important requirement in classical private matching. In this
section, we assume that entities are curious and try to discover information that
they should not access. We first show that our solution preserves the privacy
of end-entities and we further prove that the introduction of a third party (the
Broker) does not threaten the Query Issuer’s and Subjects’ privacy.

First, the privacy of the QI is preserved with respect to Sl. Indeed, in [3],
Boneh et al. proved that their construction is semantically secure against a
chosen keyword attack in the random oracle model, assuming that the Bilinear
Diffie-Hellman problem is hard. It is thus unfeasible for an entity to discover
the value of an encoded selection criteria unless it knows the corresponding
trapdoor, in other words Sl can only discover the matching selection criteria.
Furthermore, since only the Authority A knows the private key skA, nodes
cannot forge trapdoors. Recovering the private key skA amounts to a discrete
logarithm computation which is assumed to be hard.

Second, we prove that the introduction of B does not threaten the privacy of
end-entities. On one hand, as an intermediate node, B receives the same encoded
queries that Sl receives, but B has no trapdoors and thus cannot discover the
value of the encoded queries. Furthermore, B cannot link successive queries even
if they correspond to the same selection criteria because the encoding mecha-
nism is inherently randomized. On the other hand, in addition to the queries, B
receives matching reference and matching proofs from QI and Sl respectively.
As proven in the following theorem, the knowledge of a counting Bloom filter
does not enable the Broker to recover the elements xi,j inserted in it.

Theorem 1. Let x1, ..., xn be n elements randomly chosen from a group G of
order q. Let CBF be a counting Bloom filter of size φ in which the n elements
x1, ..., xn were inserted using u hash functions h1, ..., hu. Then, there are more
than q

φu possible sets of elements of Gn leading to the same counting Bloom
filter:

|{(x′1, ..., x′n) ∈ Gn|CBF(x′1, ..., x
′
n) = CBF(x1, ..., xn)}| > q

φu
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The proof is given in section 7.1. This result is a lower bound on the set
of preimages but the actual result can be multiplied by a factor of up to u!
depending on the outputs of the hash functions, and is multiplied even further if
more elements are inserted. Note that this result does not even take into account
the complexity required to find the corresponding set of preimages.

From the perspective of an attacker, being able to solve the equations would
lead to an advantage as it reduces the size of the space of possibilities from q
down to q

φu . However, careful setting of the parameters q, φ and u, makes the

size of this set large enough to prevent brute force guessing (see section 7.3).
In summary, the counting Bloom filter cannot be reversed to obtain the

entries that were inserted in it, which guarantees the privacy of the Query Issuer
and Subjects. We now focus on the security of the matching ratio computation.

4.2 Correctness of the matching ratio

Concerning the security of the matching ratio computation, we consider now a
malicious Sl trying to convince B that its matching ratio is higher than its actual
value, and we show that the probability of success of such an attack is negligible.

To be more precise, we assume that Sl does not know the matching reference
mri, thus the only information known by Sl on CBFi are the global parameters:
the hash functions used h1,...,hu and the size φ. Sl also knows Q′i and therefore
the number n of elements xi,j inserted in CBFi.

The goal of the malicious Sl is to claim a matching ratio ρclaimi,l higher than

the actual ratio ρi,l. To this extent, Sl needs to claim a corresponding counting
Bloom filter CBF claimi,l . For Sl to be successful, CBF claimi,l has to verify the
following conditions:

1. it should be considered valid by B, as required by the last step of the protocol
described in section 3.3, which implies that:
– CBF claimi,l ≺ CBFi,
– the weight wCBF claimi,l

of CBF claimi,l is a multiple of u,

2. it should lead to ρclaimi,l > ρi,l, hence the weight of CBF claimi,l needs to verify
wCBF claimi,l

> wCBFi .

The probability of success of Sl is exponentially decreasing in the malicious
ratio increment ρclaimi,l − ρi,l, as shown in the following theorem.

Theorem 2. Let Q′i be an encoded query concerning n selection criteria. Let
CBFi be the corresponding matching reference.

The probability of success Padv[ρi,l → ρclaimi,l ] of an adversary Sl in generating

an array CBF claimi,l which is accepted by B and results in an increase of the

matching ratio from ρi,l to ρclaimi,l is upper bounded by:

Padv[ρi,l → ρclaimi,l ] ≤
(

1− e−
(1−ρi,l)n·u

φ

)(ρclaimi,l −ρi,l)n·u
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The proof is given in section 7.2. The formula of Padv[ρi,l → ρclaimi,l ] shows
that the probability of success of an adversary decreases exponentially with the
malicious ratio increase (ρclaimi,l −ρi,l) and, decreases also depending on the value
of the legitimate matching ratio ρi,l.

It is possible to go further and bound Padv[ρi,l → ρclaimi,l ] independently of

ρi,l and ρclaimi,l , by observing that:

– the function x 7→ αx decreases with x for 0 < α < 1,

– 0 <

(
1− e−

(1−ρi,l)n·u
φ

)
<
(

1− e−n·u
φ

)
< 1,

– u < (ρclaimi,l − ρi,l)n · u.

Hence, the probability of success of the adversary is bounded by Padv:

Padv =
(

1− e−n·u
φ

)u
.

The security of the scheme hence depends on the general parameters of the
counting Bloom filter and we now show how to optimize these settings.

First of all, we assume that the maximum number of selection criteria in a
query is bounded and known in advance; we designate it as nmax. For all queries,
the probability of success of the adversary is thus bounded by

Padv ≤
(

1− e−nmaxuφ

)u
.

If we fix φ, then the function pmax : u 7→
(

1− e−nmaxuφ

)u
is C∞ on [1,+∞[,

and it reaches its minimum in u0 = φ
nmax

ln(2) and pmax(u0) = 2−u0 . Therefore,
for a fixed nmax, increasing u and φ exponentially increases the security, but
increasing φ linearly impacts on the performance of the scheme. We propose the
following strategy to optimize the trade-off between security and performance:

1. Set nmax the maximum number of criteria per query,
2. Choose a security parameter u: Padv is then bounded by 2−u,

3. Set the size φ of the counting Bloom filter as φ =
⌈
nmaxu
ln(2)

⌉
.

This strategy prioritizes security over performance: it defines the desired
security level (Padv ≤ 2−u) and then sets the minimal size φ to achieve this
security level. Note that u does not need to be very large, because Padv is an
upper bound and is obtained with very restrictive conditions:

– n = nmax, which means that QI uses nmax selection criteria,
– Sl has a legitimate matching ratio of 0 (ρi,l = 0).

With these conditions, Sl has a probability less than 2−u of success in making B
believe that its matching ratio is 1/nmax instead of 0. In many cases, this would
not be of any use to the attacker, because the attacker needs to claim the highest
matching ratio among the Subjects in order to take advantage of its attack. The
attacker does not even know the matching ratio of the other Subjects, so the
only way for the malicious Sl to be sure to benefit from its attack is to claim a
matching ratio of 1, and the probability of Sl succeeding falls down to 2−u·nmax .
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4.3 Performance evaluation

Following the analysis of the trade-off between security and performance in the
previous section, we now evaluate the overall communication and computational
overhead resulting from the proposed protocol.

Communication overhead We consider that the cost originating from the
setup phase is negligible given that it takes place offline. We only evaluate the
communication overhead during the runtime phase.

The size of encoded queries is linear in the number of selection criteria that
it includes. Each encoded criterion is the output of the SE-Encrypt primitive
and thus has size 2q bits, where q is the size of the group used in the searchable
encryption scheme.

Concerning the size of counting Bloom filters, they are arrays containing φ
buckets. According to [11], we choose β = 4 bits for the size of each bucket
to keep a negligible probability of overflow, thus the communication overhead
incurred by the matching reference or the matching proof is 4φ bits.

Computational overhead The primitives of searchable encryption rely on el-
liptic curve operations which cost is of the same order of magnitude as classical
asymmetric cryptography [18]. The most costly operation is the pairing compu-
tation: our mechanism requires one pairing computation per encoding and one
per SE-Test evaluation, the cost is thus linear in the number of selection criteria
used in the queries. In comparison, the cost of generating the counting Bloom
filters which amounts to n · u hash computations is negligible.

The aforementioned computations are performed by the end-entities, but the
Broker only carries on simple operations to compute the matching ratio:
– B verifies that the matching proof is smaller than the matching reference

which requires φ integers inequality checks,
– B computes the weight of the matching proof and reference (a sum of φ

integers) and performs a division.

The overhead on B is thus very small which shows that our scheme is scalable
and efficient to disseminate a query to multiple Subjects.

5 Related work

Several previously studied problems in the literature show similarities with broker-
based private matching. We list them in two main categories and show how they
differ from our problem.

5.1 Private matching and private set intersection

Private matching came up as a generalization of private equality tests. A first
approach introduced a Trusted Third Party (TTP) as proposed in [2] and [15]. In
theses proposals, the TTP is completely trusted, computes X1 ∩X2 and sends
the result back to P1 and P2. This solution is not satisfying from a privacy
perspective as it is fully dependent on the honesty of the TTP which has full
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access to the parties’ sets. This three-party protocol is thus very different from
our broker-based private matching solution.

In [1], Agrawal et al. propose a protocol performing private matching without
a TTP, building on a previous work by Huberman et al. [14] by using a pair of
commutative encryption schemes. Building on this work, Li et al. formalize in [17]
the security requirements of private matching and identify the issue of spoofing,
which consists in one of the entities claiming elements that it does not own. The
issue of spoofing is similar to Subjects cheating in their matching proof (however
this issue is not relevant for the Query Issuer). To solve this issue, Li et al. further
introduce a Trusted Third Party which provides Data Ownership Certificates
(similar to the Authority providing credentials) and propose a modified version
of the Agrawal protocol.

A different approach was investigated by Freedman et al. in [12]: they propose
a solution derived from secret sharing protocols based on Oblivious Polynomial
Evaluation. They also study some variants of private matching, among which
the private cardinality matching, which is very close to our matching ratio com-
putation. The solution for the latter is only proposed for semi-honest parties but
the case of malicious entities is not considered. Kissner and Song [16] proposed
multi-party protocols that apply to several set operations (including set intersec-
tion) and that are secure in the presence of honest-but-curious adversaries. They
also propose a construction secure in the presence of malicious adversaries based
on zero-knowledge proofs. For the same problem, Dachman-Sold et al. propose
a more efficient solution in [10].

In [8], Camenisch and Zaverucha introduce the notion of certified sets: a
trusted third party provides credentials to users prior to the private set intersec-
tion protocol. This trusted third party plays the same role as A in our solution.

Finally, we note the recent work of De Cristofario and Tsudik, who propose
in [9] more efficient protocols to various flavors of private set intersection.

All these protocols cannot readily be applied to our scenario, because they
are interactive protocols between two entities (a client and a server) that in-
teract directly (possibly in several rounds), and there is no clear translation of
this two-party setting to our problem. The presence of an active Broker indeed
introduces different privacy threats while enabling a decoupling between Query
Issuer and Subjects. Furthermore, one of the entities in our scenario, namely the
Query Issuer, can express queries on any selection criteria and is not limited to
a predefined set contrary to P1 limited to X1 in classical private matching.

5.2 Oblivious keyword search

Oblivious Keyword Search is a generalization of Oblivious Transfer [21, 4, 7, 13]
where the client receives all messages related to a given private keyword instead
of requesting a message at a particular position. It was proposed by Ogata
and Kurosawa in [20] who showed the relationships between both notions and
presented two efficient methods to achieve oblivious keyword search.

Oblivious Keyword Search is relevant to our problem because it can be used
to construct private set intersection protocols [12], and more importantly they
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can be combined with Public Encryption with Keyword Search (PEKS) to offer
additional properties as presented in [6]. The latter scheme, that we refer to as
PEOKS, enhances PEKS by introducing the notion of committed blind anony-
mous identity-based encryption, which allow Subjects Sl to privately request
trapdoors for attributes without revealing the attributes to the Authority A: Sl
commit to their attributes which allows A to request proofs of statement from
users later on. Furthermore, the trapdoors are unique to each subject (even for
the same attribute), making the scheme robust and secure against colluding
attackers. Those properties make PEOKS more suitable to our scenario than
PEKS but it is also more difficult to expose briefly and could stray the focus
from our contributions and in particular the main novelty of our scheme, which
is the introduction of counting Bloom filters and their use in an original way.
We keep the advanced version of our scheme based on PEOKS for the extended
version of the article.

6 Conclusion

In this paper, we have presented a new private matching protocol which involves
an intermediate node that performs some of the matching operations on behalf of
the end-entities. Contrary to classical private matching settings, where the client
and the server interact directly in the process, in our new scenario the Query Is-
suer and the Subjects do not interact at all, and do not even need to know each
others’ identity. The new protocol is based on the combination of searchable
encryption mechanisms and counting Bloom filters used in a radically differ-
ent mindset and allows a third entity, namely the Broker, to correctly compute
the matching ratio based on encrypted information only. While introducing this
third entity allows a decoupling between the end-entities, it raises new privacy
and security issues. We have proved that the proposed protocol preserves the
privacy of end-entities thanks to the semantic security of the underlying search-
able encryption mechanisms. The security against malicious Subjects cheating
on the matching ratio has been analyzed and proved by bounding the probability
of the success of the malicious Subject. Finally we have identified an interesting
trade-off between security and performance, and we have computed the optimal
parameters for an efficient execution of the protocol under a certain security
level.

As future work, we plan to implement this mechanism with a PEOKS scheme
to mitigate the impact of colluding attackers. We also envision to introduce
multiple authorities to reduce the importance and the capabilities of A.
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4. Brassard, G., Crépeau, C., and Robert, J.-M. All-or-nothing disclosure of
secrets. In Proceedings on Advances in cryptology—CRYPTO ’86 (1986), Springer-
Verlag, pp. 234–238.

5. Broder, A., and Mitzenmacher, M. Network applications of bloom filters: A
survey. In Internet Mathematics (2002), pp. 636–646.

6. Camenisch, J., Kohlweiss, M., Rial, A., and Sheedy, C. Blind and anonymous
identity-based encryption and authorised private searches on public key encrypted
data. In Proceedings of the 12th International Conference on Practice and Theory
in Public Key Cryptography: PKC ’09 (2009), Springer-Verlag, pp. 196–214.

7. Camenisch, J., Neven, G., and Shelat, A. Simulatable adaptive oblivious
transfer. In Proceedings of the 26th annual international conference on Advances
in Cryptology (2007), EUROCRYPT ’07, Springer-Verlag, pp. 573–590.

8. Camenisch, J., and Zaverucha, G. M. Private intersection of certified sets. In
Financial Cryptography and Data Security (2009), Springer-Verlag, pp. 108–127.

9. Cristofaro, E. D., and Tsudik, G. Practical private set intersection protocols
with linear complexity. In Financial Cryptography’10 (2010), pp. 143–159.

10. Dachman-Soled, D., Malkin, T., Raykova, M., and Yung, M. Efficient robust
private set intersection. In Proceedings of the 7th International Conference on
Applied Cryptography and Network Security (2009), ACNS ’09, Springer-Verlag,
pp. 125–142.

11. Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking 8,
3 (2000), 281–293.

12. Freedman, M. J., Nissim, K., and Pinkas, B. Efficient private matching and
set intersection. In Advances in Cryptology - EUROCRYPT 2004 (2004), Springer
Verlag.

13. Green, M., and Hohenberger, S. Blind identity-based encryption and sim-
ulatable oblivious transfer. In Proceedings of the Advances in Crypotology 13th
international conference on Theory and application of cryptology and information
security (2007), ASIACRYPT’07, Springer-Verlag, pp. 265–282.

14. Huberman, B. A., Franklin, M., and Hogg, T. Enhancing privacy and trust
in electronic communities. In EC ’99: Proceedings of the 1st ACM conference on
Electronic commerce (1999), ACM, pp. 78–86.

15. Jefferies, N., Mitchell, C. J., and Walker, M. A proposed architecture for
trusted third party services. In Proceedings of the International Conference on
Cryptography: Policy and Algorithms (1995), Springer-Verlag, pp. 98–104.

16. Kissner, L., and Song, D. Privacy-preserving set operations. In Proceedings of
CRYPTO ’05 (August 2005).

17. Li, Y., Tygar, D., and Hellerstein, J. M. Private matching.
Tech. Rep. IRB-TR-04-005, Intel Research Laboratory Berkeley, 2004.
http://www.eecs.berkeley.edu/˜tygar/papers/Private matching.pdf.

18. Lynn, B. The pairing-based cryptography library, 2006.
http://crypto.stanford.edu/pbc/.

19. Menezes, A., Vanstone, S., and Okamoto, T. Reducing elliptic curve loga-
rithms to logarithms in a finite field. In STOC ’91: Proceedings of the twenty-third
annual ACM symposium on Theory of computing (1991), pp. 80–89.

20. Ogata, W., and Kurosawa, K. Oblivious keyword search. Journal of Complexity
- Special issue on coding and cryptography 20 (April 2004), 356–371.



Broker-Based Private Matching 17

21. Rabin, M. O. How to exchange secrets with oblivious transfer, 1981. Harvard
University Technical Report.

7 Appendix: proofs and example

7.1 Proof of theorem 1

Theorem. Let x1, ..., xn be n elements randomly chosen from a group G of order
q. Let CBF be a counting Bloom filter of size φ in which the n elements x1, ..., xn
were inserted using u hash functions h1, ..., hu. Then, there are more than q

φu

possible sets of elements of Gn leading to the same counting Bloom filter:

|{(x′1, ..., x′n) ∈ Gn|CBF(x′1, ..., x
′
n) = CBF(x1, ..., xn)}| > q

φu

Proof. Let us examine the simplest case of n = 1 and CBF = CBF(x1). In
that case the positions h1(x1); ...;hu(x1) are incremented in CBF . The security
argument is based on two main observations:

– The first observation is that the hash functions h1, ..., hu are not invertible,
even though they are not necessarily cryptographic hash functions. Indeed,
these functions map elements of G (a group of order q) to a small set (the
integers smaller than φ). Therefore, if the hash functions have a uniformly
distributed output then each output has q

φ preimages. If we combine the
u equations corresponding to the u hash functions, the number of inputs
simultaneously verifying u conditions on their digests is q

φu .
– The second observation is that there is an information loss in the construction

of this structure: the order of the hash functions is lost once the element is
inserted in the counting Bloom filter, and it is impossible to know which
hash function resulted in the incrementation of a given position in the filter.
This second fact further increases the size of the potential preimages by a
factor of up to u!: it is possible to set many sets of equations for the same
counting Bloom filter.

As a result, the set of possible preimages corresponding to a counting Bloom
filter containing a single element is at least q

φu . This set is even larger when
considering several elements.

7.2 Proof of theorem 2

Theorem. Let Q′i be an encoded query concerning n selection criteria. Let CBFi
be the corresponding matching reference.

The probability of success Padv[ρi,l → ρclaimi,l ] of an adversary Sl in generating

an array CBF claimi,l which is accepted by B and results in an increase of the

matching ratio from ρi,l to ρclaimi,l is upperly bounded by:

Padv[ρi,l → ρclaimi,l ] ≤
(

1− e−
(1−ρi,l)n·u

φ

)(ρclaimi,l −ρi,l)n·u



18 A. Shikfa, M. Önen and R. Molva

Proof. We first observe that Sl cannot know whether the first property (that
is CBF claimi,l ≺ CBFi) is met or not as Sl does not know CBFi. Sl can only
make guesses based on the general parameters of CBFi. We thus first establish a
probabilistic model of counting Bloom filters in order to evaluate the probability
of having the three aforementioned properties validated without the knowledge
of CBFi.

We consider a counting Bloom filter CBF of length φ containing n unknown
elements which were inserted using u hash functions. Given that the probability
distribution of the values in CBFi follows a binomial distribution at each posi-
tion, the probability P ′(i2) that the value CBF [i1] at position i1 is greater than
a given i2 can be computed as follows: ∀0 ≤ i1 ≤ φ− 1,∀1 ≤ i2 ≤ n · u,

P ′(i2) = P[CBF [i1] ≥ i2] = 1−
i2−1∑

i3=0

(
n · u
i3

)(
1− 1

φ

)n·u−i3 ( 1

φ

)i3
.

Based on this result, we then prove by induction4 that the probability P ′(i2)
decreases faster than a geometric series of ratio P ′(1), or to be more precise that,
for 1 ≤ i2 ≤ n · u,

P ′(i2) ≤ (P ′(1))i2 (1)

assuming that n · u ≤ φ− 1.
We then consider ARR to be an array of size φ (the matching proof). The

probability P[ARR ≺ CBF ] that ARR is smaller than CBF can be computed
as follows:

P[ARR ≺ CBF ] =

φ−1∏

i1=0

P ′(ARR[i1]).

Following the result in inequation 1, this probability can be upperly bounded
as follows:

P[ARR ≺ CBF ] ≤
φ−1∏

i1=0

P ′(1)ARR[i1]

Finally, based on the approximation of the Taylor series development of P ′(1)
we obtain the following upper bound:

P[ARR ≺ CBF ] ≤
(

1− e−n·u
φ

)wARR
(2)

The last step of the demonstration consists in applying this important re-
sult to the matching reference CBFi and the matching proof CBFi,l where the
parameters CBF and ARR are replaced by the challenging reference counting
Bloom filter CBFi and the malicious matching proof CBFi,l, respectively. How-
ever, this modification is not straightforward because while CBF was assumed
to contain n random elements, a malicious Subject Sl knows some of the ele-
ments, that are the ones corresponding to the selection criteria that Sl matches.

4 The (long) details of this proof are not included due to page constraints
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Thus, the following modifications have to be performed to evaluate the proba-
bility Padv[ρi,l → ρclaimi,l ] of success of a Subject in increasing its matching ratio

from ρi,l to ρclaimi,l :

– We first define by CBF chali = CBFi − CBFi,l the challenging reference
counting Bloom filter, that is the part of the counting Bloom filter unknown
to Sl. The weight of CBF chali is wCBF chali

= n(1− ρi,l) · u
– Moreover, CBFmali,l = CBF claimi,l − CBFi,l defines the part of the match-

ing proof which is malicious which weight is denoted by wCBFmali,l
which is

computed as follows: wCBFmali,l
= wCBF claimi,l

− wCBFi,l = (ρclaimi,l − ρi,l)n · u

We therefore obtain the following inequality:

P[CBFmali,l ≺ CBF chali ] ≤ (1− e
n(1−ρi,l)·u

φ )(ρ
claim
i,l −ρi,l)n·u (3)

which corresponds to Padv[ρi,l → ρclaimi,l ] if ρclaimi,l − ρi,l is a multiple of 1
n (if

wCBFmali,l
is a multiple of u) to satisfy the second of the aforementioned conditions

(otherwise the claimed counting Bloom filter would be rejected).

7.3 Typical figures

To illustrate the performance of the global solution more concretely, we provide
some figures of a typical scenario.

First of all, the maximum number of selection criteria that can be used in
each query should be reasonably small as it directly leads to an increase in the
communication and computation complexity. We therefore set this maximum
number to nmax = 20.

The level of security in groups over elliptic curves depends on a security
parameter called the MOV degree [19]: by carefully choosing the elliptic curve
it is possible to adjust the trade-off between key size and computation time,
while maintaining a given level of security. We choose a curve with a small MOV
degree of 2 and a group of order q of 512 bits length to have a security equivalent
to 1024 bits RSA.

The size of an encoded query is then less than 2q·nmax ≈ 20 Kbits. To put this
size into perspective, note that in the case where there is no privacy protection
(where queries and replies are sent in clear) and where each selection criteria is
stored in a string with 16 8bits-characters, the size of queries is approximately 2.5
Kbits. The size of encoded queries is therefore 8 times larger than their queries
in clear, but this is a deliberate choice to optimize the computation performance.
If the communication overhead is considered as more important, it is possible to
use curves with a higher MOV degree of 6: in that case it is possible to consider
groups of smaller order and the overhead would be reduced to 2.5 times.

Concerning the parameters of counting Bloom filters, in addition to nmax,
we need to define φ and u.
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First of all, u is used as a security parameter, since the probability of success
of an adversary can be bounded by 2−u. As explained in section 4.2, it is not
necessary to choose a very high value for u as it does not lead to revealing a
secret but only to being able to cheat on the matching ratio. By choosing u = 10
for example, the probability of success of an attacker would still be bounded by
10−3 in the most favorable case. Other probabilities of success are presented in
table 1. This table shows that the probability of success for significant attacks
is very low (for reference the typical security margin for symmetric encryption
is 2−80 ≈ 10−24). It is of course possible to choose a higher value for u to make
sure that even in the most favorable case the attacker would not succeed with
probability more than 2−80 but u impacts first on the construction of counting
Bloom filter (each element requires the computation of u hash values) and second
and more importantly on the size of counting Bloom filters. We therefore believe
that choosing a smaller value for u (as we did) is a better trade-off.

Table 1. Probability Padv[ρi,l → ρclaimi,l ] of an adversary Sl with legitimate matching

ratio ρi,l to successfully claim a matching ratio of ρclaimi,l with an encoded query Q′i
containing n selection criteria. The general parameters used for the counting Bloom
filter are nmax = 20, u = 10, and φ = 289.

HHHHHn
Padv 0→ 1

n
0→ 2

n
0→ 1

2
0→ 1 1

2
→ 1

n
+ 1

2
1
2
→ 1 1− 1

n
→ 1

6 5.10−8 3.10−15 1.10−22 2.10−44 9.10−11 7.10−31 2.10−15

10 5.10−6 2.10−11 2.10−27 4.10−54 1.10−8 1.10−40 2.10−15

20 1.10−3 9.10−7 7.10−31 5.10−61 5.10−6 4.10−54 2.10−15

The number of positions φ of the counting Bloom filter according to the

strategy explained in section 4.2 should be φ =
⌈
nmax·u
ln(2)

⌉
which is equal to 289

when nmax = 20 and u = 10. We choose to allocate 4 bits for each position in
the counting Bloom filter, thus the total size of the filter is slightly more than
1 Kbit while the probability of a bucket overflow to happen would be less than
2.10−12. The size of the counting Bloom filters is therefore really negligible in
comparison with the size of the queries, thus the use of counting Bloom filters
really offers a decisive advantage from a performance perspective on top of the
advantage from a privacy point of view.

On this matter, we mentioned in section 4.1 that the size of the set of pos-
sible preimages that lead to a counting Bloom filter is around q

φu ≈ 2448. This
proves that a brute-force attack to break the privacy-preserving properties of
the computation assurance solution is out of reach of current computing power.
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Abstract. We present PRISM, a privacy-preserving scheme for word search in
cloud computing. In the face of a curious cloud provider, the main challenge is
to design a scheme that achieves privacy while preserving the efficiency of cloud
computing. Solutions from related research, like encrypted keyword search or
Private Information Retrieval (PIR), fall short of meeting real-world cloud re-
quirements and are impractical. PRISM’s idea is to transform the problem of
word search into a set of parallel instances of PIR on small datasets. Each PIR
instance on a small dataset is efficiently solved by a node in the cloud during the
“Map” phase of MapReduce. Outcomes of map computations are then aggregated
during the “Reduce” phase. Due to the linearity of PRISM, the simple aggrega-
tion of map results yields the final output of the word search operation. We have
implemented PRISM on Hadoop MapReduce and evaluated its efficiency using
real-world DNS logs. PRISM’s overhead over non-private search is only 11%.
Thus, PRISM offers privacy-preserving search that meets cloud computing effi-
ciency requirements. Moreover, PRISM is compatible with standard MapReduce,
not requiring any change to the interface or infrastructure.

1 Introduction

Today, users take advantage of public clouds operated by large companies like Google
or Amazon. Instead of setting up and maintaining their own data centers, users reduce
their costs by outsourcing both storage and processing to a cloud. One prominent exam-
ple allowing cloud-based storage and processing is Hadoop MapReduce [3], a variant
of Google’s MapReduce system [17]. Hadoop MapReduce is widely used, and public
MapReduce clouds are offered by companies such as Amazon [2, 25].

The advantages of cloud computing unfortunately come with a high cost in terms of
new security and privacy exposures. Apart from classical security challenges of shared
services, outsourcing of data storage and processing raises new challenges in the face of
potentially malicious cloud providers. Privacy of outsourced data appears to be a major
requirement in this context. Some regulations are already provisioned as to the privacy
protection of outsourced governmental documents [11, 12, 18]: these regulations usu-
ally aim at assuring privacy against curious clouds or against clouds with data centers
located in “rogue” countries or with insufficient security guarantees; they also are de-
fined to avoid data leakage in case of operational failures in the cloud. Along these lines,
there is also a raising corporate concern about the privacy of sensitive business data
stored in the cloud [14]. Although cloud providers thrive to meet the increased privacy
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demand by certifying their services [24], malicious insiders have still been identified as
one of the top threats in cloud computing [15].

While encryption of outsourced data by the users seems to be a viable protection
against most privacy problems, traditional data encryption does not suit the require-
ments of cloud computing: the cloud not only serves as high capacity memory, but is
also involved in data processing such as statistical data analysis, log analysis, index-
ing, data mining, and searching [25]. However, data processing performed by the cloud
would not be feasible or would be inefficient with encrypted data.

Among data processing primitives, word search, i.e., verifying, whether a certain
word is part of a dataset, is not only one of the most fundamental operations, but sur-
prisingly also one of the most demanded applications in, e.g., MapReduce cloud com-
puting [25]. Related work on search in encrypted data, e.g., Boneh et al. [6], Ogata
and Kurosawa [31], falls short of meeting cloud computing privacy and performance
requirements. These techniques are impractical as they are designed for centralized ex-
ecution models that are incompatible with today’s highly parallel cloud architectures.

In this paper, we present PRISM, a new scheme for privacy-preserving and efficient
word search for MapReduce clouds. PRISM pursues two specific objectives: 1.) pri-
vacy against potentially malicious cloud providers and 2.) high efficiency through the
integration of security mechanisms with the operations performed in the cloud.

In order to achieve efficiency, PRISM takes advantage of the inherent parallelization
akin to cloud computing: the word search problem on a very large encrypted dataset is
partitioned into several instances of word search in small datasets that are executed in
parallel (“Map” phase). The individual word search operations performed in the cloud
yield a result amenable to straightforward aggregation in the ultimate phase (“Reduce”
phase) of the word search operation. The word search operation builds on a Private
Information Retrieval (PIR) [29] technique which is extended in order to generate in-
termediate search results that are still encrypted and that can be combined through linear
operations to yield the global result of the word search over the entire dataset.

Summarizing our contributions, PRISM:

• is suited to cloud computing: PRISM is the first privacy-preserving search scheme
suited to cloud computing; it brings together storage and search privacy with high per-
formance by leveraging the efficiency of the MapReduce paradigm. PRISM is paral-
lelizable and also allows efficient combination of individual results. Its efficiency has
been evaluated through searching in DNS logs provided by an Internet Service Provider.
Although PRISM’s overhead within the core Map function is large compared to non-
privacy-preserving search (factor of 9), the total system overhead is only 11%.

• preserves privacy in the face of potentially malicious cloud providers: PRISM
allows carrying out these critical operations in the cloud without trusting the cloud.

• is compatible to standard MapReduce: PRISM only requires a standard MapRe-
duce interface without modifications in the underlying system. PRISM can thus be in-
tegrated on any cloud that provides a standard MapReduce interface such as Amazon.

• provides flexible search: In contrast to traditional encrypted keyword search tech-
niques, PRISM is not limited to searching for a fixed set of predetermined keywords to
be known in advance, but offers flexible search for any words.
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2 Problem Statement and Adversary Model

Throughout this paper, we will use an application example to motivate our work. In-
spired by recent events [30], we envision a data retention scenario. Due to regulatory
matters, a small, residential Internet Service Provider (ISP) must retain logs of client
accesses. Due to the sheer amount of data to retain, the ISP outsources logfiles to the
cloud. Files are encrypted as they contain sensitive data. Still, e.g., law enforcement
authorities will contact the ISP to search for words (strings, text, ...) in outsourced files.

More concretely, assume service provider U (the cloud “user”) providing DNS ser-
vices to clients. U logs each client’s access, i.e., U logs the tuple (timestamp, client ID,
hostname queried). Due to the large amount of log data and cost reasons, U outsources
its logfiles into a cloud. Regularly, say each day i, U creates a new logfile Li. At the end
of a longer period, U wants to (or is forced to) find out, whether there was an interest
in a suspicious host w. So, U checks, at which day, i.e., in which logfiles Li, word w
occurs. U queries the cloud for w, and the cloud responses with an answer R telling U
which of the Li contain(s) w.

Note that U does not know in advance which word w it has to search for. This auto-
matically disqualifies protocols for predefined keyword search, such as PEKS [6] and
derivatives. Also, data retention regulations require outsourced data to be fully recover-
able; storing only digests of data in the cloud, e.g., hash values, is insufficient.

The cloud is assumed to be untrusted, more precisely semi-honest (“honest-but-
curious”). Regulatory matters imply that the cloud must not learn any information about
the content it hosts and search queries performed. This implies both, the encryption of
data by U before outsourcing it to the cloud and “obliviously” processing queries on
encrypted data by the cloud.

Before we formalize our privacy requirements, we first define the main components
for a cloud word search scheme.

Definition 1 (Cloud Word Search). Let L denote a sequence of files L := {L1, . . . ,
Lm} and Σ the set of possible words. Each file Li consists of a sequence of words
Li := {w(i,1), w(i,2), . . . , w(i,|Li|)}, w(i,j) ∈ Σ.

A cloud word search scheme comprises the following algorithms:

1. KeyGen(s): using a security parameter s, this algorithm outputs a secret S.
2. Encrypt(S, L): uses the secret S to encrypt the content of files Li ∈ L and outputs

the set of resulting encryptions E := {EL1 , . . . , ELm}. Here, ELi denotes the
encryption of file Li.

3. Upload(E): uploads E to the cloud.
4. PrepareQuery(S, w): takes S, the word w to search for, and produces a query Q.
5. Process(E , Q): with encryptions E and query Q, this algorithm produces result R.
6. Decode(S, R, w): taking result R, secret S, and word w, this algorithm outputs

the set of indices I := {i1, . . . , ir} such that ∀i ∈ I : Li ∈ L ∧ w ∈ Li, if
R = Process(E , Q) with Q = PrepareQuery(S, w), and E = Encrypt(S, L).

The basic interaction between user U and the cloud can be summarized as follows:
first, user U encrypts and uploads files. Then, U prepares a search query Q for word
w and sends Q to the cloud. The cloud processes this query using algorithm Process
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and produces output R. This output is sent back to U . Using output R and another
algorithm Decode, U can compute the list of files containing w. While describing
PRISM’s details later in Section 4, we will show how they map to these algorithms.

Note that, in a cloud setting, U executes KeyGen, Encrypt, Upload,
PrepareQuery, and Decode, while the cloud executes Process. The idea is that algo-
rithms KeyGen, Encrypt, Upload, PrepareQuery, and Decode are computationally
very “lightweight” for U compared to Process. The main computational burden lies on
the cloud side.

Privacy Requirements

Intuitively, our application demands for two main types of privacy. The cloud (now
called “adversary A”) must neither be able to infer any details about stored files nor
learn details about U’s queries and results delivered back to U . This implies not only
the secrecy or confidentiality of the content, but also the inability to compute statistics
on the content. Informally, in our setting:

– given E , A must not learn the content of L and must not discover whether files Li

contain a word w, e.g., multiple times;
– given a set of queries {Qi}, A must not learn the words {wi} U is looking for and

must not discover whether the same word is queried multiple times;
– given the result Ri of a query Qi, U must not learn which file(s) contain the word

corresponding to this specific query Wi.

Instead, the adversary should only learn “trivial” properties, such as the total number of
files, the file size, and the total number of queries. Along the same lines as traditional
indistinguishability [23], A should not be able to infer any additional information from
encrypted files, queries, and results. We formally define privacy for a cloud word search
scheme using a game between adversary A (the cloud) and a challenger (user U).

Definition 2 (Privacy). Let W denote a sequence of words W := {w1, . . . , wn}. The
game GAME is played as follows.

1. The challenger executes KeyGen(s) to derive secret S.
2. A selects a distinct pair of sequences of files and words (L0, W0) and (L1, W1),

where |L0| = |L1|, ∀(L0
i ∈ L0, L

1
i ∈ L1) : |L0

i | = |L1
i |, and |W0| = |W1|.

A sends (L0, W0) and (L1, W1) to the challenger.
3. The challenger randomly selects b ∈ {0, 1} and

– executes Encrypt(S, Lb), i.e., the challenger computes encrypted files Eb =
{E(S, Li)|Li ∈ Lb}.

– executes Upload(Eb) to send encrypted files back to A.
– executes PrepareQuery(S, w) for each w in Wb. This results in the sequence

of queries Qb := {Q1, . . . , Q|Wb|} that the challenger also sends to A.

4. A outputs b′ ∈ {0, 1}. The outcome of GAME is “1” iff b′ = b.
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A cloud word search scheme is called privacy-preserving iff

Pr(GAME(A) = 1) ≤ 1

2
+ ε(s)

for all probabilistic polynomial-time adversaries A. Here, ε(s) is a negligible function,
ε(s) < 1

P (s) for every polynomial P with sufficiently large security parameter s.

The specification of the (Li, Wi) in step 2. of Definition 2 reflects the fact that A can
learn the total number of files, the size of each file, and the number of queries.

Limitations: We consider semi-honest clouds. Fully malicious clouds might perform
DoS-attacks or deviate from protocol execution. Similar to “reaction attacks” [26], the
cloud might return garbage to U , to observe U’s reaction (e.g., sending the same query).
Although realistic, we leave such attacks for future work. Also, our privacy definition
does not capture trivial privacy properties, e.g., the size of outsourced files. Mitigation
strategies (e.g., padding files) might be contradictory to cloud efficiency. We conjecture
that, for many applications, losing “trivial” privacy properties is acceptable.

3 Background

3.1 MapReduce

We target a system suited for the MapReduce [3] paradigm. We will now give a con-
densed overview of MapReduce, focusing on aspects necessary to understand PRISM.

Upload. A MapReduce cloud comprises a set of “slave” node computers and a “master”
computer. While U uploads files into the MapReduce cloud, each file is automatically
split into blocks called InputSplits. InputSplits have a fixed size SInputSplit which is
a pre-configured system parameter. If SFile denotes the size of an uploaded file, the
number of InputSplits c computes to c = SFile

SInputSplit
. For each InputSplit, a workload

sharing algorithm selects a slave node and places the InputSplit on it.
In addition to data, the MapReduce also allows U to upload “operations”, i.e., com-

piled Java classes. These classes represent the implementation of three functions.
1.) Scan(INPUTSPLIT) → [(k, v)]), a functions that takes an InputSplit as an input,
parses it, i.e., scans it and generates a set of key-value pairs [(k, v)] out of it.
2.) Map(k, v) → [(k′, v′)], a function that takes as an input a single key-value pair
(k, v) and outputs a set of “intermediate” key-value pairs [(k′, v′)].
3.) Reduce([(k′, v′)]) → FILE, a function that takes as an input a set of intermediate
key-value pairs [(k′, v′)] and writes arbitrary output into a file.

Uploaded Java classes are sent to all slave nodes storing an InputSplit.

Map Phase. After data and implementations have been uploaded, U specifies one up-
loaded file and triggers MapReduce operations on that file. The first phase of operation
is the “Map” phase. Each slave node becomes a “mapper” node. Each mapper executes
U’s Scan function on the InputSplit it stores locally. This generates a set of key-value
pairs on each mapper. Furthermore, the mapper node executes U’s Map function on
this generated key-value pairs to produce a set of intermediate key-value pairs.
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Reduce Phase. MapReduce starts the “Reduce” phase. Slave nodes are scheduled to
become “reducers”. For each of the intermediate pairs (k′, v′), MapReduce selects a
reducer and sends (k′, v′) to this reducer. MapReduce selects the same reducer for all
pairs (k′, v′) having the same key. Each reducer executes U’s reduce function on its set
of intermediate key-value pairs and writes the output to a file. This file is sent to U .

3.2 Trapdoor Group Private Information Retrieval

PIR allows a user to retrieve data from a server without revealing which data is re-
trieved. For PRISM, we make use of a simple and efficient PIR mechanism as previ-
ously suggested by Trostle and Parrish [37]. As this mechanism is just a building block
for PRISM, we will only give a summary of its mode of operation and rationale.

Overview: Matrix M is a t×t matrix of elements in ZN stored at a server. For example,
N = 2 for a binary matrix. User U is only interested in receiving elements of the kth

row in M, but the server must not learn k. The idea is now that U sends two “types”
of values to the server. For each row that U is not interested in, he sends a value of
the “first” type. For the one row that U is interested in, he sends a single value of
the “second” type. To prevent the server from distinguishing between the two types
of values, U blinds each value with a blinding factor b. This blinding factor can later
be removed by U . The server now performs simple additions with received values and
elements stored in M. The result is sent back to U who removes the blinding factor and
determines the values of the row of his interest.

Preparation: Assume U is interested in row k. U chooses a group Zp, with a prime p
of m bits. U also chooses a random b ∈ Zp and t random values ai ∈ Zp. Therewith, U
computes t values ei < p

t·(N−1) such that: ek := 1 + ak · N and ∀i �= k : ei := ai · N.

Finally, U computes αi := b · ei mod p and sends the αi to the server. Other values
(p, m, b, {ei}, {ai}) remain secret. The server treats αi as large integers and performs
the following integer operations, i.e., without any modulo.

Server computation: Let u be the vector u := (α1, . . . , αt). The server computes the
matrix product v and sends it back to U ,

v := (β1, . . . , βt) = u · M = (

t∑

i:=1

αi · Mi,1, . . . ,

t∑

i:=1

αi · Mi,t).

Result analysis: Upon receipt, in order to “un-blind” values, U computes the t inverse
values zi := βi · b−1 mod p. Now, U can conclude that zi mod N equals the ith

element of the kth row in M. Therewith, U has retrieved the t elements of the kth row
of M in a privacy-preserving fashion. Note the linearity for two βi and β′

i received
during different PIR runs: βi · b−1 + β′

i · b−1 = (βi + β′
i) · b−1 mod p. That is, the

sum of two individually un-blinded vectors equals un-blinding the sum of two received
vectors v, v′. We will later use this linearity during PRISM’s reduce phase.

Security Rationale: Security and privacy of this protocol are based on the trapdoor
group assumption. With only knowledge of αi, but not secret trapdoor p, it is com-
putationally hard for the server to infer any information about low order bits, i.e., the
modulo of z or ei, cf., Trostle and Parrish [37].
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Discussion: Again, we stress that this particular PIR scheme is an exchangeable build-
ing block. In general, any of the “traditional” PIR techniques based on group homomor-
phic encryption [29, 33] is suited for use within PRISM. We have chosen Trostle and
Parrish [37] only due to the straightforward way to implement it (Section 6). Other PIR
schemes might reduce the (already small) overhead, but this is out of scope here.

4 PRISM Protocol

PRISM comprises three parts: upload of data into the cloud, the MapReduce search,
and the result analysis where the user decides whether the word has been found. We
will briefly give an overview about each part.

1.) Upload. During upload, U encrypts each word (of a logfile) using symmetric encryp-
tion. Ciphertexts are stored in a file, and this file is sent to the MapReduce cloud. The
cloud automatically splits large files and distributes splits (InputSplits) among mapper
nodes. We use a standard blockcipher (AES) to perform ciphering of words. However,
to ensure privacy as of Definition 2, plaintext is modified before encryption using a
“stateful cipher” construction. Therewith, U can still search for some word w, but the
cloud cannot compute statistics about ciphertexts.
2.) Search. Eventually, U wants to search his encrypted files for some word w. There-
fore, U sends implementations of “algorithms” for the map and reduce phases to the
MapReduce cloud, and the cloud executes these on uploaded data. For example, U sends
Java “.class” files for the mappers and Java “.class” files for reducer nodes. MapReduce
distributes these implementations to each mapper and reducer, respectively. PRISM’s
rationale is to transform the word search problem into a set of small PIR instances.
To do so, each mapper, scanning through its locally stored InputSplit, creates a binary
matrix. Ciphertexts in the InputSplit are assigned to individual elements in that matrix.
If a ciphertext is present in an InputSplit, its corresponding element in the matrix is
set to either “0” or “1”. Using private information retrieval techniques, PRISM can ex-
tract the value of a single element in the matrix with the mapper being totally oblivious
to which element is extracted. Consequently, U can specify which element to extract
in a privacy-preserving way. All mappers send their obliviously extracted elements as
key-value pairs to reducers. Reducers simply sum up received values and return sums
to U . Therewith, neither mappers nor reducers can learn any information about which
ciphertext U was interested in.
3.) Result analysis. Finally, U receives an encrypted sum for each of the originally up-
loaded files from reducers. U can decrypt them and decide which of the files contain w.
However, due to the probability of “collisions” in matrices, i.e., two different cipher-
texts can be assigned to the same element, and due to ambiguities of received sums, U’s
decision whether w is inside some file might be wrong. Therefore, PRISM repeats the
above process in a total of q so called “rounds”. In each of the rounds, a new matrix is
generated, elements are set to “1” or “0” depending on the round number, and results
are returned as described. This reduces the probability of U making incorrect decisions.

Initialization: Before the actual uploading, initially, and only once, U has to execute
KeyGen. In PRISM, KeyGen outputs secret S := {K, N, p}, where |K|, |N |, |p| are
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Input: words wi

Output: ciphertexts Ci uploaded to cloud
1 Initialize all γ to 0;
2 foreach word wi do
3 γwi := get (wi); //from hash table
4 γwi := γwi + 1;
5 insert (wi, γwi); //into hash table
6 Ci := EKd(wi, γwi);
7 upload Ci ;
8 end

Algorithm 1. “Stateful Cipher” example and upload to MapReduce

specified by security parameter s. K is a symmetric key, and N and p are Trapdoor
Group PIR parameters as presented in Section 3.2.

4.1 Upload

Overview. In our scenario, cloud user U continuously logs customer access and sends
logfiles to the cloud. Each day, U starts using a new logfile. For simplicity, we assume
that entries logged by U are simple words. Each logfile is encrypted word by word using
a “stateful cipher” EK , and resulting ciphertexts are written to a file, respectively. The
encrypted files are sent to the cloud.

Definition 3 (Stateful Cipher). Given standard symmetric encryption EK with key K ,
e.g., AES, we extend E to a stateful cipher by adding “counters” γwi that count the
history of inputs wi. Each time E encrypts wi, counter γwi is increased by one.

In conclusion, a stateful cipher is a cipher that knows how often it has encrypted a
specific plaintext. The following presents one trivial stateful cipher construction used
in PRISM to encrypt before uploading.

Stateful Cipher Example (see Algorithm 1): For simplicity, user U uses a secret key
K to derive a different key for each day d, e.g., Kd := HMACK(d).

For each day, U maintains a hash table containing the list of counters γwi in U’s local
storage. At the beginning of each day, U initializes all counters to 0, i.e., γwi = 0. Now,
for each logentry wi that should be stored in the cloud, U computes γwi and increases
γwi by 1. Then, U computes ciphertext Ci := EKd

(wi, γwi). User U sends ciphertext
Ci to the cloud that stores it in this day’s file. For the (AES) encryption EKd

(wi, γwi),
“,” denotes an unambiguous pairing of inputs. We discuss the reason for using a “stateful
cipher” over using, e.g., a CBC mode of encryption in Section 5.1.

Summarizing, with respect to Definition 1, Encrypt in PRISM takes K to derive
a separate key Kd for each file to be encrypted. Actual encryption of each file is per-
formed word by word using the stateful cipher and key Kd, so E := {EL1 , . . . , ELm}
where ELi := {EKi(w1, γw1), . . . , EKi(w|Li|, γw|Li|)}. Upload in PRISM can be re-
garded as simply sending the encrypted files E to MapReduce.

4.2 Search

User U wants to search a set of files for word w within a period of time. For ease of
understanding, we will restrict our description below to PRISM working on a single file
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specified by the user, i.e., the file of day d. With multiple files, all files will be separately
(but in parallel) processed with PRISM exactly like with a single file.

U sends map and reduce implementations of PRISM to MapReduce, and the map
phase starts. In the following, we describe the PRISM algorithms for, first, the mappers
and in Section 14 the reducers. We would like to stress that the PRISM algorithms,
e.g., Java “.class” files, are not encrypted and not specially protected against a curious
cloud. Even though mappers and reducers know what operations they perform, they
cannot deduce any private information about stored data or details about the search.

Overview. Before scanning through its local InputSplit, a mapper node creates a matrix
with all elements initialized to “0”. PRISM’s main idea is that while the mapper scans
the ciphertexts in its InputSplit, each ciphertext is assigned to one position, a certain
element in the matrix by computing a hash of the ciphertext. Additionally, for each
ciphertext, the mapper computes a single bit hash, and if the hash output bit is “1”, the
mapper puts a “1” in the matrix at the assigned position. The idea is that user U can
also compute the position in the matrix and the one bit hash output for a word w he is
looking for. Roughly speaking, U now queries the mapper for the value of that bit in the
matrix using private information retrieval. If the bit retrieved from the mapper differs
from the bit computed by U , then U can decide, e.g., that w is not in this InputSplit.

Problem is that due to the limited size of the matrix and the properties of the hash
function, there might be collisions in the assignment process. That is, by chance there
can be two different ciphertexts being assigned with the same position in the matrix.
By chance, the bit retrieved by U can therefore be unrelated to w. This problem is
amplified by the fact that U does not only receive a single bit for a single InputSplit,
but a combination (the sum) of all bits from all mappers working on InputSplits. To
mitigate this problem, PRISM repeats generation and filling of matrices a total of q
rounds. Also, setting an element in a matrix to “1” depends on the round number. After
q rounds, the probability that the information U retrieved from this mapper is unrelated
to w therefore decreases, and U can finally decide whether w is inside this file.

Definition 4 (PIR Matrix). A binary t× t matrix M with t = 2i, i ∈ N is called a PIR
matrix. The mapper uses M to implicitly perform the privacy-preserving word search.

Definition 5 (Candidate Position). For each ciphertext Ci in an InputSplit, the can-
didate position (Xi, Yi) of Ci in M is computed by (Xi||Yi) := �Ci	2·log2 (t)

. Here,
� . . .	

2·log2 (t)
denotes truncation after 2 · log2 (t) bits. So, the first log2 t bits of Ci de-

termine Xi, and the second log2 t bits determine Yi.

Definition 6 (PIR Input). If U is interested in a specific element (X , Y) in M, he
computes PIR input {α1, α2, . . . , αt}, where αX := b · (1 + aX · N) mod p, and
∀i �= X , αi := b · (ai · N) mod p. Random values b and ai are chosen as for the
Trapdoor Group PIR scheme presented in Section 3.2.

Definition 7 (Column Sum). The column sum σi of the ith column of PIR matrix M
is defined as

σi :=
∑

M1≤j≤t,i=1

αj ,

where M1≤j≤t,i = 1 denotes the entries in the ith column of M that are set to 1.
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Note that additions in this definition are integer additions.
The above computation of column sums is simply a digest of the PIR technique

by Trostle and Parrish [37]. In short, if a mapper computes such a column sum on a
given PIR matrix M and given PIR inputs αi, it is impossible for the mapper to derive
(X , Y). U , however, can compute whether MX ,Y = 1, because MX ,Y = 1 iff (σY ·b−1

mod p) mod 2 = 1 holds.
It is important to point out that not only a mapper can compute a candidate posi-

tion for some ciphertext in its InputSplit, but also U can compute candidate positions.
More precisely, as U is looking for w, he can compute E(w, 1) and candidate position
(X||Y) := �E(w, 1)	

2·log2 (t)
. If w has been uploaded into a particular InputSplit at least

once, then this InputSplit contains at least E(w, 1) (maybe also E(w, 2), E(w, 3), . . . ).
Therefore, it is sufficient for U to search for E(w, 1). We will now give detailed de-
scriptions of PRISM ’s Map and Reduce algorithms.

Query preparation – User. To start, U chooses parameters t, q ∈ N, where t de-
termines the size of the PIR matrix and q the number of rounds. For day d that U
wants to search for w, he determines key Kd := HMACK(d) and the target candidate
position (X̂ ||Ŷ) := �EKd

(w, 1)	
2· log2 (2)

. To prepare PIR, U computes t PIR Inputs
{α1, α2, . . . , αt} as described above. U sends all α as part of the following map algo-
rithm implementation to the cloud.

The above preparation of PIR Input depending on w represents PrepareQuery of
Definition 1 in PRISM. The algorithm’s output Q is the PIR Input. PRISM’s imple-
mentation of Process, i.e., the cloud’s operation on the encrypted file using a query Q
comprises the following cloud-side Map as well as the whole cloud-side reduce below.

Map Details – Cloud. On the cloud side, all mappers process PRISM in parallel, each
of them on its own, locally stored InputSplit of the current file. More precisely, a mapper
executes Algorithm 2. Initially, the mapper generates q PIR matrices Ml, where each
element is initially set to 0. We will now write Ml,X ,Y to denote an element (X , Y) in
matrix Ml.

The mapper node scans its local InputSplit consisting of ciphertexts {C1, . . . , Cn}.
For each ciphertext Ci, the mapper creates a key-value pair (i, Ci). Then, the mapper
fills matrices Ml, 1 ≤ l ≤ q. For pair (i, Ci),

– the mapper computes candidate position (Xi||Yi) := �Ci	2·log2 (t)
.

– the mapper puts in PIR matrix Mj , in element Mj,Xi,Yi , a “1”, if the bit bitj :=
�h(Ci, j)	1

= 1. Here, h denotes a cryptographic hash function and “,” again an
unambiguous pairing of inputs. If bitj = 0, element Mj,Xi,Yi remains untouched.
This means that entries in Mj can flip from 0 to 1, but never from 1 back to 0.

After all q PIR matrices are filled, the mapper computes for each matrix the t column
sums σ1≤j≤t,1≤l≤q based on U’s input {α1, . . . , αt}: values αk with corresponding
element Ml,k,j set to “1” are simply added. Finally, the mapper outputs intermediate
key-value pairs (k, v). The key comprises the name of the file of the InputSplit this
mapper was working on, e.g., the file name could be day d, and the number of the col-
umn sum of Ml. The value consists of a list of the q column sums. These intermediate
key-value pairs will now be input for the reducers during the Reduce phase.
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Input: pairs (i, Ci), values {α1, . . . , αt}
Output: intermediate key-value pairs (k, v)

1 for l := 1 to q do
2 INITIALIZE Ml;
3 end
4 SCANTHROUGHINPUTSPLIT;
5 foreach pair (i, Ci) do //Fill
matrices

6 (Xi||Yi) := �Ci�2·log2 (t)
;

7 for j := 1 to q do
8 bitj := �h(Ci, j)�1 ;
9 if bitj = 1 then

10 Mj,Xi,Yi := 1;
11 end
12 end
13 end
14 for l := 1 to q do //q rounds
15 for j := 1 to t do //Compute

column sums
16 σj,l :=

∑
Ml,1≤k≤t,j=1 αk;

17 end
18 end
19 for j := 1 to t do //Intermediate

(k,v) pairs
20 (k, v) :=({FILE, j},{σj,1, . . . , σj,q});
21 OUTPUT (k, v);
22 end

Algorithm 2. Computation of matrices M

Input: reducers’ files FILE
Output: decision whether w ∈ FILE

1 foreach file FILE do
2 for i := 1 to q do
3 if �h(C, i)�1 = 1 then
4 U reads sFILE,Y,i;
5 si := (sFILE,Y,i · b−1

mod p) mod N
6 //si = bitj, see

Alg. 2
7 if si = 0 then
8 OUTPUT w �∈ FILE;

//Contradiction

9 break;
10 end
11 end
12 end
13 OUTPUT w ∈ FILE;
14 end

Algorithm 3. U decides w ∈ FILE

Reduce Phase – Overview. Recall that there are c InputSplits and therefore c mappers.
A single reducer receives from all the c mappers working on the same file all their q
column sums for the same column. The reducer simply adds these received sums and
writes the result into a file which is sent back to U .

Reduce Phase – Details. For all key-value pairs [({FILE, i},{σi,1, . . . , σi,q})] using
the same {FILE, i} as key, the MapReduce framework designates the same reducer. This
reducer receives from all c different mappers working on the same file all intermediate
key-value pairs with the same key. That is, a reducer receives c pairs which we rewrite
as ({FILE, i}, {σi,1,1, . . . , σi,q,1}), . . . , ({FILE, i}, {σi,1,c, . . . , σi,q,c}).

Here, for a given σi,j,k , i, 1 ≤ i ≤ t, denotes the column, j, 1 ≤ j ≤ q, denotes the
round, and k, 1 ≤ k ≤ c, the InputSplit.

Using integer addition, reducer computes q “final PIR sums” sFILE,i,j :=
∑c

k=1

σi,j,k, 1 ≤ j ≤ q, and stores values {sFILE,i,1, . . . , sFILE,i,q} into an output file R.
To summarize, sFILE,i,j represents the sum of column sums of all the mappers of one
particular column i in PIR matrix j. This concludes the cloud’s Process algorithm in
PRISM. The output file R is downloaded by U .

4.3 Result Analysis

The only piece left is the Decode algorithm of Definition 1 which we will describe in
the following. For each outsourced file (day d), user U retrieves an output file generated
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by reducers. Now, U analyzes retrieved files’ content to finally conclude which of the
outsourced files contain w (using S). Again for ease of understanding, we restrict our
description to the analysis of the result generated from PRISM on a single outsourced
file called FILE. U repeats this process with all other results from the other files accord-
ingly.

Definition 8 (Collision). Assume U is looking for w, so C := EKd
(w, 1). Similar

to hash functions, a collision in PIR matrix M denotes the case of an event where
the candidate position (X ′, Y ′) of another ciphertext C′ �= C matches the candidate
position (X̂ ||Ŷ) = �E(w, 1)	

2·log2 (t)
of w in M. That is, �C	

2·log2 (t)
= �C′	

2·log2 (t)
.

Definition 9 (One-Collision). A one-collision is the event where in an InputSplit a ci-
phertext C′ �= EKd

(w, 1) puts a 1 into the same candidate position in M as EKd
(w, 1).

Overview: The rationale for the result analysis protocol of PRISM is to observe the can-
didate position of C over q rounds to mitigate the effect of one-collisions. Of particular
interest will be rounds where �h(C, i)	1 = 1.

First, U un-blinds all values received from reducers. Based on the result, U distin-
guishes two cases.

Case 1.) If a reducer, reducing for a specific file FILE, has returned the value 0 for
C’s candidate position, then U knows for sure that all mappers have output 0 for this
candidate position. Consequently, the candidate position in matrix M of each mapper
is 0. Therefore, C has not been in any of the InputSplits of FILE, and U reasons w �∈
FILE. If C would have been in one InputSplit, then at least the mapper working on this
InputSplit would have returned a 1 in this round.

Definition 10 (Contradiction). Let w be the word U is looking for, and C its cipher-
text. If in some round i, �h(C, i)	

1
= 1 holds, and the reducer for file FILE sends U a

value of 0 then this is called a contradiction.

In case of such a contradiction, U for sure knows that w is not in file FILE.
Case 2.) If, however, this reducer returns a value > 0, then w was in at least one

InputSplit or a one-collision has occurred in at least one InputSplit. User U can neither
decide w �∈ FILE nor w ∈ FILE with absolute certainty.

U ’s strategy is to keep the probability for one-collisions low and run multiple rounds
q, such that eventually a contradiction occurs (⇒ U decides w �∈ FILE), or, if no con-
tradiction occurs, U decides w ∈ FILE with only a small error probability Perr.

Details: U executes Algorithm 3. For each file, U is only interested in row Ŷ of matri-
ces M, as they can refer to candidate position (X̂ , Ŷ), only. Therefore, U keeps values
{sFILE,Ŷ,1, . . . , sFILE,Ŷ,q} only and discards the rest. In each round where �h(C, i)	

1
=

1, un-blinds sFILE,X̂ ,i to get value si :=
∑c

j=1 bitj . If si = 0, then we have a contra-
diction, and U can infer w �∈ FILE. If none of the si values has been 0 after all the q
rounds, then U will decide w ∈ FILE. U will be wrong with Perr.

Note that, although PIR matrices are binary matrices, U sets N > c to cope with the
larger possible values that sums might take due to collisions.
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In conclusion, U’s strategy can be summarized by: output w �∈ FILE, if ∃i, si = 0
or output w ∈ FILE, if ∀i, si �= 0. We will compute U’s error probability Perr for the
latter case and dependencies between Perr and values t and q in Section 5.2.

Saving Computation: To save some computation in PRISM, we can modify the hash-
based mechanism that determines whether to put a “1” or a “0” in a certain element
in M. Recall that the first 2 · log2(t) bit of a ciphertext C are used to determine its
position (element) in M. However, instead of computing an expensive hash function
�h(Ci, j)	1

to get a single bit in round j, we can simply replace the hash and take C’s
bit on position (2 · log2(t) + j). Assuming that cipher E has good security properties
(each bit of C is “1” with probability 1

2 ), this results in the same property as using the
hash: eventually two different ciphertexts that collide in M will differ and lead to a
contradiction. We use this computation reduction in our evaluation in Section 6.

5 PRISM Analysis

5.1 Privacy

We will now show why PRISM is privacy-preserving. The main rationale behind our
proof is to show that pairs of output generated by both our stateful cipher construc-
tion EK(wi, γwi) (Section 4.1) and the PIR-based search mechanism (Section 4.2) are
computationally indistinguishable for A. Below, we assume a sufficiently large security
parameter s and probabilistic polynomial time adversaries A.

Theorem 1. PRISM is a privacy-preserving cloud word search scheme assuming pseu-
dorandom properties for E and the trapdoor group property of the PIR scheme.

Proof (Sketch). Assume there would be an adversary A with Pr(GAME(A) = 1) >
1
2 + ε(s), i.e., A has non-negligible advantage over guessing. As PRISM generates Eb

and Qb independently from each other, this would indicate that A has non-negligible
advantage over guessing in determining b from either Eb or Qb (or both).

We will now show with the following two lemmas that this is impossible.

Lemma 1. In PRISM, any pair of sequences of ciphertexts (files EL and EL′) gen-
erated by a pair of sequences of words (files L and L′) is computationally indistin-
guishable for A, assuming E is a pseudorandom permutation and “,” an unambiguous
pairing of inputs.

Proof (Sketch). First, note that our stateful-cipher uses a different random key for each
file. In a learning phase, A makes a number of queries to two stateful-cipher oracles
encrypting with two different keys K0, K1. Then, A prepares word w, submits to a
challenge oracle and gets back EKb

(w, γb,w), b ∈ {0, 1}. A has to output b correctly
with only negligible advantage over guessing.

However, we now show by using the hybrid argument [28] that the distributions
generated by EKi(w, γi,w) are computationally indistinguishable for A. That is, pairs
EK0(w, γ0,w), EK1(w, γ1,w) are distinguishable with only negligible advantage over
guessing). As “,” is an unambiguous pairing, we now write w′

i instead of (w, γi,w).
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Our hybrid distributions are: (1.) PRPK0(w
′
0), (2.) RPK0(w

′
0), (3.) RFK0(w

′
0), (4.)

RFK1(w
′
1), (5.) RPK1(w

′
1), and (6.) PRPK1(w

′
1). “PRP ” means pseudorandom per-

mutation, “RP ” random permutation, and “RF ” random function.
(1.) - (2.) and (5.) - (6.): by definition of pseudorandom permutation, the probability

to distinguish PRPK(w′
i) from RPK(w′

i) is negligible.
(2.) - (3.) and (4.) - (5.): the probability to distinguish a random permutation from a

random function is negligible, cf., Section 3.6.3 in Katz and Lindell [28].
(3.) - (4.): If A observes RFK0(w

′
0) = RFK1(w

′
1) for a pair w′

0, w
′
1, then this only

indicates a collision in RFK0 and RFK1 . Even if A queries the same w multiple times,
output RFK0(w, γ0,w) or RFK1(w, γ1,w) will always be different as counters increase.
If RFK0 (or RFK1) outputs the same value twice (unlikely), this only indicates a col-
lision in RFK0 (or RFK1 ). The advantage over guessing in distinguishing RFK0(w

′
0)

from RFK1(w
′
1) is zero.

A’s advantage over guessing in distinguishing pairs EL, EL′ is negligible. �

Lemma 2. Based on the trapdoor group assumption (“TGA”), PRISM’s PIR-search
produces computationally indistinguishable pairs of queries Qi.

Proof (Sketch). Assume A submits two words w1, w2 to an oracle. The oracle picks
b̂ ∈ {0, 1} and returns Qb̂ := {αb̂,1 := b · eb̂,1 mod p, . . . , αb̂,t := b · eb̂,t mod p},
with eb̂,Xb̂

:= 1+aXb̂
·N , ∀i �= Xb̂ : eb̂,i := ai ·N . Here, Xb̂ := �EK(wb̂, 1)	

log2 (t)
, and

ai are chosen randomly. A has to output b̂ with non-negligible advantage over guessing.
However, we will now show that any pair of sequences of α values is computa-

tionally indistinguishable for A. The proof is a direct implication of the security of
the PIR protocol, based on TGA: for all adversaries A, Pr[A(b · e1, . . . , b · et) =
LSB(e1, . . . , et)] = ε(s). That is, given b · ei, the probability that A computes low
order bits of ei mod N (“LSB”) is negligible [37].

Assume that A can distinguish sequences Q0 = {α0,i} and Q1 = {α1,i} with
non-negligible advantage. This would violate TGA as follows. First, note that besides
α0,X0 , α1,X1 all elements in both sequences {α0,i} and {α1,i} are created in the same
way (multiplication of b with a random number). Therefore, besides α0,X0 , α1,X1 , any
pair (α, α′) ∈ {α0,i}∪ {α1,i} is computationally indistinguishable for A. If A can still
distinguish between sequences {α0,i} and {α1,i}, then A can determine with non-ne-
gligible probability X0 or X1 and thus value i with ei = 1 mod N , violating TGA. �

5.2 Statistical Analysis

We now discuss how U chooses parameters t and q to get a certain error probability
Perr. This probability describes the chance that, despite w �∈ FILE, U wrongly outputs
w ∈ FILE after q rounds without a contradiction, cf., Algorithm 3. Let n be the number
of ciphertexts in one InputSplit, n :=

SInputSplit

CipherBlockSize . The total number of ciphertexts
stored in the cloud is (c ·n). We consider for simplicity only rounds where �h(C, i)	

1
=

1, cf., Algorithm 3. With h a cryptographic hash, �h(C, i)	1 = 1 in q′ ≈ q
2 rounds.

While inserting any ciphertext, the collision probability is Pcollision := 1
t2 . The prob-

ability for a one-collision is Pone−collision := Pcollision

2 . If w is not inside an InputSplit,
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the probability that, after inserting the n ciphertexts of that InputSplit into M, the can-
didate position is not set to 1 is PInputSplit,no−one−collision := (1 − Pone−collision)

n.
If w �∈ FILE, i.e., in none of the InputSplits, the probability that the candidate posi-

tion is not set to 1 in any InputSplit is Pcontradiction := (PInputSplit,no−one−collision)
c.

This is the probability that a contradiction occurs in a single round. If w �∈ FILE, the
probability that a contradiction occurs in at least one round is Pcontradiction,q−rounds :=
1 − (1 − Pcontradiction)

q.
After q rounds without a contradiction, U automatically decides that w is in FILE. In

case that w �∈ FILE, and no contradiction occurs in q rounds, U is therefore wrong with
Perr := 1 − Pcontradiction,q−rounds = (1 − (1 − 1

2·t2 )cn)q.
Given a certain file size, the size of InputSplits, and the blocksize of the symmetric

cipher, U computes c and n. Therewith, U can target a false-positive probability by ap-
propriately selecting t and q. We evaluate this using a real-world scenario in Section 6.

6 Evaluation

To show its real-world feasibility, we have implemented and evaluated PRISM with the
scenario described in the introduction. The source code is available for public down-
load [1]. We received 16 days of log data from May 2010 from a small local Internet
provider. This provider logs and retains all customers’ DNS resolve requests for possi-
ble forensic analysis and intrusion detection. Log data is split into files on a daily basis.
Each file contains one day of logged 3-tuples: timestamp, customer IP (anonymized by
provider for regulatory matters), hostname. The scenario for our evaluation is to use
PRISM to upload this data encrypted to MapReduce and perform a search for specific
hostnames in a privacy-preserving manner. This is useful for, e.g., “passive DNS anal-
ysis” to determine at which day certain command-and-control centers of botnets have
been accessed by customer machines, cf., Bilge et al. [5]. The goal of our experiments
was to analyze the computational overhead induced by PRISM’s privacy mechanism,
i.e., the additional time consumed by PRISM over non-privacy-preserving MapReduce.

6.1 Setup

For the 16 days, the log data contains ≈ 3·108 log entries, i.e., ≈ 2·107 per file/day. The
total space required by all files uploaded into MapReduce using PRISM is 27 GByte,
on average 1.7 GByte per file.

Our experiments have been performed on a small “cloud” comprising 1 master com-
puter and 9 slaves. Computers featured a 2.5 GHz Pentium Dual Core and 4 GByte of
RAM, running a standard desktop installation of Fedora 11. With this hardware config-
uration, a total of 18 CPUs were available for maps and reduces. We installed Hadoop
version 0.20.2 on our cloud. Being aware that tailoring MapReduce’s configuration pa-
rameters can have a huge impact on performance, we use the standard, out-of-the-box
configuration of Hadoop 0.20.2 without any configuration tweaks. Performance tuning
is out of scope of this paper. Similarly, as the InputSplit size is recommended to be be-
tween 64 MByte and 128 MByte, we chose SInputSplit = 96 MByte (InputSplits must
be dividable by 3 · 32 Byte, since log entries are 3-tuples).
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Table 1. Parameters t, q to achieve Perr < 0.01

File size (GByte)
0.45 1.21 1.32 1.36 1.38 1.45 1.52 1.67 1.78 1.93 2.00 2.08 2.09 2.14 2.21 2.25

t 210 211 212

q 100 60 80 20

In addition to the evaluation with 96 MByte InputSplits, we also performed a second
measurement with larger InputSplits of 120 MByte. We expected a slightly improved
performance of PRISM due to the fact that for the larger files the total number of Input-
Splits c reduced to less than our 18 available CPUs. Therewith, no costly (re-)scheduling
takes places, and mappers do not have to process 2 InputSplits sequentially.

Finally, to put timing results into perspective, we implemented and measured a triv-
ial, non-privacy-preserving MapReduce search called Baseline. Baseline search con-
sists of an empty map phase, where mappers simply scan over InputSplits and compare
each word of the InputSplit with a predetermined one, but do not generate any key-value
pairs. Only at the end of the map phase, a single intermediate key-value pair per map-
per (e.g., “found”) is sent to reducers. Reducers discard this key-value pair and write
empty files to disk. This trivial baseline only serves in deducing the overhead implied
by PRISM, not taking MapReduce specific delays due to rescheduling, speculative exe-
cution of backup tasks etc. [17, 34] into account. Note that linear scanning through the
entire InputSplit is mandatory, as we assume our data to be unordered and unsorted.

For the private information retrieval algorithm, we set m = 400 as suggested by
Trostle and Parrish [37] for good security. Our Java implementation is a naive, straight-
forward implementation using Java’s BigInteger without any performance optimiza-
tions. As symmetric encryption cipher, we used AES with 256 Bit blocksize from the
GNU Crypto Library V2.0.1 [20]. As individual DNS entries occurred way less than
216 times per day, we reserved |γ| = 2 Bytes and truncated entries longer than 30 Byte
down to the last 30 Byte. Because the size of input |wi|+|γwi| is less than E’s blocksize
(using standard padding for wi), concatenation provides an unambiguous pairing.

Simulating U , we computed n and c using blocksize, InputSplit size SInputSplit,,
and individual file size SFile. Assuming that U targets an error probability of Perr <
0.01, we derived t and q. Table 1 summarizes parameters (t, q) computed for each file
individually. Compared to q, we observed that parameter t has a much higher impact
on Perr, but a comparatively lower impact on computations. Therefore, we increased
preferably t than q. Higher values for (t, q) will achieve even smaller values for Perr,
but Table 1 shows the computationally “cheapest” combination of (t, q).

6.2 Results

Computational overhead at the cloud is low as indicated by Figure 1 (PRISM’s timing
results). We have sorted the 16 files based on their size in an increasing order, i.e, the
size of the smallest log file we received from the Internet provider was 0.45 GByte, the
largest one was 2.25 GByte. PRISM’s execution time was clocked on each file 6 times,
respectively, and Fig. 1 shows the average. For each file, Fig. 1 shows two stacked
boxes, respectively: the first one for 96 MByte and the second one for 120 MByte
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Fig. 1. Wall clock timings for PRISM and Baseline, with SInputSplit = 96 and 120 MByte

InputSplit size. Each of the stacked boxes comprises, first, the baseline timing and,
second, the additional time required to run PRISM. To give trust into the evaluation,
Fig. 1 also shows 95% confidence intervals drawn right next to each box.

Timings shown in Fig. 1 are “wall clock” timings. This captures the complete time
elapsed from submitting the PRISM map and reduce classes and starting the job until
the end of the reduce phase. In the real-world, wall clock time reflects the time a cloud,
e.g., Amazon [2], would charge a user U . In conclusion, the additional overhead over
the trivial Baseline MapReduce jobs was on average 11% with a 95% confidence inter-
val of ±3. The largest overhead seen was 24% over Baseline. This overhead is mostly
computational overhead, as there is no difference in disk access between Baseline and
PRISM and network volume increases only little by sending slightly larger values dur-
ing “Reduce”. These results do not only show the feasibility of PRISM in practice, but
also demonstrate the low overhead implied by PRISM over the non-privacy preserving
MapReduce job. We claim that a performance optimized (not based on Java BigInteger)
implementation improves performance significantly and furthermore reduces overhead.

The simple increase from 96 MByte InputSplit size to 120 MByte InputSplit size
has reduced wall clock times for MapReduce jobs by 9% on average (95% confidence
interval of ±4). Files of size smaller than 2 GByte are split into ≤ 18 InputSplits, and
both jobs, PRISM and Baseline, are processed completely in parallel. This indicates
that a careful configuration of Hadoop MapReduce’s many system parameters, hand-
crafted and specific to the scenario and jobs to be executed, will lead to substantial
performance improvements. This also indicates that in a cloud with more CPUs than
in our small setup, the increased number of CPUs will enable to configure way smaller
InputSplits being processed in parallel. Substantially smaller InputSplits will be benefi-
cial for the overall performance of PRISM or any MapReduce job. However, increasing
the number of InputSplits also implies a performance penalty due to (re-)scheduling
and coordination activities of the central job tracker, cf., Pavlo et al. [34], so a trade-off
has to be found. MapReduce configuration optimizations are, however, out of scope.
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To better understand the cloud’s computational overhead, we also measured the com-
putation time for a PRISM mapper. On a single CPU, execution of an isolated
PRISM map function on a single InputSplit is ca. 9 times slower than Baseline (9.3
for 96 MByte and 9.1 for 120 MByte, 95% confidence interval of ±0.1). While this
seems to be a lot, we remark that 1.) this map overhead is constant for an InputSplit and
does not depend on or scale with the total size of the data, 2.) there is a lot of potential
to improve our map implementation, 3.) this overhead is obviously amortized by other
MapReduce aspects such as the Reduce phase and also disk latency, network overhead
etc., and 4.) a user is charged for the total system time, i.e., the wall clock time.

Computational overhead at the User is also low in PRISM: per file, the preparation
of, e.g., 212 α values for the underlying PIR scheme is barely measurable (≈ 200 ms) on
a PC with 2.5 GHz CPU. During result analysis, U automatically discards all received
values that he is not interested in, i.e., all besides sFILE,Y,1≤i≤q . For these q values, a
total of q Java BigInteger multiplications with modulo have to be performed. For our
examples with q ≤ 100, this was not measurable at less than 1 ms.

Memory consumption for U is, on the one hand, constant; U only stores the 256 bit
AES key K . On the other hand however, the cloud user U’s memory consumption scales
linearly with O(Σ), i.e., the number of different words. This is due to the construction
of our stateful cipher that stores counters γ in a hashtable. In our straightforward im-
plementation with Java’s standard Hashtable, memory consumption of this hashtable
was 548 MByte for the largest log file. While this is certainly a lot of RAM, we con-
jecture this to be available on PC hardware – moreover, as there is a large potential for
performance tuning with such data structures.

Communication overhead for PRISM is dominated by the underlying PIR scheme.
U sends, besides .class files once, only the t α values per file to the cloud. For example,
with t = 212 and m = 400 Bit, this computes to 200 KByte per file. The response
from the cloud is, for each round, t values of size m. The most expensive configuration
in terms of communication in our experiments has been t = 210, q = 100; this results
in ≈ 5 MByte communication overhead. Note that communication complexity in the
underlying PIR scheme by Trostle and Parrish [37] is linear in the square root of the
total table size, i.e., O(t). This can be further reduced by using recursive PIR queries
to O(tε), for any ε > 0 [29]. Those optimizations as well as amortization techniques
discussed by Ostrovsky and Skeith [33] are out of scope.

In conclusion, PRISM is very lightweight for a user using standard PC hardware.
Discussion: On a larger cluster in a more professional environment (hundreds or

even thousands of CPUs [25]), all files will be processed in parallel. As shown in Fig. 1,
total time for the 2 GByte file is ≈ 350 s. However, already ≈ 340 s are required by
MapReduce just to “scan” through the various InputSplits, see Baseline. Such ineffi-
ciency with non-optimal configurations has been observed before, and our results are
along the lines of Pavlo et al. [34]. Here, a “grep”-like MapReduce job on 1 TByte of
data took ≈ 1, 500 s on 50 CPUs which would be ≈ 20 times faster than our Base-
line. However, Pavlo et al. [34] use a slightly tuned configuration and moreover a more
efficient scanning through InputSplits (100 Byte text values instead of 32 Byte binary
values in our case) which is known to lead to significant performance increases [27].
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7 Related Work

Private Information Retrieval: Private Information Retrieval (and similarly oblivious
transfer and oblivious RAM) has received a lot of attention [9, 13, 19, 22, 29, 32, 33,
35]. In PIR, a user retrieves a specific data from a database. The only “privacy” goal
in PIR is access privacy whereby the server should not discover which data a user is
interested in. Note that PIR does not ensure privacy of data in the database. PRISM,
however, focuses on searching for a word and uses PIR only as a tool.

Searchable Encryption: With searching on encrypted data techniques [6], user pri-
vacy is guaranteed thanks to the encryption of the queries and the stored data. However,
PRISM offers higher privacy guarantees since in existing searchable encryption solu-
tions [4, 6–8, 10, 16, 21, 31, 36], the result (“found” or “not found”) originating from a
query is known to the adversary; therefore as opposed to PRISM, standard searchable
encryption techniques do not ensure query privacy. Moreover, existing mechanisms
cannot be easily extended to leverage from a parallelized cloud setup: while in theory
the search on encrypted data itself could be run in parallel on subsets of data, today’s
solution do not support the combination (aggregation) of results (as in a reduce phase).
To conclude, PRISM not only ensures both storage privacy and query privacy, but also
enables the aggregation of results originating from intermediate parallelized operations.

8 Conclusion

PRISM is the first privacy-preserving search scheme suited for cloud computing. That
is, PRISM provides storage and query privacy while introducing only limited overhead.
PRISM is specifically designed to leverage parallelism and efficiency of the MapRe-
duce paradigm. Moreover, PRISM is compatible with any standard MapReduce-based
cloud infrastructure (such as Amazon’s), and does not require modifications to the un-
derlying system. Thanks to this compatibility, PRISM has been efficiently implemented
on an experiemental cloud computing environment using Hadoop MapReduce. Besides
a throughout analysis, performance of PRISM has been evaluated on that environment
through search operations in DNS logs provided by an ISP. PRISM’s overhead over
non-privacy-preserving search is only 11% on average, acertaining its efficiency.
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ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011)



StealthGuard: Proofs of Retrievability
with Hidden Watchdogs

Monir Azraoui, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen∗
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Abstract. This paper presents StealthGuard, an efficient and provably secure
proof of retrievabillity (POR) scheme. StealthGuard makes use of a privacy-
preserving word search (WS) algorithm to search, as part of a POR query, for
randomly-valued blocks called watchdogs that are inserted in the file before out-
sourcing. Thanks to the privacy-preserving features of the WS, neither the cloud
provider nor a third party intruder can guess which watchdog is queried in each
POR query. Similarly, the responses to POR queries are also obfuscated. Hence
to answer correctly to every new set of POR queries, the cloud provider has to
retain the file in its entirety. StealthGuard stands out from the earlier sentinel-
based POR scheme proposed by Juels and Kaliski (JK), due to the use of WS and
the support for an unlimited number of queries by StealthGuard. The paper also
presents a formal security analysis of the protocol.

Keywords: Cloud storage, Proofs of Retrievability, Privacy-preserving word search

1 Introduction

Nowadays outsourcing, that is, delegating one’s computing to external parties, is a well
established trend in cloud computing. Along with unprecedented advantages such as
lower cost of ownership, adaptivity, and increased capacity, outsourcing also raises new
security and privacy concerns in that critical data processing and storage operations
are performed remotely by potentially untrusted parties. In this paper we focus on data
retrievability, a security requirement akin to outsourced data storage services like Drop-
box 1 and Amazon Simple Storage Service 2. Data retrievability provides the customer
of a storage service with the assurance that a data segment is actually present in the
remote storage. Data retrievability is a new form of integrity requirement in that the
customer of the storage or the data owner does not need to keep or get a copy of the
data segment in order to get the assurance of retrievability thereof. A cryptographic
building block called Proof of Retrievability (POR) was first developed by Juels and
Kaliski [13] (JK) to meet this requirement. In the definition of [13], a successful execu-
tion of the POR scheme assures a verifier that it can retrieve F in its entirety. Classical

∗ Authors are listed in alphabetical order.
1 Dropbox - https://www.dropbox.com/
2 Amazon Simple Storage Service - http://aws.amazon.com/fr/s3/



integrity techniques such as transferring F with some integrity check value are not prac-
tical since they incur very high communication or computational costs that are linear
with the size of F . POR schemes aim at much lower cost both in terms of communica-
tions and processing by avoiding transmission or handling of F in its entirety. To that
effect, POR schemes require the prover to perform some operations on some randomly
selected parts of F and the verifier is able to check the result returned by the prover
with the knowledge of very brief reference about the data like a secret key. Most POR
schemes thus are probabilistic and their performance is measured in the trade-off be-
tween the bandwidth and processing overhead and the rate of retrievability assurance.
In this paper we develop StealthGuard, a new POR scheme that achieves good re-
trievability assurance with acceptable costs. The main idea behind the new scheme is a
combination of a privacy-preserving word search (WS) algorithm suited to large data-
stores with the insertion in data segments of randomly generated short bit sequences
called watchdogs. In StealthGuard, the user inserts these watchdogs in randomly cho-
sen locations of the file F and stores the resulting file in the cloud. In order to check
the retrievability of F the user issues lookup queries for selected values of watchdogs
using the WS scheme. The user decrypts the WS replies from the cloud server in order
to get the proof of retrievability for each segment targeted by the WS queries. Each pos-
itive result is the proof of presence for the corresponding data segment. Thanks to the
features of the WS, neither the cloud server nor a third party intruder can guess which
watchdogs are targeted by each WS query or response.
Even though there is an analogy between the watchdogs used in StealthGuard and
the sentinels akin to the JK scheme [13], there is a major difference between the two
schemes due to the use of WS by StealthGuard: the number of POR queries that can be
issued in StealthGuard without requiring any update of the watchdogs is unbounded
whereas in the JK scheme a given set of sentinels can be used for a finite number of
POR queries only. StealthGuard only requires the transfer of some additional data that
is a small percentage of F in size and a good POR rate can be achieved by only pro-
cessing a fraction of F . In addition to the description of our proposal, we give a new
security model that enhances existing security definitions of POR schemes [13, 17]. We
state a generic definition of the soundness property that applies to any POR scheme.
Contributions. To summarize, this paper offers two main contributions:
−We present StealthGuard, a new POR scheme based on the insertion of watchdogs
that requires a light file preprocessing and on a privacy-preserving WS that allows a
user to issue an unbounded number of POR queries. Besides, the user is stateless since
it only needs to keep a secret key to be able to run the POR protocol.
− We propose a new security model which improves existing security definitions [13,
17]. We also provide a formal proof of our proposal under this new security model.
The rest of the paper is organized as follows. Section 2 defines the entities and the al-
gorithms involved in a POR scheme. Section 3 describes the adversary models that are
considered in this paper. Section 4 provides an overview of StealthGuard and Sec-
tion 5 gives details of the protocol. Section 6 analyses its security properties. Section 7
evaluates its security and its efficiency. We review the state of the art in Section 8.



2 Background

Before presenting the formal definition of PORs and the related security definitions, we
introduce the entities that we will refer to in the remainder of this paper.

2.1 Entities

A POR scheme comprises the following entities:

– Client C: It possesses a set of files F that it outsources to the cloud server S. With-
out loss of generality, we assume that each file F ∈ F is composed of n splits
{S1, S2, ..., Sn} of equal size L bits. In practice, if the size of F is not a multi-
ple of L, then padding bits will be added to F . We also suppose that each split Si
comprises m blocks of l bits {bi,1, bi,2, ..., bi,m}, i.e., L = m · l.

– Cloud Server S (a potentially malicious prover): For each file F ∈ F , the cloud
server S stores an “enlarged” verifiable version F̂ of that file, that enables it to
prove to a verifier V that the client C can still retrieve its original file F .

– Verifier V: It is an entity which via an interactive protocol can check whether the
cloud server S (i.e., the prover) is still storing some file F ∈ F or not. The verifier
can be either the client itself or any other authorized entity, such as an auditor.

2.2 POR

A POR scheme consists of five polynomial-time algorithms (cf. [13, 17]):

– KeyGen(1τ ) → K: This probabilistic key generation algorithm is executed by
client C. It takes as input a security parameter τ , and outputs a secret key K for C.

– Encode(K,F ) → (fid, F̂ ): It takes the key K and the file F = {S1, S2, ..., Sn}
as inputs, and returns the file F̂ = {Ŝ1, Ŝ2, ..., Ŝn} and F ’s unique identifier fid.
Cloud server S is required to store F̂ together with fid. F̂ is obtained by first apply-
ing to F an error-correcting code (ECC) which allows client C to recover the file
from minor corruptions that may go undetected by the POR scheme, and further
by adding some verifiable redundancy that enables client C to check whether cloud
server S still stores a retrievable version of F or not.
Note that the Encode algorithm is invertible. Namely, there exists an algorithm
Decode that allows the client C to recover its original file F from the file F̂ .

– Challenge(K, fid) → chal: The verifier V calls this probabilistic algorithm to gen-
erate a challenge chal for an execution of the POR protocol for some file F . This
algorithm takes as inputs the secret key K and the file identifier fid, and returns the
challenge chal that will be sent to cloud server S.

– ProofGen(fid, chal) → P: On receiving the challenge chal and the file identifier
fid, cloud server S executes ProofGen to generate a proof of retrievability P for the
file F̂ whose identifier is fid. The proof P is then transmitted to verifier V .

– ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: Verifier V runs this algorithm to check
the validity of the proofs of retrievability sent by cloud server S. On input of the
key K, the file identifier fid, the challenge chal, and the proof P , the ProofVerif
algorithm outputs bit b = 1 if the proof P is a valid proof, and b = 0 otherwise.



3 Adversary models

A POR scheme should ensure that if cloud server S is storing the outsourced files, then
the ProofVerif algorithm should always output 1, meaning that ProofVerif does not
yield any false negatives. This corresponds to the completeness property of the POR
scheme. PORs should also guarantee that if S provides a number (to be determined) of
valid proofs of retrievability for some file F , then verifier V can deduce that server S is
storing a retrievable version of F . This matches the soundness property of POR. These
two properties are formally defined in the following sections.

3.1 Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and
some file identifier fid sent by verifier V , the ProofGen algorithm generates a proof of
retrievability P that will be accepted by verifier V with probability 1.

Definition 1 (Completeness). A POR scheme is complete if for any honest pair of
cloud server S and verifier V , and for any challenge chal← Challenge(K, fid):

Pr(ProofVerif(K, fid, chal,P)→ 1 | P ← ProofGen(fid, chal)) = 1

3.2 Soundness

A proof of retrievability is deemed sound, if for any malicious cloud server S, the only
way to convince verifier V that it is storing a file F is by actually keeping a retrievable
version of that file. This implies that any cloud server S that generates (a polynomial
number of) valid proofs of retrievability for some file F , must possess a version of that
file that can be used later by client C to recover F . To reflect the intuition behind this
definition of soundness, Juels and Kaliski [13] suggested the use of a file extractor al-
gorithm E that is able to retrieve the file F by interacting with cloud server S using the
sound POR protocol. Along these lines, we present a new and a more generic sound-
ness definition that refines the formalization of Shacham and Waters [17] which in turn
builds upon the work of Juels and Kaliski [13]. Although the definition of Shacham
and Waters [17] captures the soundness of POR schemes that empower the verifier with
unlimited (i.e. exponential) number of “possible” POR challenges [3, 17, 23], it does
not define properly the soundness of POR schemes with limited number of “possible”
POR challenges such as in [13, 19] and in StealthGuard3. We recall that the formal-
ization in [17] considers a POR to be sound, if a file can be recovered whenever the
cloud server generates a valid POR response for that file with a non-negligible proba-
bility. While this definition is accurate in the case where the verifier is endowed with
unlimited number of POR challenges, it cannot be employed to evaluate the soundness
of the mechanisms introduced in [13, 19] or the solution we will present in this paper.
For example, if we take the POR scheme in [19] and if we consider a scenario where the

3 Note that having a bounded number of POR challenges does not negate the fact that the verifier
can perform unlimited number of POR queries with these same challenges, cf. [19].



cloud server corrupts randomly half of the outsourced files, then the cloud server will
be able to correctly answer half (which is non-negligible) of the POR challenges that
the verifier issues, yet the files are irretrievable. This implies that this POR mechanism
is not secure in the model of Shacham and Waters [17], still it is arguably sound.

The discrepancy between the soundness definition in [17] and the work of [13, 19]
springs from the fact that in practice to check whether a file is correctly stored at the
cloud server, the verifier issues a polynomial number of POR queries to which the server
has to respond correctly; otherwise, the verifier detects a corruption attack (the corrup-
tion attack could either be malicious or accidental) and flags the server as malicious.
This is actually what the PORs of [13, 19] and StealthGuard aim to capture. In or-
der to remedy this shortcoming, we propose augmenting the definition of Shacham and
Waters [17] (as will be shown in Algorithm 2) with an additional parameter γ that quan-
tifies the number of POR queries that verifier should issue to either be sure that a file is
retrievable or to detect a corruption attack on that file.

Now in accordance with [17], we first formalize soundness using a game that de-
scribes the capabilities of an adversary A (i.e., malicious cloud server) which can devi-
ate arbitrarily from the POR protocol, and then we define the extractor algorithm E .

To formally capture the capabilities of adversary A, we assume that it has access to
the following oracles:

– OEncode: This oracle takes as inputs a file F and the client’s key K, and returns a
file identifier fid and a verifiable version F̂ of F that will be outsourced to A.
Note that adversary A can corrupt the outsourced file F̂ either by modifying or
deleting F̂ ’s blocks.

– OChallenge: On input of a file identifier fid and client’s key K, the oracle OChallenge

returns a POR challenge chal to adversary A.
– OVerify: When queried with client’s key K, a file identifier fid, a challenge chal and

a proof of retrievability P , the oracle OVerify returns bit b such that: b = 1 if P is a
valid proof of retrievability, and b = 0 otherwise.

AdversaryA accesses the aforementioned oracles in two phases: a learning phase and a
challenge phase. In the learning phase, adversaryA can call oraclesOEncode,OChallenge,
and OVerify for a polynomial number of times in any interleaved order as depicted in
Algorithm 1. Then, at the end of the learning phase, the adversary A specifies a file
identifier fid∗ that was already output by oracle OEncode.

We note that the goal of adversary A in the challenge phase (cf. Algorithm 2) is to
generate γ valid proofs of retrievability P〉∗ for file F ∗ associated with file identifier
fid∗. To this end, adversary A first calls the oracle OChallenge that supplies A with γ
challenges chal∗i , then it responds to these challenges by outputting γ proofs P∗i . Now,
on input of client’s key K, file identifier fid∗challenges chal∗i and proofs P∗i , oracle

OVerify outputs γ bits b∗i . Adversary A is said to be successful if b∗ =
γ∧
i=1

b∗i = 1. That

is, if A is able to generate γ proofs of retrievability P∗ for file F ∗ that are accepted by
oracle OVerify.

Given the game described above and in line with [13, 17], we formalize the sound-
ness of POR schemes through the definition of an extractor algorithm E that uses ad-
versary A to recover/retrieve the file F ∗ by processing as follows:



– E takes as inputs the client’s key K and the file identifier fid∗;
– E is allowed to initiate a polynomial number of POR executions with adversary A

for the file F ∗;
– E is also allowed to rewind adversary A. This suggests in particular that extractor
E can execute the challenge phase of the soundness game a polynomial number of
times, while the state of adversary A remains unchanged.

Intuitively, a POR scheme is sound, if for any adversary A that wins the sound-
ness game with a non-negligible probability δ, there exists an extractor algorithm E
that succeeds in retrieving the challenge file F ∗ with an overwhelming probability. A
probability is overwhelming if it is equal to 1− ε, where ε is negligible.

Algorithm 1: Learning phase of the soundness
game
// A executes the following in any interleaved
// order for a polynomial number of times
(fid, F̂ )← OEncode(F,K);
chal← OChallenge(K, fid);
P ←A;
b← OVerify(K, fid, chal,P);
// A outputs a file identifier fid∗

fid∗ ←A;

Algorithm 2: Challenge phase of the
soundness game

for i = 1 to γ do
chal∗i ← OChallenge(K, fid∗);
P∗
i ←A;

b∗i ←
OVerify(K, fid∗

i , chal∗i ,P∗
i );

end

b∗ =
γ∧
i=1

b∗i

Definition 2 (Soundness). A POR scheme is said to be (δ, γ)-sound, if for every ad-
versary A that provides γ valid proofs of retrievability in a row (i.e., succeeds in the
soundness game described above) with a non-negligible probability δ, there exists an
extractor algorithm E such that:

Pr(E(K, fid∗)→ F ∗ | E(K, fid∗)
interact←→ A) ≥ 1− ε

Where ε is a negligible function in the security parameter τ .

The definition above could be interpreted as follows: if verifier V issues a sufficient
number of queries (≥ γ) to which cloud server S responds correctly, then V can as-
certain that S is still storing a retrievable version of file F ∗ with high probability. It
should be noted that while γ characterizes the number of valid proofs of retrievability
that E has to receive (successfully or in a row) to assert that file F ∗ is still retrievable, δ
quantifies the number of operations that the extractor E has to execute and the amount
of data that it has to download to first declare F ∗ as retrievable and then to extract it.
Actually, the computation and the communication complexity of extractor E will be of
order O(γδ ).

4 Overview

4.1 Idea

In StealthGuard, client C first injects some pseudo-randomly generated watchdogs into
random positions in the encrypted data. Once data is outsourced, C launches lookup



queries to check whether the watchdogs are stored as expected by the cloud. By relying
on a privacy-preserving word search (WS), we ensure that neither the cloud server S nor
eavesdropping intruders can discover which watchdog was targeted by search queries.
As a result, C can launch an unbounded number of POR queries (even for the same
watchdog) without the need of updating the data with new watchdogs in the future. The
responses are also obfuscated thanks to the underlying WS scheme. This ensures that
the only case in which S returns a valid set of responses for the POR scheme is when it
stores the entire file and executes the WS algorithm correctly (soundness property).

Besides, as in [13], in order to protect the data from small corruptions, Stealth-
Guard applies an ECC that enables the recovery of the corrupted data. Substantial
damage to the data is detected via the watchdog search.

4.2 StealthGuard phases

A client C uploads to the cloud server S a file F which consists of n splits {S1, ..., Sn}.
Thereafter a verifier V checks the retrievability of F using StealthGuard.

The protocol is divided into three phases:

– Setup: During this phase, client C performs some transformations over the file and
inserts a certain number of watchdogs in each split. The resulting file is sent to
cloud server S.

– WDSearch: This phase consists in searching for some watchdog w in a privacy-
preserving manner. Hence, verifier V prepares and sends a lookup query for w; the
cloud S in turn processes the relevant split to generate a correct response to the
search and returns the output to V .

– Verification: Verifier V checks the validity of the received response and makes the
decision about the existence of the watchdog in the outsourced file.
We note that if V receives at least γ (γ is a threshold determined in Section 6.2)
correct responses from the cloud, then it can for sure decide that F is retrievable.
On the other hand, if V receives one response that is not valid, then it is convinced
either the file is corrupted or even lost.

5 StealthGuard

This section details the phases of the protocol. Table 1 sums up the notation used in the
description. We also designed a dynamic version of StealthGuard that allows efficient
POR even when data is updated. Due to space limitations, we only present in Section
5.4 an overview of dynamic StealthGuard.

5.1 Setup

This phase prepares a verifiable version F̂ of file F = {S1, S2, ..., Sn}. Client C first
runs the KeyGen algorithm to generate the master secret key K. It derives n + 3 addi-
tional keys, used for further operations in the protocol: Kenc = Henc(K), Kwdog =
Hwdog(K), KpermF = HpermF (K) and for i ∈ [[1, n]],KpermS,i = HpermS(K, i)



Index Description
n number of splits Si in F
m number of blocks in a split Si
D number of blocks in an encoded split S̃i
v number of watchdogs in one split
C number of blocks in a split Ŝi with watchdogs
i index of a split ∈ [[1, n]]

k index of a block in Ŝi ∈ [[1, C]]

j index of a watchdog ∈ [[1, v]]

l size of a block
p index of a block in F̃ ∈ [[1, n ·D]]

q number of cloud’s matrices
κ index of a cloud’s matrix ∈ [[1, q]]

(s, t) size of cloud’s matrices
(x, y) coordinates in a cloud’s matrix ∈ [[1, s]]× [[1, t]]

Table 1: Notation used in the description of StealthGuard

with Henc, Hwdog , HpermF and HpermS being four cryptographic hash functions. K
is the single information stored at the client.

Once all keying material is generated, C runs the Encode algorithm which first gen-
erates a pseudo-random and unique file identifier fid for file F , and then processes F as
depicted in Figure 1.

1. Error correcting: The error-correcting code (ECC) assures the protection of the
file against small corruptions. This step applies to each split Si an ECC that operates
over l-bit symbols. It uses an efficient [m+d−1,m, d]-ECC, such as Reed-Solomon
codes [16], that has the ability to correct up to d

2 errors4. Each split is expanded with
d−1 blocks of redundancy. Thus, the new splits are made ofD = m+d−1 blocks.

2. File block permutation: StealthGuard applies a pseudo-random permutation to
permute all the blocks in the file. This operation conceals the dependencies between
the original data blocks and the corresponding redundancy blocks within a split.
Without this permutation, the corresponding redundancy blocks are just appended
to this split. An attacker could for instance delete all the redundancy blocks and
a single data block from this split and thus render the file irretrievable. Such an
attack would not easily be detected since the malicious server could still be able
to respond with valid proofs to a given POR query targeting other splits in the file.
The permutation prevents this attack since data blocks and redundancy blocks are
mixed up among all splits. Let ΠF : {0, 1}τ × [[1, n ·D]]→ [[1, n ·D]] be a pseudo-
random permutation: for each p ∈ [[1, n · D]], the block at current position p will
be at position ΠF (KpermF , p) in the permuted file that we denote F̃ . F̃ is then
divided into n splits {S̃1, S̃2, ..., S̃n} of equal size D.

3. Encryption: StealthGuard uses a semantically secure encryption E that operates
over l-bit blocks5 to encrypt the data. An encryption scheme like AES in counter
mode [10] can be used. The encryptionE is applied to each block of F̃ usingKenc.

4 d is even
5 Practically, l will be 128 or 256 bits.



Fig. 1: Setup phase in StealthGuard

4. Watchdog creation: For each encrypted split, v l-bit watchdogs are generated us-
ing a pseudo-random function Φ : {0, 1}τ × [[1, n]] × [[1, v]] × {0, 1}∗ → {0, 1}l.
Hence, for j ∈ [[1, v]], wi,j = Φ(Kwdog, i, j, fid). The use of fid guarantees that
two different files belonging to the same client have different watchdogs. Since the
watchdogs are pseudo-randomly generated and the blocks in the split are encrypted,
a malicious cloud cannot distinguish watchdogs from data blocks.

5. Watchdog insertion: The v watchdogs are appended to each split. Let C = D +
v be the size of the new splits. A split-level pseudo-random permutation ΠS :
{0, 1}τ × [[1, C]] → [[1, C]] is then applied to the blocks within the same split
in order to randomize the location of the watchdogs: for i ∈ [[1, n]], the block at
current position k will be at position ΠS(KpermS,i, k) in the permuted split. Note
that in practice, the permutation is only applied to the last v blocks: for k ∈ [[D,C]],
this step swaps block at current position k for block at position ΠS(KpermS,i, k).
We denote Ŝi, i ∈ [[1, n]], the permuted split and b̂i,k, k ∈ [[1, C]] its blocks.

These operations yield file F̂ . The client uploads the splits {Ŝi}ni=1 and fid to the cloud.

5.2 WDSearch

Verifier V wants to check the retrievability of F . Hence, it issues lookup queries for
randomly selected watchdog, one watchdog for one split in one query. Cloud server
S processes these queries without knowing what the values of the watchdogs are and
where they are located in the splits. We propose WDSearch, a privacy-preserving WS
solution derived from PRISM in [6]. Our proposal is a simpler version of PRISM and
improves its performance in the particular context of StealthGuard. Note that this
proposed building block is only an example and any existing privacy-preserving WS
mechanism assuring the confidentiality of both the query and the result can be used in
StealthGuard. PRISM and thus WDSearch are based on Private Information Retrieval
(PIR). To process a query, S constructs q (s, t)-binary matrices such that s · t = C.
Each element in the matrices is filled with the witness (a very short information) of the
corresponding block in the split. Based on the PIR query sent by the verifier, the server



retrieves in the matrices the witnesses corresponding to the requested watchdogs. We
insist on the fact that WDSearch is not a PIR solution: the server does not retrieve the
watchdog itself but only the witness.

WDSearch consists of two steps:

– WDQuery: Verifier V executes the Challenge algorithm to generate a challenge
chal that is transmitted to cloud server S. Challenge takes as input master keyK and
file identifier fid and it is executed in three phases. In the first phase, Challenge ran-
domly selects a split index i and a watchdog index j (i ∈ [[1, n]] and j ∈ [[1, v]]), and
computes the position posj of the watchdog wi,j in the split Ŝi by applying the per-
mutation performed during the watchdog insertion step: posj = ΠS(KpermS,i, D+
j). Then, Challenge maps the position posj to a unique position (xj , yj) in an (s, t)-
matrix:

xj = d
posj
t
e yj = posj − d

posj
t
e × t+ t

In the second phase, given (xj , yj) and using any efficient PIR algorithm, Challenge
computes a PIR query, denoted WitnessQuery, to retrieve the witness (and not the
watchdog) at position (xj , yj) in the matrix. In the last phase, Challenge gen-
erates a random number r (this nonce will be used by the cloud when filling
the binary matrices to guarantee freshness), and outputs the challenge chal =
(WitnessQuery, r, i). Eventually, verifier V sends the challenge chal and file iden-
tifier fid to cloud server S.

– WDResponse: Upon receiving the challenge chal = (WitnessQuery, r, i) and
file identifier fid, cloud server S runs ProofGen to process the query. The cloud
creates q binary matrices of size (s, t). For each block b̂i,k in Ŝi, the cloud com-
putes hi,k = H(b̂i,k, r), where k ∈ [[1, C]]. Here, H denotes a cryptographic hash
function. The use of r forces the cloud to store the actual data block. Otherwise it
could drop the block, only store the hash and respond to the query using that hash.
Let hi,k|q be the first q bits of hi,k. For κ ∈ [[1, q]], letMκ be one of the matrices
created by the cloud. It fills the κth matrix with the κth bit of hi,k|q as Algorithm 3
shows. It should be noted that according to the assignment process described in
Algorithm 3, the witness at position (xj , yj) in Mκ is associated with watchdog
wi,j : it is the κth bit of H(wi,j , r).
Once all the q binary matrices are filled, the cloud processes WitnessQuery by
executing a PIR operation that retrieves one bit from each matrixMκ, κ ∈ [[1, q]].
We denote WitnessResponseκ the result of the PIR on matrixMκ. The ProofGen
algorithm outputs P , i.e. the proof of retrievability that consists in the set P =
{WitnessResponse1, ...,WitnessResponseq}. Cloud server S sends the proof P to
verifier V .

5.3 Verification

Verifier V runs ProofVerif to analyze the received proof P . This algorithm takes as
input master key K, proof P , split index i, watchdog index j, and file identifier fid.
ProofVerif outputs a bit equal to 1 if the proof is valid or 0 otherwise.



Algorithm 3: Filling the cloud matrices

// For a given (s, t)-matrixMκ, a given split Ŝi and a given random number r
// k is the index of a block in split Ŝi
k = 1;
for x = 1 to s do

for y = 1 to t do
Mκ[x, y]← κth bit of H(b̂i,k, r);
k = k + 1;

end
end

V processes the q WitnessResponseκ in order to retrieve the q bits εκ at position
(xj , yj) in the matrixMκ, for κ ∈ [[1, q]] . Let h denote ε1ε2...εq .

We recall that verifier V queried watchdogwi,j for split Ŝi and that by having access
to the master key K, V can recompute the value of wi,j = Φ(Kwdog, i, j, fid) and its
position in the split Ŝi, posj = ΠS(KpermS,i, D+ j). Thereafter, V computes the hash
of the watchdog hi,posj = H(wi,j , r), with the same r chosen during the challenge and
considers the q first bits of hi,posj . Based on the value of h = ε1ε2...εq and hi,posj , V
checks whether h = hi,posj |q . If it is the case, then V judges the proof valid and returns
1, otherwise it interprets the invalid proof as the occurrence of an attack and outputs 0.

As mentioned in section 4.2, in order to acknowledge the retrievability of F , verifier
V needs to initiate at least γ POR queries6 from randomly selected splits in order to
either ascertain that F is retrievable or detect a corruption attack: if V receives γ valid
POR responses, then it can conclude that cloud server S stores a retrievable version of
F , otherwise, it concludes that S has corrupted part of the file.

5.4 Dynamic StealthGuard

The previously described protocol does not consider update operations that the client
can perform over its data. Similarly to the work in [2, 8, 9, 11, 15, 18, 19, 21, 22, 24],
we propose a scheme that handles these updates. Due to space limitations we present
only an idea of how dynamic StealthGuard operates. Any update in the data impacts
the security of our protocol. For example, if the client modifies the same block several
times then the cloud can discover that this particular block is not a watchdog. Therefore,
dynamic StealthGuard updates the watchdogs in a split each time an update occurs on
that split. Besides, the verifier must be ensured that the file stored at the server is ac-
tually the latest version. Dynamic StealthGuard offers a versioning solution to assure
that the cloud always correctly applies the required update operations and that it always
stores the latest version of the file. Our proposal uses Counting Bloom Filters [12] and
Message Authentication Codes (MAC) [5]. Each time a split is updated, some infor-
mation regarding the split number and the version number is added into the counting
Bloom filter which is authenticated using a MAC that can only be computed by the
client and the verifier. Additionally, to guarantee the freshness of the response at each

6 The value of γ will be determined in Section 6.2.



update query, a new MAC key is generated. This protocol does not imply any additional
cost at the verifier except of storing an additional MAC symmetric key.

Another challenging issue is that updating a data block requires to update the cor-
responding redundancy blocks, resulting in the disclosure to the cloud server of the
dependencies between the data blocks and the redundancy blocks. Therefore, the file
permutation in the Setup phase becomes ineffective. Some techniques are available to
conceal these dependencies such as batch updates [19] or oblivious RAM [8]. How-
ever, these approaches are expensive in terms of computation and communication costs.
Hence, we choose to trade off between POR security and update efficiency by omitting
the file permutation.

6 Security Analysis

In this section, we state the security theorems of StealthGuard.

6.1 Completeness
Theorem 1. StealthGuard is complete.

Proof. Without loss of generality, we assume that the honest verifier V runs a POR
for a file F . To this end, verifier V sends a challenge chal = (WitnessQuery, r, i) for
watchdog wi,j , and the file identifier fid of F . Upon receiving challenge chal and file
identifier fid, the cloud server generates a proof of retrievability P for F .

According to StealthGuard, the verification of POR consists of first retrieving the
first q bits of a hash hi,posj , then verifying whether hi,posj |q corresponds to the first
q-bits of the hash H(wi,j , r). Since the cloud server S is honest, then this entails that it
stores wi,j , and therewith, can always compute hi,posj = H(wi,j , r).

Consequently, ProofVerif(K, fid, chal,P) = 1.

6.2 Soundness
As in Section 5, we assume that each split Si in a file F is composed of m blocks,
and that the Encode algorithm employs a [D,m, d]-ECC that corrects up to d

2 errors
per split (i.e., D = m + d − 1). We also assume that at the end of its execution, the
Encode algorithm outputs the encoded file F̂ which consists of a set of splits Ŝi each
comprising C = (D+v) blocks (we recall that v is the number of watchdogs per split).

In the following, we state the main security theorem for StealthGuard.

Theorem 2. Let τ be the security parameter of StealthGuard and let ρ denote d
2D .

StealthGuard is (δ, γ)-sound in the random oracle model, for any δ > δneg and
γ ≥ γneg, where

δneg =
1

2τ

γneg = d
ln(2)τ

ρneg
e

(1− ρ

ρneg
)2ρneg =

3ln(2)τ

D
and ρneg ≤ ρ



Actually if γ ≥ γneg, then there exists an extractor E that recovers a file F with a proba-
bility 1− n

2τ , such that n is the number of splits in F , by interacting with an adversaryA
against StealthGuard who succeeds in the soundness game with a probability δ > 1

2τ .

Due to space limitations, a proof sketch of this theorem is provided in our long report
[4]. We note that the results derived above can be interpreted as follows: if verifier V
issues γ ≥ γneg POR queries for some file F to which the cloud server S responds
correctly, then V can declare F as retrievable with probability 1 − n

2τ . Also, we recall
that a POR execution for a file F in StealthGuard consists of fetching (obliviously)
a witness of a watchdog from the encoding F̂ of that file. Consequently, to ensure a
security level of 1

2τ , the client C must insert at least γneg watchdogs in F . That is, if file
F comprises n splits, then nv ≥ γneg (v is the number of watchdogs per split).

7 Discussion

StealthGuard requires the client to generate v > γneg
n watchdogs per split where n is

the number of splits and γneg is the threshold of the number of queries that verifier V
should issue to check the retrievability of the outsourced data. As shown in Theorem
2, this threshold does not depend on the size of data (in bytes). Instead, γneg is defined
solely by the security parameter τ , the number D = m + d − 1 of data blocks and
redundancy block per split and the rate ρ = d

2D of errors that the underlying ECC
can correct. Namely, γneg is inversely proportional to both D and ρ. This means that
by increasing the number of blocks D per split or the correctable error rate ρ, the
number of queries that the client should issue decreases. However, having a large ρ
would increase the size of data that client C has to outsource to cloud server S, which
can be inconvenient for the client. Besides, increasing D leads to an increase of the
number of blocks C = s · t per split Ŝi which has a direct impact on the communication
cost and the computation load per query at both the verifier V and the cloud server S.
It follows that when defining the parameters of StealthGuard, one should consider the
tradeoff between the affordable storage cost and the computation and communication
complexity per POR query.

To enhance the computation performances of StealthGuard, we suggest to use the
Trapdoor Group Private Information Retrieval which was proposed in [20] to im-
plement the PIR instance in WDSearch. This PIR enables the verifier in StealthGuard
to fetch a row from an (s, t) matrix (representing a split) without revealing to the cloud
which row the verifier is querying. One important feature of this PIR is that it only
involves random number generations, additions and multiplications in Zp (where p is
a prime of size |p| = 200 bits) which are not computationally intensive and could be
performed by a lightweight verifier. In addition, we emphasize that PIR in Stealth-
Guard is not employed to retrieve a watchdog, but rather to retrieve a q-bit hash of the
watchdog (typically q = 80), and that it is not performed on the entire file, but it is in-
stead executed over a split. Finally, we indicate that when employing Trapdoor Group
Private Information Retrieval, the communication cost of StealthGuard is minimal
when s ' √Cq and t '

√
C
q . This results in a computation and a communication com-

plexity (per query) at the verifier of O(
√
Cq) and a computation and communication

complexity at the server of O(C) and O(
√
Cq) respectively.



Example. A file F of 4GB is divided into n = 32768 splits F = {S1, S2, ..., Sn},
and each split Si is composed of 4096 blocks of size 256 bits. StealthGuard inserts 8
watchdogs per split and applies an ECC that corrects up to 228 corrupted blocks (i.e.,
ρ = 5%). We obtain thus F̂ = {Ŝ1, Ŝ2, ..., Ŝn}, where Ŝi is composed of 4560 blocks
of size 256 bits. This results in a redundancy of ' 11.3%, where 11.1% redundancy is
due to the use of ECC, and 0.20% redundancy is caused by the use of watchdogs.

If (s, t) = (570, 8), q = 80 and StealthGuard implements the Trapdoor Group PIR
[20] where |p| = 200 bits, then the verifier’s query will be of size ' 13.9 KB, whereas
the cloud server’s response will be of size ' 15.6KB. In addition, if the cloud server
still stores the file F̂ , then the verifier will declare the file as retrievable with probability
1− n

260 ' 1− 1
245 by executing the POR protocol 1719 times. That is, by downloading

26.2MB which corresponds to 0.64% of the size of the original file F .

8 Related Work

The approach that is the closest to StealthGuard is the sentinel-based POR introduced
by Juels and Kaliski [13]. As in StealthGuard, before outsourcing the file to the server,
the client applies an ECC and inserts in the encrypted file special blocks, sentinels, that
are indistinguishable from encrypted blocks. However, during the challenge, the veri-
fier asks the prover for randomly-chosen sentinels, disclosing their positions and values
to the prover. Thus, this scheme suggests a limited number of POR queries. Therefore,
the client may need to download the file in order to insert new sentinels and upload it
again to the cloud. [13] mentions, without giving any further details, a PIR-based POR
scheme that would allow an unlimited number of challenges by keeping the positions
of sentinels private, at the price of high computational cost equivalent in practice to
downloading the entire file. In comparison, StealthGuard uses a PIR within the WS
technique to retrieve a witness of the watchdog (a certain number of bits instead of the
entire watchdog), and does not limit the number of POR verifications.
Ateniese et al. [1] define the concept of Provable Data Possession (PDP), which is
weaker than POR in that it assures that the server possesses parts of the file but does not
guarantee its full recovery. PDP uses RSA-based homomorphic tags as check-values
for each file block. To verify possession, the verifier asks the server for tags for ran-
domly chosen blocks. The server generates a proof based on the selected blocks and
their respective tags. This scheme provides public verifiability meaning that any third
party can verify the retrievability of a client’s file. However, this proposal suffers from
an initial expensive tag generation leading to high computational cost at the client. The
same authors later propose in [3] a robust auditing protocol by incorporating erasure
codes in their initial PDP scheme [1] to recover from small data corruption. To prevent
an adversary from distinguishing redundancy blocks from original blocks, the latter are
further permuted and encrypted. Another permutation and encryption are performed on
the redundancy blocks only which are then concatenated to the file. This solution suf-
fers from the fact that a malicious cloud can selectively delete redundant blocks and
still generate valid proofs. Even though these proofs are valid, they do not guarantee
that the file is retrievable.
Shacham and Waters in [17] introduce the concept of Compact POR. The client applies



Scheme Parameter Setup cost Storage
overhead

Server cost Verifier cost Communication
cost

Robust PDP [3] block size:
2 KB
tag size:
128 B

4.4× 106 exp
2.2× 106 mul

tags:
267 MB

764 PRP
764 PRF
765 exp
1528 mul

challenge: 1 exp
verif: 766 exp
764 PRP

challenge: 168 B
response: 148 B

JK POR [13] block size:
128 bits
number of sen-
tinels: 2×106

2× 106 PRF sentinels:
30.6 MB

⊥ challenge:
1719 PRP
verif:⊥

challenge: 6 KB
response:26.9 MB

Compact POR
[17]

block size:
80 bits
number of
blocks in one
split: 160
tag size:
80 bits

1 enc
5.4× 106 PRF
1.1× 109 mul

tags:
51 MB

7245 mul challenge:
1 enc, 1 MAC
verif: 45 PRF,
160 + 205 mul

challenge: 1.9 KB
response: 1.6 KB

Efficient POR
[23]

block size:
160 bits
number of
blocks in one
split: 160

2.2× 108 mul
1.4× 106 PRF

tags:
26 MB

160 exp
2.6 ∗ 105 mul

challenge:⊥
verif: 2 exp, 1639
PRF, 1639 mul

challenge: 36 KB
response: 60 B

StealthGuard block size:
256 bits
number of
blocks in one
split: 4096

2.6× 105 PRF
2.6× 105 PRP

watchdogs:
8 MB

6.2× 108 mul challenge:
2.0× 106 mul
verif:
1.4× 105 mul

challenge: 23.3
MB
response: 26.2 MB

Table 2: Comparison of relevant related work with StealthGuard.

an erasure code and for each file block, it generates authenticators (similar to tags in
[1]), with BLS signatures [7], for public verifiability, or with Message Authentication
Codes (MAC) [5], for private verifiability. The generation of these values are computa-
tionally expensive. Moreover, the number of authenticators stored at the server is linear
to the number of data blocks, leading to an important storage overhead. Xu and Chang
[23] propose to enhance the scheme in [17] using the technique of polynomial com-
mitment [14] which leads to light communication costs. These two schemes employ
erasure codes in conjunction with authentication tags, which induces high costs at the
time of retrieving the file. Indeed, erasure coding does not inform the verifier about the
position of the corrupted blocks. Thus, the verifier has to check each tag individually to
determine whether it is correct or not. When a tag is detected as invalid, meaning that
the corresponding block is corrupted, the verifier applies the decoding to recover the
original data block.
A recent work of Stefanov et al. [19], Iris, proposes a POR protocol over authenticated
file systems subject to frequent changes. Each block of a file is authenticated using a
MAC to provide file-block integrity which makes the tag generation very expensive.
Compared to all these schemes, StealthGuard performs computationally lightweight
operations at the client, since the generation of watchdogs is less expensive than the
generation of tags like in [1, 17]. In addition, the storage overhead induced by the stor-
age of watchdogs is less important than in the previous work. At the cost of more bits
transmitted during the POR challenge-response, StealthGuard ensures a better proba-
bility of detecting adversarial corruption.

Table 2 depicts the performance results of StealthGuard and compares it with pre-
vious work. We analyze our proposal compared to other schemes [3, 13, 17, 23] with
respect to a file of size 4 GB. The comparison is made on the basis of the POR assur-



ance of 1− 1
245 computed in Section 7. We assume that all the compared schemes have

three initial operations in the Setup phase: the application of an ECC, the encryption
and the file-level permutation of data and redundancy blocks. Since these three initial
operations have comparable costs for all the schemes, we omit them in the table. Com-
putation costs are represented with exp for exponentiation, mul for multiplication,
PRF for pseudo-random function or PRP for pseudo-random permutation. For Stealth-
Guard, we compute the different costs according to the values provided in Section 7.
For the other schemes, all initial parameters derive from the respective papers. In [17]
since the information on the number of blocks in a split is missing, we choose the same
one as in [23]
Setup. In our scheme, the client computes 32768×8 ≈ 2.6×105 PRF and 2.6×105 PRP
for the generation and the insertion of watchdogs. One of the advantages of Stealth-
Guard is having a more lightweight setup phase when the client preprocesses large
files. Indeed, the setup phase in most of previous work [3, 17, 19, 23] requires the client
to compute an authentication tag for each block of data in the file which is computa-
tionally demanding in the case of large files.
Storage Overhead. The insertion of watchdogs in StealthGuard induces a smaller
storage overhead compared to other schemes that employ authentication tags.
Proof Generation and Verification. For StealthGuard, we consider the PIR opera-
tions as multiplications of elements in Zp where |p| = 200 bits. To get the server and
verifier computational costs of existing work, based on the parameters and the bounds
given in their respective papers, we compute the number of requested blocks in one
challenge to obtain a probability of 1 − 1

245 to declare the file as irretrievable: 764
blocks in [3], 1719 sentinels in [13], 45 blocks in [17] and 1639 blocks in [23]. Stealth-
Guard induces high cost compared to existing work but is still acceptable.
Communication. Even if its communication cost is relatively low compared to Stealth-
Guard, JK POR [13] suffers from the limited number of challenges, that causes the
client to download the whole file to regenerate new sentinels. Although we realize that
StealthGuard’s communication cost is much higher than [3, 17, 23], such schemes
would induce additional cost at the file retrieval step, as mentioned earlier.
To summarize, StealthGuard trades off between light computation at the client, small
storage overhead at the cloud and significant but still acceptable communication cost.
Nevertheless, we believe that StealthGuard’s advantages pay off when processing
large files. The difference between the costs induced by existing schemes and those
induced by StealthGuard may become negligible if the size of the outsourced file in-
creases.

9 Conclusion

StealthGuard is a new POR scheme which combines the use of randomly generated
watchdogs with a lightweight privacy-preserving word search mechanism to achieve
high retrievability assurance. As a result, a verifier can generate an unbounded number
of queries without decreasing the security of the protocol and thus without the need for
updating the watchdogs. StealthGuard has been proved to be complete and sound.



As future work, we plan to implement StealthGuard in order to not only evaluate
its efficiency in a real-world cloud computing environment but also to define optimal
values for system parameters.
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Abstract. With the continuous increase of cloud storage adopters, data
deduplication has become a necessity for cloud providers. By storing a
unique copy of duplicate data, cloud providers greatly reduce their stor-
age and data transfer costs. Unfortunately, deduplication introduces a
number of new security challenges. We propose PerfectDedup, a novel
scheme for secure data deduplication, which takes into account the pop-
ularity of the data segments and leverages the properties of Perfect Hash-
ing in order to assure block-level deduplication and data confidentiality
at the same time. We show that the client-side overhead is minimal and
the main computational load is outsourced to the cloud storage provider.

Keywords: cloud,storage,deduplication,confidentiality,encryption,security,
perfect hashing

1 Introduction

Cloud storage providers constantly look for techniques aimed to minimize re-
dundant data and maximize space savings. We focus on deduplication, which
is one of the most popular techniques and has been adopted by many major
providers such as Dropbox3. The idea behind deduplication is to store dupli-
cate data only once. Thanks to such a mechanism, space savings can reach 70%
[7] and even more in backup applications. On the other hand, along with low
costs, users also require the confidentiality of their data through encryption.
Unfortunately, deduplication and encryption are two conflicting techniques. A
solution which has been proposed to meet these two conflicting requirements
is Convergent Encryption (CE) [4] whereby the encryption key is the result of
the hash of the data segment. However, CE unfortunately suffers from various

2 Partially supported by the TREDISEC project (G.A. no 644412), funded by the Eu-
ropean Union (EU) under the Information and Communication Technologies (ICT)
theme of the Horizon 2020 (H2020) research and innovation programme.

3 https://www.dropbox.com
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well-known weaknesses [9] including dictionary attacks. We propose to counter
the weaknesses due to CE by taking into account the popularity [10] of the data
segments. Data segments stored by several users, that is, popular ones, are only
protected under the weak CE mechanism whereas unpopular data segments that
are unique in storage are protected under semantically-secure encryption. This
declination of encryption mechanisms lends itself perfectly to efficient deduplica-
tion since popular data segments that are encrypted under CE are also the ones
that need to be deduplicated. This scheme also assures proper security of stored
data since sensitive thus unpopular data segments enjoy the strong protection
thanks to the semantically-secure encryption whereas the popular data segments
do not actually suffer from the weaknesses of CE since the former are much less
sensitive because they are shared by several users. Nevertheless, this approach
raises a new challenge: the users need to decide about the popularity of each
data segment before storing it and the mechanism through which the decision is
taken paves the way for a series of exposures very similar to the ones with CE.
The focus of schemes based on popularity then becomes the design of a secure
mechanism to detect the popularity of data segments.

In this paper we suggest a new scheme for the secure deduplication of en-
crypted data, based on the aforementioned popularity principle. The main build-
ing block of this scheme is an original mechanism for detecting the popularity of
data segments in a perfectly secure way. Users can lookup for data segments in
a list of popular segments stored by the Cloud Storage Provider (CSP) based on
data segment identifiers computed with a Perfect Hash Function (PHF). Thanks
to this technique, there is no information leakage about unpopular data segments
and popular data segments are very efficiently identified. Based on this new pop-
ularity detection technique, our scheme achieves deduplication of encrypted data
at block level in a perfectly secure manner. The advantages of our scheme can
be summarized as follows:

– our scheme allows for storage size reduction by deduplication of popular
data;

– our scheme relies on symmetric encryption algorithms, which are known to
be very efficient even when dealing with large data;

– our scheme achieves deduplication at the level of blocks, which leads to higher
storage space savings compared to file-level deduplication [7];

– our scheme does not require any coordination or initialization among users;
– our scheme does not incur any storage overhead for unpopular data blocks;

2 Secure Deduplication Based on Popularity

Given the inherent incompatibility between encryption and deduplication, exist-
ing solutions suffer from different drawbacks. CE was considered to be the most
convenient solution for secure deduplication but it has been proved that is is vul-
nerable to various types of attacks [9]. Hence, CE cannot be employed to protect
data confidentiality and thus stronger encryption mechanisms are required.
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We point out that data may need different levels of protection depending on
its popularity [10] a data segment becomes ”popular” whenever it belongs to
more than t users (where t is the popularity threshold). The ”popularity” of a
block is viewed as a trigger for its deduplication. Similarly, a data segment is
considered to be unpopular if it belongs to less than t users. This is the case for
all highly sensitive data, which are likely to be unique and thus unlikely to be
duplicated.

Given this simple distinction, we observe that popular data do not require
the same level of protection as unpopular data and therefore propose different
forms of encryption for popular and unpopular data. For instance, if a file is
easily accessible by anyone on the Internet, then it is reasonable to consider a
less secure protection. On the other hand, a confidential file containing sensitive
information, such as a list of usernames and passwords, needs much stronger
protection. Popular data can be protected with CE in order to enable source-
based deduplication, whereas unpopular data must be protected with a stronger
encryption. Whenever an unpopular data segment becomes popular, that is, the
threshold t is reached, the encrypted data segment is converted to its convergent
encrypted form in order to enable deduplication.

We propose to encrypt unique and thus unpopular data blocks (which can-
not be deduplicated) with a symmetric encryption scheme using a random key,
which provides the highest level of protection while improving the computational
cost at the client. Whenever a client wishes to upload a data segment, we pro-
pose that she should first discover its popularity degree in order to perform the
appropriate encryption operation. The client may first lookup for a convergent
encrypted version of the data stored at the CSP. If such data segment already
exists, then the client discovers that this data segment is popular and hence can
be deduplicated. If such data segment does not exist, the client will encrypt it
with a symmetric encryption scheme. Such a solution would greatly optimize the
encryption cost and the upload cost at the client. However, a standard lookup
solution for the convergent encrypted data segment would reveal the convergent
encrypted data segment ID, that is the digest of the data computed under an un-
keyed hash function like SHA-3, which would be a serious breach. Secure lookup
for a data segment is thus a delicate problem since the ID used as the input
to the lookup query can lead to severe data leakage as explained in [17] and
[9]. Therefore, in such a scenario the main challenge becomes how to enable the
client to securely determine the popularity of a data segment without leaking
any exploitable information to the CSP. Also, the client needs to securely handle
the ”popularity transition”, that is the phase triggered by a data segment that
has just reached the popularity threshold t. More formally, the popularity detec-
tion problem can be defined as follows: given a data segment D and its ID IDD,
the client wants to determine whether IDD belongs to the set P of popular data
segment IDs stored at an untrusted CSP. It is crucial that if IDD /∈ P , no infor-
mation must be leaked to the CSP. More generally, this problem can be seen as
an instance of the Private Set Intersection (PSI) problem [26]. However, existing
solutions are known to be costly in terms of computation and communication,
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especially when dealing with very large sets. Private Information Retrieval (PIR)
[25] may also be a solution to this problem. However, using PIR raises two main
issues: first, it would incur a significant communication overhead; second, PIR
is designed to retrieve a single element per query, whereas an efficient protocol
for the popularity check should allow to check the existence of multiple data
segment IDs at once. Hence instead of complex cryptographic primitives like
PSI and PIR we suggest a secure mechanism for popularity detection based on
a lightweight building block called Perfect Hashing [11]. We aim at solving this
problem by designing a novel secure lookup protocol, which is defined in next
section, based on Perfect Hashing [11].

3 Basic Idea: Popularity Detection Based on Perfect
Hashing

The popularity detection solution we propose makes use of the Perfect Hashing
process which, given an input set of n data segments, finds a collision-free hash
function, called the perfect hash function (PHF), that maps the input set to
a set of m integers (m being larger than n by a given load factor). The CSP
can run this process in order to generate the PHF matching the IDs of the
convergent encrypted popular blocks that are currently stored at the CSP. The
resulting PHF can be efficiently encoded into a file and sent to the client. Using
the PHF received from the CSP, the client can lookup for new blocks in the
set of encrypted popular block IDs stored at the CSP, as illustrated in Figure
1. For each new block D, the client first encrypts the block to get CE(D), he
then computes the ID thereof using an unkeyed hash function h like SHA-3.
Finally, by evaluating the PHF over ID, the client gets the lookup index i for
the new block. The integer i will be the input of the lookup query issued by
the client. Once the CSP has received the lookup query containing i, he will
return to the client the convergent encrypted popular block ID stored under i.
At this point, the client can easily detect the popularity of his data segment by
comparing the ID he computed with the one received from the CSP: if the two
IDs match, then D is popular. As mentioned above, it is a crucial requirement
to prevent the CSP from discovering the content of the block D when it is yet
unpopular. We achieve so by introducing an enhanced and secure version of
Perfect Hashing, which makes the generated PHF one-way, meaning that the
CSP cannot efficiently derive the input of the PHF from its output i. This also
implies that the PHF must yield well-distributed collisions for unpopular blocks.

However, even though the client is now able to securely detect the popularity
of a block, he still needs to handle the popularity transition, that is the phase in
which a block reaches the threshold t and the convergent encrypted block needs
to be uploaded to the CSP. Since the client cannot be aware of other copies of
the same block previously uploaded by other users, a mechanism to keep track
of the unpopular data blocks is needed. Clearly, the client cannot rely on the
CSP for this task, as the CSP is not a trusted component. Therefore, we pro-
pose to introduce a semi-trusted component called Index Service (IS), which is
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responsible for keeping track of unpopular blocks. If the result of a popularity
check is negative, then the client updates the IS accordingly by sending the pop-
ular convergent encrypted block ID and the ID of the symmetrically encrypted
block. As soon as a block becomes popular, that is reaches the threshold t, the
popularity transition is triggered and the client is notified in order to let him
upload the convergent encrypted block, which from now on will be deduplicated
by the CSP. Upon a popularity transition, the IS will delete from its storage
any information related to the newly popular block. Regarding the popularity
threshold, we point out that users do not have to be aware of its value, since the
popularity transition is entirely managed by the IS, that is responsible for deter-
mining the current value for t. For instance, the value of t may be either static
or dynamic, as proposed in [15]. Indeed, our scheme is completely independent
of the strategy used for determining the value of the popularity threshold.

Fig. 1. The secure PHF allows users to detect popular blocks while preventing the
CSP from discovering unpopular blocks

4 Background

4.1 Convergent Encryption

The idea of convergent encryption (CE) [4] is to derive the encryption key from
the hash of the plaintext. A basic implementation of convergent encryption can
be defined as follows: a user computes the encryption key using the message
by applying a secure hash function H over M : K = H(M); the message can
then be encrypted with this key using a block cipher E: hence, C = E(K,M) =
E(H(M),M). Thanks to this technique, two users with two identical plaintexts
will obtain two identical ciphertexts since the encryption key is the same and the
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encryption algorithm is deterministic. Despite its practicality, CE is known to
be vulnerable to several weaknesses which undermine its capability of protecting
confidential data and allow an attacker who has access to the storage server
to perform offline dictionary attacks and discover predictable files. As shown in
[9], CE is unfortunately exposed to the two following attacks: confirmation-of-
a-file (COF) and learn-the-remaining-information (LRI). These attacks exploit
the deterministic relationship between the plaintext and the encryption key and
therefore can be successful in the verification whether a given plaintext has
already been stored.

4.2 Perfect Hashing

A Perfect Hash Function (PHF) maps a set of arbitrary entries into a set of
integers without collisions. Authors in [11] proposed a new algorithm that al-
lows finding a perfect mapping for very large sets in a very efficient way. This
algorithm, which is called CHD (Compress, Hash and Displace), achieves linear
space and computational complexities (with respect to the size of the set). The
main idea behind this algorithm is to split the input set into several buckets
(subsets) with a few elements and find a collision-free mapping for each of these
buckets separately. This approach has proved to be much more scalable than
previous approaches. The mean number of elements per bucket is a parameter
that can be tuned upon executing the generation algorithm. CHD also allows
choosing a load factor, which is the fraction of non-empty positions in the hash
table.

Although perfect hashing is widely adopted for efficient indexing in the field
of relational databases [19], it has some desirable properties which make it an
appropriate building block for our scheme. First, the computational complexity
to build the PHF is linear and the PHF can be evaluated in constant time.
Thanks to these properties, the system is scalable since the PHF generation
remains feasible when dealing with very large datasets. In addition to that,
the main computational load is outsourced to the CSP, while the client only
has to perform very simple and lightweight operations such as evaluating the
PHF on block IDs and symmetrically encrypting data blocks. Second, thanks
to a special encoding and compression mechanism, the size of the PHF file is
small and therefore it can easily be transferred to the client. Therefore, the
performance impact is minimal and this approach can easily scale up to sets of
millions of elements. Third, the resulting hash table is collision-free with respect
to the elements of the input set (popular block IDs), meaning that any index is
associated to at most one element of the input set. On the other hand, if the PHF
is evaluated over the rest of the domain (unpopular block IDs) then collisions
are well-distributed. This property is an important starting point to build our
secure lookup protocol which must guarantee that an attacker is not able to
determine on what input the PHF has been evaluated. Indeed, while an index
in the hash table corresponds to a unique popular block ID, many unpopular
block IDs are mapped to the same index. Therefore, given an index in the hash
table, the CSP cannot determine the corresponding block ID. In our solution we
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propose to extend the existing PHF by replacing the underlying hash function
with a one-way secure hash function such as SHA-3 [24]. Indeed, for the security
of the scheme, it is crucial that the hash function used by the algorithm is one-
way, meaning that it is easy to compute on a given input, but hard to invert
given the image of a random input.

5 Our solution

5.1 Overview

We consider a scenario where users want to store their data (files) on a potentially
untrusted Cloud Storage Provider (CSP) while taking advantage of source-based
block-level deduplication and protecting the confidentiality of their data at the
same time. Users run a client C which is a lightweight component with respect
to both storage and computational capacity. CSP is assumed to be honest-but-
curious and thus correctly stores users’ data while trying to disclose the content
thereof. Prior to uploading its data, C runs a secure lookup protocol to check
whether the data are popular. The CSP is responsible for the generation of the
PHF over the popular blocks and the storage of the resulting collision-free hash
table. The proposed protocol introduces a trusted third party called Index Ser-
vice (IS) which helps the client to discover the actual number of copies of a yet
unpopular block. We stress the fact that IS only stores information on unpop-
ular blocks and once a block becomes popular, all corresponding information
are removed from its database, hence this component does not need to have a
significant storage capacity.

The proposed solution is described under three different scenarios:

– Unpopular data upload (Scenario 1): if C finds out that the data is yet
unpopular, it performs the upload to the CSP and updates the IS;

– Popularity transition (Scenario 2): if C finds out that the popularity degree
of the data is t − 1 (where t is the popularity threshold), then it performs
the appropriate operations to upload the newly popular data. IS removes
all information with respect to this specific data and CSP deletes all the
encrypted copies previously stored;

– Popular data upload (Scenario 3): C only uploads metadata since it has
detected that the requested data is popular, therefore deduplication can
take place.

CSP stores a hash table for popular block IDs which is constructed with the
previously introduced PHF. Each element of the hash table is defined by the
couple (PHF (h(CE(bi))), h(CE(bi))) where h(CE(bi)) is the unkeyed secure
hash of the convergent encrypted block. Before any operation, given the current
set of popular blocks, CSP creates a corresponding secure PHF. This PHF is
updated only when CSP needs to store new popular blocks. In the next sections,
we first present the popularity check phase which is common to all three scenarios
and then explain the following phases.
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5.2 Popularity Check (Scenarios 1, 2 and 3)

Before uploading a file F , C splits F into blocks F = {bi}, encrypts each of them
with CE and computes their IDs. We point out that our scheme is completely
independent of the underlying data-chunking strategy used for determining block
boundaries, which is a problem that is out of the scope of this paper. The client
fetches the PHF from the CSP and evaluates it over {h(CE(bi))}. The result
of this operation is a set of indices I = {PHF (h(CE(bi)))}, where each index
represents the position of the potentially popular block ID in the hash table
stored at the CSP. These indices can be used to perform the popularity check
without revealing the content of the blocks to the CSP. Indeed, given a set of
indices obtained as above, the client can retrieve the corresponding block IDs
stored in the hash table and then compare them with his own block IDs. Any
block bi such that h(CE(bi)) is equal to the popular block ID retrieved from the
CSP, is considered as popular, hence will be deduplicated. The index does not
reveal any exploitable information on the block.

5.3 Popularity Transition (Scenarios 1 and 2)

If the popularity check reveals that a block is not popular, C needs to check
whether it is going to trigger a popularity transition. A block becomes popular
as soon as it has been uploaded by t users. In order to enable C to be aware of the
change of the popularity status and perform the transition, C sends an update to
the IS whenever the popularity check has returned a negative result for a given
block ID. IS stores a list of block IDs and owners corresponding to each encrypted
copy of the yet unpopular block. When the number of data owners for a particular
block reaches t, the popularity transition protocol is triggered and IS returns to
C the list of block IDs. In order to complete this transition phase, CSP stores
the convergent-encrypted copy, removes the corresponding encrypted copies and
updates the PHF. From now on, the block will be considered popular, therefore
it will be deduplicated. We point out that this operation is totally transparent
to the other users who uploaded the same block as unpopular. Indeed, during
their upload phase, users also keep encrypted information about the convergent
encryption key. This allows them decrypting the block when it becomes popular.

5.4 Data Upload (Scenarios 1, 2 and 3)

Once the client has determined the popularity of each block, he can send the
actual upload request. The content of the request varies depending on the block
status. If the block is unpopular, C uploads the block symmetrically encrypted
with a random key. If the block is popular, C only uploads the block ID, so that
the CSP can update his data structures. Optionally, in order to avoid to manage
the storage of the encryption keys, C may rely on the CSP for the storage of the
random encryption key and the convergent encryption key, both encrypted with
a secret key known only by the client.
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6 Security Analysis

In this section, we analyze the security of the proposed scheme, the CSP being
considered the main adversary. The CSP is ”honest-but-curious”, meaning that
it correctly performs all operations but it may try to discover the original con-
tent of unpopular data. We do not consider scenarios where the CSP behaves
in a byzantine way. We assume that CSP cannot collude with the IS since this
component is trusted. Since the goal of the malicious CSP is to discover the
content of unpopular blocks, we analyze in detail whether (and how) confiden-
tiality is guaranteed for unpopular data in all phases of the protocol. However, if
the user wants to keep a file confidential even when it becomes popular, he may
encrypt the file with a standard encryption solution and upload it to the cloud
without following the protocol steps. Finally, we also analyze some attacks that
may be perpetrated by users themselves and propose simple countermeasures
against them.

Security of blocks stored at the CSP By definition, an unpopular block is
encrypted using a semantically-secure symmetric encryption. The confidentiality
of unpopular data segments thus is guaranteed thanks to the security of the
underlying encryption mechanism.

Security during Popularity Check The information exchanged during the
Popularity Check must not reveal any information that may leak the identity of
an unpopular block owned by the user. The identity of an unpopular block is
protected thanks to the one-wayness of the secure PHF: the query generated by
the client does not include the actual unpopular block ID but an integer i that
is calculated by evaluating the secure PHF on the block ID. Simple guessing by
exploring the results of the secure hash function embedded in the PHF is not
feasible thanks to the one-wayness of the underlying secure hash function (SHA-
3 [24]). In addition to that, when the PHF is evaluated over an unpopular block
ID, there is definitely a collision between the ID of the unpopular block and
the ID of a popular block stored at the CSP. These collisions serve as the main
countermeasure to the disclosure of the unpopular block ID sent to the CSP
during the lookup. With a reasonable assumption, we can also consider that the
output of the underlying secure hash function (SHA-3) is random. In case of a
collision between an unpopular block ID and the ID of a popular block stored at
the CSP, thanks to the randomness of the underlying secure hash function, the
output of a PHF based on such a hash function is uniformly distributed between
0 and m. In the case of such a collision, the probability that the CSP guesses
the unpopular block ID used as input to the PHF by the client thus is:

m∣∣P̄
∣∣ =

|P |∣∣P̄
∣∣ ∗ α (1)

where P is the set of popular block IDs stored at the CSP, P̄ is the rest of
the block ID domain including all possible unpopular block IDs, α is the load

factor of the PHF such that m = |P |
α .
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Assuming that the cardinality of the entire domain is much larger than the
cardinality of the set of popular block IDs (which is the case if popular block
IDs are the result of a secure hash function), we can state that the number of
collisions per index is large enough to prevent a malicious CSP from inferring
the actual block ID used as input to the PHF. In a typical scenario using a
PHF based on a secure hash function like SHA-3, whereby the complexity of a
collision attack would be 2256, and a popular block ID set with 109 elements,
this probability will be (α = 0.81):

109

(2256 − 109) ∗ 0.81
≈ 1.06 ∗ 10−68 (2)

Hence collisions can effectively hide the identity of unpopular blocks from an
untrusted cloud provider while keeping the lookup protocol extremely efficient
and lightweight for the users.

Security against potential protocol vulnerabilities We now consider a
few additional attacks that may be perpetrated by the CSP. For each of them,
we propose simple but effective countermeasures, which are easy to implement
and do not significantly increase the computational and network overhead. First,
we consider that the CSP may pre-build a PHF based on some specific data (de-
rived for example from a dictionary) which have not been yet uploaded by users.
Within such a scenario, clients would detect their requested block to be popu-
lar although it has never actually been uploaded by any user; such a block will
then be stored with a lower level of protection. As a countermeasure to such an
attack, we propose that the IS attaches a signature to each popular block ID
upon the Popularity Transition. Therefore, the IS will sign popular block IDs be-
fore being stored at the CSP, enabling clients to verify the authenticity of these
blocks when running the popularity check. Such a countermeasure would have a
minimal impact on the performance of the system. Another attack we consider
is related to the confirmation-of-file attack to which convergent encryption is
also vulnerable [9]. Indeed, upon a Popularity Check, the CSP may compare the
sequence of indices sent by the client with the sequence produced by a given pop-
ular file F. If the two sequences match, then there is a chance that the client is
actually uploading F. In order to hide this information from the CSP, the client
may add a number of random indices to the list of indices being sent upon the
Popularity Check. Thanks to the resulting noise included in the index list, the
identification of the target file by the CSP will be prevented. This countermea-
sure also prevents the CSP from running the learn-the-remaining-information
attack. Moreover, the overhead due to this countermeasure is negligible both in
terms of bandwidth and computation.

Security against users Users may force a popularity transition by repeat-
edly uploading random or targeted blocks. As a countermeasure, the popularity
threshold may be set to a value t′ = t + u, where u is the expectation of the
maximum number of malicious users. As opposed to the proposal of [10], the
threshold can be dynamically updated at any time of the system life. Indeed,
this parameter is transparent to both users and the CSP, hence the Index Ser-
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vice can update it depending on the security needs. Users may also perpetrate
a DoS attack by deleting random blocks stored at the cloud. This may happen
upon a popularity transition: the client is asked to attach a list of block IDs
that may not be the actual encrypted copies of the block being uploaded. We
suggest making the Index Service sign the list of block IDs to be deleted so that
the cloud can verify whether the request is authentic. This signature does not
significantly increase the overhead since several schemes for short signatures [22]
have been proposed in the literature.

7 Performance Evaluation

7.1 Prototype Implementation

In order to prove the feasibility of our approach, we implemented a proof-of-
concept prototype consisting of the three main components, namely, the Client,
the IS and the CSP. All components have been implemented in Python. Cryp-
tographic functions have been implemented using the pycrypto library4. Both
the Client and the IS run on an Ubuntu VM hosted on our OpenStack platform,
while the CSP runs on an Ubuntu VM hosted on Amazon EC2 (EU Region). The
IS uses REDIS5 in order to store the information on unpopular blocks, which
are encoded as lists. Metadata (block IDs, file IDs, files structures, encrypted
keys) are stored in a MySQL database. Perfect Hashing has been implemented
using the CMPH library6 at both the Client and the CSP. In order to achieve
one-wayness, we customized CMPH by replacing the internal hash function with
SHA256 [20]. We stress the fact that this is a proof-of-concept implementation,
therefore for the sake of simplicity the CSP has been deployed on a VM where
data blocks are stored locally. In a production environment, the CSP service
may be deployed on a larger scale and any storage provider such as Amazon S37

may be employed to physically store blocks.

We consider a scenario where the client uploads a 10MB file to the CSP pre-
filled with 106 random blocks. We propose to first evaluate the computational
overhead of each single component and measure the total time a client needs
to wait during each phase until the data upload has been completed. We then
analyze the network overhead of the proposed solution. Our analysis considers
the three previously described scenarios:

– Scenario 1 (Unpopular File): the file to be uploaded is still unpopular;

– Scenario 2 (Popularity Transition): the file has triggered a popularity tran-
sition hence is going to become popular;

– Scenario 3 (Popular File): the file to be uploaded is already popular.
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Fig. 2. Portion of the total computation time spent at each component in each scenario

7.2 Computational Overhead

In this section we present our measurements of the computational overhead at
each component and then show the total time a client takes to upload a file.
Figure 2 shows an aggregate measure of all computation-intensive operations
each component performs. The results prove that, as expected, the computa-
tional overhead introduced in the CSP is much higher than the one affecting the
client. Also, since the operations performed by the IS are extremely simple, its
computational overhead is negligible.

Figure 3 shows more detailed results by highlighting which operations intro-
duce a higher computational overhead. The results prove that:

– Symmetric encryption introduces a negligible computational overhead, hence
it does not affect the system performance;

– The client-side Popularity Check is extremely lightweight and thus intro-
duces a negligible computational overhead;

– The most computation-intensive operations (PHF generation, hash table
storage, upload processing) are performed by the CSP, hence a big fraction
of the computational overhead is outsourced to the CSP.

Figures 4 and 5 show the results of an in-depth study on the performance of
the Perfect Hashing algorithm, both in terms of storage space and computation
time for the generation of the PHF. The generation time also includes the time
needed to store the hash table. We measured these quantities on a dataset of
106 random block IDs while varying the load factor and the bucket size. The
former is a coefficient indicating the fraction of non-empty positions in the final
collision-free hash table; the latter is the mean number of elements in each subset
of the input set (see [11] for further details). As we can observe from Figures 4
and 5, the optimal bucket size is between 3 and 4 and the load factor should not

4 https://pypi.python.org/pypi/pycrypto
5 http://redis.io
6 http://cmph.sourceforge.net/
7 https://aws.amazon.com/s3
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Fig. 3. Total time spent during each phase of the protocol in each scenario

be greater than 0.8. These parameters can be tuned depending on the scenario
(e.g. bandwidth) in order to achieve the best performance.

Fig. 4. Analysis of PHF generation time with varying parameters for a set containing
106 elements

Furthermore, as mentioned earlier, in order to improve the security of our
novel lookup protocol, we replaced the default hash function employed by the
CMPH library (Jenkins [21]) with SHA-3. This improvement is required for the
following reason: using a non-secure hash function would allow an adversary such
as the CSP to easily enumerate all block IDs mapped to a given index of the
hash table. Such a threat may compromise the security of the whole system and
make the popularity check protocol insecure.

Conclusion Figure 6 summarizes all measurements by showing the total time
spent during each phase of the upload protocol within the three scenarios. These
results show that despite the delay introduced by the Popularity Check phase,
the user achieves a throughput of approximately 1MB per second even when a
file does not contain any popular block.
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Fig. 5. Analysis of PHF size with varying parameters for a set containing 106 elements

Fig. 6. Total time spent by all components when uploading a file (including Popularity
Check) in each scenario

7.3 Communication Overhead

In this section we analyze the communication overhead of our scheme consider-
ing the same scenarios. The upload has been split into multiple sub-operations:
PHF Download, Popularity Check, Index Service Update (not performed in Sce-
nario 2) and the Upload. For each of these operations we analyze the size of
all messages exchanged (both requests and responses). Table 1 regroups all the
results expressed in MB. The PHF Download response size is linear with respect
to the set of popular block IDs. The larger the set, the larger the response will
be. However, as shown in [11], the size of PHF file is about 1.4 bits per popular
block ID; hence this operation does not introduce a significant delay even when
dealing with very large datasets. We point out that the PHF file does not have
to be downloaded at every request, since the user can cache it. Furthermore, the
size of the Popularity Check request and response is linear with respect to the
number of blocks in the file that is being uploaded. The Popularity Check request
contains a list of indices (one integer per block), while the response contains a
list of block IDs (one per index) of 32 bytes each. The Index Service Update
request is only sent for unpopular blocks. The request consists of two block IDs
(32 bytes each) per block. The response size varies depending on whether the
popularity transition occurs. If the file has triggered a popularity transition, then
the response includes a list of block IDs, otherwise it is empty. As we can see
from Table 1, requests and responses of the Popularity Check and the Index
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Service Update operations have a negligible size with respect to the file size.
Finally, the size of the Upload request varies depending on the block status. If
a block is popular, the request only consists of the block ID and one key (32
bytes). If a block is not popular, the request contains the encrypted data, two
keys (32 bytes each) and a few fields: the file ID (32 bytes), the user ID and
the block status (1 byte). As shown in Table 1, the overhead introduced by the
Upload is minimal and mainly depends on the encoding method used to transfer
the encrypted binary data. For simplicity, we used JSON objects to pack en-
crypted blocks and keys and Base64 to encode binary data, which increases the
size of the data by 1/3. To summarize, the preliminary operations performed in
our scheme before the Upload introduce a negligible communication overhead.
In addition, the scheme does not affect the gains in terms of storage space and
bandwidth achieved thanks to deduplication.

SCENARIO 1 SCENARIO 2 SCENARIO 3

PHF DOWNLOAD IN 0.67 0.67 0.67

POPULARITY CHECK REQUEST 0.004 0.004 0.004

POPULARITY CHECK RESPONSE 0.02 0.02 0.02

INDEX SERVICE UPDATE REQUEST 0.1 0.1 -

INDEX SERVICE UPDATE RESPONSE 0.009 0.04 -

UPLOAD REQUEST 13.51 13.47 0.09

Table 1. Communication overhead (in MB) introduced by each operation

8 Related Work

Secure deduplication for cloud storage has been widely investigated both in the
literature and in the industry. Convergent encryption, has been proposed as a
simple but effective solution to achieve both confidentiality and deduplication
[1, 3, 4]. However, it is vulnerable to well-known attacks which put data confi-
dentiality at risk [3, 4]. A relevant work on this topic is DupLESS [8], which is
based on a privacy-preserving protocol running between the user and a trusted
key server. If an attacker learns the secret stored at the key server, confiden-
tiality can no longer be guaranteed. Recently, a system called ClouDedup [9]
has been proposed, which achieves secure and efficient block-level deduplication
while providing transparency for end users. However, the system relies on a
complex architecture in which users have to trust an encryption gateway which
takes care of encrypting/decrypting data. Similarly to DupLESS, the leakage of
the secret key compromises confidentiality.Another relevant work is iMLE [2],
which proposes an elegant scheme for secure data deduplication. However, the
scheme is purely theoretical, hence cannot be adopted in real scenarios. In fact, it
makes an extensive use of fully homomorphic encryption [23]. To the best of our
knowledge, one of the most recent and relevant works in the field of secure data
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deduplication is [10], which is based on the idea of differentiating data protection
depending on its popularity and makes use of a mixed cryptosystem combining
convergent encryption and a threshold encryption scheme. However, this work
suffers from a few drawbacks which we aim to solve. First, the system suffers
from a significant storage and bandwidth overhead. Indeed, for each unpopular
file the user uploads two encrypted copies, one encrypted with a random sym-
metric key and one encrypted with the mixed encryption scheme. In scenarios
with a high percentage of unpopular files, the storage overhead will be signif-
icant and nullify the savings achieved thanks to deduplication. We propose to
eliminate the storage overhead by storing one single copy for each data segment
at a time, encrypted with either a random symmetric key or a convergent key.
Second, the system proposed in [10] relies on a trusted component which pro-
vides an indexing service for all data, both popular and unpopular. We propose
to limit the usage of this trusted component to unpopular data. In our scheme,
popular data can be detected thanks to the secure lookup protocol, whereby
[10] relies on the trusted component. Third, the effectiveness of the system pro-
posed in [10] is limited to file-level deduplication, which is known to achieve
lower space savings than block-level deduplication. Fourth, both the client and
the CSP have to perform complex cryptographic operations based on threshold
cryptography on potentially very large data. As opposed to this, our proposed
scheme has been designed to perform only simple and lightweight cryptographic
operations, which significantly lowers the cost for the client. Fifth, our scheme
does not require any coordination or initialization among users as opposed to
[10]’s requirement to setup and distribute key shares among users.

9 Conclusion and Future Work

We designed a system which guarantees full confidentiality for confidential files
while enabling source-based block-level deduplication for popular files. The main
building block of our system is our novel secure lookup protocol built on top of
an enhanced version of Perfect Hashing. To the best of our knowledge, this is the
first work that uses Perfect Hashing for a different purpose other than database
indexing. Our system is not based on any key-management protocol, hence it
does not require users to agree on a shared secret or trust a third party for
storing encryption keys. A semi-trusted component is employed for the purpose
of storing metadata concerning unpopular data and providing a support for
detecting popularity transitions, meaning that a data block has just reached the
popularity threshold. We also implemented a prototype of the proposed solution.
Our measurements show that the storage, network and computational overhead
is affordable and does not affect the advantage of deduplication. Also, we showed
that the computational overhead is moved to the CSP, while the client has to
perform very lightweight operations. As part of future work, PerfectDedup may
be optimized in order to reduce the overhead due to the PHF generation and
transmission.
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Abstract. While Searchable Encryption (SE) has been widely studied,
adapting it to the multi-user setting whereby many users can upload
secret files or documents and delegate search operations to multiple other
users still remains an interesting problem. In this paper we show that
the adversarial models used in existing multi-user searchable encryption
solutions are not realistic as they implicitly require that the cloud service
provider cannot collude with some users. We then propose a stronger
adversarial model, and propose a construction which is both practical
and provably secure in this new model. The new solution combines the
use of bilinear pairings with private information retrieval and introduces
a new, non trusted entity called “proxy” to transform each user’s search
query into one instance per targeted file or document.

1 Introduction

Cloud computing nowadays appears to be the most prominent approach for
outsourcing storage and computation. Despite well known advantages in terms
of cost reduction and efficiency, cloud computing also raises various security and
privacy issues. Apart from classical exposures due to third party intruders one
of the new requirements akin to outsourcing is the privacy of outsourced data
in the face of a potentially malicious or careless Cloud Service Provider (CSP).

While data encryption seems to be the right countermeasure to prevent pri-
vacy violations, classical encryption mechanisms fall short of meeting the privacy
requirements in the cloud setting. Typical cloud storage systems also provide
basic operations on stored data such as statistical data analysis, logging and
searching and these operations would not be feasible if the data were encrypted
using classical encryption algorithms.

Among various solutions aiming at designing operations that would be com-
patible with data encryption, Searchable Encryption (SE) schemes allow a po-
tentially curious party to perform searches on encrypted data without having to
decrypt it. SE seems a suitable approach to solve the data privacy problem in
the cloud setting.

A further challenge is raised by SE in the multi-user setting, whereby each
user may have access to a set of encrypted data segments stored by a number of
different users. Multi-user searchable encryption schemes allow a user to search
through several data segments based on some search rights granted by the owners
of those segments. Privacy requirements in this setting are manifold, not only the



confidentiality of the data segments but also the privacy of the queries should be
assured against intruders and potentially malicious CSP. Recently, few research
efforts [5, 8, 12, 15] came up with multi-user keyword search schemes meeting
these privacy requirements, either through some key sharing among users or
based on a Trusted Third Party (TTP).

In this paper, we first investigate the new privacy challenges for keyword
search raised by the multi-user setting beyond the basic privacy concerns about
data, queries and responses by focusing on the relationship among multiple
queries and responses. We realize that while as analyzed in [7], the protection of
the access pattern privacy (privacy of the responses) is optional for single-user
searchable encryption mechanisms, this requirement becomes mandatory in the
multi-user setting. Unfortunately all existing Multi-User Searchable Encryption
(MUSE) schemes [5,8,12,15] suffer from the lack of such protection. We further
come up with a new adversary model for MUSE that takes into account new
security exposures introduced by the possible collusion of some users with the
CSP.

After showing that all existing MUSE schemes fail at meeting the privacy
requirements in our new adversarial model, we suggest a new solution for MUSE
for which it is not the case, i.e., all users who have not been explicitly authorized
to search a document can collude with the adversary without threatening the
privacy of that document. Our solution for MUSE inherently ensures access
pattern privacy through the use of Private Information Retrieval (PIR). While
the PIR protocol together with the multi-user setting may add a significant
complexity overhead, this overhead is outsourced from the users to a third party
our scheme introduces, the proxy, that is in charge of multiplexing a user query
into several PIR queries. Moreover the overhead of PIR is further lowered by
querying binary matrices representing the keyword indices instead of querying
the bulky keyword lists themselves. As opposed to most existing solutions based
on a TTP [3,5,8,15], the proxy in our scheme does not need to be trusted. With
the sole assumptions that the CSP and the proxy are honest-but-curious and
that they do not collude with one another, we prove that our solution meets the
privacy requirements defined for MUSE.

Section 2 states the problem addressed by MUSE. Section 3 describes our
solution for MUSE and Section 4 defines the security properties for MUSE.
Section 5 proves that our solution achieves the security properties we defined and
Section 6 studies the algorithmic complexity of our solution. Section 7 reviews
the state of the art and, finally, Section 8 concludes the paper.

2 Multi-User Searchable Encryption (MUSE)

A MUSE mechanism extends existing keyword search solutions into a multi-
writer multi-reader [6] architecture involving a large number of users, each of
which having two roles:

– as a writer, the user uploads documents to the server and delegates keyword
search rights to other users.



– as a reader, the user performs keyword search operations on the documents
for which she received delegated rights.

As any SE solution, MUSE raises two privacy requirements:

– index privacy : unauthorized parties should not discover information about
the content of uploaded documents.

– query privacy : no one should get information about the targeted word and
the result of a search operation apart from the reader who sent the corre-
sponding query.

In addition to the CSP, any user that has not been explicitly given search
rights on an index should be considered as potentially colluding with the CSP
in order to violate index or query privacy. This assumption leads to a model
in which the adversary is composed of a coalition of the CSP and some non-
delegated users. This new adversary model extends the one used in other existing
MUSE schemes [5,7,12,15], which although secure in their own adversary model
do not achieve index and query privacy any more if non-delegated users collude
with the CSP.

Figure 1 illustrates one example of the impact of a collusion between a CSP
and a user on privacy by taking advantage of the lack of access pattern privacy.
Assuming that R1 is authorized to query both indices I1 and I2, by observing
the access pattern of R1’s queries, the CSP can discover similarities between Ia
and Ib. In a second phase, the CSP corrupts reader R2 who is authorized to
query Ib only. By exploiting the similarities between Ia and Ib and discovering
the content of Ib through R2, the CSP can easily discover the content of Ia. The
index privacy is thus violated for Ia since the CSP partially learns the content
of Ia although R1, the only reader having delegated search rights for Ia, was not
corrupted. Furthermore, once the CSP obtains information about the content
of an index, observing the access pattern of the queries targeting this index
enables the CSP to violate the privacy of these queries. This attack allows to
violate both query and index privacy in all existing MUSE schemes since they all
let the CSP discover the access pattern of the queries. The new adversary model
we introduce not only prevents such an attack but also prevents any attack that
would require the corruption of a non-delegated user.

3 Our Solution

3.1 Idea

Our solution introduces a third party called the proxy that performs an algorithm
called QueryTransform to transform a single reader query into one query per tar-
geted document 1. For each of these queries, the proxy sends to the CSP a specific

1 Note that the set of targeted document can reveal the authorized set of documents
for this particular user. However, such an additional information does not have a
serious impact on index or query privacy as access pattern leakage has.



Fig. 1. In (a), discovery of similarities through the access pattern. In (b), use of the
similarities to extend index privacy violation.

PIR request. Thanks to the PIR protocol the CSP does not have access neither
to the content of the query nor to its result, which makes our scheme achieving
query privacy (including access pattern privacy) against the CSP. While the use
of PIR provides privacy against the CSP, a new privacy exposure raises with re-
spect to the proxy. Indeed through the execution of QueryTransform, the proxy
is able to discover the relationship between a query and the different ciphertexts
in the targeted indices which are the encryption of the same keyword. However
with the assumption that the proxy does not collude with the CSP, the proxy
cannot realize whether these ciphertexts are present in their respective indices or
not; thus, our scheme achieves index privacy against the proxy. Moreover thanks
to some randomization of the queries and the encryption of the responses by
the CSP with the reader’s key, the proposed solution also ensures query pri-
vacy against the proxy. Consequently, while our solution does introduce a third
party (the proxy), this third party does not need to be trusted and is
considered as an adversary. Both the CSP and the proxy are then considered
as potentially malicious in our scheme, and are only assumed honest-but-curious
and non colluding with each other.

Another advantage of introducing the proxy into this new MUSE solution is
scalability: Indeed, thanks to the QueryTransform algorithm executed by the
proxy a user does not need to generate several PIR queries (one per index) for
the same keyword.

3.2 Preliminaries

Bilinear Pairings Let G1, G2 and GT be three groups of prime order q and g1,
g2 generators of G1 and G2 respectively. e : G1 ×G2 → GT is a bilinear map if
e is:



– efficiently computable
– non-degenerate: if x1 generates G1 and x2 generates G2, then e(x1, x2) gen-

erates GT
– bilinear: e(ga1 , g

b
2) = e(g1, g2)ab ∀(a, b) ∈ Z2

We assume that the widely used eXternal Diffie-Hellman (XDH) assumption
[4] holds.

Definition 1 (External Diffie Hellman assumption). Given three groups
G1, G2 and GT and a bilinear map e : G1 × G2 → GT , the Decisional Diffie-
Hellman (DDH) problem is hard in G1, i.e., given (g1, g

α
1 , g

β
1 , g

δ
1) ∈ G4

1, it is
computationally hard to tell if δ = αβ.

Private Information Retrieval (PIR) A PIR protocol allows a user to retrieve
data from a database without revealing any information about the retrieved
data.

PIR consists of five algorithms:

– PIR.Setup()→ PIRParams
– PIR.KeyGen() → (PirKey): this algorithm outputs the keying material

for PIR.
– PIR.Query(PirKey, size, target) → Query: given PIR parameters, the

size of the targeted database and a target position, this algorithm outputs a
PIR query targeting the given position in a database of the given size.

– PIR.Process(Query,DataBase) → R: this algorithm applies the query
Query on the database DataBase and outputs a response R.

– PIR.Retrieve(R,P irKey) → Cell: given a PIR response R and the PIR
key used in corresponding query, this algorithm outputs the value of the
retrieved database cell.

Single-database computational PIR has already been widely studied [1,2,10,
11], and the results presented in [1] show that solutions with practical perfor-
mances already exist. Our solution uses the technique of recursive PIR which
allows to reduce communication complexity as explained in [1]: The database is
viewed as a matrix each row of which is considered as a sub-database. To query
the whole database a single query is sent and this query is further applied on
each row, resulting in the generation of many PIR responses.

3.3 Protocol Description

Figure 2 illustrates the structure and the various flows of our solution. We define
two phases in the protocol, the upload phase and the search phase: During the
upload phase, a writer A uploads a secure index to the CSP by encrypting each
keyword with the Index algorithm. A then delegates search rights to reader B
using the Delegate algorithm which computes an authorization token using B’s
public key and A’s private key. The authorization token is sent to the proxy.
During the search phase, B can further search all the indices for which she has



Fig. 2. Overview of our solution.

been given search rights, by creating a single query through the execution of
QueryCreate. Whenever the proxy receives the B’s query it uses the autho-
rization tokens attributed to B to transform this query into one PIR query per
authorized index through the execution of QueryTransform. Upon reception of
a PIR query, the CSP through the execution of Respond builds a binary matrix
using the corresponding encrypted index, applies the query to the matrix and
encrypts the resulting PIR answers. The responses are then pre-processed by the
proxy through the execution of ResponseF ilter. Finally B obtains the result of
her search query by executing ResponseProcess.

Revocation in our solution only consists in the deletion of the appropriate
authorizations by the proxy upon a writer’s request.

The set of users is denoted by ui1≤i≤N . For the sake of clarity, each user ui
is assumed to own only one index Ii.

– Setup(κ)→ params: given the security parameter κ, this algorithm outputs
the parameters param consisting in:
• a description of the bilinear map that will be used: the three groups G1,
G2, GT of prime order q, the two generators g1 and g2 and the map itself
e.

• a cryptographically secure hash function h : {0, 1}∗ → G1

• the size n of the matrices for PIR, and a hash function H : GT →
J0, n−1K to transform encrypted keywords into positions in the matrices.
Without loss of generality, n is assumed to be a perfect square.

• the PIR parameters PIRParams from the execution of PIR.Setup
• a symmetric cipher Enc and the corresponding decipher algorithm Dec.

All these parameters are considered implicit for each further algorithm.
– KeyGen(κ) → (γ, ρ, P,K): given the security parameter κ, a user ui gen-

erates the following keys:



• a secret writer key γi
$←− Z∗q

• a private reader key ρi
$←− Z∗q

• a public reader key Pi = g
1
ρ

2

• a transmission key Ki used for Enc/Dec. This key is shared with the
CSP.

– Index(w, γi)→ w̃: Writer ui executes this algorithm to encrypt keyword w
with his key γi. The algorithm outputs w̃ = e(h(w)γi , g2).

– Delegate(γi, Pj) → ∆i,j : Provided with the public key Pj of reader uj ,
writer ui executes this algorithm using its secret key γi to generate ∆i,j =
P γij the authorization token that authorizes uj to search the index Ii. The
output ∆i,j is sent to the proxy which adds it to the set Dj . Note that this
token can only be created by the legitimate data owner and cannot be forged
by any other party including the CSP and the proxy.

– QueryCreate(w, ρj)→ Qj : This algorithm is run by an authorized reader
to generate a query for keyword w using its private reader key ρj . The

algorithm draws a randomization factor ξ
$←− Z∗q and outputs Qj = h(w)ξρj .

– QueryTransform(Qj , Dj) →< Q′i,j >: Whenever the proxy receives a
reader’s query Q, it calls this algorithm together with the set Dj .
For each authorization token ∆i,j in D, the algorithm creates a PIR query
Q′j as follow:

• compute Q̃i,j ← e(Qj , ∆i,j)

• compute x′||y′ ← H(Q̃i,j)
• some PIR keying material is generated: PirKey ← PIR.KeyGen()
• a
√
n-size PIR query is created that targets position y′:

Q′i,j ← PIR.Query(PirKey,
√
n, y′)

The algorithm outputs < Q′i,j > which are forwarded to the CSP together
with the corresponding identifiers i of the indices. The proxy additionally
stores each generated PIRKey and x′ in a table in order to use them upon
reception of the corresponding response.

– Respond(Q′, I, ξ) → R: Whenever the CSP receives an individual PIR
query Q′, it executes this algorithm using the corresponding index I and
the randomization factor ξ corresponding to this query.
The algorithm initializes a

√
n × √n matrix M with “0”. Then for each

encrypted word w̃ ∈ I, the cell Mx,y is set to “1” where x||y ← H(w̃ξ)
(recall that w̃ ∈ GT ). The response is the tuple of the outputs from the
application of the PIR query Q′ on each row of the binary matrix M : R̃ ←
(PIR.Process(Q′,Mx) | Mx a row of M). Each component of R̃ is then
encrypted with algorithm Enc using the transmission key K of the querying
reader to obtain R which the algorithm outputs. This layer of encryption
prevents the proxy from reading the result of the query.

– ResponseFilter(R, x′, P irKey) → (R′, P irKey): Whenever the proxy re-
ceives a response R it calls this algorithm together with the x′ and PirKey
associated to the corresponding query. The purpose of this algorithm is to
reduce the communication cost for the reader. Indeed the algorithm extracts



the x′-th component of R and outputs it together with the value for PirKey.
This results in a filtered response which is much smaller than the original
response.

– ResponseProcess(R′, P irKey,K) → b ∈ {0, 1}: On receiving the filtered
response R′ with the corresponding PirKey, the reader executes this algo-
rithm using her transmission key K. The algorithm further outputs the value
of PIR.Retrieve(DecK(R′), P irKey) which corresponds to the content of
the retrieved matrix cell. An output of 1 means that the searched keyword
is present in the index, and a 0 means that it is absent.

3.4 Correctness

We now show that a query correctly retrieves a particular cell which content
corresponds to whether the queried keyword has been uploaded or not.

Let γ be the encryption key of a given index. If keyword w has been uploaded
to that index, then the cell Mx,y of the corresponding matrix is equal to 1 with
x||y = H(e(h(w), gγ2 )). Conversely if a given cell Mx,y is equal to 1 then with
high probability the corresponding keyword w where x||y = H(e(h(w), gγ2 )) has
been uploaded. A false positive implies a collision in either H or h. Thus the
content of Mx,y corresponds to the upload of w.

Secondly, a query for keyword w in that index will retrieve cell Mx′,y′ with:

x′||y′ = H(e(h(w)ρ, g
γ
ρ

2 )) = H(e(h(w), gγ2 )) = x||y . (1)

Thus a response to a query will decrypt to the content of the proper cell and
our scheme is correct.

4 Security Model

Our security definitions are game-based definitions, where the games are repre-
sented by algorithms. Since the CSP and the proxy are considered as two non-
colluding adversaries, security will be defined for each of them independently.
The consequence of the non-collusion assumption is that each adversary will see
the other one as an oracle. For each adversary type we define one game for index
privacy and one game for query privacy. For each definition, the correspond-
ing game consists of seven phases: a setup phase, a learning phase, a challenge
phase, a restriction phase, second learning and restriction phases identical to the
previous ones, and finally a response phase. The adversary is denoted by A.

4.1 Security with the CSP as Adversary

We now formally define Index Privacy and Query Privacy considering the CSP
as the adversary. In the following two definitions the setup and the learning
phases are the same and are described in Alg. 1. The challenge and restriction
phases for index privacy are further described in Alg. 2 and the ones for query
privacy are described in Alg. 3. Finally during the response phase, A outputs a
bit b∗ representing its guess for the challenge bit b.



/* Setup phase */

A ← Setup();
for i = 1 to N do

(γi, ρi, Pi,Ki)← KeyGen(κ) ;
A ← (i, Pi,Ki) ;

end
/* First learning phase */

for j = 1 to a polynomial number l1 do
A → query ;
switch query do

case Index for word w and user ui
A ← Index(w, ui);

case Corrupt user ui
A ← (ρi, γi,Ki)

case Delegation of user ui by user uj
/* A does not receive any value, but the delegation will

modify the set Di used in QueryTransform */

end
case Queries for word w from user ui

/* Di comes from the Delegations queried by A */

A ← QueryTransform(QueryCreate(w, ρi), Di);
/* A also receives the randomization factor ξ */

A ← ξ;

case Queries for user query Q from corrupted user ui
A ← QueryTransform(Q,Di);

case Filtered response for response R from corrupted user ui
A ← ResponseF ilter(R)

endsw

end

Algorithm 1: Setup and learning phases of both index privacy and query
privacy games, whereby A is the CSP

/* Challenge phase */

A → (uchall, w
∗
0 , w

∗
1);

b
$←− {0, 1};

A ← Index(w∗b , uchall);
/* Restriction phase */

if uchall is corrupted OR Index for w∗0 or w∗1 for user uchall has been previously
queried OR a corrupted user has been delegated by uchall then

HALT;

end

Algorithm 2: Challenge and restriction phases of the index privacy game
whereby A is the CSP



/* Challenge phase */

A → (uchall, w
∗
0 , w

∗
1);

b
$←− {0, 1};

A ← QueryTransform(QueryCreate(w∗b , ρchall), Dchall);
/* Restriction phase */

if uchall is corrupted then
HALT;

end

Algorithm 3: Challenge and restriction phases of the query privacy game
whereby A is the CSP

Definition 2 (Index Privacy Against the CSP). We say that a MUSE
scheme achieves index privacy against the CSP when the following holds for the
index privacy game (Alg. 1 and Alg. 2): |Pr[b = b∗]− 1

2 | ≤ ε, with ε a negligible
function in the security parameter κ.

Definition 3 (Query Privacy Against the CSP). We say that a MUSE
scheme achieves query privacy against the CSP when the following holds for the
query privacy game (Alg. 1 and Alg. 3): |Pr[b = b∗]− 1

2 | ≤ ε, with ε a negligible
function in the security parameter κ.

4.2 Security with the Proxy as Adversary

Due to space limitations we do not provide the detailed description of index
and query privacy games whereby the proxy is considered as the adversary. In a
nutshell, the main differences with the previous games are the following:

– during the learning phase the proxy can query for the Respond algorithm
executed by the CSP, but does not query for the QueryTransform and
ResponseF ilter algorithms. Moreover the proxy receives the output of the
Delegate algorithm, but does not get the transmission key and the random-
ization factors of the users.

– during the challenge phase, the proxy does not receive the output of the
Index algorithm for index privacy, and receives the output of QueryCreate
for query privacy.

5 Security Analysis

Inspired by the methodology in [14], in order to prove each security property
we define a sequence of games (gamei)i=0..n, the first game being the original
security definition. For each game gamei a “success event” Si is defined as the
event when the adversary Ai correctly guesses the challenge bit b used as part of
the challenge. For every two consecutive games gamei and gamei+1, it is shown
that |Pr[Si] − Pr[Si+1]| is negligible. Then it is shown that the probability of



success Pr[Sn] of the last game is the target probability, namely 0.5. Hence the
probability of success of the first game is negligibly close to the target probability,
which ends the proof.

Due to space limitations we provide a detailed proof for index privacy against
the CSP only.

5.1 Index Privacy with the CSP as the Adversary

Theorem 1. Our construction achieves index privacy against the CSP.

game0 Let game0 be the game of Definition 2 (Alg. 1 and Alg. 2). The success
event S0 is “b = b∗”.

game1 The only difference between game0 and game1 is that in game1, the
adversary A1 can no longer send queries requesting the corruption of a user.
Consequently A1 can neither send queries related to corrupted users, namely
queries for QueryTransform and ResponseF ilter.

Lemma 1. If Pr[S1] is negligibly close to 0.5, then Pr[S1] and Pr[S0] are negli-
gibly close.

Proof. This Lemma is proved by introducing an adversary A1 executing the
algorithm depicted in Alg. 4.
A1 plays game1 using adversary A0 playing game0. To that effect, A1 sim-

ulates an instance of game0 with respect to A0 and responds at game1 using
the response of A0. Since, as opposed to A0, A1 cannot corrupt any user, A1

has to fabricate responses to A0’s corruption queries as part of the simulated
instance of game0. To do so, A1 simulates corrupted users by locally generating
keys which are sent to A0 as a response to the corruption query. These same
generated keys must be used in all responses related to this corrupted user in
order for A1 to simulate a consistent instance of game0. However A0 may have
sent queries related to this user before the corruption query. A way for A1 to
ensure the required consistency is to choose a set of users that will be simulated
from the beginning. If A0 sends a request to corrupt a user that A1 chose not to
simulate, A1 cannot simulate a proper instance of game0 any more. Simulation
also fails if a user that was simulated by A1 is chosen by A0 to be the challenge
user or a delegate of the challenge user. We define the event C as when none
of the previous cases occur, i.e., C is “A0 does not corrupt any non-simulated
user and A0 does not chose any simulated user as either the challenge user or
a delegate of the challenge user”. We also define the event C ′ as “all users but
the challenge user and her delegates are simulated”. Since C ′ implies C we have
Pr[C] ≥ Pr[C ′], and actually Pr[C] is expected to be much greater than Pr[C ′].
Whenever the event C occurs, A0 received a valid instance of game0 with the
challenge value from the instance of game1, and thus the probability for A1 to
succeed at game1 is the probability of A0 to succeed at game0:

Pr[S1|C] = Pr[S0] . (2)



A1 receives data from game1 setup phase;
/* A1 simulates some users to A0 */

Sim
$←− P([1..N ]);

for i ∈ Sim do
(γ′i, ρ

′
i, P
′
i ,K

′
i)← KeyGen(κ)

end
for i from 1 to N do

if i ∈ Sim then
A0 ← (i, P ′i ,K

′
i);

else
A0 ← (i, Pi,Ki)

end

end
/* Learning phase 1 */

for a polynomial number l1 of times do
A0 → query;
if A1 knows all the input values for the corresponding algorithm then
A1 runs the algorithm locally and sends back the answer;

else
if query was for corruption then

/* exit with random guess */

b∗
$←− 0, 1;

A1 → b∗;
HALT;

else
A1 forwards the call to game1 and forwards the answer to A0;

end

end

end
/* Challenge phase */

A1 forwards everything from A0 to game1 and back.
/* Learning phase 2 */

Same as learning phase 1;
/* Response phase */

A1 forwards the bit b∗ outputted by A0;

Algorithm 4: Algorithm run by A1 the transition adversary from game0
to game1. Restrictions phases are omitted.

If the simulation of game0 fails, A1 can still give a random answer to game1
which implies:

Pr[S1|¬C] = 0.5 . (3)

Finally we define the event C ′i as “user ui is either simulated or challenge-or-
delegate, but not both”. We have Pr[C ′i] = 0.5 and Pr[C ′] =

∏
i=1..N Pr[C

′
i]

thus Pr[C ′] = 2−N and it follows that Pr[C] ≥ 2−N . It seems reasonable to
assume that the number N of users grows at most polylogarithmically with the



security parameter κ, which implies that Pr[C] is non-negligible:

∃p polynomial in κ,
1

Pr[C]
≤ p . (4)

Then the following holds:

Pr[S1] = Pr[S1|C].P r[C] + Pr[S1|¬C].P r[¬C]

Pr[S1] = Pr[S0].P r[C] + 0.5(1− Pr[C])

Pr[S1] = Pr[C]. (Pr[S0]− 0.5) + 0.5

Pr[S0] = 0.5 +
1

Pr[C]
(Pr[S1]− 0.5)

Pr[S0]− Pr[S1] = (0.5− Pr[S1])

(
1− 1

Pr[C]

)
.

Then from (4) we have that if (0.5−Pr[S1]) is negligible then |Pr[S0]−Pr[S1]|
is negligible also. This conclude the proof of Lemma 1.

game2 In game2, calls to QueryCreate are replaced by the generation of ran-
dom bits.

Lemma 2. Pr[S2] is negligibly close to Pr[S1].

Proof. Distinguishing between game1 and game2 is equivalent to breaking the
security of the encryption scheme used in the PIR construction. This holds be-
cause corruption is not allowed in game1, and hence the adversary cannot obtain
the required PIR parameters to open the PIR query. It follows that Lemma 2 is
true.

game3 In game3, the call to Index in the challenge phase is replaced by picking
a random element in GT .

Lemma 3. Pr[S3] is negligibly close to Pr[S2].

Proof. To prove this Lemma we build a distinguishing algorithm DDDH , de-
scribed in Alg. 5, which uses a game2 adversary A2 and which advantage at the
DDH game is :

εDDH = O(
1

Nl
)|Pr[S3]− Pr[S2]| . (5)

Given the DDH problem instance (g1, g
α
1 , g

β
1 , g

δ
1) ∈ G4

1, the intuition behind
algorithm DDDH is to “put” β in the challenge word, α in the challenge user
key, and δ in the value given to A2 during the challenge phase. DDDH makes
some predictions on the queries of A2, namely on the user A2 will choose as
the challenge user and on the moment A2 will call the hash function h on the



DDDH ← (g1, g
α
1 , g

β
1 , g

δ
1);

A ← Setup();

predict
$←− [1..N ];

I
$←− [0, .., l];

for i from 1 to N do
(γi, ρi, Pi,Ki)← KeyGen(κ);
A ← (i, Pi,Ki)

end
for a polynomial number l of times do
A → query;
switch query do

case hash of word w through h
if this is the I-th call to O then

A ← gβ1
else

A ← g
O[w]
1

end

case Index for word w and user upredict
A ← e((gα1 )O[w], g2);

otherwise
normal handling of the query;

end

endsw

end
A → (uchall, w

∗
0 , w

∗
1);

b
$←− {0, 1};

if chall 6= predict OR I = 0 and O has been called with input w∗b OR I 6= 0 and
w∗b does not correspond to the I-th call to O then

bDDH
$←− 0, 1;

DDDH → bDDH ;
HALT;

end

A ← e(gδ1, g2);
A → b∗;
if b∗ = b then
DDDH → 1;

else
DDDH → 0;

end

Algorithm 5: Listing for the distinguishing algorithm DDDH from game2
to game3.

challenge word. If these predictions prove false DDDH sends a random answer to
the DDH problem. Otherwise if the predictions prove true DDDH outputs 1 if A2

wins the game and 0 if not. If the correct answer to the DDH game was 1 then



A2 was playing game2 and DDDH outputs 1 with probability Pr[S2]. Similarly
if the answer to DDH was 0 DDDH outputs 1 with probability Pr[S3] During
the whole game DDDH simulates the hash function h as a random oracle, using
O which behaves the following way: if O has stored a value for keyword w, O[w]
returns this value; else it returns a random value and stores it for future queries.

The following variable change shows that if the predictions prove right, the
adversary received a proper game instance:

α↔ γchall, g
β
1 ↔ h(w∗b ) . (6)

The probability that the predictions were correct is clearly non-negligible:
Pr[upredict = uchall] = 1/N and the probability that predicted I is correct is
O(1/l), N and l being at most polynomial in the security parameter κ.

Finally from the XDH assumption, DDH is a hard problem in G1. Thus εDDH
is negligible in κ. Given that N and l are at most polynomial in κ and from (5),
we have that |Pr[S3]−Pr[S2]| is negligible which concludes the proof of Lemma
3.

Proof of Theorem 1. In game3 the adversary does not receive any value which
depends on the challenge bit, so Pr[S3] = 0.5. Then Lemma 3 implies that Pr[S2]
is negligibly close to 0.5, Lemma 2 implies that Pr[S1] is negligibly close to 0.5
and finally Lemma 1 implies that Pr[S0] is negligibly close to 0.5. This concludes
the proof of Theorem 1.

6 Performance Analysis

During the upload phase, the cost for a user of running the Index algorithm
over the entire index is naturally linear towards the number of keywords in the
index. The most costly operation within the Index algorithm is one pairing
computation; however since inside a same index the second argument of the
pairing remains the same between two executions of Index, pairing becomes
much more efficient than in the case with independent pairings [13].

Furthermore, the Delegate algorithm only consists in one exponentiation.
As the search phase involves three parties, namely the reader, the proxy and

the CSP, we evaluate the computational cost for each of them.
The QueryCreate algorithm executed by the reader is not costly since it only

consists of one hashing and one exponentiation. This algorithm outputs a unique
query for a given keyword to be searched in several indices. Therefore, the cost of
this algorithm does not depend on the number of searched indices. On the other
hand, the reader will receive one response per targeted index and will have to
execute ResponseProcess over each received response. The cost for one response
consists in one decryption through Dec and one PIR.Retrieve operation. Note
that the retrieved value for each index is a single bit, and based on [1] the
computational overhead can be considered as reasonable for a lightweight user.

The cost for the proxy of multiplexing the queries with QueryTransform
and filtering the responses with ResponseF ilter is linear towards the number of



indices the querying reader is authorized to search, and for each queried index the
proxy performs a pairing and one execution of PIR.Query. The ResponseF ilter
algorithm can be considered negligible as it only extracts the relevant part of
the response.

For a given keyword search query, the CSP builds one matrix per queried
index, and executes PIR.Process on each matrix. The building of one matrix
requires one exponentiation in GT per keyword. The operations performed by
the CSP being similar to the ones in [9], the workload of the CSP is considered
affordable for a cloud server.

To conclude our scheme achieves a very low cost at the reader side, which
usually is the main requirement for a cloud computing scenario, and a reasonable
cost at the CSP and the proxy. Figure 3 summarizes the cost of each algorithm
considering a scenario where one writer uploads several indices and one reader
send one query.

Algorithm Cost number of executions

Index h+ e+ expG1 i.k

Delegate expG2 i.d

QueryCreate h+multZq + expG1

QueryTransform a(e+H + PIR.KeyGen+ PIR.Query)

Respond k(expGT + h) +
√
n(PIR.Process+ Enc) a

ResponseFilter negligible (data forwarding) a

ResponseProcess Dec+ PIR.Retrieve a

Key:

– expX : cost of an exponentiation in X
– multX : cost of a multiplication in X
– k: number of keyword per index
– i: number of index owned by a writer
– d: number of reader with delegated search rights per index
– a: number of indices the reader is authorized to search
– name of a function: execution cost of this function

Fig. 3. Computational cost of each algorithm.

7 Related Work

Our review of the related work focuses on fully multi-user SE schemes. For a
detailed survey on SE in general, we refer the reader to [6].

While solutions in [7,9] seem very efficient in the case where there is a single
writer authorizing multiple readers, they become unpractical for the multi writer-
multi reader case. Indeed each reader should at least store one key per writer
and send one query (even if the same) per writer.



Among the few existing MUSE solutions [3, 5, 8, 12, 15], all of them except
the one described in [12] require the existence of a TTP, which is an unpractical
assumption that our solution does not make. Finally, all the solutions share a
common pitfall as they do not ensure access pattern privacy. As already discussed
in this paper, this leads to a serious privacy exposure in the case where users
collude with the CSP. Furthermore the execution of PIR.Process in our solution
is less costly compared to the search operation at the CSP in all existing MUSE
schemes, since in these schemes the trapdoor must be tested with each encrypted
keyword in the index either until the test shows that the keyword is present, or
until all the keywords in the index have been tested.

8 Conclusion

We have presented a new multi-user searchable encryption scheme that is prov-
ably secure under the newly proposed adversarial model witch considers the case
where some users can collude with the CSP. All existing schemes become inse-
cure under this new model. The proposed solution is very efficient for the user as
it introduces a new party, the proxy, which bears most of the overhead. At the
same time this overhead remains reasonable for both the CSP and the proxy.

Future work on this scheme will include implementation and benchmark re-
sults of the presented scheme with realistic datasets.
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ABSTRACT
With the advent of cloud computing, individuals and companies
alike are looking for opportunities to leverage cloud resources not
only for storage but also for computation. Nevertheless, the re-
liance on the cloud to perform computation raises the unavoid-
able challenge of how to assure the correctness of the delegated
computation. In this regard, we introduce two cryptographic pro-
tocols for publicly verifiable computation that allow a lightweight
client to securely outsource to a cloud server the evaluation of high-
degree univariate polynomials and the multiplication of large ma-
trices. Similarly to existing work, our protocols follow the amor-
tized verifiable computation approach. Furthermore, by exploiting
the mathematical properties of polynomials and matrices, they are
more efficient and give way to public delegatability. Finally, be-
sides their efficiency, our protocols are provably secure under well-
studied assumptions.

1. INTRODUCTION
Cloud computing is increasingly becoming an attractive option

for SMEs interested in minimizing their expenditures by outsourc-
ing their data and computations. However, the lack of security still
deters the wide adoption of cloud technology. As a matter of fact,
cloud clients lose control over their data once outsourced, and as
such they can neither thwart nor detect cloud servers’ misbehavior.

Recently, researchers [6, 11, 13, 17, 19] introduced solutions for
verifiable outsourced computation whereby a client delegates the
execution of computationally demanding operations to the cloud,
and further receives the result with some cryptographic proofs as-
serting the correct execution of requested operations. By defini-
tion, these cryptographic proofs fulfill the classical security require-
ments of correctness and soundness: They neither yield a situation
in which a server is falsely accused of misbehavior, nor make the
client accept an incorrect result.

In addition to the previously mentioned security requirements,
another key prerequisite that should be taken into account when de-
signing solutions for verifiable computation is the efficiency of the
proof verification at the client: For a solution to be viable, the com-
putational and the storage complexity of the verification process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897910

should naturally be lower than the complexity of the outsourced
function. This requirement thus seeks solutions that minimize the
computational and the storage load at lightweight clients, in the aim
of not offsetting the advantages of cloud computing.

In order to be able to check the proof of correct computation ef-
ficiently, the client generates a verification key: While some solu-
tions [6, 13] keep this verification key secret, in which case only the
client verifies the correctness of the outsourced computation, other
proposals [11, 17–19] allow public verifiability which empowers
any third party to verify the validity of the outsourced computation.

Besides public verifiability, several schemes achieve public del-
egatability [17–19]. As the name implies, public delegatability
enables any third party to submit computation queries to the out-
sourced function and verify the returned results. Such a property
comes in handy in scenarios where an organization outsources the
computation of a function to a cloud server, and still wants its em-
ployees to delegate the evaluation of that function without exchang-
ing or sharing any secret keys.

In this paper, we focus on the public verifiability and delegata-
bility of two specific functions, namely, high-degree polynomial
evaluation and matrix multiplication. Similarly to existing work,
we adopt the amortized model [13]: In this model, the client is
required to execute a one-time expensive pre-processing operation
that is leveraged later for efficient verifications. Furthermore, we
suitably tailor the algebraic properties of polynomials and matrices
to devise cryptographic solutions that compare favorably to exist-
ing work, as they offer better performances and contrary to [11, 20]
enable public delegatability.
Contributions:

 We first propose a publicly verifiable polynomial evaluation
solution whose efficiency derives from the Euclidean divi-
sion of the polynomial to be outsourced by some randomly
generated small-degree polynomial. The basic idea of our
solution is that the outsourced polynomial and the quotient
polynomial are used to produce the proof of correct com-
putation, whereas the divisor and the remainder polynomi-
als are used together to verify the correctness of the evalu-
ation. Thanks to the properties of Euclidean division, our
proposal ensures public delegatability while enjoying better
performances than existing work [17].

 Secondly, we propose a solution for publicly verifiable ma-
trix multiplication that exploits the associative property of
multiplication in the ring of matrices. As such our solution
outperforms the schemes in [11, 20] while ensuring the addi-
tional feature of public delegatability.

 Both of our solutions are proved to be correct and sound.
Their soundness is proved under the t-strong Diffie Hellman



(t-SDH) and co-computational Diffie-Hellman (co-CDH) as-
sumptions.

The rest of the paper is organized as follows. Section II formally
defines publicly verifiable computation and the underlying security
model. The proposed publicly verifiable polynomial evaluation and
matrix multiplication solutions are described and evaluated in Sec-
tions III and IV respectively. Finally, we review the state of the art
in section V.

2. BACKGROUND

2.1 Publicly Verifiable Computation
According to [18], a publicly verifiable computation scheme em-

powers a client to outsource the evaluation of a function to a poten-
tially malicious server while meeting the requirements of:

 public delegatability: Any querier (not necessarily the client)
can submit inputs to evaluate the outsourced function;

 public verifiability: Any verifier (not necessarily the client or
the querier) can assess the correctness of the server’s results.

Thus, Parno et al. [18] formally define publicly verifiable compu-
tation schemes by the following algorithms:

Setupp1κ, fq Ñ pparam,PKf,EKfq It is a randomized algorithm
executed by the client. It takes as input the security parameter
1κ and a description of the function f to be outsourced, and
outputs a set of public parameters param that will be used by
subsequent algorithms, a public key PKf, and an evaluation
key EKf.

ProbGenpx,PKfq Ñ pσx,VKxq Given an input x in the domain
Df of the outsourced function f and public key PKf, the
querier calls this algorithm to produce an encoding σx of in-
put x and a public verification key VKx.

Computepσx,EKfq Ñ σy On input of the encoding σx and the
evaluation key EKf, the server runs this algorithm to compute
an encoding σy of f’s output y � fpxq.

Verifypσy,VKxq Ñ outy A verifier operates this deterministic al-
gorithm to check the correctness of the result σy supplied by
the server on input σx. More precisely, this algorithm first
decodes σy which yields a value y, and then uses the pub-
lic verification key VKx associated with the encoding σx to
decide whether y is equal to the expected output fpxq. If so,
Verify outputs outy � y meaning that fpxq � y; otherwise
it outputs an error outy �K.

Besides the properties of public delegatability and verifiability,
a publicly verifiable computation scheme should also ensure the
security properties of correctness and soundness.

2.2 Correctness
A publicly verifiable computation scheme for a family of func-

tions F is deemed to be correct, if whenever an honest server ex-
ecutes the algorithm Compute to evaluate a function f P F on an
input x P Df, this algorithm always yields an encoding σy that will
be accepted by algorithm Verify (i.e. Verifypσy,VKxq Ñ fpxq).

Definition 1. A publicly verifiable computation scheme for a family
of functions F is correct, iff for any function f P F and any input
x P Df:

If ProbGenpx,PKfq Ñ pσx,VKxq and Computepσx,EKfq Ñ
σy , then:

PrpVerifypσy,VKxq Ñ fpxqq � 1

Algorithm 1: Soundness experiment of publicly verifiable
computation

pparam,PKf,EKfq Ð OSetupp1
κ, fq;

A Ñ x;
pσx,VKxq Ð OProbGenpx,PKfq;
A Ñ σy;
outy Ð Verifypσy,VKxq;

2.3 Soundness
A publicly verifiable computation scheme for a family of func-

tions F is said to be sound, if for any f P F and for any x P Df,
a server cannot convince a verifier to accept an incorrect result.
Notably, a verifiable computation scheme is sound if it assures
that the only way a server generates a result σy that will be ac-
cepted by a verifier as a valid encoding of the evaluation of some
function f P F on an input x, is by correctly computing σy (i.e.
σy Ð Computepσx,EKfq).

Similarly to [18], we capture the adversarial capabilities of an
adversary (i.e. malicious server) A against a publicly verifiable
computation scheme for a family of functions F through a sound-
ness experiment (cf. Algorithm 1).

In this experiment, adversary A first accesses the output of algo-
rithm Setup by calling oracle OSetup. When queried with a security
parameter 1κ and a description of a function f P F , oracle OSetup

returns the set of public parameters param, public key PKf, and
evaluation key EKf.

Afterwards, adversary A outputs a challenge input x P Df and
submits the latter together with public key PKf to oracle OProbGen.
Oracle OProbGen accordingly executes algorithm ProbGen and out-
puts a pair of matching encoding σx and public verification key
VKx.

Finally, adversary A generates an encoding σy and runs algo-
rithm Verify on the pair pσy,VKxq.

Let outy denote the output of algorithm Verify at the end of
the experiment. We say that adversary A succeeds in the sound-
ness experiment of publicly verifiable computation if outy �K and
outy � fpxq.

Definition 2. Let ΠA,f denote the probability that adversary A suc-
ceeds in the soundness experiment of publicly verifiable computa-
tion (i.e. Prpouty �K ^ outy � fpxqq).

A publicly verifiable computation scheme for a family of func-
tions F is sound, iff: For any adversary A and for any f P F ,
ΠA,f ¤ ε and ε is a negligible function in the security parameter κ.

3. PUBLICLY VERIFIABLE POLYNOMIAL
EVALUATION

3.1 Protocol Overview
The solution we propose for publicly verifiable evaluation of

polynomials draws upon the basic properties of Euclidean division
of polynomials. Specifically the fact that for any pair of polyno-
mials A and B � 0 of degree d and 2 respectively, the Euclidean
division of A by B yields a unique pair of polynomials Q and R
such that: i.) A � QB � R and ii.) the degree of quotient poly-
nomial Q equals d � 2, whereas the remainder polynomial R has
a degree ¤ 1.

Now a client which would like to outsource the evaluation of
a polynomial A of degree d, first defines a polynomial BpXq �
X2 � b0 for a randomly chosen b0, and divides A by B to get the



quotient polynomial QpXq �
°d�2
i�0 qiX

i and the remainder poly-
nomialRpXq � r1X� r0. Next, the client outsources polynomial
A together with quotient polynomial Q to the server and publishes
the public key PKA � pgb0 , gr1 , gr0q. Consequently, whenever a
querier wants to evaluate polynomial A at point x, it first computes
and advertises the public verification key VKx � pgBpxq, gRpxqq,
and then transmits x to the server. The latter in turn computes
y � Apxq and generates the proof π � Qpxq. Given the server’s
output py, πq, a verifier checks whether gy � pgBpxqqπgRpxq.

The efficiency of the verification in the solution sketched above
stems from the fact that B and R are small-degree polynomials.
Indeed, to verify the correctness of a result py, πq provided by the
server on an input x, the verifier performs a small and constant
number of computations as opposed to carrying out Opdq opera-
tions to evaluate polynomial A.

It is clear that the soundness of such a protocol relies on the se-
crecy of polynomials B and R. However since B is a two-degree
polynomial, the secrecy of these two polynomials can be easily
compromised by disclosing the quotient polynomial Q. To remedy
this shortcoming, the client encodes polynomial Q using an addi-
tively homomorphic one-way encoding. Namely, each coefficient
qi of polynomial Q is encoded as hqi . In this manner, we allow the
server to compute the proof π � hQpxq of correct execution while
ensuring the confidentiality of polynomials B and R.

Finally, we use bilinear pairings to let verifiers assess the correct-
ness of the server’s results. Accordingly, we show that our solution
is sound under the td{2u-Strong Diffie-Hellman (td{2u-SDH) as-
sumption.

Before describing our protocol in full details, we recall the defi-
nitions of bilinear pairings and the SDH assumption.

3.2 Bilinear Pairings

Definition 3 (Bilinear Pairing). Let G1, G2 and GT be three cyclic
groups of the same finite order p.

A bilinear pairing is a map e: G1 �G2 Ñ GT , with the follow-
ing properties:

1. e is bilinear: @ α, β P Zp, g P G1 and h P G2, epgα, hβq �
epg, hqαβ;

2. e is computable: There is an efficient algorithm to compute
epg, hq for any pg, hq P G1 �G2;

3. e is non-degenerate: If g is a generator of G1 and h is a
generator of G2, then epg, hq is a generator of GT .

Definition 4 (t-SDH Assumption). Let G1, G2 and GT be three
cyclic groups of the same finite prime order p such that there exists
a bilinear pairing e : G1 �G2 Ñ GT .

We say that the t-Strong Diffie-Hellman assumption (t-SDH)
holds, if given the tuple pg, gα, h, hα, ..., hα

t

q P G2
1 � Gt�1

2 for
some randomly chosen α P F�p , the probability to produce a pair
pβ, h1{pβ�αqq P Fpzt�αu �G2 is negligible.

3.3 Description
We assume here that the client wants to outsource the evaluation

of a d-degree polynomial ApXq �
°d
i�0 aiX

i with coefficients
ai P Fp where p is a large prime.

Setupp1κ, Aq Given security parameter 1κ and a description of
polynomialA, algorithm Setup first selects two cyclic groups
G1 and G2 of prime order p that admit a bilinear pairing

e : G1�G2 Ñ GT . Then it picks a generator g and a gener-
ator h of groups G1 and G2 respectively, and defines the set
of public parameters as:

param � pp,G1,G2,GT , e, g, hq.

Next, algorithm Setup selects randomly b0 P F�p such that
polynomial BpXq � X2 � b0 does not divide polynomial
A and performs the Euclidean division of polynomial A by
polynomial B in FprXs. We denote the resulting quotient
polynomial by QpXq �

°d�2
i�0 qiX

i and the resulting re-
mainder polynomial by RpXq � r1X � r0

1.

Thereupon, algorithm Setup computes the public key

PKA � pb0, r1, r0q � pgb0 , hr1 , hr0q.

To compute evaluation key EKA algorithm Setup computes
qi � hqi P G2 for all 0 ¤ i ¤ d� 2, and lets

EKA � pA,q0,q1, ...,qd�2q.

Algorithm Setup concludes its execution by outputting the
tuple pparam,PKA,EKAq.

ProbGenpx,PKAq On input of a point x P Fp and public key
PKA � pb0, r1, r0q, algorithm ProbGen first computes

VKpx,Bq � b0g
x2

VKpx,Rq � rx1r0

and then outputs the public encoding σx � x and the public
verification key VKx � pVKpx,Bq,VKpx,Rqq.

Computepσx,EKAq Given σx � x and evaluation key EKA �
pA,q0,q1, ...,qd�2q, algorithm Compute evaluates

y � Apxq �
ḑ

i�0

aix
i mod p,

generates the proof

π �
d�2¹
i�0

qx
i

i ,

and outputs the encoding σy � py, πq.

Verifypσy,VKxq Provided with encoding σy � py, πq and veri-
fication key VKx � pVKpx,Bq,VKpx,Rqq, algorithm Verify
checks whether the following equation holds:

epg, hyq�epVKpx,Bq, πqepg,VKpx,Rqq. (1)

If so, then Verify outputs y meaning that Apxq � y; other-
wise it outputs K.

3.4 Security Analysis
Here we state and prove the main security theorems pertaining

to our protocol for publicly verifiable polynomial evaluation.

Theorem 1. The scheme proposed above for publicly verifiable
polynomial evaluation is correct.

1R is a polynomial of degree at most 1, i.e. r1 could be 0.



Proof. If on input σx � x P Fp, the server executes algorithm
Compute correctly, then the latter’s output will correspond to

σy � py, πq � pApxq, hQpxqq.

Indeed, we have:

π �
d�2¹
i�0

qx
i

i �
d�2¹
i�0

hqix
i

� h
°d�2

i�0 qix
i

� hQpxq.

Given that A � QB �R in FprXs and that the order of epg, hq is
equal to p, we get:

epg, hqApxq � epg, hqQpxqBpxq�Rpxq

� epg, hQpxqqBpxqepg, hqRpxq.

As y � Apxq and π � hQpxq we have:

epg, hqy � epg, πqBpxqepg, hqRpxq

� epgBpxq, πqepg, hRpxqq.

Since

VKpx,Bq � b0g
x2 � gb0�x

2

� gBpxq

and

VKpx,Rq � rx1r0 � hr1x�r0 � hRpxq,

we conclude that

epg, hqy � epVKpx,Bq, πqepg,VKpx,Rqq

and that Verify outputs y � Apxq.

Theorem 2. The scheme proposed above for publicly verifiable
polynomial evaluation is sound under the td{2u-SDH assumption.

Proof. Assume there is an adversary A that breaks the soundness
of our protocol for publicly verifiable polynomial evaluation with
a non-negligible advantage ε. We demonstrate in what follows
that there exists another adversary B that breaks the td{2u-SDH
assumption with a non-negligible advantage ¥ ε.

Let Osdh be an oracle which when queried returns the pair pg, gαq
in G1 and the tuple ph, hα, hα

2

, ..., hα
td{2u

q in G2 for randomly
generated α in F�p .

In order to break td{2u-SDH, adversary B first calls oracle Osdh

to obtain a tuple pg, gα, h, hα, ..., hα
td{2u

q; then simulates the sound-
ness experiment (see Algorithm 1) to adversary A . Namely, when
A calls oracle OSetup with polynomial ApXq �

°d
i�0 aiX

i in
FprXs, adversary B simulates OSetup’s response as follows:

1. It defines the public parameters{param � pp,G1,G2,GT , e, g, hq

2. To compute the evaluation key xEKA � pA, pq0, ..., pqd�2q, it
proceeds as described below:

 It lets pqd�2 � had and pqd�3 � had�1 ;

 For each 2 ¤ k ¤ d� 2, it computes

pqd�2�k �

tk{2u¹
i�0

had�k�2ip�1qiαi

3. It computes the public key xPKA � ppb0,pr1,pr0q as following:pb0 � gα

pr0 � td{2u¹
i�0

ha2ip�1qiαi

pr1 � tpd�1q{2u¹
i�0

ha2i�1p�1qiαi

.

If ppr0,pr1q � p1, 1q, then adversary B stops the experiment.

4. Otherwise, it returns public parameters {param, evaluation
key xEKA and public key xPKA to adversary A .

It can easily be shown that if adversary B does not stop the ex-
periment, then the distribution of the tuple p{param, xPKA, xEKAq
returned by adversary B is statistically indistinguishable from the
distribution of pparam,PKA,EKAq in the soundness experiment.
As a matter of fact, if we denote for all 0 ¤ i ¤ d � 2, pqi � hqi

and if we let ppr0,pr1q � phr0 , hr1q, then we can easily verify that:

 ad � qd�2 mod p and ad�1 � qd�3 mod p;

 for all 2 ¤ i ¤ d� 2, ai � αqi � qi�2 mod p;

 a1 � αq1 � r1 mod p and a0 � αq0 � r0 mod p;

 pr0, r1q � p0, 0q.

This entails that the polynomials defined asQpXq �
°d�2
i�0 qiX

i,
BpXq � X2 � α and RpXq � r1X � r0 verify the following
equality: A � BQ�R with R � 0.

Therefore we can safely conclude (i) that polynomial B does
not divide polynomial A; (ii) that each pqi correctly encodes the ith

coefficient of the quotient polynomial Q that results from the Eu-
clidean division of polynomial A by polynomial B; (iii) that the
pair ppr0,pr1q correctly encodes the corresponding remainder poly-
nomial R.

Eventually, adversary A selects a challenge value x P Fp and
calls oracle OProbGen with the pair px, xPKAq. Accordingly, adver-
sary B computes the response of oracle OProbGen and returns verifi-
cation key

VKx � pVKpx,Bq,VKpx,Rqq � ppb0g
x2 ,pr0prx1q.

Finally, adversary A returns a pair py, πq such that y � Apxq and
py, πq is accepted by algorithm Verify with a non-negligible advan-
tage ε.

Consequently, adversary B breaks td{2u-SDH by first computing
Apxq and the proof

π� �
d�2¹
i�0

pqxii
and finally outputting:

pβ, h1{pβ�αqq �

�
x2,
� π
π�

	py�Apxqq�1

.

Indeed, since the pair py, πq passes the verification, it satisfies Equa-
tion 1, namely:

epg, hqy � eppb0g
x2 , πqepg,pr0prx1q � epgx

2�α, πqepg,pr0prx1q.
(2)

Furthermore, by construction:

epg, hqApxq � epgx
2�α, π�qepg,pr0prx1q. (3)



Algorithm Computation Client’s storage Server’s storage
Setup 1 prng and d mul in Fp Op1q Opdq

1 exp in G1

d� 1 exp in G2

ProbGen 1 mul in Fp – –
1 exp and 1 mul in G1

1 exp and 1 mul in G2

Compute 2d� 3 mul in Fp – –
d� 1 exp and d� 2 mul in G2

Verify 1 exp and 1 div in G2 – –
2 pairings

Table 1: Computation and storage requirements of our protocol for publicly verifiable polynomial evaluation

By dividing Equation 2 by 3, we obtain:

epg, hqpy�Apxqq � e
�
gx

2�α,
π

π�

	
.

Since y � Apxq, the above equation implies:

epg, hq � e

�
gx

2�α,
� π
π�

	py�Apxqq�1

.

Hence if adversary B does not stop the experiment, then it will be
able to break the td{2u-SDH assumption.

Now if adversary B aborts the experiment which occurs when
ppr0,pr1q � p1, 1q, then adversary B can conclude that B divides
A. This means that by using a factorization algorithm in FprXs on
polynomial A, adversary B will be able to find α, and therewith,
break the td{2u-SDH assumption.

Thus, we deduce that if there is an adversary A that breaks the
soundness of our protocol for publicly verifiable polynomial evalu-
ation with a non-negligible advantage ε, then there is an adversary
B that breaks the td{2u-SDH assumption with a non-negligible ad-
vantage ¥ ε.

Remark 1. Notice that if BpXq � Xδ � b0, then using a similar
argument as the one above, we can easily show that our protocol
for verifiable polynomial evaluation is secure under the t-SDH as-
sumption for t ¥ td{δu.

3.5 Performance Analysis
The reader may refer to Table 1 for a summary of the perfor-

mances of our protocol for publicly verifiable polynomial evalua-
tion.

Algorithm Setup first generates a random coefficient b0 P F�p
to construct polynomial B and conducts an Euclidean division of
polynomial A by polynomial B. The latter operation consists of d
multiplications and additions, where d is the degree of polynomial
A. Once the Euclidean division is performed, algorithm Setup per-
forms one exponentiation in G1 to derive b0, and d� 1 exponenti-
ations in G2 to compute r0, r1 and qi. Although computationally
expensive, algorithm Setup is executed only once by the client. Be-
sides, its computational cost is amortized over the large number of
verifications that third-party verifiers can carry out.

On the other hand, algorithm ProbGen computes the verification
key VKx � pVKpx,Bq,VKpx,Rqq which demands a constant num-
ber of operations that does not depend on the degree of polynomial
A. More precisely, ProbGen’s work consists of computing x2 in
Fp, performing one exponentiation and one multiplication in G1

to get VKpx,Bq � gBpxq, and running one exponentiation and one
multiplication in G2 to obtain VKpx,Rq � hRpxq.

Furthermore, algorithm Compute runs in two steps: (i) the eval-

uation of polynomial A at point x which requires at most d addi-
tions and multiplications in Fp if the server uses Horner’s rule; and
(ii) the generation of the proof π which involves d � 3 multiplica-
tions in Fp and d� 1 exponentiations and d� 2 multiplications in
G2.

Finally, the work at third-party verifiers only consists of one ex-
ponentiation and one division in G2 and the computation of 2 bi-
linear pairings.

With respect to storage, the client is required to store and publish
the public key pb0, r1, r0q P G1 � G2

2. The server however keeps
the d � 1 coefficients ai P Fp of polynomial A and the d � 1
encodings qi P G2.

The reader may refer to Table 1 for a summary of the perfor-
mances of our protocol for publicly verifiable polynomial evalua-
tion.

4. PUBLICLY VERIFIABLE MATRIX MUL-
TIPLICATION

4.1 Protocol Overview
The protocol we introduce in this section relies on the intuition

already expressed in [11], which states that in order to verify that
a server correctly multiplies an pn,mq-matrix M of elements Mij

with some column vector ~x � px1, x2, ..., xmq
ᵀ, it suffices that

the client randomly picks a secret pn,mq-matrix R of elements
Rij , and supplies a server with pn,mq-matrix M and an auxiliary
pn,mq-matrix N such that Nij � g̃MijgRij (where g̃ � gδ for
some randomly generated δ). Consequently, when a client prompts
the server to multiply matrix M with vector ~x, the latter returns
vector ~y � py1, y2, ..., ynq

ᵀ and proof ~π � pπ1, π2, ..., πnq
ᵀ, such

that πi � g̃yig
°m

j�1 Rijxj if the server is honest. If we denote
πi � gγi and ~γ � pγ1, γ2, ..., γnq

ᵀ, then loosely speaking, the
verification process consists of checking whether ~γ � δ~y �R~x.

Now to transform this intuition into a viable solution, one must
ensure that the verification process is much less computationally
demanding than the matrix multiplication M~x for all vectors ~x. In
[11], the authors speed up the verification process by generating
the secret matrix R using dedicated algebraic PRFs that optimize
the multiplication R~x. Although this solution gives way to an ef-
ficient verification process that takes Opn � mq time, it does not
enable public delegatability: Only the client can submit multiplica-
tion queries to the server.

We tackle this issue by observing that for any vector ~λ � pλ1, λ2,

..., λnq, the verification of whether ~λ~γ � δ~λ~y�~λpR~xq takesOpnq
time if the vector ~λR is computed beforehand. Therefore, we define
the public key by an exponent encoding of ~λR, and the verification
key for vector ~x by an exponent encoding of p~λRq~x.



More concretely, we generate the elements in the auxiliary ma-
trix N as Nij � g̃

Mij

i g
Rij

i for gi � gλi , we let the public key PKM

be a vector of m components PKj � ep
±n
i�1 g

Rij

i , hq, and we
compute the verification key for vector ~x as VKx �

±m
j�1 PK

xj
j .

Therefore, the problem generation combined with the verification
take Opn�mq time as opposed to performing Opnmq operations
to compute the matrix multiplication ~y �M~x.

As a result, the proposed solution does not only offer public del-
egatability, but also is sound under the assumption of co-computa-
tional Diffie-Hellman (co-CDH).

Definition 5 (co-CDH Assumption). Let G1, G2 and GT be three
cyclic groups of the same finite prime order p such that there exists
a bilinear pairing e : G1 �G2 Ñ GT .

We say that the co-computational Diffie-Hellman assumption
(co-CDH) holds in G1, if given g, gα P G1 and h, hβ P G2 for
random α, β P F�p , the probability to compute gαβ is negligible.

4.2 Protocol for Verifiable Matrix Multiplica-
tion

Without loss of generality, we assume that a client outsources to
a server the multiplication operations involving an pn,mq-matrix
M of elements Mij P Fp (1 ¤ i ¤ n and 1 ¤ j ¤ m) with p
being a large prime.

Setupp1κ,Mq Given security parameter 1κ and matrix M , algo-
rithm Setup chooses two cyclic groups G1 and G2 of prime
order p that admit a bilinear pairing e : G1 � G2 Ñ GT . It
then selects a generator h of group G2 and computes h̃ � hδ

for a randomly selected δ in F�p . Thereafter, it randomly
picks n generators2gi of G1, for all 1 ¤ i ¤ n. Subse-
quently, algorithm Setup defines the public parameters asso-
ciated with matrix M as:

param � pp,G1,G2,GT , e, tgiu1¤i¤n, h, h̃q.

Afterwards, algorithm Setup computes the evaluation key
EKM as follows:

 It selects an pn,mq-random matrix R of elements Rij
in F�p .

 It derives another pn,mq-matrix N of elements Nij �
g
δMij�Rij

i , @ 1 ¤ i ¤ n, 1 ¤ j ¤ m.

 Finally, it sets the evaluation key to

EKM � pM,Nq.

Next, algorithm Setup determines public key PKM as de-
picted hereafter:

 It generates m keys PKj � ep
±n
i�1 g

Rij

i , hq, 1 ¤ j ¤
m.

 Then, it lets PKM � pPK1,PK2, ...,PKmq.

At the end of its execution, algorithm Setup outputs pub-
lic parameters param, public key PKM and evaluation key
EKM .

2Without loss of generality, we can assume that gi � gλi for ran-
dom λi in F�p .

ProbGenp~x,PKM q On input of a column vector ~x � px1, x2..., xmq
ᵀ

in Fmp and public key PKM � pPK1,PK2, ...,PKmq asso-
ciated with matrix M , algorithm ProbGen derives

VKx �
m¹
j�1

PK
xj
j

and returns the encoding σx � ~x and the verification key
VKx.

Computepσx,EKM q Provided with encoding σx � ~x � px1, x2,
..., xmq

ᵀ and evaluation key EKM � pM,Nq, algorithm
Compute multiplies matrix M with vector ~x which yields a
column vector ~y � py1, y2, ..., ynq

ᵀ, evaluates the product:

Π �
n¹
i�1

m¹
j�1

N
xj
ij

and outputs the encoding σy � p~y,Πq.

Verifypσy,VKxq Given σy � p~y,Πq and verification key VKx, al-
gorithm Verify checks whether the following equality holds:

epΠ, hq
?
� ep

n¹
i�1

gyii , h̃qVKx. (4)

If so, algorithm Verify outputs ~y meaning that M~x � ~y;
otherwise it outputs K.

4.3 Security Analysis
In this section, we formally prove the security properties of our

solution for publicly verifiable matrix multiplication.

Theorem 3. The solution described above for publicly verifiable
matrix multiplication is correct.

Proof. If when queried with vector ~x � px1, x2, ..., xnq
ᵀ, the server

correctly operates algorithm Compute, then Equation 4 always holds.
Actually in that case, σy corresponds to the pair p~y,Πq such that

~y � py1, y2, ..., ynq
ᵀ � M~x and Π �

±n
i�1

±m
j�1 N

xj
ij . This

implies that for all 1 ¤ i ¤ n: yi �
°m
j�1Mijxj mod p, and as

the order of gi is p, it also implies that:

Π �
n¹
i�1

m¹
j�1

N
xj
ij �

n¹
i�1

m¹
j�1

�
g
δMij�Rij

i

	xj
�

n¹
i�1

m¹
j�1

�
g
δMijxj�Rijxj
i

	
�

n¹
i�1

m¹
j�1

g
δMijxj
i g

Rijxj
i

�
n¹
i�1

g
δ
°m

j�1Mijxj
i

n¹
i�1

m¹
j�1

g
Rijxj
i

�
n¹
i�1

gδyii

n¹
i�1

m¹
j�1

g
Rijxj
i

Therefore, we have:

epΠ, hq � ep
n¹
i�1

gδyii

n¹
i�1

m¹
j�1

g
Rijxj
i , hq

� ep
n¹
i�1

gyii , h
δqep

n¹
i�1

m¹
j�1

g
Rijxj
i , hq

� ep
n¹
i�1

gyii , h
δq

m¹
j�1

ep
n¹
i�1

g
Rij

i , hqxj



As h̃ � hδ and VKx �
±m
j�1 PK

xj
j , where

PKj � ep
n¹
i�1

g
Rij

i , hq

we get:

epΠ, hq � ep
n¹
i�1

gyii , h̃qVKx

and we conclude that Verify outputs ~y �M~x.

Theorem 4. The solution described above for publicly verifiable
matrix multiplication is sound under the co-CDH assumption in
G1.

Proof. Assume there is an adversary A that breaks the soundness
of our protocol for publicly verifiable delegation of matrix multipli-
cation with a non-negligible advantage ε. We show in what follows
how an adversary B can use adversary A to break the co-CDH as-
sumption in G1 with a non-negligible advantage ε1 � ε.

To break the co-CDH assumption, adversary B first calls oracle
Oco�cdh which in turn outputs the pair pg, gαq P G2

1 and the pair
ph, hβq P G2

2.
Later, adversary B simulates the soundness experiment (cf. Al-

gorithm 1) to adversary A as following:
When adversary A calls the oracle OSetup with some matrixM of

elements Mij in Fp, adversary B simulates the oracle OSetup of the
soundness experiment by executing algorithm Setup as depicted in
Section 4.2 except for the following:

1. It lets pg � gα and ph � phβqδ , computes for all 1 ¤ i ¤ n,pgi � pgλi for some randomly chosen λi P F�p , and sets the
public parameters to

{param � pp,G1,G2,GT , e, tpgiu1¤i¤n, h,phq.
2. It generates an pn,mq-random matrix pN of elements pNij P

G1;

3. It computes for all 1 ¤ j ¤ m,

xPKj � ep
±n
i�1
pNij , hq

ep
±n
i�1 pgMij

i ,phq ; (5)

4. It defines the public key associated with matrixM as xPKM �

pxPK1, ..., xPKmq;
5. Finally, it sets the corresponding evaluation key to xEKM �

pM, pNq.
Adversary B concludes its simulation of the oracle OSetup by out-
putting public parameters {param, public key xPKM and evaluation
key xEKM .

Note here that the simulated output of oracle OSetup in the game
is statistically indistinguishable from the distribution of the output
of algorithm Setup in the soundness experiment. Namely, the fol-
lowing is true:

 The statistical distribution of matrix pN is identical to the dis-
tribution of matrix N generated by algorithm Setup.

 For all vectors ~x � px1, ..., xmq
ᵀ P Fmp and ~y � py1, ..., ynq

ᵀ

� M~x, the simulated public key xPKM � pxPK1, ..., xPKmq

verifies this equation:

ep
n¹
i�1

m¹
j�1

pNxjij , hq � ep
n¹
i�1

pgyii ,phq m¹
j�1

xPKxjj .
Therefore, we conclude that the distribution of matrix pN and
public key xPKM is the same as the distribution of matrix N

and PKM � pPK1, ...,PKmq produced by algorithm Setup.

At the end of the experiment, adversary A picks a challenge vec-
tor ~x � px1, x2, ..., xmq

ᵀ and queries oracle OProbGen with the pair
p~x, xPKM q.

As a result, adversary B simulates oracle OProbGen and outputs
the pair p~x, xVKxq with xVKx �±m

j�1
xPKxjj .

Afterwards, adversary A returns a response σy � p~y,Πq such
that ~y �M~x.

In the remainder of this proof, we denote ~y� � py�1 , y
�
2 , ..., y

�
nq

ᵀ �
M~x.

To break the co-CDH assumption in G1, adversary B first fetches
the vector ~λ � pλ1, λ2, ..., λnq used to compute the powers pgi �pgλi and verifies whether ~λ~y � ~λ~y� mod p. If so, adversary B
aborts the game; otherwise it breaks co-CDH by returning:

gαβ �

�
Π±n

i�1

±m
j�1
pNxjij
�pδ~λp~y�~y�qq�1

.

Indeed, if σy � p~y,Πq passes the verification, then this implies that
the following equation holds:

epΠ, hq � ep
n¹
i�1

pgyii ,phqxVKx. (6)

Also given Equation 5, we have:

ep
n¹
i�1

m¹
j�1

pNxjij , hq � ep
n¹
i�1

pgy�ii ,phqxVKx (7)

By dividing Equation 6 with Equation 7, we obtain:

e

�
Π±n

i�1

±m
j�1
pNxjij , h

�
� e

�
n¹
i�1

pgyi�y�ii ,ph�

� e

�
n¹
i�1

pgλipyi�y
�
i q,ph�

� e
�pg°n

i�1 λipyi�y
�
i q,ph	

� e
�pg~λp~y�~y�q,ph	

As pg � gα and ph � hβδ , we deduce that

e

�
Π±n

i�1

±m
j�1
pNxjij , h

�
� e
�
gα
~λp~y�~y�q, hβδ

	
� e
�
gαβ , h

	δ~λp~y�~y�q
Therefore if ~λp~y�~y�q � 0 mod p, then δ~λp~y�~y�q � 0 mod p
(δ P F�p ) and we can compute:

gαβ �

�
Π±n

i�1

±m
j�1
pNxjij
�pδ~λp~y�~y�qq�1

Hence, adversary B breaks the co-CDH assumption in G1 as long



Algorithm Computation cost Client’s Server’s
storage storage

Setup nm prng in Fp and nm mul in Fp Opn�mq Opnmq
mpn� 1q mul and 2nm exp in G1

m pairings
ProbGen pm� 1q mul and m exp in GT – –
Compute nm mul in Fp – –

pn� 1qpm� 1q mul and nm exp in G1

Verify pn� 1q mul and n exp in G1 – –
1 mul in GT
2 pairings

Table 2: Computation and storage requirements of our protocol for publicly verifiable matrix multiplication

as ~λ~y � ~λ~y� mod p. Fortunately, under the hardness of discrete
logarithm, the probability that adversary B finds ~y such that ~λ~y �
~λ~y� mod p is negligible.

Lemma 1. If adversary A outputs ~y such that ~λ~y � ~λ~y� mod p,
then adversary B can break the discrete logarithm (DL) assumption
in G1.

Proof Sketch. Assume there is an adversary A that outputs a vec-
tor ~y � py1, y2, ..., ynq

ᵀ verifying the property above with a non-
negligible advantage ε. Here we show that there is another ad-
versary B which uses adversary A to break the discrete logarithm
assumption in G1 with a non-negligible advantage ¥ ε{n.

Assume that adversary B receives qg P G1 and is required to
output λ P Fp such that qg � gλ.

To this effect, adversary B simulates the soundness experiment
as depicted in Algorithm 1. More precisely, upon receipt of an
pn,mq-matrix M , it simulates the output of OSetup exactly as the
soundness experiment except for the following:

 It selects k randomly in t1, 2, ..., nu and lets qgk � qg;

 for all 1 ¤ i ¤ n, i � k, it randomly selects λi P F�p and
sets qgi � qgλi ;

 it sets the public parameters to �param � pp,G1,G2,GT , e,
tqgiu1¤i¤n, h, h̃q.

Adversary A eventually returns a pair of vectors ~x � px1, x2, ...,

xmq
ᵀ and ~y � py1, y2, ..., ynq

ᵀ that verify ~y � M~x and ~λ~y �
~λM~x mod p, whereby ~λ � pλ1, ..., λk�1, λ, λk�1, ..., λnq.

If we denote ~y� � py�1 , y
�
2 , ..., y

�
nq

ᵀ � M~x, then the above
equality entails that

λ �

°n
i�1,i�k λipy

�
i � yiq

yk � y�k

as long as yk � y�k .
Since ~y � ~y�, then there is at least one index 1 ¤ j ¤ n

such that yj � y�j . Since k is randomly chosen from t1, ..., nu,
the probability that yk � y�k is at least 1{n, and consequently,
adversary B will be able to break the discrete logarithm assumption
with advantage ¥ ε{n.

To summarize, if there is an adversary A that breaks the sound-
ness of our protocol for publicly verifiable matrix multiplication
with a non-negligible advantage ε, then there exists an adversary
B that breaks the co-CDH assumption in G1 with a non-negligible
advantage ε1 � ε.

4.4 Performance Analysis
Algorithm Setup generates the pn,mq-random matrix R which

requires the generation of nm random numbers in Fp. To com-
pute the elements Nij of matrix N as gδMij�Rij

i , algorithm Setup
performs nm multiplications and nm additions in Fp, and nm ex-
ponentiations in G1. Furthermore, the generation of public key
PKM demands mpn � 1q multiplications in G1, nm exponentia-
tions in G1 andm pairings. It should be noted that while algorithm
Setup involves expensive operations such as exponentiations and
pairings, it is executed only once by the client, and consequently,
its cost is amortized over the large number of verifications that a
verifier can perform.

To multiply a vector ~x � px1, x2, ..., xmq
ᵀ with matrix M , al-

gorithm ProbGen computes VKx �
±m
j�1 PK

xj
j . This involves

m� 1 multiplications and m exponentiations in GT .
Moreover, algorithm Compute consists of two operations: (i) the

matrix multiplication ~y � M~x which requires nm multiplications
and additions in Fp; and (ii) the generation of the proof Π which
involves nm exponentiations and pn � 1qpm � 1q multiplications
in G1.

Finally, algorithm Verify evaluates two bilinear pairings, pn�1q
multiplications and n exponentiations in G1, and one multiplica-
tion in GT .

As for storage, the server is required to keep the pn,mq-matrix
M of elements Mij P Fp and the pn,mq-matrix N of elements
Nij P G1. On the other hand, the client is required to store and
publish the public parameters which are of sizeOpnq and the public
key PKM whose size isOpmq. We highlight the fact that the public
parameters’ size can be made constant: Instead of advertising the
set tgiu1¤i¤n, the client can select a hash function H : F�p Ñ
G1zt1u and compute the generators gi asHpiq, for all 1 ¤ i ¤ n.
On the downside, this optimization makes our scheme secure only
in the random oracle model.

Table 2 summarizes the performance analysis of our scheme for
publicly verifiable matrix multiplication.

5. RELATED WORK
Verifiable Polynomial Evaluation. Benabbas et al. [6] were the

first to use algebraic PRFs for the problem of verifiable polynomial
evaluation. Their solution only works in the symmetric-key setting,
thus does not enable public verifiability as the schemes presented
in this paper. In the same line of work, Fiore and Gennaro [11]
devise new algebraic PRFs, also used by Zhang and Safavi-Naini
[20], to develop publicly verifiable solutions. Compared to these
two solutions, our protocol induces the same amount of computa-
tional costs but with the additional property of public delegatabil-
ity. Another solution for public verification considers signatures for



Hardness Public
Setup ProbGen Compute Verify Assumptions Delegatability

Fiore and Gennaro 1 pairing 1 pairing pd� 1q exp in G1 1 pairing co-CDH No
[11] 2pd� 1q exp in G1 1 exp in G1 1 exp in GT DLin

1 exp in GT
Papamanthou et al. Polynomial preparation d� 1 exp in G1 2 pairing d-SBDH Yes

[17] 2d� 1 exp in G1 2 exp in G1

Our scheme d� 1 exp in G2 1 exp in G1 d� 1 exp in G2 2 pairings td{2u-SDH Yes
1 exp in G1 1 exp in G2 1 exp in G2

Table 3: Comparison of computation complexity with existing work for polynomial evaluation

Hardness Public
Setup ProbGen Compute Verify Assumptions Delegatability

Fiore and Gennaro 3nm exp in G1 n pairings nm exp in G1 n pairings co-CDH No
[11] 2pn�mq exp in G1 n exp in GT DLin

Zhang and Blanton 1 pairing n exp in G1 nm exp in G2 n pairings M-DDH Yes
[21] m exp in G2 pn� 1q exp in GT XDH

pn� 1q exp in GT
Our scheme 2nm exp in G1 m exp in GT nm exp in G1 2 pairings co-CDH Yes

m pairings n exp in G1

Table 4: Comparison of computation complexity with existing work for matrix multiplication

correct computation [17], and uses polynomial commitments [16]
to construct these signatures. Besides public verifiability, this so-
lution implements public delegatability. However, the construction
by [17] relies on the d-SBDH assumption, whereas our solution is
secure under a weaker assumption that is the td{2u-SDH. It is worth
mentioning that our protocol can be changed to rely on the td{δu-
SDH assumption, where δ is the degree of the divisor polynomial,
as specified in Remark 1 of Section 3.3, and therefore our scheme
can accommodate higher-degree polynomials.

Table3 3 compares the computational costs our solution for poly-
nomial evaluation with the work described by Fiore and Gennaro
[11] and Papamanthou et al. [17].

Verifiable Matrix Multiplication.
Fiore and Gennaro [11] and Zhang and Safavi-Naini [20] exploit

algebraic PRFs for publicly verifiable matrix multiplications. How-
ever, only the client which outsourced the matrix can submit input
vectors to the outsourced multiplication, hence their constructions
do not meet the public delegatability requirement. Zhang and Blan-
ton [21] present a construction for publicly delegatable and verifi-
able outsourcing of matrix multiplication that uses mathematical
properties of matrices instead of algebraic PRFs. Unlike our work,
the public verifiable scheme suggested in [21] does not transfer the
matrix M to the server during Setup (whose purpose is reduced
to generating the public parameters). Instead, the problem gener-
ation phase prepares the matrix and the input vector for the dele-
gation. This construction is secure under the multiple decisional
Diffie Hellman (M-DDH) and the eXternal Diffie-Hellman (XDH)
assumptions, which are stronger than the co-CDH assumption we
rely on in our solution.

Table3 4 depicts a comparison of our proposal for matrix multi-
plication with the solution proposed by Fiore and Gennaro [11] and
Zhang and Blanton [21].

Arbitrary functions. A significant collection of work applies
succinct non-interactive arguments of knowledge (SNARKs) to the

3Table 3 and Table 4 compare the computational complexity of our
solution with existing work only in terms of exponentiations and
bilinear pairings which are the most computationally expensive op-
erations.

problem of verifiable computation of arbitrary functions [4, 5, 7,
19]. One of the most relevant applications of the SNARK approach
[7] appears in Pinocchio [19]. Pinocchio translates the outsourced
function into an arithmetic circuit, which is then converted into a
Quadratic Arithmetic Program [14]. As such, it enables public del-
egatability and public verifiability. However, the security of Pinoc-
chio and other SNARK-based protocols relies on non-falsifiable as-
sumptions as proved by Gentry and Wichs [15], whereas the secu-
rity of our schemes only relies on falsifiable assumptions.

Parno et al. [18] propose a solution for public delegation and ver-
ification of computation using Attribute-Based Encryption (ABE).
However, this scheme is limited to the computation of Boolean
functions that output a single bit. For functions with more than one
output bit, the client has to repeatedly (for each output bit) launch
several instances of the protocol. Alderman et al. [1, 2] also pro-
pose an ABE-based protocol for Boolean functions. The authors
adopt a scenario orthogonal to ours, in which queriers are identi-
fied according to access control policies. Furthermore, Alderman
et al. [1, 2] introduce the concept of blind verifiability. In a nut-
shell, their protocols distinguish queriers from verifiers: The latter
may only be authorized to verify an outsourced computation but
not to learn its results. In the present paper, the blind verifiability
property is out of scope.

Homomorphic MACs and signatures. Another type of solu-
tions use homomorphic MACs [3, 9, 12] or homomorphic signa-
tures [8, 10]. These solutions generally induce a verification as
costly as the computation of the outsourced function itself. Homo-
morphic MACs proposed by Backes et al. [3] take advantage of al-
gebraic PRFs to allow efficient verification, provided that the data
is indexed. This solution however is suitable for quadratic func-
tions only. Similarly, Catalano et al. [10] propose homomorphic
signatures for polynomial functions with efficient verification and
suggest that they can be used for a publicly verifiable computation
scheme. Nevertheless, their construction uses expensive multilin-
ear pairings.

6. CONCLUSION
In this paper, we introduced two protocols for publicly verifi-



able delegation of computation which enable a client to securely
outsource the evaluation of arbitrary degree univariate polynomi-
als and the multiplication of large matrices. We built our proto-
cols upon the algebraic properties of polynomials and matrices.
This paved the way for practical solutions that are provably secure
against adaptive adversaries under the co-CDH and the SDH as-
sumptions.
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