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Coordination vs. cooperation

Coordination is a way to resolve complex problems among distributed agents
Can come with a notion of conflict: coordination → cooperation
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Network coordination

Coordination and cooperation have emerged as central concepts in many types of
networks

Autonomous robots networks

Transportaton networks

Sensor networks

Processor networks

Energy (Smart Grids) networks

Wireless networks
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Team-playing robots

Driver-less vehicles

Autonomous robot patrols

Plant probes (nuclear sites,..)

Military drones (ground, air)

”Smart Factory” robots

Robot sport teams ”Robo-Cup”

Chalmers University project on self driving car safety 

Network coordination is often, by essence, ”myopic”
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Wireless Device Coooperation
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Wireless Device Coooperation

Network/Device cooperation beyond 5G

Where are we going?

Centralized 
Processing

Distributed 
Processing
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Wireless Device Coooperation

Why beyond 5G may be ”centralized”

Cloud RAN is very popular, pushes for more centralization
Centralized decision making is conceptually simple and efficient
Coordination, coperation is easy
Mobile service providers love it

RX k 

TX 3 

TX 2 

TX 1 

CLOUD-RAN 
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Wireless Device Coooperation

Enhancing spectral efficiency via coordination

Recent spectrum efficiency gains (or promise) from

MU-MIMO, Network MIMO (CoMP), Massive MIMO
Dynamic cell clustering
Beamforming
Power control
Channel aware scheduling
Spectrum sharing

All made easy in centralized settings
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Wireless Device Coooperation

Why beyond 5G may be partly ”decentralized”

Centralization leads to expensive architectures
Curse of dimension (IoT: billions of devices)
Centralized processing increases latency, killer for the tactile internet.
Wireless backhaul architectures are often heterogeneous

Cloud 

Fog 

Ground 

Centralization Backhaul  latency timeliness 
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Wireless Device Coooperation

Cooperation in heterogenous Wireless networks

CSI sharing with delay/
quantization/noise

  
x1=w1(H(1))s

  
x2=w2(H(2))s

  
x3=w3(H(3))sUser’s data from core 

network

Sharing/caching
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Wireless Device Coooperation

Ultra flexible Wireless networks

Internet 

Wireless gateway 

UAVs with aerial relays 

Signaling for dynamic positioning 
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Wireless Device Coooperation

Device-centric Cooperation

Potential:

1 Many devices with substantial sensing/computing capabilities (phones, tablets,
vehicles, drones, pico-BS..)

2 Huge collective intelligence

3 Local processing makes time-sensitive measurements more relevant

Challenges

1 How to model distributed information settings?

2 Is there a price of distributedness?

3 Are there robust approaches?
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Wireless Device Coooperation

Ex 1: Power control over interference channels

Two interfering devices, with interference
channels Gi,j , i = 1, 2, j = 1, 2

Transmit with binary power control is sum-rate
optimal [Gjendemsjo et al., 2008, TWC]

(p?1 , p
?
2 ) = argmax

(p1,p2)∈P
[R(p1({Gi,j}), p2({Gi,j}))]

where

P,{(p1, p2)|pj : R4 → {0,Pmax
j }, j = 1, 2}.

RX1

TX1

RX2

TX2

P1
P2

G11

G21

G22

G12

Hence the coordinated choice of ”full power” or ”stay silent” for each device requires full
centralized CSI. What if not the case?

14/127



Wireless Device Coooperation

Ex 2: Interference Alignment

Interference Alignment 

Conditions with Nr=2: 
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Alignment can be carried out in space, frequency, time domains.[Maddah-Ali et al., 2008,

TIT][Cadambe and Jafar, 2008, TIT]

Realization of alignment conditions requires knowledge of all matrices Hi,j at all
transmitters. What if not the case?
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Wireless Device Coooperation

Ex 3: Network MIMO
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Network MIMO requires full knowledge of global H matrix (and data symbols) at all
transmitters. What if not the case?
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Wireless Device Coooperation

Ex 4: Distributed caching

D2D can be leveraged for content sharing and caching among terminals [Golrezaei et al.,

2014, TIT]

Popular files can be cached in device memory for later use. Each device can store K
files.

N ideally close-by devices can coordinate to cache non overlapping subsets of K
files, hence making the NK most popular files available in their vicinity.

This requires full information exchange. What if not the case?
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Wireless Device Coooperation

Ex 5: Coordinated beamforming/scheduling

Service (data) 

interference 

Each transmitter should design a beamforming vector wi , i = 1, 2

The best beamformer choice strikes a optimal trade-off between matched filter
(egoistic) solution and interference zero-forcing (altruistic) solution [Jorswieck et al., 2008,

TSP]

Optimal design based on knowledge of all direct and interference channel gains.
what if not the case?
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Wireless Device Coooperation

Ex 6: Cell coloring/clustering

Figure: From Park, Lee, Heath, ”Cooperative Base Station Coloring for Pair-wise Multi-Cell
Coordination”, arXiv March 2015

Given a limited cooperation cluster size, cells can coordinate with other to design
optimal clusters

Clustering algorithms are usually centralized. But what if cells should attach to a
cluster based on local CSI? (i.e. local user gains, local interference gains)

Decentralized (heuristic) algorithm proposed in [Park et al., 2015]
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Wireless Device Coooperation

Device coordination: The many perspectives

Team 
Decision 
theory 

Distributed 
optimization 

Device-centric 
Cooperation  

Game 
theory 

Information 
theory 

One-shot decision 
Robust sign. proc./control 
Noisy/distributed CSI 
… 

Complexity/Convergence studies 
Consensus algorithms 
Delay tolerant applications 
… 
[Boyd et al, Inalhan et al, Colorni et al, Rabbat et al, Chen et al., Johansson et al., 
Palomar et al., Scaglione et al., Scutari et al.] 

Study of equilibria 
Selfish behavior 
Convergence studies 
… 
[Saad et al, Han et al, McKenzie et al, Lasaulce et al, 
Poor et al., Rose et al., Jorswieck et al.,..] 

Capacity/DoF analysis 
Coordination theory 
Quantizing with side info. 
 … 
 
 

[Larousse et al,Cuff et al, 
 Li et al, Grover, …] [Ho et al., Radner, Gesbert, de Kerret, 

Lasaulce et al, Fritsche et al., Davidson et al.,..]  
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Distributed Information Models

Outline
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Distributed Information Models

Distributed Information Models

Wireless Channel State Information (CSI) is by nature noisy and distributed

Limited sensing and feedback

Mobility

Devices tend to be ”myopic”: They know better what is close

CSI exchange is not free

Devices do not need to know CSI for entire network

CSI is often transmitter dependent
→ ”Information Structure”

TX1 

TX2 

TX𝑗𝑗 

TX𝑖𝑖 

TX𝐾𝐾 

𝐻𝐻�(2) 
 
 

𝐻𝐻�(1) 
 
 

𝐻𝐻�(𝑗𝑗) 
 

𝐻𝐻�(𝑖𝑖) 
 
 

𝐻𝐻�(𝐾𝐾) 
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Distributed Information Models

Information stucture: Clustering

Cooperation Clusters

Approaches:

Network-centric clustering

User-centric clustering [Papadogiannis et al., 2008, ICC]

Limitations:

Cluster too big: feedback sharing overhead heavy [Lozano et al., 2013, TIT]

Cluster too small: edge-effects (inter-cluster interference) predominant
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Distributed Information Models

CSI information structure: LTE with limited backhaul

Backhaul signaling introduces delays and possible quantization noise

LTE compliant feedback: User feeds back to its home eNB only
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Distributed Information Models

CSI information structure: Feedback Broadcast

CSIT can be shared directly over-the-air without backhaul links

)2(j
H

H
(3)

=[h1
(3)

h2
(3)

h3
(3)

]

H
(2)

=[h1
(2)

h2
(2)

h3
(2)

]

H
(1)

=[h1
(1)

h2
(1)

h3
(1)

]

h2

h3

h1

CSI Broadcast 

Scenario

26/127



Distributed Information Models

Classical noisy CSI model (centralized)

Every transmitter shares the same noisy channel estimate

Imperfect (quantized, noisy, delayed,..) CSIT at TX modeled as [Wagner et al., 2012, TIT]

{Ĥ}i,k =
√

1− σ2
i,k{H̃}i,k + σi,k{∆}i,k , ∀i , k

where {∆}ik ∼ CN (0, 1)

With digital quantization σ2
i,k = 2−Bi,k (good approximation in the high resolution

regime)

CSIT allocation matrix B defined as

{B}i,k = Bi,k , ∀i , k
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Distributed Information Models

Distributed CSI Model

CSIT is transmitter-dependent

LOCAL CSIT at TX j modeled as

{Ĥ(j)}i,k =
√

1− (σ
(j)
i,k)2{H}i,k + σ

(j)
i,k{∆}

(j)
i,k , ∀i , k

where {∆}(j)
i,k ∼ CN (0, 1)

σ
(j)
i,k indicates quality of CSIT for channel element (i , k) at TX j
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Distributed Information Models

Distributed CSI structure models

Some useful particular cases:

A CSI structure is perfect if Ĥ(i) = H, ∀i .
A CSI structure is centralized if Ĥ(i) = Ĥ(j), ∀i , j .
A CSI structure is distributed if there exist i and j such that Ĥ(i) 6= Ĥ(j).
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Distributed Information Models

Distributed CSI structure models (cont’d)

Some more particular cases:

Incomplete CSIT: A CSI structure is incomplete if Ĥ(i) takes the form
∀i Ĥ(i) = {Hk,l , k ∈ STX, l ∈ SRX}, where STX (resp. SRX) are subsets of the
transmitter set (resp. receiver set).

Hierarchical CSIT: A CSI structure is hierarchical if there exists an order of
transmitter indices i1, i2, i3.. such that Ĥ(i1) ⊂ Ĥ(i2) ⊂ Ĥ(i3) ⊂ ...
Master Slave: Hierarchical where Ĥ(i1) = [ ], and Ĥ(i2) = H (can be extended to
K > 2.)

30/127



Distributed Information Models

Typical (practical) CSI structures

Consider the K transmitter (N antennas each) K user (single antenna) channel. Let hH
i,j

be the 1× N vector channel between the jth transmitter and the ith user.

Local CSIT with TDD reciprocity

(Ĥ(j))H =




0 hH
1,j 0

...
...

...
0 hH

K ,j 0




Local CSIT with LTE feedback mode

(Ĥ(j))H =




0 0 0
hH
j,1 . . . hH

j,K

0 0 0




Fully local CSIT

(Ĥ(j))H =




0 0 0
0 hH

j,j 0
0 0 0
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Coordination and Team decision: Problem formulation
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Coordination and Team decision: Problem formulation

Device coordination Problem

K nodes in a network seek to cooperate towards the maximization of a common
utility
Each node i must make best decision based on:

local measurement or feedback
finite rate signaling with neighbor nodes

TX1 

TX2 

TX𝑗 

TX𝑖 

TX𝐾 

 
 

Message/interference 

Coordination domains: 
• Power 
• Time/freq/code 
• Antenna/beam 
• … 
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Coordination and Team decision: Problem formulation

TD example: The Distributed Rendez-vous Problem

Two visitors arrive independently in Edinburgh and seek to meet as quickly as
possible.
They have different and imprecise information about their own and each other’s
position.
Problem: Pick a direction to walk into

1p
2p

)2(
2p

)1(
2p

)1(
1p

)2(
1p

)(i
jp Estimated position of person j available at person i  

Meet! 

No meet  
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Coordination and Team decision: Problem formulation

Coordination over finite communication graphs: The big picture

TX1 

TX2 

TX𝑗 

TX𝑖 

TX𝐾 

𝑅12 

𝑅21 

𝑅1𝑗 
𝑅𝑗1 

𝑅𝑗𝑖 

𝑅𝑖𝑗 

𝑅𝐾𝑖  

𝑅𝑖𝐾 

𝐻 (2) 
{𝑄𝑖 , 𝑖 = 1,… , 𝐾} 

 

𝐻 (1) 
{𝑄𝑖 , 𝑖 = 1,… , 𝐾} 

 

𝐻 (𝑗) 
{𝑄𝑖 , 𝑖 = 1,… , 𝐾} 

𝐻 (𝑖) 
{𝑄𝑖 , 𝑖 = 1,… , 𝐾} 

 

𝐻 (𝐾) 
{𝑄𝑖 , 𝑖 = 1,… , 𝐾} 

 

𝐻 (.): local CSI 
𝑄𝑖: Error covariance 
 
 

A priori information: Coordination link rates:  

From i to j: R ij 

No constraint over number bits exchanged: Distributed optimization → convergence
speed?
Constraint over number of bits exchanged: What to measure? What is the most
relevant information to communicate among devices?
Decision stage (after limited communication took place): What are robust
coordinated decision techniques?
Joint communication-decision framework (challenging)
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Coordination and Team decision: Problem formulation

Signaling for Coordination

What is most relevant to communicate of the signaling link?

Many interesting heuristics (precoding decisions, measurements, etc.)

Optimal signaling strategy coupled with optimum decision making Wi

Heuristic strategies:
1 Local decision Wi based on Ĥ(i) and Qi , i = 1, ..,K , exchange quantized decisions over

Rij bits
But poorly informed nodes make bad decisions !

2 Exchange quantized CSI Ĥ(i) over Rij bits
But this ignores Qi !

Optimal strategy (source coding with side-information): Create locally optimal
codebooks, that are function of local CSI and neighbor CSI qualities [Li et al., 2014]
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Coordination and Team decision: Problem formulation

Distributed coordination

Team Decision theoretic problems:

Several network agents wish to cooperate towards maximization of a common utility

Each agent has its own limited view over the system state

All need to come up with consistent actions

Classical ”robust” design does not work...

Introduced first in economics and control [Witsenhausen68] [Ho, 1980, IEEE], recently in
wireless [Zakhour and Gesbert, 2010, ITA]

Fundamental limits rooted in Coordination Theory
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Coordination and Team decision: Problem formulation

Coordination Theory

H1

W1

H2 H3

W3

W2

W4

R11

R21

R22

R32

R33

Figure: Coordination Framework[Cuff et al., 2010, TIT]

H1, H2 and H3, arbitrary components of global system state, distributed according
to p0(H1,H2,H3)

W1, W2 and W3 are actions selected by the nodes.

What joint distribution p0(H1,H2,H3)p(W1,W2,W3|H1,H2,H3) can be achieved?

Answer: it depends on graph topology (capacity of each edge)
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Coordination and Team decision: Problem formulation

Example (One Isolated Node)

H1 W1

W2

R

Figure: One isolated node scenario [Cuff et al., 2010, TIT]

Theorem

Cp0 =

{
(

rate︷︸︸︷
R ,

distribution︷ ︸︸ ︷
p(W1,W2|H1))

∣∣∣∣R ≥ I (H1;W1

∣∣W2)

}
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Coordination and Team decision: Problem formulation

Example (One Isolated Node)

H1 W1

W2

R

Figure: One isolated node scenario [Cuff et al., 2010, TIT]

With Gaussian RVs, the condition becomes

(1− 2−2R)−1ρ2
H1,W1

+ ρ2
W1,W2

≤ 1

R →∞, ρ2
H1,W1

+ ρ2
W1,W2

≤ 1

R → 0, ρ2
H1,W1

= 0 and ρ2
W1,W2

≤ 1

40/127



Coordination and Team decision: Problem formulation

Further Results

Results in more advanced topologies [Cuff et al., 2010, TIT]

Polar codes used for coordination in [Chou et al., 2015, ISIT]

Implicit coordination: Observation of action of one node by another is a non
dedicated cooperation link

y Coordination at low/no cost [Larrousse and Lasaulce, 2013, ISIT]

Aim of this approach
Guidelines for network design
Insights for new cooperation methods
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Coordination and Team decision: Problem formulation

Team Decision (TD) Problems: A general formalism

(s?1 , . . . , s
?
K ) = argmax

s1,...,sK
Ex,x(1),...,x(K)

[
f
(
x , s1(x (1)), . . . , sK (x (K))

)]

where

K : Number of Decision Makers (DMs)

x ∈ Cm : State of the world

x (j) ∈ Cm: Estimate of the state of the world x at DM j

sj : Cm → Aj ⊂ Cdj : Strategy of the j-th DM

sj(x (j)) ∈ Aj ⊂ Cdj : Decision at DM j for the given realization x (j)

f : Cm × ΠK
j=1Cdj → R: Joint objective of the K DMs

px,x(1),...,x(K) : Joint probability distribution of the channel and the estimates
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Coordination and Team decision: Problem formulation

TD example: The Distributed Rendez-vous Problem

Two visitors arrive independently in Edinburgh and seek to meet as quickly as
possible.
They have different and imprecise information about their own and each other’s
position.
Problem: Pick a direction to walk into

1p
2p

)2(
2p

)1(
2p

)1(
1p

)2(
1p

)(i
jp Estimated position of person j available at person i  

Meet! 

No meet  

A robust solution: ”Meet you at the City Hall!”
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Coordination and Team decision: Problem formulation

Can Team Problems be Solved with Games?

Key idea: Let autonomous transmitting devices interact to solve their interference
conflicts
Players → transmitters
Actions → transmit decision (power, frequency, beam, ..)
Strategy → Utility maximization (max rate, min power, min delay,..)
Timing → simultaneous, sequential,..
Equilibrium → Nash, Stackelberg, Nash Bargaining,..

44/127



Coordination and Team decision: Problem formulation

From Selfish Games to ”Team Playing”

Why interference coordination can be different from a typical ”game”’:

Team agents (network nodes) are not conflicting players (different from players in a
cooperative game)

Agents seek maximization of the same network utility

It is the lack of shared information which hinders cooperation, not the selfish of their
interests

Agents are not required to improve over the performance of the Nash equilibrium

Connections to Bayesian games (see work by 1994 Nobel Prize winner John Harsanyi
[Harsanyi, 1967] )
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Coordination and Team decision: Problem formulation

A Fundamental Approach: Best Response

Best Response

A Best-Response (BR) strategy sBR
1 , . . . , sBR

K for the TD problem is a strategy such that

sBR
j = argmax

sj∈Aj

Ex,x(1),...,x(K)|x(j)

[
f
(
x , . . . , sBR

j−1(x (j−1), sj(x (j)), sBR
j+1(x (j+1)), . . .

)]
, ∀j

Practical approach usually considered in the TD literature

Still very challenging:
Functional optimization
Stochastic optimization
Channel space of large dimension (in most of the cases)

In fact, Bayesian Cooperative Game with Incomplete Information [Harsanyi, 1967,

Management Science]

46/127



Coordination and Team decision: Problem formulation

Team Decision: Algorithm design

Team Decision 

Problem

Codebook-Based 

Approach

Model-Based 

Approach

Asymptotics-

Based Approach

Discretization-

Based Approach

Information 

Allocation
Information Sharing 

47/127



Coordination and Team decision: Problem formulation

Model-Based Approach

Main idea: Restrict the space of possible strategies via a model

y Replace the strategy sj by sβj with β ∈ R where sβj is a well chosen heuristic model

Example (Coordinated Beamforming [Jorswieck et al., 2008, TSP])

Beamformer in the MISO IC parameterized as

w?
k (λk) =

λkwZF
k + (1− λk)wMF

k

‖λkwZF
k + (1− λk)wMF

k ‖
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Coordination and Team decision: Problem formulation

Model-based Team Decision Buying a Baguette or not?

A french couple returns separately from work and wants baguette for dinner. their
phone batteries are empty

Personal cost for stopping at the baker is ci .

Each person knows its own cost ci

The ci are uniformly distributed over [0, 1].
 

Goal: maximize expectation of joint utility given by: 
 

 

 

 

 

 

 

Person 2\Person 1 Buy bread Go home 

Buy bread a-c1-c2 1-c1 

Go home 1-c2 0 

When should each person buy bread? 

Optimal decision              of threshold form 
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Coordination and Team decision: Problem formulation

Codebook-Based Approach

Main idea: Restrict the space of possible strategies to a codebook

y Choose sj inside a codebook of function {s1
j , . . . , s

m
j }

Example (Coordinated Beamforming)

Restrict possible beamforming choices to C = {Matched Filter,Zero Forcing}
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Coordination and Team decision: Problem formulation

Discretization-Based (1): Dimensionality Reduction

Main idea: Quantize the channel state space to reduce the dimension

y Replace the strategy sj by sj(Q
cb) where

Qcb : Cm → Ccb , {x1, . . . , xncb}
x (j) 7→ Qcb(x (j)) = argminx∈Ccb ‖x − x (j)‖2

Optimization subspace reduced to a space of dimension ncb:

sj : Ccb → Aj

xi 7→ sj(xi )

y1 y2

s1(y1) s2(y2)

y1 y2

Discretization

s1(Q(y1)) s2(Q(y2))
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Coordination and Team decision: Problem formulation

Discretization-Based (2): Monte-Carlo Approximation

Best-response optimization at DM 1: ∀i1 ∈ {1, . . . , ncb},

sBR
1 (xi1 ) = argmax

S1∈A1⊂Cd1

E
[
f (x , S1, s

BR
2 (Qcb(x (2))), . . . , sBR

K (Qcb(x (K))))

∣∣∣∣x
(1) = xi1

]

For a given xi and given sBR
2 , . . . , sBR

K : Standard stochastic optimization problem
[Shapiro et al., 2014]

Use Monte-Carlo approximation: ∀i ∈ {1, . . . , ncb},

sBR
1 (xi ) = argmax

S1∈A1

1

nMC

nMC∑

`=1

f
(
x`,S1, s2(Q(x (2)

` )), . . . , sK (Q(x (K)
` ))

)

where
(
x`, x

(2)
` , . . . , x (K)

`

)
∼ p

x,x(2),...,x(K)
∣∣x(1)=xi
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Coordination and Team decision: Problem formulation

Asymptotics-Based Approach

Main idea: use asymptotic analysis to make the problem deterministic

y Possible to obtain new insights and transmission strategies

Example (DoF Analysis)

Let the transmit SNR goes to infinity

* A. Lozano et al, “Fundamental limits of cooperation”, IEEE Trans. On Information Theory, Sept. 2013. 
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Outline

1 Wireless Device Coooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
Application to Network MIMO Precoding

Model-Based Approach
DoF Approach

Application to Power Control
Functional Optimization by Discretization

Application to Cognitive Radio Beamforming
Codebook-Based Approach

A Different Point of View : Implicit Coordination

5 Key Aspects and Open Problems
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Joint Precoding over Network MIMO

TX 1 

RX 2 

TX 2 TX Ncells 

RX 1 
RX Ncells 

Nt 

Network MIMO 

Transmit antennas: 

Nt x Ncells 

ŝNcells 

Data: S1,S2,…,SNcells 

Nr 

ŝ2 ŝ1 
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Team Decision Problem

(w?
1 , . . . ,w

?
K ) = argmax

(p1,...,pK )∈P
E[R(H,w1(Ĥ(1)), . . . ,wK (Ĥ(K)))]

where

R(H,w1(Ĥ(1)), . . . ,wK (Ĥ(K))) =
K∑

k=1

log2

∣∣∣∣∣∣
Idk + TH

k HH
k


Rk +

∑

i 6=k

HiTiT
H
i TH

i



−1

HkTk

∣∣∣∣∣∣

with

H ∈ CNtot×Mtot the multi-user channel

wj the precoding function:

wj : CNtot×Mtot → CMj×dtot

Ĥ(j) 7→ wj(Ĥ(j))

T ∈ CMtot×dtot the multi-user precoder

T =
[
T1 . . . TK

]
=




w1(Ĥ(1))
...

wK (Ĥ(K))
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A Key Example

Particularly interesting because:
Continuous optimization with large channel state dimension
Strong dependency (state & TXs): see DoF results

y Many difficulties

Table: Team Decision Modeling for Joint Precoding

Notations for the Team Decision Problems
State-of-the-world x H

Estimate at DM j x (j) Ĥ(j)

Strategy at DM j sj wj

Decision space at DM j Aj CMj×dtot

Objective f R
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Outline

1 Wireless Device Coooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
Application to Network MIMO Precoding

Model-Based Approach
DoF Approach

Application to Power Control
Functional Optimization by Discretization

Application to Cognitive Radio Beamforming
Codebook-Based Approach

A Different Point of View : Implicit Coordination

5 Key Aspects and Open Problems
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A Result Based on Random Matrix Theory (RMT)

n cooperating TXs
Each TX has MTX antennas
K and MTX grow large at the same rate

β , lim
M,K→∞

M

K
, lim

MTX ,K→∞

nMTX

K
≥ 1

TX 1 TX 2

TX n

RX 1

TX K
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Distributed CSI with Correlated Noise

Extend to spatial correlation in the CSI noise

ĥ(j)
k ,

√
1− (σ

(j)
k )2hk + σ

(j)
k δ

(j)
k

with

E
[
δ

(j)
k (δ

(j′)
k )H

]
= (ρ

(j,j′)
k )2IM

Extremely general model: Bridges the Gap from distributed CSIT to centralized
CSIT: Can model partially centralized settings

TX 1 TX 2

)1(Ĥ )2(Ĥ

RX k

)1(ˆ
kh

)2()2(2)2()2(

)1()1(2)1()1(

)(1ˆ

)(1ˆ

kkkkk

kkkkk

δhh

δhh

σσ

σσ

+−=

+−=

)2(ˆ
kh
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A Practical Example

Example

Imperfect feedback

ĥ(j)
j =

√
1− σFB

2hj + σFBδ
(j)
j

Imperfect backhaul

ĥ(j′)
k =

√
1− σBH

2ĥ(j)
k + σBHε

(j,j′)
k

y CSI estimates error at different TXs are
correlated

TX 1

TX 3

TX 2

RX k

Limited 
Backhaul Limited 

Feedback
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Model-Based Approach: Regularized ZF

Modelization of the precoding decisions using Regularized ZF with sum power
constraint P

T(j)
rZF

(
γ(j)
)
,
(

(Ĥ(j))HĤ(j) + Mγ(j)IM
)−1

(Ĥ(j))H
√
P√

Ψ(j)

with Ψ(j) the power normalization at TX j , and

wj(Ĥ(j)) = EH
j T(j)

rZF

(
γ(j)
)

Where Ej is a row selection matrix

Effective precoder is

TDCSI ,




w1(Ĥ(1))

w2(Ĥ(2))
...

wn(Ĥ(n))
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Optimization of the Regularization Parameter

Naive regularization

γ(j),naive = argmaxγ∈RE[R(Ĥ(j), . . . , Ĥ(j))]

Robust regularization

(γ(1),?, . . . , γ(n),?) = argmax
(γ(1),...,γ(n))

E[R(Ĥ(1), . . . , Ĥ(n))].

Low complexity robust regularization with equal γ at all TXs

(γ?, . . . , γ?) = argmax
(γ,...,γ)

E[R(Ĥ(1), . . . , Ĥ(n))].
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Main Result (1)

Theorem ([Li et al., 2015, Allerton])

In Joint Processing CoMP with Distributed CSI,

SINRk − SINRo
k

a.s.−−−−−−−→
K ,MTX→∞

0

with

SINRo
k ,

P

 1
n

∑n
j=1

√
c

(j)
0,k

Γoj,j

δ(j)

1+δ(j)

2

1 + I ok

with

c
(j)
0,k , 1− (σ

(j)
k )2, c

(j)
1,k , (σ

(j)
k )2, c

(j)
2,k , σ

(j)
k

√
1−(σ

(j)
k )2.
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Main Result (2)

Theorem (continued)

I ok ,P−P
n∑

j=1

n∑

j′=1

Γo
j,j′√

Γo
j,jΓ

o
j′,j′


2c

(j)
0,k

n2

δ(j)

1+δ(j)

(
(ρ

(j,j′)
k )2c

(j)
2,kc

(j′)
2,k +c

(j)
0,kc

(j′)
0,k

)
δ(j)δ(j′)

n2 (1+δ(j)) (1+δ(j′))




with

Γo
j,j′ ,

1
M

∑K
`=1

√
c

(j)
0,`c

(j′)
0,` +

√
c

(j)
1,`c

(j′)
1,` (ρ

(j,j′)
` )2

1+δ(j)

δ(j)
1+δ(j′)

δ(j′)
− 1

M

∑K
`=1

(√
c

(j)
0,`c

(j′)
0,` +

√
c

(j)
1,`c

(j′)
1,` (ρ

(j,j′)
` )2

)2

.

and

δ(j) ,
β − 1− γ(j)β +

√
(γ(j)β − β + 1)2 + 4γ(j)β2

2γ(j)β
.
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Sanity Checks (1)

Imperfect centralized CSIT:

σ
(j)
k = σ

(j′)
k = σk , (equal CSIT accuracy)

ρ
(j,j′)
k = 1, (Full correlation)

γ(j) = γ(j′) = γ, (Equal regularization)

y Matches with [Wagner et al., 2012, TIT], [Couillet and Debbah, 2011, Theorem 14.1]

SINRID−DCSI ,o
k =

(1− σ2
k)δ2

Γo
(

1− σ2
k + (1 + δ)2σ2

k + (1+δ)2

P

)

Also obtained with n = 1
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Sanity Checks (2)

Uncorrelated distributed CSIT with uniform accuracy and equal regularization:

σ
(j)
k = σ(j), (Uniform CSIT)

ρ
(j,j′)
k = 0, (Uncorrelated)

γ(j) = γ(j′) = γ, (Equal regularization)

y Matches with [de Kerret et al., 2015, ISIT]

SINREQ−DCSI ,o
k =

P
Γo

(
1
n

∑n
j=1

√
c

(j)
0,k

)2
δ2

(1+δ)2

I EQ−DCSI ,o
k + 1

with

I EQ−DCSI
k =P−P

n∑

j=1

n∑

j′=1

δΓo
j,j′

n2(1 + δ)2Γo
·
[
2c

(j)
0,k +δ

(
2c

(j)
0,k − c

(j)
0,kc

(j′)
0,k

)]
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Cost of Distributedness
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Figure: Average rate per user as a function of the number of users K with (σ(j))2 = 0.1,∀j .
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Optimization of the Regularization Parameter
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Figure: Average rate per user as a function of γ for (σ(1))2 = 0, (σ(2))2 = 0.1, (σ(3))2 = 0.4.
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Simulation Settings

n 3 K 30
M 30 β M/K=1

(σ
(1)
k )2 0.01 (σ

(2)
k )2 0.16

(σ
(3)
k )2 0.49 ρ

(j,j′)
k 0.1

hk ∼ NC(0, IM) δ
(j)
k ∼ NC(0, IM)

TX 1 TX 2

TX n

RX 1

TX K

Figure: Simulation setting
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Simulations: Optimize γ
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Outline

1 Wireless Device Coooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
Application to Network MIMO Precoding

Model-Based Approach
DoF Approach

Application to Power Control
Functional Optimization by Discretization

Application to Cognitive Radio Beamforming
Codebook-Based Approach

A Different Point of View : Implicit Coordination

5 Key Aspects and Open Problems
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Asymtotical Analysis: DoF Approach

First order approximation in the SNR

R? ≈ DoF log2(SNR)

Problem becomes deterministic: Possible to obtain analytical results to our complex
TD problem

* A. Lozano et al, “Fundamental limits of cooperation”, IEEE Trans. On Information Theory, Sept. 2013. 

Very successfull to obtain new innovative insights, discover new behaviours (MIMO,
IA, delayed CSIT,...)
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What is Known: Sum DoF with Centralized Noisy CSIT

DoF in the K -users MIMO BC with imperfect CSIT recently confirmed [Davoodi and

Jafar, 2014]

s1,s2,s3

  PHĤ

)1(1DoF  K

Achieved using simple ZF precoding + rate splitting
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Distributed CSIT Configuration: α(1), α(2),..,α(K)

)1()1()1(ˆ  PHH

?DoF 

)2()2()2(ˆ  PHH

)3()3()3(ˆ  PHH
s1,s2,s3

s1,s2,s3

s1,s2,s3
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DoF under Distributed CSIT: Conventional (ZF) precoding

DoF of Joint Precoding across K distributed TX under D-CSIT, K single-antenna
users

ZF shown to be very inefficient [de Kerret and Gesbert, 2012, TIT]:

DoFZF = 1 + (K − 1) min
j
α(j)

Can we do better?
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Principles of New Scheme (Example for K = 3)

Key principles:

Layered precoding

Layer 1: Transmit with approximate precoder

Layer 2: Best informed TX regenerates and quantizes interference created by layer 1

Superpose (multicast) Layer 2 on top of layer 1

Decode and suppress interference at each user.

We distinguish:

Arbitrary CSIT regime (αi ∈ [0, 1] , ∀i)
Weak CSIT regime (α1,α2,..αK ) are ”small”
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Case K = 3 Users: A First Simple Scheme

Without loss of generality: TX 1 is best informed TX

α(1) ≥ α(2) ≥ α(3)

We transmit 3 symbols per user using e.g. a distributed Matched Precoder with
power P(α1)/9

TMF(j) ,
Ĥ(j)

‖Ĥ(j)‖F

√
P

RX 1 RX 2 RX 3

3
MFH

12
MFH

11
MFH

1 sThsThsTh 
3

MFH
22

MFH
21

MFH
2 sThsThsTh 

3
MFH

32
MFH

31
MFH

3 sThsThsTh 
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Reconstructing the Approximate Interference

TX 1 uses its CSIT to reconstruct the interference term:

(ĥ(1)
1 )HTMFs2 = (h1 + P−α

(1)

δ
(1)
1 )HTMFs2

= hH
1 TMFs2 + P−α

(1)

(δ
(1)
1 )HTMFs2︸ ︷︷ ︸
∼P0

y TX 1 can compute DoF-perfect estimates of the interference terms!

Quantize the interference using α(1) log2(P) bits per term if interference term scales

in Pα
(1)

Superpose a multicast message of (1− α(1)) log2(P) bits, which will include
quantized interference
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DoF Analysis: The weak CSIT case (α(1) < 1
1+K(K−1) = 1/7)

The 6 quantized interference terms can be broadcast by TX 1 if

6α(1) log2(P)︸ ︷︷ ︸
number of bits to quantize all interference terms

≤ (1− α(1)) log2(P)︸ ︷︷ ︸
rate of the broadcast data symbol

⇔ α(1) ≤ 1

7

If the inequality is strict, we complete with fresh information bits

DoF achieved is then

DoF = 9α(1)

︸ ︷︷ ︸
information transmitted initially

+
(

1− 7α(1)
)

︸ ︷︷ ︸
fresh information bits to complete the broadcast

= 1 + 2α(1)

DoF = 1 + (K − 1) max
i

α(i)

(instead of DoF = 1 + (K − 1) mini α
(i)!!)
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A First Transmission Scheme in One Slide

TX 1, 2, 3 jointly transmit K symbols to each user using a distributed Matched

Precoder TMF(j) ∈ CK×K with power Pα
(1)

/K

TX 1 transmits the estimated quantized interference using the power P − Pα
(1)

(equivalently from all TXs using the beamformer tBC , [1, 0, 0]T)

RX 1 RX 2 RX 3

Pα(1) 

P

3
MFH

12
MFH

11
MFH

10
BCH

1 sThsThsThth s
3

MFH
22

MFH
21

MFH
20

BCH
2 sThsThsThth s 3

MFH
32

MFH
31

MFH
30

BCH
3 sThsThsThth s
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Weak CSIT Regime: Improved results

Improved scheme: TXs perform Active-Passive Zero-Forcing precoding
TX 2,..., TX K perform arbitrary precoding (passive)
TX 1 compensates with ZF precoding (active)

Theorem ([de Kerret and Gesbert, 2016, ISIT])

In the weak CSIT regime, defined by

max
j∈{1,...,K}

α(j) ≤ 1

1 + K(K − 2)

We have that:
DoFDCSI(α) ≥ 1 + (K − 1) max

j∈{1,...,K}
α(j)
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Outer bound

Theorem

The Centralized Outerbound In the K -user Network MIMO channel with distributed
CSIT:

DoFDCSI(α) ≤ DoFCCSI( max
j∈{1,...,K}

α(j))

= 1 + (K − 1) max
j∈{1,...,K}

α(j)

Key ideas:

DoF is upperbounded by DoF achieved by full CSIT exchange

Having multiple CSIT with α1,α2,..,αK doesnt help over having just best CSIT (α1)

⇒ matches the achieved DoF for weak CSIT!
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Arbitrary CSIT Regime with K = 3

Theorem

In the 3-user Network MIMO with distributed CSIT and α(1) ≥ α(2) ≥ α(3), it holds that

DoFDCSI(α) ≥

{
1 + 2α(1) if α(1) ≤ 1

4

3 2α(1)−α(2)+2α(1)α(2)

4α(1)−α(2) if α(1) ≥ 1
4
.

Optimal DoF for K = 3 users:

In the weak CSIT regime

In any CSIT regime with α(1) = α(2) (regardless of what user 3 knows)
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DoF for K = 3 Users
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Figure: Sum DoF as a function of α(1). User 3 has no CSIT (α(3) = 0)
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Outline

1 Wireless Device Coooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
Application to Network MIMO Precoding

Model-Based Approach
DoF Approach

Application to Power Control
Functional Optimization by Discretization

Application to Cognitive Radio Beamforming
Codebook-Based Approach

A Different Point of View : Implicit Coordination

5 Key Aspects and Open Problems
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Binary Power Control over Interference Channels

(p?1 , p
?
2 ) = argmax

(p1,p2)∈P
[R(p1(G(1)), p2(G(2)))]

where

R(P1,P2) = log2

(
1 +

G11P1

1 + G12P2

)
+ log2

(
1 +

G22P2

1 + G21P1

)
.

and
pj : R4

+ → {Pmin
j ,Pmax

j }
G(j) 7→ pj(G(j))

Key Example because:
Binary optimization with (relatively) low dimensional channel state
Weaker depency with the channel state

y Less difficulties

RX1

TX1

RX2

TX2

P1
P2

G11

G21

G22

G12
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Identification of the Parameters

Table: Team Decision Modeling for Power Control

Notations for the Team Decision Problems
State-of-the-world x G

Estimate at DM j x (j) G(j)

Strategy at DM j sj pj
Decision space at DM j Aj {Pmin

j ,Pmax
j }

Objective f R
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Outline

1 Wireless Device Coooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
Application to Network MIMO Precoding

Model-Based Approach
DoF Approach

Application to Power Control
Functional Optimization by Discretization

Application to Cognitive Radio Beamforming
Codebook-Based Approach

A Different Point of View : Implicit Coordination

5 Key Aspects and Open Problems
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Discretization for Power Control –Refresher (1)–

Main Idea: Quantize the channel state space to reduce the dimension

y Replace the strategy pj by pj(Q
cb) where

Qcb : C2×2 → Ccb , {Gcb
1 , . . . ,G

cb
ncb}

Ĝ(j) 7→ argminĜ∈Ccb ‖Ĝ− Ĝ(j)‖2

Optimization subspace reduced to a space of dimension ncb

pj(Q
cb) : Ccb → {Pmin,Pmax}

Gi 7→ pj(Gi )

y1 y2

s1(y1) s2(y2)

y1 y2

Discretization

s1(Q(y1)) s2(Q(y2))
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Discretization for Power Control –Refresher (2)–

Best response power allocation strategy: Solve iteratively
At TX 1, ∀i ∈ {1, . . . , ncb},

pBR
1 (Gcb

i ) = argmax
P1∈{Pmin

1 ,Pmax
1 }

E
[
R
(

G,P1, p
BR
2 (Q(G(2)))

∣∣G(1) = Gcb
i

)]
At TX 2, ∀i ∈ {1, . . . , ncb},

pBR
2 (Gcb

i ) = argmax
P2∈{Pmin

2 ,Pmax
2 }

E
[
R
(

G, pBR
1 (Q(G(1)),P2)

∣∣G(2) = Gcb
i

)]

Reach optimal strategy given the strategy of the other TX
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Discretization for Power Control –Refresher (3)–

Approximation of the expectation using Monte-Carlo runs with nMC samples

At TX 1, ∀i ∈ {1, . . . , ncb},

pBR
1 (Gcb

i ) = argmax
P1∈{Pmin

1 ,Pmax
1 }

1

nMC

nMC∑

i=1

R
(

Gi ,P1, p
BR
2 (Qcb(G(2)

i ))
)
, ∀i1 ∈ {1, . . . , ncb}

where (Gi ,G
(2)
i ) ∼ f

G,G(2)
∣∣G(1)=Gcb

i

.
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Simulations Parameters

Rayleigh fading with uniform pathloss

CSIT Model

H(j) ,
√

1− σ2
j H + σj∆

where ∆ ∼ NC(0, 1) and H ∼ NC(0, 1), and

{G(j)}i,k ,
∣∣∣{H(j)}i,k

∣∣∣
2

, ∀i , k ∈ {1, . . . ,K}.

Codebook:
Product of scalar codebooks using 10 codewords from Lloyd algorithm for each scalar.
Hence: ncodebook = 104 = 10000
Stochastic approximation using nMC = 500
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Simulation Results (1)
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Simulation Results (2)
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Cognitive Radio Beamforming

Rate maximization of a secondary TX while preserving a rate constraint for the
primary TX: Underlay Cognitive Radio [Haykin, 2005, JSAC]

TX p
TX s

RX p
RX s

hp,s
Hhs,p

H

ws wp

hs,s
H

Feedback of 
hs,s

H
Feedback of 

hp,p
H

hp,p
H
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Team Decision Cognitive Radio Beamforming

TX p
TX s

RX p
RX s

hp,s
Hhs,p

H

ws wp

hs,s
H

Feedback of 
hs,s

H
Feedback of 

hp,p
H

hp,p
H

CSI configuration
TX s only knows hs,s and multi-user statistics Ri,j

TX p only knows hp,p and multi-user statistics Ri,j

y Coordination using only the statistics

TX p
TX s

wp ??? ws ???Bayesian 
Optimization
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Functional Optimization Problem

Optimization Problem

(w?
p ,w

?
s ) = argmax

(wp ,ws )

E [Rs(wp(hp,p),ws(hs,s))]

s. to E [Rp(wp(hp,p),ws(hs,s))] ≥ τ > 0, (R)

0 ≤ ‖wp(hp,p)‖2 ≤ Pmax
p

0 ≤ ‖ws(hs,s)‖2 ≤ Pmax
s

where for j ∈ {s, p},
wj : CMj → CMj

hj,j 7→ wj(hj,j)
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Identification of the Parameters

Table: Team Decision Modeling for Cognitive Radio

Notations for the Team Decision Problems
State-of-the-world x {hs,s , hs,p, hp,s , hp,p}
Estimate at DM j x (j) hj,j

Strategy at DM j sj wj

Decision space at DM j Aj CMj

Objective f Rs s.t. (R)
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Outline

1 Wireless Device Coooperation
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Application to Cognitive Radio Beamforming
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Key Idea: Codebook of Functions [Filippou et al., 2016, TWC]

Functional optimization difficult ⇒ Parametrization of the decision space using a
codebook of functions

Here: 2 functions (strategies) labelled s and p
Choose these strategies from efficient heuristics

Optimization Problem

(w?
p ,w

?
s ) = argmax

(wp ,ws )

E [Rs(wp(hp,p),ws(hs,s))]

s. to E [Rp(wp(hp,p),ws(hs,s))] ≥ τ > 0, (R)

0 ≤ ‖wp(hp,p)‖2 ≤ Pmax
p

0 ≤ ‖ws(hs,s)‖2 ≤ Pmax
s

(w?
p ,w

?
s ) ∈

{
(w cb,1

p ,w cb,1
s ), . . . , (w cb,ncb

p ,w cb,ncb

s )
}

where for j ∈ {s, p},
w cb,i

j : CMj → CMj

hj,j 7→ w cb
j (hj,j)
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Strategy p

TX p
TX p uses matched precoding

uMF
p ,

hp,p

‖hp,p‖
TX p transmits with full power P̄p = Pmax

p

TX s:
TX s transmits using the statistical ZF precoder

usZF
s , argmin

u
uHRp,su

TX s controls its average transmit power P̄s to fulfill the rate constraint (R)
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Strategy s

TX s
TX s uses matched precoding

uMF
s ,

hs,s

‖hs,s‖
TX s transmits with full power P̄s = Pmax

s

TX p:
TX p transmits using the statistical ZF precoder

usZF
p , argmin

u
uHRs,pu

TX p controls its average transmit power P̄p to fulfill the rate constraint (R)
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Some Intuition

TX p can reduce its power only if TX s can anticipate it: Coordination required to
guarantee (R)

Strategy s
Large objective
Rate constraint might be unfeasible

Strategy p
Low objective
Rate constraint guaranteed

105/127



Applications of Team Decision to Device-Centric Cooperation Application to Cognitive Radio Beamforming

Statistical Coordination Algorithm [Filippou et al., 2016, TWC]

TX j

Ri,j
Possible to fulfill (R) 

using strategy s?

Yes No

Precoding 
“s”

Precoding 
“p”

hj,j
H

wj
s(hj,j) wj

p(hj,j)

wj(hj,j)
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Simulations Parameters

Ms = Mp = 3 antennas per-TX

Correlation matrices

Rp,p = Rs,s = I3, Rp,s = Rs,p =




1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1




Use in the following ρ = 0.5 and τ = 0.5bps/Hz
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Ergodic rate of the PU
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Ergodic rate of the SU
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Outline
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Coded Power Control

TX 1 with non-causal CSI knowledge

TX 2 observes transmit power P1:

y implicit coordination

RX1

TX1

RX2

TX2

CSI feedback
P1

P2
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Modelization

random state H = {G1,1,G2,1,G1,2,G2,2} with fixed law ρ(H) over H
TX i chooses its power levels Pi in Pi

TX 2 observes Z with fixed law Γ(z |P1).

Strategy of Agent 1: (w1,i )1≤i≤T with:

w1,i : HT

︸︷︷︸
CSI

× P i−1
1︸ ︷︷ ︸

past actions

×∅ → P1

Strategy of Agent 2: (w2,i )1≤i≤T with:

w2,i : Hi−1 ×Z i−1 × P i−1
2︸ ︷︷ ︸

past

→ P2

112/127



Applications of Team Decision to Device-Centric Cooperation A Different Point of View : Implicit Coordination

Auxiliary notion

Definition (Implementability)

PHi ,P1,i ,P2,i ,Zi : joint distribution induced by (w1,i ,w2,i )i≥1 at stage i .
The distribution Q(h, p1, p2) is implementable if there exists a pair of strategies
(w1,i ,w2,i )i≥1 such that for all (h, p1, p2),

1

T

T∑

i=1

∑

y

PHi ,P1,i ,P2,i ,Yi (h, p1, p2, z)→ Q(h, p1, p2)

as T →∞.

Feasible utilities

A certain utility value f is reachable if and only if there exists an implementable
distribution Q such that f = EQ[f ].
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Theorem ([Larrousse and Lasaulce, 2013])

Let Q ∈ ∆(H×P1 × P2) with
∑

(p1,p2) Q(h, p1, p2) = ρ(h). The distribution Q is

implementable if there exists Q ∈ ∆(H×P1 × P2 ×Z) which verifies:

IQ(H;P2) ≤ IQ(P1;Z |H,P2)

where the arguments of the mutual information IQ(.) are defined from Q and
Q(h, p1, p2, y) = Q(h, p1, p2)Γ(z |p1).

Remark: This theorem also characterizes expected payoff.
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Convex Optimization Problem

maximize Eq[f ] =
L∑

`=1

q`f`

subject to Iq(H;P2) ≤ Iq(P1;Z |H,P2)

q` ≥ 0

L∑

`=1

q` = 1

∑

`∈LH (h)

q` = ρ(h), ∀ h,

∑
`∈LP1,Z

(p1,z) q`∑
`∈LP1

(p1) q`
= Γ(z |p1), ∀ (p1, z)
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Application: MAC Power Control

2-user MAC with binary power control

2 possible states: H = {{gmin, gmax}, {gmax, gmin}}

37
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Fig. 8. Relative sum-rate gain of coded power control (CPC) and costless communication power control (CCPC) over semi-

coordinated power control (SPC) for the binary symmetric channel (BSC) monitoring in the observation structure of CaseI and

Case II.

realization(gmin, gmax) with “0” and (gmax, gmin) wth “1”, so that we may writeX0 = {0, 1}. Third, we

assume that the transmitters may only choose power values in{Pmin, Pmax}, and we identify powerPmin

with “0” and powerPmax with “1”, so that we may also writeX1 = X2 = {0, 1}. Finally, we consider

the case of perfect monitoring and we restrict our attentionto the sum-SINR payoff functionwSINR.

The values of the payoff function used in numerical simulations are provided in Fig. 9 as the entries in

a matrix. Each matrix corresponds to a different choice of the wireless channel statex0; in each matrix,

the choice of the row corresponds to the actionx1 of Transmitter1, which the choice of the column

corresponds to the actionx2 of Transmitter2.

x0 = (gmin, gmax) x0 = (gmax, gmin)

Pmax Pmax

Pmin Pmin

Pmin Pmax Pmin Pmax

0

1 ≃ 10

20 0

20 ≃ 10

1

Fig. 9. Payoff matrix ofwSINR for power control over multiple-access channel. Numericalvalues of the payoff correpond to

gmin = 0.1, gmax = 2, σ2 = 1, Pmin = 0, Pmax = 10.

October 28, 2014 DRAFT

Figure: Payoff table [Larrousse and Lasaulce, 2013]
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Source Coding [Larrousse and Lasaulce, 2013]

Source coding:
fS : H → {m0,m1}

h 7→ i

53

TABLE IV

OPTIMAL MARGINAL AND JOINT DISTRIBUTIONS (EXPRESSED IN%) FOR THE SUM-RATE PAYOFF FUNCTION OF THECPC

POLICY, WITH SNR = 10 DB AND WITH FOUR POSSIBLE TRANSMIT POWER LEVELS
{
0, 10

3
, 20

3
, 10

}
.

(Q
⋆
X1

(x1), Q
⋆
X2

(x2),Q
⋆
X1X2

(x1,x2)) x1 = 0 x1 =
10
3 x1 =

20
3 x1 = 10

in %

x2 = 00 (44.4,50.4,00.1) (02.6,50.4,00.9) (08.0,50.4,06.5) (45.0,50.4,42.9)

x2 =
10
3 (44.4,00.0,00.0) (02.6,00.0,00.0) (08.0,00.0,00.0) (45.0,00.0,00.0)

x2 =
20
3 (44.4,00.0,00.0) (02.6,00.0,00.0) (08.0,00.0,00.0) (45.0,00.0,00.0)

x2 = 10 (44.4,49.6,44.3) (02.6,49.6,01.7) (08.0,49.6,01.5) (45.0,49.6,02.1)

TABLE V

PROPOSED SOURCE CODING AND DECODING FORp = 1
2

.

x30 Index i = fS(x
3
0) gS(i)

(0,0,0) m0 (1,1,1)

(0,0,1) m0 (1,1,1)

(0,1,0) m0 (1,1,1)

(0,1,1) m0 (1,1,1)

(1,0,0) m0 (1,1,1)

(1,0,1) m0 (1,1,1)

(1,1,0) m1 (0,0,1)

(1,1,1) m1 (0,0,1)

October 28, 2014 DRAFT

Figure: Source coding
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Channel Coding

Channel coding:

fC : {m0,m1} → P1

i 7→ p1 = [p1(1), p1(2), p1(3)]

at block b, find optimal popt
1 = [p1(1)opt, p1(2)opt, p1(3)opt] and second optimal

popt”
1 = [p1(1)opt”, p1(2)opt”, p1(3)opt”]

If i = m0, send with popt
1

If i = m1, send with popt”
1
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Channel Coding [Larrousse and Lasaulce, 2013]

54

TABLE VI

PROPOSED CHANNEL CODING FORp = 1
2

.

x30(b) x32(b) ib+1 x31(b)

(0,0,0) (1,1,1) m0 (0,0,0)

m1 (0,0,1)

(0,0,1) (1,1,1) m0 (0,0,1)

m1 (0,0,0)

(0,1,0) (1,1,1) m0 (0,1,0)

m1 (0,0,0)

(0,1,1) (1,1,1) m0 (0,1,1)

m1 (0,0,1)

(1,0,0) (1,1,1) m0 (1,0,0)

m1 (0,0,0)

(1,0,1) (1,1,1) m0 (1,0,1)

m1 (0,0,1)

(1,1,0) (0,0,1) m0 (1,1,0)

m1 (1,1,1)

(1,1,1) (0,0,1) m0 (1,1,1)

m1 (1,1,0)

October 28, 2014 DRAFT

Figure: Channel coding [Larrousse and Lasaulce, 2013]

119/127



Applications of Team Decision to Device-Centric Cooperation A Different Point of View : Implicit Coordination

Simulations [Larrousse and Lasaulce, 2013]

39

code. The source code resulting from an exhaustive search isgiven in Table V, and the corresponding

channel code is given in Table VI. The detailed expression ofthe expected payoff required for the search

is provided in Appendix E.

The proposed codes admit to an intuitive interpretation. For instance, the first line of Table VI indicates

that if the channel is bad for Transmitter 1 for the three stages of blockb, then Transmitter1 remains

silent over the three stages of the block while Transmitter2 transmits at all three stages. In contrast, the

last line of Table VI shows that if the channel is good for Transmitter 1 for the three stages of block

b, then Transmitter1 transmit at all stages while Transmitter2 remains silent two thirds of the time.

While this is suboptimal for this specific global wireless channel state realization, this is required to allow

coordination and average optimality of the code.

To conclude this section, we compare the performance of thisshort code with the best possible

performance that would be obtained with infinitely long codes. As illustrated in Fig. 10, while the

performance of the short code suffers from a small penalty compared to that of ideal codes with infinite

block length, it still offers a significant gain w.r.t. the SPC policy and it outperforms the NPC policy.
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Fig. 10. Expected payoff versus SNR for different power control policies.

VI. CONCLUSION

In this paper, we adopted the view that distributed control policies or resource allocation policies in

a network are joint source-channel codes. Essentially, an agent of a distributed network may convey its

October 28, 2014 DRAFT
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Key Aspects and Open Problems

Device centric coordination

Relying on local communications and decentralized computations

Decentralized cooperation can aim at the good of the network

Challenge: Develop robust one-shot schemes that cope with arbitrary information
structures

Heuristics can be obtained by decoupling the communication from decision problems

Open problems
Joint optimization of communications and decision is very challenging
Low complexity methods?
Information theoretic aspects (capacity under decentralized information settings..) ?
Coordination-aware feedback designs (hierarchical,...)
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Key Aspects and Open Problems

Other impact

Coordination theory leads to new insights: Impact over network design?

Implicit coordination: Coordination for free?

Bridge the gap from implicit coordination to distributed optimization?

Interactions with distributed optimization
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Big thanks to
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Key Aspects and Open Problems

Conventional precoding

05 décembre 2013.gwb - 1/4 - 13 déc. 2013 13:49:58
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