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HoP: Hierarchize then Optimize: A distributed framework
for User Association and Flexible TDD Allocation for Access
and Backhaul Networks

Nikolaos Sapountzis, Thrasyvoulos Spyropoulos, Navid Nikaein and Salan.

Abstract

The success of future heterogeneous networks (HetNetg)yhéapends
on the interplay between user association and resourggtitha on both the
access and backhaul network. While user association is keypmve both
the user and network performance, it is becoming a mulgahje optimiza-
tion problem that should consider the number and type of B@rnige. Fur-
thermore, the increasing spatio-temporal heterogeneipwnlink(DL) and
uplink(UL) traffic suggests that DL/UL resources can be tuteeoptimally
serve the respective workload. Split DL/UL association #exible TDD of-
fer such an opportunity. While much literature exists on ¢hg®blems, the
majority consider them separately. In this work, we develd@mmework that
tackles the optimal interplay of (i) user-association, r@dio resource allo-
cation, and (iii) backhaul resource allocation of TDD rases, for a family
of objective functions. We propose an algorithm that redube complexity
of this problem by decomposing it into three optimizatiobgwblems, each
potentially solved by a different network element and dedént timescales.
We prove convergence to the global optimum, and providesitiom results
that demonstrate the performance benefits of our approach.

Index Terms

user association, backhaul, queueing theory, uplink, doknhetnets,
resource allocation, dynamic TDD.
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1 Introduction

Lately, heterogeneous network (HetNet) deployments have been widely co
sidered in 4G and beyond wireless networks. They are composed\ardmnal
macro cells (MC) overlaid with a set of low-power small cells (SC). Due to the
increasing number and type of base stations (BS) within the range of sach u
the problem of user association becomes increasingly important. Moreaat/a
schemes beyond simple SINR-based ones are thus needed [1, 2] toehadzm-
and network-related performance goals.

While optimization of most current networks revolves around the downlink
(DL) performance, social networks, augmented reality games, and opfiek
(UL)-intensive envisioned applications suggest that UL performancerbes as
important. Recent approaches that aim to improve both DL and UL throtighpu
suggest that UL/DL association should be in fact decoupled for optinrébrpe
mance. As one example, a user equipment (UE) could be connected to@ macr
BS in the DL (from which it receives the highest signal level), and to anr5C
the UL (where the pathloss is lower) [3, 4]. However, if the DL resosimithe
macro BS, or the UL resources of the SC are not sufficient, this apgpezaciead
to unnecessargongestion or under-utilization in either direction.

Typically, in today’s systems, each BS is given an amount of bandwidth re-
sources to utilize for both DL and UL traffic by duplexing on the frequefta-
guency Division Duplex-FDD) or the time (Time Division Duplex-TDD) domain.
While conventional networks are mainly designed for FDD or pre-corgidjiiDD
schemes, heterogeneous traffic demand, desired architectural fleydititgcarcity
of spectrum has increased interestiéxible TDDschemes, that canatch the UL
and DL resources to the actual demajagl.

Nevertheless, dynamic/flexible TDD schemes require additional consaiesa
in particular in assymetric interference scenarios. As a typical example,SCa
is doing UL while a nearby MC is transmitting on the DL (with much higher
power), the performance of the SC might be significantly degraded frisrartiss-
interference Enhanced Inter-Cell Interference Coordination (elCIC) schennas s
as Almost Blank Subframes (ABS) could alleviate this but only to some extent [6
7]. Large amounts of mismatch might lead to excessive usage of resdarces
elCIC, instead of user traffic, leading instead to considerable perfasndegra-
dation. Many additional allocation schemes have further been proposackie
this problem(s) [8] [9] [10], most of them revolving around a key-dealfor
5G networks, namely “enhanced Interference Mitigation and Trafficpfateon”
(eIMTA), standardized in LTE-A Release 13 [11]. However, it is niec which
scheme is the best option and how it should interact with user association.

Finally, a common limitation of most of the above works is that they focus
solely on the radio access part, ignoring the backhaul (BH) networik.right be
reasonable for legacy cellular networks, given that the macro-cédhlaatis often
over-provisioned (e.g., fiber). However, expected backhaul limitaionsmall
cells [12] and the additional backhaul load for coordinated transmis§ioMP)



and elCIC put a heavy toll on backhaul links, that might become the néw bo
tleneck. This calls for a joint optimization of radio and backhaul [13—15v-N
ertheless, these works mostly focus on the DL [13, 14, 16]. A recernit {i5]
analytically derives jointly optimal UL and DL user association rules for vari-
ous backhaul-limited scenarios. However, their work assumes fixed @mbun
resources, pre-allocated for UL and DL, for both the radio accedsaokhaul.
Interestingly, the authors there show that pre-configured backkaaurce allo-
cation further penalizes performance. Undoubtedly, backhaul res@liocation
policies should interact with theser associatiorand flexible TDDradio access
policies, in order to satisfy the UL and DL traffic demands that the latter gémer
In this paper, we propose an optimization framework that jointly considers all
these problem dimensions. To our best knowledge, this is the first wottetoat
it. Our main contributions can be summarized as follows:
(1) We propose an analytical framework to study the interplay betweerdi)as-
sociation, (i) radio access resource allocation with cross-interferannagement,
and (iii) backhaul resource allocation, significantly extending the pogtdane-
work of [1]. (Section 2)
(2) We show that the joint problem is non-convex, unlike variants studieden
past [1, 3,15, 16], but posseses some “hidden” convexity propdha allows its
decomposition into three subproblems. These subproblems can be sotwaghthr
convex optimizers, at possibly different elements (e.g. UE, BS, batkhk)y and
at different timescales, facilitating a hierarchical implementation. (Section 3)
(3) Using extensive simulations, we highlight complex trade-offs invohetd/ben
the different subproblems, and show that significant performance ireprents
could be achieved compared to current standards. (Section 4)

2 System Model and Assumptions

We use a similar problem setup as the one used in a number of related works [1
3,15, 17], and extend it accordingly. To keep notation consistent|lfeadables
considered, the superscript “D" and “U" refer to downlink and upliraffic, re-
spectively. For brevity, in the followingie present most notation and assumptions
in terms of downlink traffic only, assuming that the uplink case and notation is
symmetric Specific differences will be elaborated, where necessary. In Table
we summarize some useful notation.

2.1 Traffic Model

(A.1 - Traffic arrival rates) Traffic at locationz € £ consists of file (or more
generallyflow) requests arriving according to an inhomogeneous Poisson point



Table 1: Notation

| | Downlink | Uplink |

Access Resource Allocation Policy for BS i 1—-¢
Backhaul Resource Allocation Policy for lirkk Z(k) 1—Z(k)
Traffic arrival rate (flows/sec) at locatian AP () A (z)

Max. rate of BS; BS at location: cP(z) V()
Load density of BS at locationz pP () oY (z)
BS max rate requirement for backhaul P v
Normalized load of BS ({; — 1 and¢; — 0) pP oV
Load of BSi pP /G | p7/( =)
Association chance of locationwith BS i pP () Y (z)
Penalty indicator for congestion at BH lirkk TP (k) TY (k)
Penalty indicator for cross interf. between BS Zij

process with arrival rate per unit aredz)'. Each new arriving request is for
a downlink (DL)flow, with probability z”, or uplink (UL) flow with probability

2V =1 — zP. Using a Poisson splitting argument [18], it follows that the above
gives rise to 2 independent, Poisson flow arrival processes with rates

N(z) =20 A=), \V(z) =2V \a). (1)

(A.2 - Flow characteristics) Flow-sizes(in bits) are drawn from a generic
distribution with mean /1" (z).

2.2 Access Network

(B.1 - Access network topology)We assume an are&a C R? served by a set
of base stations, that are either macro BSs (eNBs) or small cells (SCs).

(B.2 - Access Resource Allocation Policyach BSi € B is associated with
a total bandwidthw;, and a resource allocation paramelex ¢(; < 1 which
reflects the amount of radio resources (e.g., time, frequency, spatkgbte for
DL transmissions. Without loss of generality, we focus on time resourses.ga
in the context of the envisioned flexible TDD standafdHence, the (long-run)
resources of B$allocated to DL ar€; - w;, whereas the UL ones afé — ¢;) - w;,
where(; is a keycontrol variableof our problem.

(B.3 - DL physical data rate) Each BSi € B is associated with a transmit
power P;. It can deliver anaximumphysical data transmission rate «ff (z, ¢;)

'As we are interested in the aggregation of all flows from all locatiomssosicated to BS
even if flow arrivals at each location are not Poisson the Palm-Khint¢heéwem [18] suggests that
Poisson assumption could be a good approximation for the input traffiBg a

2Although traditional LTE systems only allow some fixed and predefinedesdtr¢; (depending
on the TDD configuration), we relax them to be more generally applicable.



to a user at location: in absence of any other flows served, given by Shannon
capacity

cP(x,¢) = G - w; - logy(1 + SINR;(z)), )
where SINR(z) = % Ny is the noise power, and; () represents
the path loss and shadowing effects betweeni#eBS and the UE located at
(as well as antenna and coding gains, &td/je assume that effects of fast fading
are filtered out, and that the total intercell interference at locatigstatic, and
considered as another noise source, as in most aforementioned Wdrks]7].

(B.4 - Load density) We introduce théoad densityat x

_ M)
P @)eP (2, G)

which is the contribution of location to the total load of a BS, when locationz
is associated with B&

(B.5-BS load)Each locatiorx is associated with routing probabilitipg (z) €
[0, 1], which are the probabilities that flows generated from a userggtt associ-
ated with (i.e., are served by) BSThe effective load for B$ would be

pi” (¢) Z/piD(f)P?(anQ)de- (4)
c

Clearly, the BS loadg; depend on (and amoupled by the newcontrol variables

(;, related to the UL/DL allocation problem. To make this relation explicit, in the
following we will use thenormalizedload variablep?” = pP(¢; = 1), i.e. the
load when all resources are used for DL (similarly for UL). We are istexckin
the flow-level dynamics of this system, and model the service of DL flowactt e

BS as a queueing system with effective loadytlization) i

(B.6 - Scheduling)Proportionally fair scheduling is often implemented in LTE
networks due to its good fairness and spectral efficiency proper®sThis can
be modeled as an M/G/1 multi-class processor sharing (PS) system [i58hulti-
class because each flow might get different rates for similarly allocasedirees,
due to different channel quality and modulation and coding scheme (MES) o
served atr.

(B.7 - Performance impact of BS load)The stationary number of flows in BS

i is equal toE[N;] = 1fi.1/7</i<~ [18]. Hence, minimizingy? /¢; minimizesE[N;],
and by Little’s law it also minimizes the per-flow delay for that BS [18]. Also, the
throughput for a flow at locatiom is ¢; - cP(z) - (1 — pP/¢;). This observation

is important to understand how the user’s physical datagiate” (z) (related to

3We use Shannon capacity for clarity of presentation. However, ouoapp could be easily
adapted to include modulation and coding schemes.

“In the UL, we assume that the Tx power of each useé?Pi€, and slightly abuse notation for
SINR, G, etc., as these don't play a major role later.



users at locatiom only) and the BS Ioagzi? /¢ (related toall users associated with
BS ) affect the optimal association rule (e.g., in Eq. (14)).

(B.8 - UL/DL association split) In the following, we will assume that a UE
is able to associate with up to two BSs, one for its DL and one for UL traffic, as
proposed in LTE Rel. 12 [20]. However, our framework is backwamhpatible
when joint UL/DL association is required (see Section 5).

=08 1-P=74=0.2

DL DL ABS ABS ABS ABS ABS ABS

pDL =0.2 C_p[-t =0.6
Figure 1: A frame example for a certain BS.

(B.9 - UL/DL cross interference avoidance)Without loss of generality, we
assume that each BiScross interferes with a subset of other BSsC B\ {i}.
In practice, a distance based rule, or alternatively the cell cluster pgream be
used to determine these sets: i§ on the DL and a BS € C; on the UL (or vice
versa) then these BSs might cause severe interference to each ahienvélidates
assumption B.3). We refer to this asss interferenceA sufficient condition to
avoid cross-interference is

pP +pY <1,VieB,jeC; (5)

We explain the above condition here. Consider two suchiB®s;. If ¢; = (;
then there is no cross-interference, becaused; can synchronize their DL (and
UL) slots to avoid it. If¢; # (;, cross-interference might occur, bualso depends

on the effective loads(; slots areat mostused for DL. But out of these only
D

D
’2—? - ¢; = pP will be busy (since% is the utilization of the downlink resources,

according to B.5-B.7). The rest of the DL slqats — %D) ¢ = ¢ — pP could
be blanked with ABS frames (see also Fig. 1). Similarly, the percentagetsf slo

B . . pY U ..D
thatj will be activeon the UL '51_]@- (1= ¢;) = p; slots. Hence, |"% “G+
U
fi—j{_ - (1 = ¢;) < 1, there are enough different slots in a frame to schedule all

DL and UL of i andj without any overlap. Taking care for all such links on the
interference graph, gives us Eq.(5). Finally, we stress that this eimsapplies to
the long-term allocation policy of resources. The actual MAC schedulingstila
allocate resources in those time slots to transmissions that are non-interfering

2.3 Backhaul Network

(C.1 - Backhaul network topology) Each access network node (either eNB
or SC) is connected to the core network through an eNB aggregationayateay



a certain number of backhaul links that constitute the backhaul netwohiks T
connection can be either direct (“star” topology) or through one or r8@raggre-
gation gateways (“mesh” topology).

) eNB i wireless link €&—>
sC fiber [ —a
MME/ 5-GW

Figure 2: Future Backhaul topology of a HetNet.

Without loss of generality, we assume that there is a fiber link from the eNB
to the core network, and focus on the set of capacity-limited backhaul(\iviksd
or wireless) connecting SCs to the eNB, denotef;asWe denote as routing path
By (i) the set of all backhaul linkg € 5, along which traffic is routed from BS
i to an eNB aggregation point, and we assume thatgiven(e.g., calculated in
practice as a Layer 2 (L2) spanning tree). For example, in Fi§,@,) = {1}, and
Bn(3) = {1,2,3}. We further denote a8(j) the set of all BS € B whose traffic
is routed over backhaul link. E.g.,B(1) = {1,2,3,4} andB(2) = {2,3,4} in
Fig. 2.

(C.2 - Backhaul Resource Allocation PolicyEachj € By, backhaul link is
associated with a total capaci€y,(;j). While traditional backhaul links are mul-
tiplexed using FDD, nowadays TDD gains more ground due to the perfagnan
improvements it promises [21]. So, in the context of TDD, we introduce thk-ba
haul resource allocation paramefier. Z(j) < 1, that splits the backhaul capacity
of the j link between DL ¢(j) — 1) and UL (Z(j) — 0). Note that, backhaul
links usually don’t implement any particular scheduling algorithm, so they ean b
seen as a data “pipe”.

(C.3 - Backhaul load) The DL load on a backhaul link consists of the sum
of DL loads of all BSs using that linki (¢ B(j)), divided by its offered backhaul

capacity [15]
P ~D ~D

D
Z(j)-Cun(j) Z(5) - Cr(j)

wesy 20 Ghl) Ly Z20) - Culd)

wherecP is a parameter use to “dimension” the BH link and corresponds to an

estimate of the maximum DL total rate that B$night request the backhaul to

transport. A BS is characterized by its “peak” rate (often upper balibgethe

maximum MCS available), and a “busy” rate when this BS serves many usgrs [

The latter is usually quite smaller than the former, since users near the edge of

the cell tend to bring the average rate down. However, the use of draased

scheduling and related multi-user diversity gains suggest that cotigelyaetting



&? closer to its nominal peak value is safer. In practice, a BS can directly measu
it.

(C.4 - Backhaul provisioning) Each BH link; is associated with a backhaul
load (see C.3), that shall be maintained below 1 to prohibit backhaul stioge
As a result, each BH link is associated withackhaul constraint

pi C; .
E — <1, VjeB 7)
D

Throughout this paper, we assume that the backhaul network is efttier-provisioned
if the capacity ofat leastone backhaul link is exceeded, aver-provisionedth-
erwise.

(C.5 - Interference-free Backhaul)Modern backhaul architectures are devel-
oped using (highly) directional P2P or P2MP static architectures [22¢s&lare
planned topologies and thus cross interference between BH links with aggimme
UL/DL schedules can be considered negligible.

3 Joint Optimization

We start our discussion by ignoring the backhaul network (assumingribis p
visioned), and attempt to solve the (i3er associationand (ii) access resource
allocationproblems, jointly. More specifically, we are interested in finding the op-
timal values for the variablg; andeD, p?,Vz’ € B. In Section 3.1 we define the
feasible region of these variables, and then we introduce our objegticédn and
the corresponding optimization problem. In Section 3.2 we sketch a comerge
algorithm that decomposes it in smaller problems that can be efficiently tackled a
shown in Section 3.3. In Section 3.4 we introduce and tackle the complete setting
that also considers the (iiDackhaul resource allocatioproblem.

3.1 Feasible set, Objective and Optimization Problem 1.

The feasible region for our problem can be delimited by the requirement that
the effective load of no BS being exceeded (see B.5).

Definition 1. (Feasible set) If € is an arbitrarily small positive constant, the feasi-
ble region Of(pD; pU; C) = ((p%jv p£)7 ce 7pf[3||)7 (pijv pga s 7p|l|]BH)7 (Cl; 427 ce 7C||B||))



F={6" 01t = [ st @pe (8a)
> ) =1, (8b)
1€EB
0<p/(x)<1, YoeL, ye{U D}, (8c)
O+e<(G<l—e (8d)

D U
Pi_ _Pi : :
< — <1-— )
< i<t 6, Vi€BjeC) (8e)

Lemma 3.1. The feasible seF is convex.

Proof. The proof for the feasible sef without the last two constraints can be
found in [1]. Constraints (8d are linear, and constraint (8e) refetseamage of
p under different perspectives. So they preserve convexity [2@] tlhe complete
feasible set remains convex. O

Following [1, 3] we extend the proposed objective that only consider8ge
loads p;, to also include the resource allocation variahjgs/i € B (see B.2).
The operator may weigh the importance of DL and UL traffic performance with
a parameter € [0,1]. o controls the amount of load balancing desired in the
DL resources, and? in the UL. Leta = [o”; aV], wherea” anda! can have
different values.

Definition 2. (Objective function) Our objective is

1 piD)]-*UD (1 /J? )17aU
_ < - TG e D U 9
Palp )= 7 o - ita”.a £1. 9)

icB

If o is equal tal, the respective fraction must be replaced Wi 1 — %’é)*l.

The respective-fair functions can capture different objectives such as rﬁaximizing
spectral efficiencyd = 0), throughput & = 1), mean per flow delayo( = 2), and
maxmin load-balancingh( — oo); similarly for the UL.

This function, unlike the original one and some recent variants [3, 15 hot
convex, and thus the standard fixed point method or other convex sckenot be
directly applied. However, the following lemma reveals a “hidden convexitst th
can be exploited with decomposition methods.

Lemma 3.2. The objective function,, (p, ¢) is a biconvex function, i.e., it is convex
in p for fixed(, and versa.

_ Pyl
Proof. The objective function is the sum of the basidunction a C_) over
different BSs, with(p, () € F. When( is fixed this is the simplest form of the well




known a-fair function which is clearly convex ip. And so is the corresponding
sum over all BSs (sum preserves convexity). For fixgtie basiex function is also
convex in¢ (it has non-negative second derivative, nantgly—3(1 — p/¢)~* +
ap?¢*(1 — p/¢)~*"1 > 0), and so does its sum. O

Definition 3. (Optimization Problem 1) The joint user association and radio re-
source allocation problem can be expressed

I?Ln{%(p’ Olp, €) € F},

subject to Eq(5).

(10)

Lemma 3.3. Problem 1 is a biconvex minimization problem.

Proof. This is a biconvex optimization problem since the objective function is
biconvex on the (bi)convex feasible s&i and the constraints are affine func-
tions. O

3.2 Decomposition Algorithm for Optimization Problem 1.

Our nonconvex objective is block separablefhy pU. Indeed, if we fix¢, the
problem decomposes in two simpler problems with variapfésind pV, that are
coupled from constraint (5), and so we cathecomplicatingvariable. Therefore,
it makes sense to decompose the objective into two levels of optimization, follow-
ing theprimal decomposition methd@4]. Specifically, at the lower level there are
two subproblemghat run in parallel, that aim to find the optimal valuegt? and
p*Y, namelyp = [p*P; p*V], upon a fixed.. At the higher level we encounter the
master problemwhere we attempt to update (and eventually optimize), the com-
plicating variable(. Note that constraint (5) only depends @and thus does not
affect the master problem. Formally, the subproblems and the master praielem a

mpin{gsa(p, ¢)} subj. to Eq.(5) (sub-problems) (12)
n1<in{¢a(p, ¢)} (master problem) (12)

The above decomposed problems are convex since Problem 1 is bigeaeex
Lemma 3.4). Thus, they can efficiently be tackled through convex optimizers.
Our proposed iterative algorithm is sketched in Alg. 1. Convergencstabd-
ity are guaranteed if the two subproblems are solved on a faster timescatb¢han
higher level master problem, so that at each iteration of a master problersuinth
problems at a lower level have already converged [24]. In Section && dhow

how one can derive the optimal valug§ whereas in Section 3.3.2 the sequence
¢k,

Lemma 3.4. Algorithm 1 converges to the global optimal point of Problem 1.



Algorithm 1 Decomposition Sketch of Problem 1.

1: Repeatuntil |¢*) — ¢+ < e,

Update the master problem (Section (3.3.2)).
Resource allocatior — DL, 1 — ¢ — UL.

Solve the two subproblems (Section (3.3.1)).
Derive p*P given the available resourced (
Derive p*U given the available resources < ¢).

Proof. Our proposed decomposition algorithm falls into the category of Alternate
Convex Search (ACS) [25, 26], that is a special case of the popldak Eoordi-

nate Decent (BCD) method [27]. There, starting from an initial feasibietpone
attempts to minimize the objective by cyclically iterating through the different op-
timization directions with respect to one coordinate direction at a time. Precisely,
in our case at the end of theiteration it is

ba(p, CM) < @alp, CEV).

This will continue until convergence to a stationary point, where the gradamn
ishes and the above inequality approaches equality. ACS algorithms in its gimples
form suggest that the stationary point could be a saddle point, a locdbloalg
optimal [25]. However, Alg. 1 guarantees convergence to the glokistham due
to the following two points.

(1) Uniqueness of optimum poin@ptimization Problem 1 can be converted to
a geometric programming (GP) problem, since both its objective and constraints
can be written as a sum of posynomials terms composed of positive monomials,
according to the transformation in [28]. Such problems have a single optimum.
(The GP equivalent form of our problem is not convenient for deamsition, so
we use this argument only to prove unigueness, but not to solve the jolviep.)

(2) Saddle point escapeOur proposed algorithm can escape from potential
saddle points, as discussed in Section 3.3.2. Ol

3.3 Subproblems and Master Problem.
3.3.1 Subproblem Optimization (Eq. (11))

We present here the DL subproblem only. The UL problem is symmetric. An
efficient way to tackle the coupling constraints in a distributed implementation
setup is to directly include the constraints in the objectivpergalty functionghat
increase the objective when a cross-interference constraint is vigZ8pdVe can
then solve the newnconstrainegroblem

min{®(p, Q) = dalp, ) +7 > > Tyjlel + o) =1}, (13)

i€B jGCi

10



whereZ;; is the indicator variable that reveals whether B8oss interferes with
BSj (Z;;=1, whenp + p% > 1) or not (Z;;=0, otherwise) (see also B.9).

Quadratic penalty functions like the above are common [29] and presexve th
convexity’. Parametery can be chosen as a large constant, introducing a “soft”
constraint (i.e., cross-interference could be slightly exceeded, if thify ren-
proves our main objective), or be increased progressively, so ast@ige to a
“hard” constraint [29].

Theorem 3.5.If p* = (pi,p5, - ,p*‘BH) denotes the optimal load vector, the
optimal DL association rule for locatiom is

BS broadcast message
D N
i (z) = arg max cP(x) - PP (14)
€B ——
user knowledge

* D\ &
o (1-57)
wherePP = o

oD et '
12y (1-22) 8 TP )
JjeC;

Starting within a feasible point and using increasing values fer these rules
can be iteratively applied and will eventually converge to the optimal pgint

Proof. Problem (13) is convex. Let" be its optimal solution. A sufficient condi-
tion for optimality is if (V®(p*), Ap*) > 0forall p € F, whereAp* = p—p*. To
write the remaining of the proof compactly with respect to the coupling contrain
we denote (only within the proof)? = ¢, ¢V =1, I(D) = Z;;, I(U) = Z;;
and assume thdt is eitherD or U (L € {D,U}) with complementary valué.
Let p(z) andp*(x) be the associated routing probability vectors fand p*, re-
spectively. Using the deterministic DL and UL cell coverage generated4)ytie

respective optimal rules agg’ (z) = 1{i =il (x)

>This can be easily seen, since the functient y — 1)* has Hessian matrix the, 2; 2, 2], and
so it is positive semidefinite and convex.
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Then, the inner produaV¢ (p*) , Ap*) is equal to

ZZ 1P*L>&L+2’YZI(L)(P:L+P;L1)> (Pf—P:L)
= JEC;

L ieB CzL (1_ i
L
»L « * *~
142y (1-40) " 5 1)t +p5E - 1)
>0 =
* L

al
L i€B ¢k (1 — p(;iL )
i

[ ot (v ) =9 @) do =

L
AN * s L
142y (1-%) S I + 05" = 1)

_ M () jec;
a EL:/ pt (@) 2 "

*L\ &
L i€B Cref () (1 - %)

~ (pf(fr) —pf*(f)) dz.
Note that inthe DL i.eL = D (similarly in UL)

D
DN * *
142y (1— %) Ec: Zij(pi” + p;Y = 1)
JjeC;

> (@) ——p >
o0 (1~ 5)
*D QD
L2y (1-22)" X Zu(ei® + 037 - 1)
Dx ‘ JEC;
Di (T) DD
ieB GeP (@) (1- 2

L
xD
1+27(1—”Zi ) _Ec'zij(p;fDer;U—n
holds becausg:” () is an indicator for the minimizer of I

oD

ek (1-47)
S0,(Vo(p*), Ap) > 0. O

Note that these rules are “device centric”, i.e., they can be applied frowEhe
side in a distributed and iterative manner, as follows. At each iteratiorestgpBS
broadcastghe second term of the optimal rule (as indicated in Eq. 14), and each
UE uses this message as well as its measured data rate to decide where to optimally
associate, based on their product. (Similarly for the UL). Such broaduoastities
can be easily integrated through the newly proposed Access Networkveisc
and Selection Function (ANDSF) mechanism or in the absolute/dedicated priority
list mechanisms of LTE [30].

When the interference constraints for the B&re not violated (i.e.Z;; =
0,Vj € C;), the above rules state that the optimal downlink associations are the
same as the one in [1]. However, when the BSoss interferes with another BS,
an additional term is added in the denominator that penalizesrB&king it less

12



preferable to users at location Note that the amount of penalization depends on
the amount ofotal cross interference (sum term) from nearby BSs.

3.3.2 Master Pr. Update (Eq.(12))

Descent methods suggest:
¢ = ¢ ) 4 I ACH), (15)

such thatp(p*, (k1)) < ¢(p*, ¢¥)), where A¢*) is a descent directionand
t(k) a step size The master step update forcould be performed centrally (e.g.
at an SDN controller), or at each BS upon allowance for coordination et
other (e.g., exchangingthrough the X2 interface, and/or using a distributed SDN
controller environment) (see Section 5).

Nevertheless, since our objective is differentiable, we chose to applyahe
ton methodthat provides the steepest descent direction in local Hessian norm, in
order to speed up convergence. We also apglsktracking line searcthat deter-
mines the maximum amount to move along the search direction [23]. Finally, when
stationarity is reached, we ensure that this is not a saddle point throughsy™
gradient criterion: a noise vector with mean 0 is added to the gradient direxftio
stationary points that provably pushes them away from saddle points)8&]to
space limitations, we refer the interested reader to [32] for more details.

3.4 (Joint) Optimization Problem 2 for Underprovisioned BH.

Introducing backhaul constraints, and flexible UL/DL resource allonatio
each backhaul link, leads to a set of additional coupling constraintsréthe
coupling is now due to more than one BS utilizing the same BH link). Neverthe-
less, such constraints can also be tackled with appropriate penalty fumatioich
again leads to a decomposition of the problem, but now including an additidn leve
(corresponding to an UL/DL update step at each BH link). Due to space limita-
tions, and as the analysis and algorithms are extensions following similar logic to
the previous section, we only provide here a brief description and trefenter-
ested reader to [32].

Definition 4. (Optimization Problem 2) The joint user association, radio resource
allocation, and backhaul resource allocation problem can be exptesse

min {64 (p. C)(p. ¢, Z) € F},subj. to Eq.6) and (7). (16)

This is a multi-convex optimization problem (generalization of biconvex).The
algorithmic sketch is shown in Algorithm 2. Convergence and stability can again
be guaranteed if at each iteration of (either) master problems all the lowadr lev
problems have already converged. The optimal user association rylesagia in
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nature, i.ei?(z) = arg max;e{cP (x) - PP}, but now the BS broadcast message
partPiD also includes the backhaul link penalties and is equal to:

6 (1-)"
DD ) (17
1

> p

-p_gPk) [ 1eBk) . .

1+2y > ey Z(k)-Op (B) ( zmom — L)+ 2 T (PP +p3Y —1)
keB, (1) lec;

where7P (k) indicates whether thiebackhaul link is congested in the D7 (k) =

p ) PiCi
ZLEB(k)p >1).

1 wheniz(k)ch(k)

Algorithm 2 Decomposition Sketch of Problem 2.

1: Repeatuntil [|Z") — Z(=D|| < e.
Update the master problentf.
Repeatuntil [|¢*) — ¢*=D|| < e.
Update the secondary master problegi. (
Solve the two subproblenis).

4 Simulations

In this section, we evaluate our proposed algorithms on example scenarios,
and discuss related insights. We first consider a simple scenario with ome mac
BS and three SCs, in order to better elucidate the qualitative behavior @fl-our
gorithm, compared to standard practices, as well as better trace its pert@ma
benefits and where these come from. We then consider a larger netveoikriec
and demonstrate that similar benefits can be observed there as well.

Scenario 1:We consider 2 x 2 km? area. Fig.3 shows a color-coded map of
the heterogeneous traffic demak@:) (flows/hourper unit area) with 3 hotspots
(blue implying low traffic and red high). We assume that this area is covered b
three SCs (referred with BS numbers 1-3), and one macro cell (BS mudhbe
Without loss of generality, we assume that each SC offloads its trafficghrau
dedicated backhaul link (corresponding BH link numbers 1-3) to the niz8rand
that the macro BS cross interferes with all SCs ((&.,= {1,2,3}, C; = Cy =
C3 = {4}, see B.9). We consider standard parameters as adopted in 3GPP [33],
listed in Table 1f. We seta” = oV = 1 to optimize user throughput. (We have
also considered other values, with similar conclusions.)

Coverage SnapshotsWWe first look at the coverage maps that different schemes
create. Figure 4(a), 4(b) depict the optimal user associations for fikEelT DD
configuration 1 that assumes static UL/DL timeslot ratio 4 i.e., fixed(; =
0.5,¥i € B. Similarly for the BH linksZ(j) = 0.5,Vj € Bj. As a first note,

6As for the sizes and ratios of different flows, as well as BH capacitiescan use different
values in order to capture different simulation scenarios.
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| Variable \ Value |

0
I1 Ponpsouvr | 43,2412 dBm
500 0.8 w;, Vi € B 10 MHz
1000 °e Cn(j), Vj € Bn 100 MBps
B No -174 dBm/Hz
1500 1/uPY () 100,25Kbytes
02 —
27,z 0.7,0.3
20005500 1000 1500 2000 ocD,aU 11

Figure 3 & Table 2: Traffic arrival rate and other simulation parameters

we see that in DL most users are associated with the macro BS, and a few to SC
(macro BS attracts more DL users due to the higher transmit power). In the UL
users tend to form Voronoi cells (to minimize path loss and improve UL SINR).
Secondly, we note that the DL coverage areas of the various SCsaeased ac-
cording to the corresponding traffic arrival intensity: e.g. SC 1 thaesahe most
intense hotspot (see Fig.3) has the smallest coverage area, while SCh3sebgc
lower traffic intensity has the largest). The main reason is that the SCs have lim-
ited DL backhaul capacities that force some users to the far away macrbhizS
alleviates the backhaul link congestion but hurts overall performanicéefsame
time, a high amount of the pre-configured UL backhaul resources meégiwin
wasted (due, to assymetry in DL/UL traffic intensity for example).

Summarizing, the observed coverage maps for this scenario demonstrate two
possible shortcomings of pre-configured TDD: (a) asymmetry in the DLW
age areas and corresponding transmit powers suggest that a TDa&tialoather
than 50-50% could improve performance; (b) some (usually DL) usecidions
could be suboptimal, dictated by backhaul capacity limitations arising from the
preconfigured fixed allocation on the BH, even if the total BH resourcaddv
suffice for the sum of both UL and DL traffic.

To explore these possibilities, we now relax the allocation variaplasd Z
(see B.2 and C.2) and apply our proposed algorithm. Clearly, in this simple ex-
ample, a single-step improvement in either direction described above (())or
could improve performance. We remind the reader that our proposedtiatgo
goes beyond this single step, alternating between optimizing coverage nps an
TDD resource allocation, until it finds the best possible combination. The re
sulting coverage maps (i.e. optimalvalues) and radio/BH allocations (optimal
¢ and Z values) are shown in Fig. 4(c), 4(d). We first note that macro BS in-
creases itg, = 0.77 to serve more DL users, and SC increase their UL resources
1—¢=0.54,1—(=0.84,1— (3 = 0.79 to serve more UL, bewaring to avoid
cross interferencelnterestingly, such an allocation simultaneously improves both
UL and DL performances (we will explicitly show this later). Also, the DL BH
allocated resourcesZ(j)) are increased to accommodate more DL traffic, while
ensuring not to exceed a maximum value that would congest the UL.

User-centric performance: We now go beyond the above qualitative behavior
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(a) DL assoc. (fixed TDDs). (b) UL assoc. (fixed TDDs). (c) DL assoc. (flexible TDDs).

1500 2000

(d) UL assoc. (flexible TDDs).

Figure 4: DL and UL user associations for different scenarios:(0.5).

and evaluate the quantitative benefits. We first focus on user-centfarmpance
and consider various values (we remind the reader thatis a parameter that
balances the importance of DL vs UL performance). We compare therpeamee
of the following main schemes.P(oposedAly our proposed algorithm;TOD
Fixed): the optimal allocation algorithm of [15] with equal, pre-confiigured UL/DL
resources on both radio access and BH. To better understand the ingeodia
considering the cross-interference and BH capacity constraints, wanalside
results for the following schemesAIgNoCros3: jointly optimal allocation, but
not taking cross-interference into account. If there is an eventuairasyry in the
optimal UL/DL schedules, potential cross-interference is included in th&k$d
capture its impact.AlgNoBH): jointly optimal allocation without considering the
backhaul constraints. Here, we assume that all BSs associated with akBk#lins
congested decrease their performance proportionally to the amourigdston.

In Fig 5 we depict the DL and UL user throughput as a functioniofdifferent
scenarios. Itis easy to see that uoposedAlg significantly outperforrtise TDD
fixed policy by up to2.5 — 3x. What is more, for most intermediatevalues, it
is able to simultaneously improve both DL and UL performance.r Ascreases
further, the emphasis ¢froposedAlgnoves exclusively to the DL (and vice versa)
which is consistent with our expectations, unlike the fixed TDD scheme vibiere
and UL performances are optimized independently @decoupled objective).

Regarding the impact of the cross interference constralghloCrosscan still
offer some improvement on the DL far > 0.5, compared to the baselin€PD
Fixed). However, it does so with a significant penalty on UL performance (up to
3x worse), which is the most sensitive to cross-interference (this DL-toRtHr-
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ference is a key problem for future Flexible TDD [34]). This underlities im-
portance of directly considering cross interference constraints inimization
framework through Eq.(5). Finally, the performanceAd§NoBH shows similar
behavior, where it can sometimes provide better performance for the e &L
(compared ta'DD fixed but not both.

Summarizing, the following important conclusions can be drawn from thesabov
analysis: (a) jointly optimal allocation of user association and DL/UL radio re-
sources can actually lead to considerable performance degradatiess gross-
interference is taken explicitly into account; (b) a jointly optimal allocation, even
with cross-interference taken into account, might still be quite suboptimal, if the
DL/UL resources on the BH are not also optimized to conform to the new load
requirements imposed by the BSs; (c) joint optimization of all these dimensions is
feasible, and can offer significant performance improvement for bat/D

“H&ProposedAlg 3 ProposedAlg
TDD Fixed TDD Fixed
6/2AlgNoBH =AlgNoBH
<<AlgNoCross 2| [<<AlgNoCross

S

=

DL throughput (Mbps)
N

UL throughput (Mbps)
|a}

o
OO

o

0.2 04 1 06 0.8 1 0.2 04 1 0.6 0.8 1

(a) DL throughput. (b) UL throughput.

Figure 5: User-centric Performance.

Network-centric performance. Table 3 considers the performance improve-
ments in the same comparison scenaRmposedAlgand TDD Fixed[15]), but
now from the network perspective when= 0.5. We consider two metrics: Spec-
tral Efficiency (SE) in terms of bits/s/Hz, and Load Balancing (LB) in terms of
mean square error between different BS loads, similar to what is assurfies.in
DL/UL spectral efficiency improve up té4% sinceflexible TDD better allocates
the resourcesvith respect to the heterogeneous transmit powers that help physi-
cal data rates improve (see B.2-B.3). It also considers related trafistisgand
asymmetries across users (see A.1-A.2) by diminishing the BS load fluctuations
(e.g., BS under/over utilizations) and thus LB is improved. It is interesting t® no
that simultaneous improvement of these metrics implies improvement in user per-
formance, as showed previously and explained in B.7.

Table 3: Network (SE,LB) Performance & 0.5)

| Downlink | Uplink |
Performance. SE LB | SE LB
Percentagé; of improvement.| 42 16 | 44 54

17



Scenario 2:Having highlighted the different tradeoffs and sources of perfor-
mance improvement in the basic scenario above, we now turn our attention to a
larger network topology consisting of 4 macro BSs and 13 SCs. Withoubloss
generality, we now consider uniform traffic demand. Considerable ipeaiace
improvements can be observed in this scenario as well §84%. better UL user
performance). Relative lower improvement values compared to the smatler Sc
nario 1 are mainly due to: (a) not all BSs experience bad performancemewen
if ProposedAlgconsiderably improves the performance of the problematic BSs,
average performance is not as affected; (b)atéitional cross interference con-
straintsposed from the neighboring clusters. Due to space limitations, we refer the
interested reader to [32] for more details on this scenario.

Table 4: User (UE) and Network (SE, LB) Performanece= 0.5)

] | Downlink | Uplink |
Scenario. UE SE LB|UE SE LB
Percentag& of improvement.] 29 39 4 | 86 42 51

5 Discussion and Future Work

Decomposition ordenVhile our proposed decomposition is not the only pos-
sible decomposition, we believe this lends itself to a natural implementation be-
tween different network elements. User association is proposed to rumfiastest
timescale to adapt to the high traffic fluctuations across different locatioths a
users. The load of a single BS depends on the sum of its attached udess an
subject to fewer fluctuations. It only has to react to (slower) traffictstuf the
aggregate loads, by updating tparameter accordingly. Finally, a backhaul link
further aggregates the traffic of multiple BS, and can update its optimal allocatio
at an even slower timescale.

Scalability and Flexibility.Our user association rules are “device centric", i.e.,
the user is able to select where to assodiateed on own measurements (e.g. SINR)
and BS-transmitted informationThis is inline with user association in current
LTE systems, where user association depends on device centric infamtato
SINR measurements) but also BS-transmitted information (e.g. priority lists of
BSs to monitor). These rules arscalable (constant amount of the BS broab-
cast messages irrespective of the number of users, backhaul tppatacross-
interference mapximple(constant complexity of the rule with respect to the num-
ber of BSs), and offeflexible performancédefined froma values).

Distributed SDN-based controlThe two master algorithms, for access and
backhaul TDD allocation, require by some centralized knowledge. Whikethe
can run at a slower time scale without jeopardizing the performance of the al-
gorithm, a hierarchical or fully distributed implementation, based on hieraichic
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SDN controllers could be envisioned [35]. A local SDN controller could,,e

be responsible for a smaller “cluster” of MC, SCs, and their backhaut. rii&s-

ter problem could be further decomposed into further subproblems bleek#
solved by the respective SDN controller (and then aligned through comatiamic
with a main SDN controller). We intend to investigate such a scenario in future
work.

Joint UL/ DL associationOur framework is also applicable when DL and UL
traffic at a location: have to be offloaded to the same BSs (see B.8), by requiring
pP(z) = pY (z) in the association rule derivations (see [32] for the resulting rules).
We defer to future work other similar splits, e.g., for control/data channele st
effort/dedicated traffic [19].

6 Conclusion

In this paper, we formulated a novel algorithm that carefully studies the cou
pled problems of (i) user association, TDD (ii) access, and (iii) backiesalurce
allocation under the emergirtgackhaulandcross interferenceonstraints. Using
optimization theory we proved that under certain circumstances it cors/grdglee
global optimum. Simulation results corroborate the correctness of our frarkew
and reveal promising qualitative and quantitative results.
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