Device-Centric Cooperation in Wireless Networks

Presented by David Gesbert and Paul de Kerret
gesbert@eurecom.fr, dekerret@eurecom.fr

July 4th, 2016
Coordination vs. cooperation

Coordination is a way to resolve complex problems among distributed agents. Can come with a notion of conflict: coordination → cooperation.
Network coordination

Coordination and cooperation have emerged as central concepts in many types of networks:
- Autonomous robots networks
- Transportation networks
- Sensor networks
- Processor networks
- Energy (Smart Grids) networks
- Wireless networks
Team-playing robots

- Driver-less vehicles
- Autonomous robot patrols
- Plant probes (nuclear sites,..)
- Military drones (ground, air)
- ”Smart Factory” robots
- Robot sport teams ”Robo-Cup”

Network coordination is often, by essence, ”myopic”
Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View : Implicit Coordination
5. Key Aspects and Open Problems
Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
5. Key Aspects and Open Problems
Network/Device cooperation beyond 5G

Where are we going?
Why beyond 5G may be "centralized"

- **Cloud RAN** is very popular, pushes for more centralization
- Centralized decision making is conceptually **simple** and efficient
- Coordination, cooperation is **easy**
- Mobile service providers **love it**
Enhancing spectral efficiency via coordination

Recent spectrum efficiency gains (or promise) from
- MU-MIMO, Network MIMO (CoMP), Massive MIMO
- Dynamic cell clustering
- Beamforming
- Power control
- Channel aware scheduling
- Spectrum sharing

All made easy in **centralized settings**
Why beyond 5G may be partly "decentralized"

- Centralization leads to expensive architectures
- Curse of dimension (IoT: billions of devices)
- Centralized processing increases latency, killer for the tactile internet.
- Wireless backhaul architectures are often heterogeneous
Cooperation in heterogenous Wireless networks

User’s data from core network

Sharing/caching

CSI sharing with delay/quantization/noise

\[x_1 = w_1(H^{(1)})s \]
\[x_2 = w_2(H^{(2)})s \]
\[x_3 = w_3(H^{(3)})s \]
Ultra flexible Wireless networks

UAVs with aerial relays

Internet

Wireless gateway

Signaling for dynamic positioning
Device-centric Cooperation

Potential:
1. Many devices with substantial sensing/computing capabilities (phones, tablets, vehicles, drones, pico-BS..)
2. Huge collective intelligence
3. Local processing makes time-sensitive measurements more relevant

Challenges
1. How to model distributed information settings?
2. Is there a price of distributedness?
3. Are there robust approaches?
Ex 1: Power control over interference channels

- Two interfering devices, with interference channels $G_{i,j}, i = 1, 2, j = 1, 2$
- Transmit with binary power control is sum-rate optimal [Gjendemsjo et al., 2008, TWC]

$$(p_1^*, p_2^*) = \arg \max_{(p_1, p_2) \in P} [R(p_1(\{G_{i,j}\}), p_2(\{G_{i,j}\}))]$$

where

$$\mathcal{P} \triangleq \{(p_1, p_2) | p_j : \mathbb{R}^4 \to \{0, P_j^{\text{max}}\}, j = 1, 2\}.$$

Hence the coordinated choice of "full power" or "stay silent" for each device requires full centralized CSI. What if not the case?
Ex 2: Interference Alignment

Alignment can be carried out in space, frequency, time domains. [Maddah-Ali et al., 2008, TIT][Cadambe and Jafar, 2008, TIT]

Realization of alignment conditions requires knowledge of all matrices $H_{i,j}$ at all transmitters. **What if not the case?**
Network MIMO requires full knowledge of global H matrix (and data symbols) at all transmitters. **What if not the case?**
Ex 4: Distributed caching

- D2D can be leveraged for content sharing and caching among terminals [Golrezaei et al., 2014, TIT]
- Popular files can be cached in device memory for later use. Each device can store K files.
- N ideally close-by devices can coordinate to cache non-overlapping subsets of K files, hence making the NK most popular files available in their vicinity.
- This requires full information exchange. **What if not the case?**
Ex 5: Coordinated beamforming/scheduling

- Each transmitter should design a beamforming vector \(w_i, i = 1, 2 \)
- The best beamformer choice strikes a optimal trade-off between matched filter (egoistic) solution and interference zero-forcing (altruistic) solution [Jorswieck et al., 2008, TSP]
- Optimal design based on knowledge of all direct and interference channel gains. what if not the case?
Ex 6: Cell coloring/clustering

Given a limited cooperation cluster size, cells can coordinate with other to design optimal clusters.

Clustering algorithms are usually centralized. But what if cells should attach to a cluster based on local CSI? (i.e. local user gains, local interference gains)

Decentralized (heuristic) algorithm proposed in [Park et al., 2015]
Device coordination: The many perspectives

- **Team Decision theory**
 - One-shot decision
 - Robust sign. proc./control
 - Noisy/distributed CSI
 - ... [Ho et al., Radner, Gesbert, de Kerret, Lasaulce et al, Fritsche et al., Davidson et al.,...]

- **Game theory**
 - Study of equilibria
 - Selfish behavior
 - Convergence studies
 - ... [Saad et al, Han et al, McKenzie et al, Lasaulce et al, Poor et al., Rose et al., Jorswieck et al.,...]

- **Information theory**
 - Complexity/Convergence studies
 - Consensus algorithms
 - Delay tolerant applications
 - ... [Boyd et al, Inalhan et al, Colorni et al, Rabber et al, Chen et al., Johansson et al., Palomar et al., Scaglione et al., Scutari et al.]

- **Distributed optimization**
 - Capacity/DoF analysis
 - Coordination theory
 - Quantizing with side info.
 - ... [Larrousse et al, Cuff et al, Li et al, Grover, ...]
Device coordination: The many perspectives

Team Decision theory
- One-shot decision
- Robust sign. proc./control
- Noisy/distributed CSI
- ...
 - [Ho et al., Radner, Gesbert, de Kerret, Lasaulce et al, Fritsche et al., Davidson et al.,...]

Information theory
- Capacity/DoF analysis
- Coordination theory
- Quantizing with side info.
- ...
 - [Larousse et al, Cuff et al, Li et al, Grover, ...]

Game theory
- Study of equilibria
- Selfish behavior
- Convergence studies
- ...
 - [Saad et al, Han et al, McKenzie et al, Lasaulce et al, Poor et al, Rose et al, Jorswieck et al, ...]

Distributed optimization
- Complexity/Convergence studies
- Consensus algorithms
- Delay tolerant applications
- ...
Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
5. Key Aspects and Open Problems
Distributed Information Models

Wireless Channel State Information (CSI) is by nature noisy and distributed

- Limited sensing and feedback
- Mobility
- Devices tend to be "myopic": They know better what is close
- CSI exchange is not free
- Devices do not need to know CSI for entire network

CSI is often transmitter dependent → "Information Structure"
Information structure: Clustering

Approaches:
- Network-centric clustering
- User-centric clustering [Papadogiannis et al., 2008, ICC]

Limitations:
- Cluster too big: feedback sharing overhead heavy [Lozano et al., 2013, TIT]
- Cluster too small: edge-effects (inter-cluster interference) predominant
CSI information structure: LTE with limited backhaul

- Backhaul signaling introduces delays and possible quantization noise
- LTE compliant feedback: User feeds back to its home eNB only
CSI information structure: Feedback Broadcast

- CSIT can be shared directly over-the-air without backhaul links

\[
H^{(1)} = [h_1^{(1)} h_2^{(1)} h_3^{(1)}] \\
H^{(2)} = [h_1^{(2)} h_2^{(2)} h_3^{(2)}] \\
H^{(3)} = [h_1^{(3)} h_2^{(3)} h_3^{(3)}]
\]
Classical noisy CSI model (centralized)

- Every transmitter shares the same noisy channel estimate
- Imperfect (quantized, noisy, delayed,..) CSIT at TX modeled as [Wagner et al., 2012, TIT]

\[
\{\hat{H}\}_{i,k} = \sqrt{1 - \sigma^2_{i,k}} \{\tilde{H}\}_{i,k} + \sigma_{i,k} \{\Delta\}_{i,k}, \quad \forall i, k
\]

where \(\{\Delta\}_{ik} \sim CN(0, 1)\)
- With digital quantization \(\sigma^2_{i,k} = 2^{-B_{i,k}}\) (good approximation in the high resolution regime)
- CSIT allocation matrix \(B\) defined as

\[
\{B\}_{i,k} = B_{i,k}, \quad \forall i, k
\]
Distributed CSI Model

- CSIT is **transmitter-dependent**
- **LOCAL** CSIT at TX j modeled as

$$\{\hat{H}^{(j)}\}_{i,k} = \sqrt{1 - (\sigma_{i,k}^{(j)})^2} \{H\}_{i,k} + \sigma_{i,k}^{(j)} \{\Delta\}_{i,k}, \quad \forall i, k$$

where $\{\Delta\}_{i,k}^{(j)} \sim \mathcal{CN}(0, 1)$

- $\sigma_{i,k}^{(j)}$ indicates **quality** of CSIT for channel element (i, k) at TX j
Distributed CSI structure models

Some useful particular cases:
- A CSI structure is *perfect* if $\hat{H}^{(i)} = H$, $\forall i$.
- A CSI structure is *centralized* if $\hat{H}^{(i)} = \hat{H}^{(j)}$, $\forall i, j$.
- A CSI structure is *distributed* if there exist i and j such that $\hat{H}^{(i)} \neq \hat{H}^{(j)}$.
Distributed CSI structure models (cont’d)

Some more particular cases:

- **Incomplete CSIT**: A CSI structure is *incomplete* if \(\hat{H}^{(i)} \) takes the form \(\forall i \hat{H}^{(i)} = \{H_k, l, k \in S_{TX}, l \in S_{RX}\} \), where \(S_{TX} \) (resp. \(S_{RX} \)) are subsets of the transmitter set (resp. receiver set).

- **Hierarchical CSIT**: A CSI structure is *hierarchical* if there exists an order of transmitter indices \(i_1, i_2, i_3.. \) such that \(\hat{H}^{(i_1)} \subset \hat{H}^{(i_2)} \subset \hat{H}^{(i_3)} \subset ... \)

- **Master Slave**: Hierarchical where \(\hat{H}^{(i_1)} = [] \), and \(\hat{H}^{(i_2)} = H \) (can be extended to \(K > 2 \)).
Typical (practical) CSI structures

Consider the K transmitter (N antennas each) K user (single antenna) channel. Let $h_{i,j}^H$ be the $1 \times N$ vector channel between the jth transmitter and the ith user.

- **Local CSIT with TDD reciprocity**

$$ (\hat{H}(j))^H = \begin{bmatrix} 0 & h_{1,j}^H & 0 \\ \vdots & \vdots & \vdots \\ 0 & h_{K,j}^H & 0 \end{bmatrix} $$

- **Local CSIT with LTE feedback mode**

$$ (\hat{H}(j))^H = \begin{bmatrix} 0 & 0 & 0 \\ h_{j,1}^H & \cdots & h_{j,K}^H \\ 0 & 0 & 0 \end{bmatrix} $$

- **Fully local CSIT**

$$ (\hat{H}(j))^H = \begin{bmatrix} 0 & 0 & 0 \\ 0 & h_{j,j}^H & 0 \\ 0 & 0 & 0 \end{bmatrix} $$
Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
5. Key Aspects and Open Problems
Device coordination Problem

- \(K \) nodes in a network seek to cooperate towards the maximization of a common utility
- Each node \(i \) must make best decision based on:
 - local measurement or feedback
 - finite rate signaling with neighbor nodes

Coordination domains:
- Power
- Time/freq/code
- Antenna/beam
- …
Two visitors arrive independently in Edinburgh and seek to meet as quickly as possible. They have different and imprecise information about their own and each other's position.

Problem: *Pick a direction to walk into*

- Estimated position of person j available at person i
Coordination over finite communication graphs: The big picture

- No constraint over number bits exchanged: Distributed optimization \rightarrow convergence speed?
- Constraint over number of bits exchanged: What to measure? What is the most relevant information to communicate among devices?
- Decision stage (after limited communication took place): What are robust coordinated decision techniques?
- Joint communication-decision framework (challenging)
Signaling for Coordination

What is most relevant to communicate of the signaling link?

- Many interesting heuristics (precoding decisions, measurements, etc.)
- Optimal signaling strategy coupled with optimum decision making W_i

- Heuristic strategies:
 1. Local decision W_i based on $\hat{H}^{(i)}$ and Q_i, $i = 1, \ldots, K$, exchange quantized decisions over R_{ij} bits
 - But poorly informed nodes make bad decisions!
 2. Exchange quantized CSI $\hat{H}^{(i)}$ over R_{ij} bits
 - But this ignores Q_i!

- Optimal strategy (source coding with side-information): Create locally optimal codebooks, that are function of local CSI and neighbor CSI qualities [Li et al., 2014]
Distributed coordination

Team Decision theoretic problems:
- Several network agents wish to cooperate towards maximization of a common utility
- Each agent has its own **limited** view over the system state
- All need to come up with **consistent** actions
- Classical "robust" design does not work...
- Introduced first in economics and control [Witsenhausen68] [Ho, 1980, IEEE], recently in **wireless** [Zakhor and Gesbert, 2010, ITA]
- Fundamental limits rooted in **Coordination Theory**
Coordination Theory

- H_1, H_2 and H_3, arbitrary components of global system state, distributed according to $p_0(H_1, H_2, H_3)$
- W_1, W_2 and W_3 are actions selected by the nodes.
- What joint distribution $p_0(H_1, H_2, H_3)p(W_1, W_2, W_3|H_1, H_2, H_3)$ can be achieved?
- Answer: it depends on graph topology (capacity of each edge)

Figure: Coordination Framework [Cuff et al., 2010, TIT]
Example (One Isolated Node)

\[C_{p_0} = \left\{ (R, p(W_1, W_2|H_1)) \left| R \geq I(H_1; W_1|W_2) \right. \right\} \]

Figure: One isolated node scenario [Cuff et al., 2010, TIT]
Example (One Isolated Node)

With Gaussian RVs, the condition becomes

\[(1 - 2^{-2R})^{-1} \rho_{H_1, W_1} + \rho_{W_1, W_2}^2 \leq 1\]

- \(R \to \infty\), \(\rho_{H_1, W_1}^2 + \rho_{W_1, W_2}^2 \leq 1\)
- \(R \to 0\), \(\rho_{H_1, W_1}^2 = 0\) and \(\rho_{W_1, W_2}^2 \leq 1\)

Figure: One isolated node scenario [Cuff et al., 2010, TIT]
Further Results

- **Results in more advanced topologies** [Cuff et al., 2010, TIT]
- **Polar codes used for coordination in** [Chou et al., 2015, ISIT]
- **Implicit coordination: Observation of action of one node by another is a non dedicated cooperation link**
 - Coordination at low/no cost [Larrousse and Lasaulce, 2013, ISIT]
- **Aim of this approach**
 - Guidelines for network design
 - Insights for new cooperation methods
Team Decision (TD) Problems: A general formalism

\[(s_1^*, \ldots, s_K^*) = \arg\max_{s_1, \ldots, s_K} \mathbb{E}_{x, x^{(1)}, \ldots, x^{(K)}} \left[f \left(x, s_1(x^{(1)}), \ldots, s_K(x^{(K)}) \right) \right] \]

where

- \(K \): Number of Decision Makers (DMs)
- \(x \in \mathbb{C}^m \): State of the world
- \(x^{(j)} \in \mathbb{C}^m \): Estimate of the state of the world \(x \) at DM \(j \)
- \(s_j : \mathbb{C}^m \rightarrow A_j \subset \mathbb{C}^{d_j} \): Strategy of the \(j \)-th DM
- \(s_j(x^{(j)}) \in A_j \subset \mathbb{C}^{d_j} \): Decision at DM \(j \) for the given realization \(x^{(j)} \)
- \(f : \mathbb{C}^m \times \prod_{j=1}^K \mathbb{C}^{d_j} \rightarrow \mathbb{R} \): Joint objective of the \(K \) DMs
- \(p_{x,x^{(1)},\ldots,x^{(K)}} \): Joint probability distribution of the channel and the estimates
TD example: The Distributed Rendez-vous Problem

- Two visitors arrive independently in Edinburgh and seek to meet as quickly as possible.
- They have different and imprecise information about their own and each other’s position.
- **Problem**: Pick a direction to walk into

A robust solution: "Meet you at the City Hall!"
Can Team Problems be Solved with Games?

Key idea: Let autonomous transmitting devices interact to solve their interference conflicts
Players \rightarrow transmitters
Actions \rightarrow transmit decision (power, frequency, beam, ..)
Strategy \rightarrow Utility maximization (max rate, min power, min delay,..)
Timing \rightarrow simultaneous, sequential,..
Equilibrium \rightarrow Nash, Stackelberg, Nash Bargaining,..
From Selfish Games to "Team Playing"

Why interference coordination can be different from a typical "game":

- Team agents (network nodes) are not conflicting players (different from players in a cooperative game)
- Agents seek maximization of the same network utility
- It is the lack of shared information which hinders cooperation, not the selfish of their interests
- Agents are not required to improve over the performance of the Nash equilibrium
- Connections to Bayesian games (see work by 1994 Nobel Prize winner John Harsanyi [Harsanyi, 1967])
A Fundamental Approach: Best Response

Best Response

A \textit{Best-Response (BR)} strategy $s_1^{BR}, \ldots, s_K^{BR}$ for the TD problem is a strategy such that

$$s_j^{BR} = \arg\max_{s_j \in A_j} \mathbb{E}_{x, x^{(1)}, \ldots, x^{(K)} | x^{(j)}} \left[f \left(x, \ldots, s_{j-1}^{BR}(x^{(j-1)}), s_j(x^{(j)}), s_{j+1}^{BR}(x^{(j+1)}), \ldots \right) \right], \quad \forall j$$

- Practical approach usually considered in the TD literature
- Still \textit{very challenging}:
 - Functional optimization
 - Stochastic optimization
 - Channel space of large dimension (in most of the cases)
- In fact, \textit{Bayesian Cooperative Game with Incomplete Information} [Harsanyi, 1967, Management Science]
Team Decision: Algorithm design

- Codebook-Based Approach
- Discretization-Based Approach
- Model-Based Approach
- Asymptotics-Based Approach

Team Decision Problem

Information Allocation

Information Sharing
Model-Based Approach

Main idea: Restrict the space of possible strategies via a model

⇒ Replace the strategy s_j by s_j^β with $\beta \in \mathbb{R}$ where s_j^β is a well chosen heuristic model

Example (Coordinated Beamforming [Jorswieck et al., 2008, TSP])

Beamformer in the MISO IC parameterized as

$$w_k^*(\lambda_k) = \frac{\lambda_k w^\text{ZF}_k + (1 - \lambda_k) w^\text{MF}_k}{\|\lambda_k w^\text{ZF}_k + (1 - \lambda_k) w^\text{MF}_k\|}$$
Model-based Team Decision Buying a Baguette or not?

- A french couple returns separately from work and wants baguette for dinner. Their phone batteries are empty.
- Personal cost for stopping at the baker is c_i.
- Each person knows its own cost c_i.
- The c_i are uniformly distributed over $[0, 1]$.

Goal: maximize expectation of joint utility given by:

<table>
<thead>
<tr>
<th>Person 2</th>
<th>Person 1</th>
<th>Buy bread</th>
<th>Go home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy bread</td>
<td>$a - c_1 - c_2$</td>
<td>$1 - c_1$</td>
<td></td>
</tr>
<tr>
<td>Go home</td>
<td>$1 - c_2$</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

When should each person buy bread?

*Optimal decision $\gamma^*_i(c_i)$ of threshold form*

$$\gamma^*_i(c_i) = \begin{cases}
 \text{Buy bread} & \text{if } c_i \leq c_i^{th} \\
 \text{Go home} & \text{if } c_i > c_i^{th}
\end{cases}$$

Codebook-Based Approach

Main idea: Restrict the space of possible strategies to a codebook

Choose s_j inside a codebook of function \(\{s_j^1, \ldots, s_j^m\} \)

Example (Coordinated Beamforming)

- Restrict possible beamforming choices to \(C = \{\text{Matched Filter, Zero Forcing}\} \)
Discretization-Based (1): Dimensionality Reduction

Main idea: Quantize the channel state space to reduce the dimension

Replace the strategy s_j by $s_j(Q^{cb})$ where

$$Q^{cb}: \mathbb{C}^m \rightarrow \mathbb{C}^{cb} \triangleq \{x_1, \ldots, x_{n^{cb}}\}$$

$$x^{(j)} \mapsto Q^{cb}(x^{(j)}) = \arg\min_{x \in \mathbb{C}^{cb}} \|x - x^{(j)}\|^2$$

- Optimization subspace reduced to a space of dimension n^{cb}:

$$s_j: \mathbb{C}^{cb} \rightarrow \mathcal{A}_j$$

$$x_i \mapsto s_j(x_i)$$
Discretization-Based (2): Monte-Carlo Approximation

- Best-response optimization at DM 1: \(\forall i_1 \in \{1, \ldots, n^{cb}\} \),

\[
s^\text{BR}_1(x_{i_1}) = \arg\max_{s_1 \in A_1 \subseteq C_{d1}} \mathbb{E} \left[f(x, S_1, s^\text{BR}_2(Q^{cb}(x^{(2)})), \ldots, s^\text{BR}_K(Q^{cb}(x^{(K)}))) \middle| x^{(1)} = x_{i_1} \right]
\]

- For a given \(x_i \) and given \(s^\text{BR}_2, \ldots, s^\text{BR}_K \): Standard stochastic optimization problem [Shapiro et al., 2014]

- Use Monte-Carlo approximation: \(\forall i \in \{1, \ldots, n^{cb}\} \),

\[
s^\text{BR}_1(x_i) = \arg\max_{s_1 \in A_1} \frac{1}{n^{MC}} \sum_{\ell=1}^{n^{MC}} f \left(x_\ell, S_1, s_2(Q(x_\ell^{(2)})), \ldots, s_K(Q(x_\ell^{(K)})) \right)
\]

where \(\left(x_\ell, x_\ell^{(2)}, \ldots, x_\ell^{(K)} \right) \sim p_{x,x^{(2)},\ldots,x^{(K)}} \middle| x^{(1)} = x_i \)
Asymptotics-Based Approach

Main idea: use asymptotic analysis to make the problem **deterministic**

Possible to obtain new insights and transmission strategies

Example (DoF Analysis)

- Let the transmit SNR goes to infinity

Outline

1 Wireless Device Cooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination

5 Key Aspects and Open Problems
Joint Precoding over Network MIMO

Data: $S_1, S_2, \ldots, S_{N_{\text{cells}}}$

Network MIMO
Transmit antennas: $N_t \times N_{\text{cells}}$

Data: $S_1, S_2, \ldots, S_{N_{\text{cells}}}$
Team Decision Problem

\[
(w_1^*, \ldots, w_K^*) = \arg\max_{(p_1, \ldots, p_K) \in \mathcal{P}} \mathbb{E}[R(H, w_1(\hat{H}^{(1)}), \ldots, w_K(\hat{H}^{(K)}))] \]

where

\[
R(H, w_1(\hat{H}^{(1)}), \ldots, w_K(\hat{H}^{(K)})) = \sum_{k=1}^{K} \log_2 \left| I_{d_k} + T_k^H H_k^H \left(R_k + \sum_{i \neq k} H_i T_i T_i^H T_i^H \right)^{-1} H_k T_k \right|
\]

with

- \(H \in \mathbb{C}^{N_{\text{tot}} \times M_{\text{tot}}} \) the multi-user channel
- \(w_j \) the precoding function:
 \[
 w_j : \mathbb{C}^{N_{\text{tot}} \times M_{\text{tot}}} \rightarrow \mathbb{C}^{M_j \times d_{\text{tot}}}
 \]
 \[
 \hat{H}^{(j)} \mapsto w_j(\hat{H}^{(j)})
 \]
- \(T \in \mathbb{C}^{M_{\text{tot}} \times d_{\text{tot}}} \) the multi-user precoder

\[
T = \begin{bmatrix} T_1 & \ldots & T_K \end{bmatrix} = \begin{bmatrix} w_1(\hat{H}^{(1)}) \\ \vdots \\ w_K(\hat{H}^{(K)}) \end{bmatrix}
\]
A Key Example

- Particularly interesting because:
 - Continuous optimization with large channel state dimension
 - Strong dependency (state & TXs): see DoF results
 - Many difficulties

Table: Team Decision Modeling for Joint Precoding

<table>
<thead>
<tr>
<th>Notations for the Team Decision Problems</th>
<th>(x)</th>
<th>(\hat{H})</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-world (x)</td>
<td>(x^{(j)})</td>
<td>(\hat{H}^{(j)})</td>
</tr>
<tr>
<td>Estimate at DM (j) (\hat{x})</td>
<td>(\hat{x}^{(j)})</td>
<td></td>
</tr>
<tr>
<td>Strategy at DM (j) (s_j)</td>
<td>(s_j)</td>
<td>(w_j)</td>
</tr>
<tr>
<td>Decision space at DM (j) (A_j)</td>
<td>(A_j)</td>
<td>(\mathbb{C}^{M_j \times d_{tot}})</td>
</tr>
<tr>
<td>Objective (f)</td>
<td>(f)</td>
<td>(R)</td>
</tr>
</tbody>
</table>
Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination
5. Key Aspects and Open Problems
Applications of Team Decision to Device-Centric Cooperation

Application to Network MIMO Precoding

A Result Based on Random Matrix Theory (RMT)

- n cooperating TXs
- Each TX has M_{TX} antennas
- K and M_{TX} grow large at the same rate

\[\beta \triangleq \lim_{M,K \to \infty} \frac{M}{K} \triangleq \lim_{M_{TX},K \to \infty} \frac{nM_{TX}}{K} \geq 1 \]
Distributed CSI with Correlated Noise

- Extend to spatial correlation in the CSI noise

\[\hat{h}_k^{(j)} \triangleq \sqrt{1 - \left(\sigma_k^{(j)}\right)^2} h_k + \sigma_k^{(j)} \delta_k^{(j)} \]

with

\[\mathbb{E} \left[\delta_k^{(j)} (\delta_k^{(j')})^\text{H} \right] = (\rho_k^{(j,j')})^2 I_M \]

- Extremely general model: Bridges the Gap from distributed CSIT to centralized CSIT: Can model partially centralized settings

\[\hat{h}_k^{(1)} = \sqrt{1 - \left(\sigma_k^{(1)}\right)^2} h_k + \sigma_k^{(1)} \delta_k^{(1)} \]

\[\hat{h}_k^{(2)} = \sqrt{1 - \left(\sigma_k^{(2)}\right)^2} h_k + \sigma_k^{(2)} \delta_k^{(2)} \]
A Practical Example

Example

- Imperfect feedback
 \[
 \hat{h}_j^{(j)} = \sqrt{1 - \sigma_{FB}^2} h_j + \sigma_{FB} \delta_j^{(j)}
 \]

- Imperfect backhaul
 \[
 \hat{h}_k^{(j')} = \sqrt{1 - \sigma_{BH}^2} \hat{h}_k^{(j)} + \sigma_{BH} \epsilon_k^{(j,j')}
 \]

- CSI estimates error at different TXs are correlated
Model-Based Approach: Regularized ZF

- Modelization of the precoding decisions using Regularized ZF with sum power constraint P

$$ T^{(j)}_{rZF} \left(\gamma^{(j)} \right) \triangleq \left((\hat{H}^{(j)})^H \hat{H}^{(j)} + M \gamma^{(j)} I_M \right)^{-1} \left(\hat{H}^{(j)} \right)^H \frac{\sqrt{P}}{\sqrt{\Psi^{(j)}}} $$

with $\Psi^{(j)}$ the power normalization at TX j, and

$$ w_j(\hat{H}^{(j)}) = E_j^H T^{(j)}_{rZF} \left(\gamma^{(j)} \right) $$

Where E_j is a row selection matrix

- Effective precoder is

$$ T^{DCSI} \triangleq \begin{bmatrix} w_1(\hat{H}^{(1)}) \\ w_2(\hat{H}^{(2)}) \\ \vdots \\ w_n(\hat{H}^{(n)}) \end{bmatrix} $$
Optimization of the Regularization Parameter

- **Naive regularization**
 \[\gamma^{(j),\text{naive}} = \arg\max_{\gamma \in \mathbb{R}} \mathbb{E}[R(\hat{H}^{(j)}, \ldots, \hat{H}^{(j)})] \]

- **Robust regularization**
 \[(\gamma^{(1),*}, \ldots, \gamma^{(n),*}) = \arg\max_{(\gamma^{(1)}, \ldots, \gamma^{(n)})} \mathbb{E}[R(\hat{H}^{(1)}, \ldots, \hat{H}^{(n)})]. \]

- **Low complexity robust** regularization with equal \(\gamma\) at all TXs
 \[(\gamma^*, \ldots, \gamma^*) = \arg\max_{(\gamma, \ldots, \gamma)} \mathbb{E}[R(\hat{H}^{(1)}, \ldots, \hat{H}^{(n)})]. \]
Main Result (1)

Theorem ([Li et al., 2015, Allerton])

In Joint Processing CoMP with Distributed CSI,

\[\text{SINR}_k - \text{SINR}^o_k \xrightarrow{\text{a.s.}} \frac{K, M_{TX} \to \infty}{0} \]

with

\[\text{SINR}^o_k \triangleq \frac{P \left(\frac{1}{n} \sum_{j=1}^{n} \sqrt{\frac{c_{0,k}^{(j)}}{\Gamma_{j,j}^o} \frac{\delta^{(j)}}{1+\delta^{(j)}}} \right)^2}{1 + I_k^o} \]

with

\[c_{0,k}^{(j)} \triangleq 1 - (\sigma_k^{(j)})^2, \quad c_{1,k}^{(j)} \triangleq (\sigma_k^{(j)})^2, \quad c_{2,k}^{(j)} \triangleq \sigma_k^{(j)} \sqrt{1-(\sigma_k^{(j)})^2}. \]
Main Result (2)

Theorem (continued)

\[I^o_k \triangleq P - P \sum_{j=1}^{n} \sum_{j'=1}^{n} \frac{\Gamma^o_{j,j'}}{\sqrt{\Gamma^o_{j,j} \Gamma^o_{j',j'}}} \min \left\{ \frac{2c_{0,k}^{(j)}}{n^2} \frac{\delta^{(j)}}{1+\delta^{(j)}} \frac{\left(\rho_k^{(j,j')} \right)^2 c_{2,k}^{(j)} c_{2,k}^{(j')} + c_{0,k}^{(j)} c_{0,k}^{(j')} \delta^{(j)} \delta^{(j')}}{n^2 \left(1+\delta^{(j)} \right) \left(1+\delta^{(j')} \right)} \right\} \]

with

\[\Gamma^o_{j,j'} \triangleq \frac{1}{M} \sum_{\ell=1}^{K} \sqrt{c_{0,\ell}^{(j)} c_{0,\ell}^{(j')}} + \sqrt{c_{1,\ell}^{(j)} c_{1,\ell}^{(j')}} \left(\rho_{\ell}^{(j,j')} \right)^2 \]

\[\sqrt{\frac{1+\delta^{(j)}}{\delta^{(j)}}} \frac{1+\delta^{(j')}}{\delta^{(j')}} - \frac{1}{M} \sum_{\ell=1}^{K} \left(\sqrt{c_{0,\ell}^{(j)} c_{0,\ell}^{(j')}} + \sqrt{c_{1,\ell}^{(j)} c_{1,\ell}^{(j')}} \left(\rho_{\ell}^{(j,j')} \right)^2 \right)^2 \]

and

\[\delta^{(j)} \triangleq \beta - 1 - \gamma^{(j)} \beta + \sqrt{\left(\gamma^{(j)} \beta - \beta + 1 \right)^2 + 4 \gamma^{(j)} \beta^2} \]

\[2 \gamma^{(j)} \beta \]
Sanity Checks (1)

- Imperfect centralized CSIT:

 \[\sigma_k^{(j)} = \sigma_k^{(j')} = \sigma_k, \]
 \(\text{equal CSIT accuracy} \)

 \[\rho_k^{(j,j')} = 1, \]
 \(\text{Full correlation} \)

 \[\gamma^{(j)} = \gamma^{(j')} = \gamma, \]
 \(\text{Equal regularization} \)

- Matches with [Wagner et al., 2012, TIT], [Couillet and Debbah, 2011, Theorem 14.1]

 \[\text{SINR}^{ID-DCSI, o}_k = \frac{(1 - \sigma_k^2)\delta^2}{\Gamma_o \left(1 - \sigma_k^2 + (1 + \delta)^2 \sigma_k^2 + \frac{(1+\delta)^2}{P} \right)} \]

- Also obtained with \(n = 1 \)
Sanity Checks (2)

- Uncorrelated distributed CSIT with uniform accuracy and equal regularization:
 \[
 \sigma_k^{(j)} = \sigma^{(j)}, \quad (\text{Uniform CSIT})
 \]
 \[
 \rho_k^{(j,j')} = 0, \quad (\text{Uncorrelated})
 \]
 \[
 \gamma^{(j)} = \gamma^{(j')} = \gamma, \quad (\text{Equal regularization})
 \]

Matches with [de Kerret et al., 2015, ISIT]

\[
{\text{SINR}}_{k}^{\text{EQ-DCSI},o} = \frac{P \left(\frac{1}{n} \sum_{j=1}^{n} \sqrt{c_{0,k}^{(j)}} \right)^2}{I_{k}^{\text{EQ-DCSI},o} + 1}
\]

with

\[
I_{k}^{\text{EQ-DCSI}} = P - P \sum_{j=1}^{n} \sum_{j'=1}^{n} \frac{\delta \Gamma_{j,j'}^{o}}{n^2(1 + \delta)^2 \Gamma_{j,j'}^{o}} \cdot \left[2c_{0,k}^{(j)} + \delta \left(2c_{0,k}^{(j)} - c_{0,k}^{(j)}c_{0,k}^{(j')} \right) \right]
\]
Cost of Distributedness

Figure: Average rate per user as a function of the number of users K with $(\sigma^{(j)})^2 = 0.1, \forall j$.

68/127
Optimization of the Regularization Parameter

Figure: Average rate per user as a function of γ for $\sigma^2(1) = 0$, $\sigma^2(2) = 0.1$, $\sigma^2(3) = 0.4$.
Simulation Settings

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>3</td>
<td>K</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>β</td>
<td>$M/K=1$</td>
<td></td>
</tr>
<tr>
<td>$(\sigma_k^{(1)})^2$</td>
<td>0.01</td>
<td>$(\sigma_k^{(2)})^2$</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>$(\sigma_k^{(3)})^2$</td>
<td>0.49</td>
<td>$\rho_k^{(j:j')}$</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>h_k</td>
<td>$\sim \mathcal{N}_{\mathbb{C}}(0, I_M)$</td>
<td>$\delta_k^{(j)}$</td>
<td>$\sim \mathcal{N}_{\mathbb{C}}(0, I_M)$</td>
<td></td>
</tr>
</tbody>
</table>

Figure: Simulation setting
Simulations: Optimize γ

Figure: RZF, ergodic sum rate vs total transmit power P
Outline

1 Wireless Device Cooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination

5 Key Aspects and Open Problems
Asymptotical Analysis: DoF Approach

- First order approximation in the SNR

\[R^* \approx \text{DoF} \log_2(SNR) \]

- Problem becomes deterministic: Possible to obtain analytical results to our complex TD problem

- Very successful to obtain new innovative insights, discover new behaviours (MIMO, IA, delayed CSIT,...)
What is Known: Sum DoF with Centralized Noisy CSIT

- DoF in the K-users MIMO BC with imperfect CSIT recently confirmed \cite{Davoodi and Jafar, 2014}

\[
\hat{H} = H + \sqrt{P^{-\alpha}} \Delta
\]

- Achieved using simple ZF precoding + rate splitting

\[
\text{DoF} = 1 + (K - 1)\alpha
\]
Distributed CSIT Configuration: $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(K)}$

\[\hat{H}^{(1)} = H + \sqrt{P^{-\alpha^{(1)}}} \Delta^{(1)} \]

\[\hat{H}^{(2)} = H + \sqrt{P^{-\alpha^{(2)}}} \Delta^{(2)} \]

\[\hat{H}^{(3)} = H + \sqrt{P^{-\alpha^{(3)}}} \Delta^{(3)} \]

DoF = ?
DoF under Distributed CSIT: Conventional (ZF) precoding

- DoF of Joint Precoding across K distributed TX under D-CSIT, K single-antenna users
- ZF shown to be very inefficient [de Kerret and Gesbert, 2012, TIT]:
 \[
 \text{DoF}^{ZF} = 1 + (K - 1) \min_j \alpha^{(j)}
 \]
- Can we do better?
Principles of New Scheme (Example for $K = 3$)

Key principles:

- **Layered precoding**
- Layer 1: Transmit with approximate precoder
- Layer 2: Best informed TX regenerates and quantizes interference created by layer 1
- Superpose (multicast) Layer 2 on top of layer 1
- Decode and suppress interference at each user.

We distinguish:

- **Arbitrary CSIT regime** ($\alpha_i \in [0, 1], \forall i$)
- **Weak CSIT regime** ($\alpha_1, \alpha_2, .. \alpha_K$) are "small"
Case $K = 3$ Users: A First Simple Scheme

- Without loss of generality: TX 1 is best informed TX
 \[\alpha^{(1)} \geq \alpha^{(2)} \geq \alpha^{(3)} \]

- We transmit 3 symbols per user using e.g. a distributed Matched Precoder with power $P^{(\alpha_1)}/9$
 \[T^{MF(j)} \triangleq \frac{\hat{H}(j)}{\|\hat{H}(j)\|_F} \sqrt{P} \]
Reconstructing the Approximate Interference

- TX 1 uses its CSIT to reconstruct the interference term:

\[
(\hat{h}_1^{(1)})^H T^{MF} s_2 = (h_1 + P^{-\alpha^{(1)}} \delta_1^{(1)})^H T^{MF} s_2 = h_1^H T^{MF} s_2 + P^{-\alpha^{(1)}} (\delta_1^{(1)})^H T^{MF} s_2 \sim P^0
\]

- TX 1 can compute DoF-perfect estimates of the interference terms!

- Quantize the interference using \(\alpha^{(1)} \log_2(P)\) bits per term if interference term scales in \(P^{\alpha^{(1)}}\)

- Superpose a multicast message of \((1 - \alpha^{(1)}) \log_2(P)\) bits, which will include quantized interference
DoF Analysis: The weak CSIT case \(\alpha^{(1)} < \frac{1}{1+K(K-1)} = 1/7 \)

- The 6 quantized interference terms can be broadcast by TX 1 if

\[
\frac{6\alpha^{(1)} \log_2(P)}{\leq (1 - \alpha^{(1)}) \log_2(P)} \Leftrightarrow \alpha^{(1)} \leq \frac{1}{7}
\]

number of bits to quantize all interference terms rate of the broadcast data symbol

If the inequality is strict, we complete with fresh information bits

- DoF achieved is then

\[
\text{DoF} = \underbrace{9\alpha^{(1)}} + \underbrace{(1 - 7\alpha^{(1)})} = 1 + 2\alpha^{(1)}
\]

information transmitted initially fresh information bits to complete the broadcast

\[
\text{DoF} = 1 + (K - 1) \max \alpha^{(i)}
\]

(instead of DoF = 1 + (K - 1) \min \alpha^{(i)}!!)
A First Transmission Scheme in One Slide

- TX 1, 2, 3 jointly transmit K symbols to each user using a distributed Matched Precoder $T_{\text{MF}}(j) \in \mathbb{C}^{K \times K}$ with power $P^{\alpha(1)}/K$

- TX 1 transmits the estimated quantized interference using the power $P - P^{\alpha(1)}$ (equivalently from all TXs using the beamformer $t_{\text{BC}} \triangleq [1, 0, 0]^T$)

$$
\begin{align*}
P^{\alpha(1)} &= h_1^T t_{\text{BC}} s_0 + h_1^T T_{\text{MF}} s_1 + h_1^T T_{\text{MF}} s_2 + h_1^T T_{\text{MF}} s_3 \\
&= h_2^T t_{\text{BC}} s_0 + h_2^T T_{\text{MF}} s_1 + h_2^T T_{\text{MF}} s_2 + h_2^T T_{\text{MF}} s_3 \\
&= h_3^T t_{\text{BC}} s_0 + h_3^T T_{\text{MF}} s_1 + h_3^T T_{\text{MF}} s_2 + h_3^T T_{\text{MF}} s_3
\end{align*}
$$
Weak CSIT Regime: Improved results

- Improved scheme: TXs perform **Active-Passive Zero-Forcing** precoding
 - TX 2,..., TX K perform arbitrary precoding (passive)
 - TX 1 compensates with ZF precoding (active)

Theorem ([de Kerret and Gesbert, 2016, ISIT])

In the weak CSIT regime, defined by

$$
\max_{j \in \{1,\ldots,K\}} \alpha(j) \leq \frac{1}{1 + K(K - 2)}
$$

We have that:

$$
\text{DoF}^{\text{DCSI}}(\alpha) \geq 1 + (K - 1) \max_{j \in \{1,\ldots,K\}} \alpha(j)
$$
Outer bound

Theorem

The Centralized Outerbound In the K-user Network MIMO channel with distributed CSIT:

$$\text{DoF}^{\text{DCSI}}(\alpha) \leq \text{DoF}^{\text{CCSI}}(\max_{j \in \{1, \ldots, K\}} \alpha^{(j)})$$

$$= 1 + (K - 1) \max_{j \in \{1, \ldots, K\}} \alpha^{(j)}$$

Key ideas:

- DoF is upperbounded by DoF achieved by full CSIT exchange
- Having multiple CSIT with $\alpha_1, \alpha_2, \ldots, \alpha_K$ doesn't help over having just best CSIT (α_1)

\Rightarrow matches the achieved DoF for weak CSIT!
Arbitrary CSIT Regime with $K = 3$

Theorem

In the 3-user Network MIMO with distributed CSIT and $\alpha^{(1)} \geq \alpha^{(2)} \geq \alpha^{(3)}$, it holds that

$$\text{DoF}^{\text{DCSI}}(\alpha) \geq \begin{cases} 1 + 2\alpha^{(1)} & \text{if } \alpha^{(1)} \leq \frac{1}{4} \\ \frac{2\alpha^{(1)} - \alpha^{(2)} + 2\alpha^{(1)}\alpha^{(2)}}{4\alpha^{(1)} - \alpha^{(2)}} & \text{if } \alpha^{(1)} \geq \frac{1}{4} \end{cases}$$

Optimal DoF for $K = 3$ users:
- In the weak CSIT regime
- In any CSIT regime with $\alpha^{(1)} = \alpha^{(2)}$ (regardless of what user 3 knows)
DoF for $K = 3$ Users

Figure: Sum DoF as a function of $\alpha^{(1)}$. User 3 has no CSIT ($\alpha^{(3)} = 0$)
Outline

1 Wireless Device Cooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination

5 Key Aspects and Open Problems
Binary Power Control over Interference Channels

\[(p_1^*, p_2^*) = \arg\max_{(p_1, p_2) \in \mathcal{P}} [R(p_1(G^{(1)}), p_2(G^{(2)}))]\]

where

\[R(P_1, P_2) = \log_2 \left(1 + \frac{G_{11} P_1}{1 + G_{12} P_2}\right) + \log_2 \left(1 + \frac{G_{22} P_2}{1 + G_{21} P_1}\right)\]

and

\[p_j : \mathbb{R}_+^4 \rightarrow \{P_j^\text{min}, P_j^\text{max}\} \quad G^{(j)} \mapsto p_j(G^{(j)})\]

- Key Example because:
 - Binary optimization with (relatively) low dimensional channel state
 - Weaker dependency with the channel state

\[\Rightarrow \text{Less difficulties}\]
Identification of the Parameters

Table: Team Decision Modeling for Power Control

<table>
<thead>
<tr>
<th>Notations for the Team Decision Problems</th>
<th>x</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-world</td>
<td>$x^{(i)}$</td>
<td>$G^{(i)}$</td>
</tr>
<tr>
<td>Estimate at DM j</td>
<td>s_j</td>
<td>p_j</td>
</tr>
<tr>
<td>Strategy at DM j</td>
<td>A_j</td>
<td>${P_j^{\text{min}}, P_j^{\text{max}}}$</td>
</tr>
<tr>
<td>Decision space at DM j</td>
<td>f</td>
<td>R</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applications of Team Decision to Device-Centric Cooperation

Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination
5. Key Aspects and Open Problems
Discretization for Power Control –Refresher (1)–

Main Idea: Quantize the channel state space to reduce the dimension

Replace the strategy \(p_j \) by \(p_j(Q^{cb}) \) where

\[
Q^{cb} : \mathbb{C}^{2 \times 2} \rightarrow \mathcal{C}^{cb} \triangleq \{G_{1cb}, \ldots, G_{p^{cb}}\} \\
\hat{G}(j) \mapsto \underset{\hat{G} \in \mathcal{C}^{cb}}{\text{argmin}} \| \hat{G} - \hat{G}(j) \|^2
\]

Optimization subspace reduced to a space of dimension \(n^{cb} \)

\[
p_j(Q^{cb}) : \mathcal{C}^{cb} \rightarrow \{P^{min}, P^{max}\} \\
G_i \mapsto p_j(G_i)
\]
Discretization for Power Control –Refresher (2)–

- **Best response power allocation strategy:** Solve iteratively

 - At TX 1, \(\forall i \in \{1, \ldots, n_{cb} \} \),

 \[
 p_{1}^{\text{BR}}(G_{i}^{cb}) = \arg\max_{P_1 \in \{P_{1}^{\text{min}}, P_{1}^{\text{max}} \}} \mathbb{E}\left[R\left(G, P_1, p_2^{\text{BR}}(Q(G^{(2)})) | G^{(1)} = G_{i}^{cb} \right) \right]
 \]

 - At TX 2, \(\forall i \in \{1, \ldots, n_{cb} \} \),

 \[
 p_{2}^{\text{BR}}(G_{i}^{cb}) = \arg\max_{P_2 \in \{P_{2}^{\text{min}}, P_{2}^{\text{max}} \}} \mathbb{E}\left[R\left(G, P_1^{\text{BR}}(Q(G^{(1)})), P_2 | G^{(2)} = G_{i}^{cb} \right) \right]
 \]

Reach optimal strategy given the strategy of the other TX
Discretization for Power Control –Refresher (3)–

- Approximation of the expectation using Monte-Carlo runs with n^{MC} samples
- At TX 1, $\forall i \in \{1, \ldots, n^{cb}\}$,

$$p_1^{BR}(G_i^{cb}) = \arg\max_{P_1 \in \{P_1^{min}, P_1^{max}\}} \frac{1}{n^{MC}} \sum_{i=1}^{n^{MC}} R \left(G_i, P_1, p_2^{BR}(Q^{cb}(G_i^{(2)})) \right), \quad \forall i \in \{1, \ldots, n^{cb}\}$$

where $(G_i, G_i^{(2)}) \sim f_{G,G^{(2)}}|_{G^{(1)}=G_i^{cb}}$.
Simulations Parameters

- Rayleigh fading with uniform pathloss
- CSIT Model

\[H^{(j)} \triangleq \sqrt{1 - \sigma_j^2H + \sigma_j\Delta} \]

where \(\Delta \sim \mathcal{N}_C(0,1) \) and \(H \sim \mathcal{N}_C(0,1) \), and

\[\{G^{(j)}\}_{i,k} \triangleq \left|\{H^{(j)}\}_{i,k}\right|^2, \quad \forall i, k \in \{1, \ldots, K\}. \]

- Codebook:
 - Product of scalar codebooks using 10 codewords from Lloyd algorithm for each scalar.
 - Hence: \(n^{\text{codebook}} = 10^4 = 10000 \)
 - Stochastic approximation using \(n^{MC} = 500 \)
Simulation Results (1)

Figure: Average sum rate for $\sigma_1^2 = 1$ and $\sigma_2^2 = 0$.
Simulation Results (2)

Figure: Comparison with schemes from the literature.
Outline

1 Wireless Device Cooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination

5 Key Aspects and Open Problems
Cognitive Radio Beamforming

- Rate maximization of a secondary TX while preserving a rate constraint for the primary TX: Underlay Cognitive Radio [Haykin, 2005, JSAC]
Team Decision Cognitive Radio Beamforming

- CSI configuration
 - TX s only knows $h_{s,s}$ and multi-user statistics $R_{i,j}$
 - TX p only knows $h_{p,p}$ and multi-user statistics $R_{i,j}$

- Coordination using only the statistics

\[W_p \quad ??? \quad W_s \quad ??? \]
Functional Optimization Problem

Optimization Problem

\[(w_p^*, w_s^*) = \arg\max_{(w_p, w_s)} \mathbb{E}[R_s(w_p(h_{p,p}), w_s(h_{s,s}))]\]

s. to \(\mathbb{E}[R_p(w_p(h_{p,p}), w_s(h_{s,s}))] \geq \tau > 0, \quad (R)\)

\[0 \leq \|w_p(h_{p,p})\|^2 \leq P_p^{\text{max}}\]

\[0 \leq \|w_s(h_{s,s})\|^2 \leq P_s^{\text{max}}\]

where for \(j \in \{s, p\},\)

\[w_j : \mathbb{C}^{M_j} \rightarrow \mathbb{C}^{M_j}\]

\[h_{j,j} \mapsto w_j(h_{j,j})\]
Identification of the Parameters

Table: Team Decision Modeling for Cognitive Radio

<table>
<thead>
<tr>
<th>Notations for the Team Decision Problems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-world</td>
<td>x</td>
</tr>
<tr>
<td>Estimate at DM j</td>
<td>$x^{(j)}$</td>
</tr>
<tr>
<td>Strategy at DM j</td>
<td>s_j</td>
</tr>
<tr>
<td>Decision space at DM j</td>
<td>\mathcal{A}_j</td>
</tr>
<tr>
<td>Objective</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>R_s</td>
</tr>
<tr>
<td></td>
<td>s.t. (R)</td>
</tr>
</tbody>
</table>

$x = \{ h_{s,s}, h_{s,p}, h_{p,s}, h_{p,p} \}$
Outline

1 Wireless Device Cooperation
2 Distributed Information Models
3 Coordination and Team decision: Problem formulation
4 Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View: Implicit Coordination
5 Key Aspects and Open Problems
Key Idea: Codebook of Functions [Filippou et al., 2016, TWC]

Functional optimization difficult ⇒ Parametrization of the decision space using a codebook of functions

- Here: 2 functions (strategies) labelled s and p
- Choose these strategies from efficient heuristics

Optimization Problem

\[
(w^*_p, w^*_s) = \arg\max_{(w_p, w_s)} \mathbb{E} [R_s(w_p(h_{p,p}), w_s(h_{s,s}))]
\]

s. to \[\mathbb{E} [R_p(w_p(h_{p,p}), w_s(h_{s,s}))] \geq \tau > 0, \]
\[0 \leq \|w_p(h_{p,p})\|^2 \leq P_p^{\text{max}} \]
\[0 \leq \|w_s(h_{s,s})\|^2 \leq P_s^{\text{max}} \]
\[(w^*_p, w^*_s) \in \{ (w_{cb,1}^{p}, w_{cb,1}^{s}), \ldots, (w_{cb,n_{cb}}^{p}, w_{cb,n_{cb}}^{s}) \} \]

where for $j \in \{s, p\}$,

\[
w_{j,1}^{cb,j} : \mathbb{C}^{M_j} \rightarrow \mathbb{C}^{M_j}
\]
\[h_{j,j} \mapsto w_{j}^{cb}(h_{j,j}) \]
Strategy p

- TX p
 - TX p uses matched precoding
 \[u_p^{\text{MF}} \triangleq \frac{h_{p,p}}{\|h_{p,p}\|} \]
 - TX p transmits with full power $\bar{P}_p = P_{p}^{\text{max}}$

- TX s:
 - TX s transmits using the statistical ZF precoder
 \[u_s^{s\text{ZF}} \triangleq \arg\min_u u^H R_{p,s} u \]
 - TX s controls its average transmit power \bar{P}_s to fulfill the rate constraint $\langle R \rangle$
Strategy s

- **TX s**
 - TX s uses matched precoding
 \[
 u_s^{MF} \triangleq \frac{h_{s,s}}{\|h_{s,s}\|}
 \]
 - TX s transmits with full power $\bar{P}_s = P_s^{\max}$

- **TX p:**
 - TX p transmits using the statistical ZF precoder
 \[
 u_p^{ZF} \triangleq \arg\min_u u^H R_{s,p} u
 \]
 - TX p controls its average transmit power \bar{P}_p to fulfill the rate constraint (R)
Some Intuition

- TX \(p \) can reduce its power only if TX \(s \) can anticipate it: Coordination required to guarantee (R)
- Strategy \(s \)
 - Large objective
 - Rate constraint might be unfeasible
- Strategy \(p \)
 - Low objective
 - Rate constraint guaranteed
Statistical Coordination Algorithm [Filippou et al., 2016, TWC]
Simulations Parameters

- $M_s = M_p = 3$ antennas per-TX
- Correlation matrices

 $R_{p,p} = R_{s,s} = I_3$, \quad $R_{p,s} = R_{s,p} = \begin{bmatrix}
 1 & \rho & \rho^2 \\
 \rho & 1 & \rho \\
 \rho^2 & \rho & 1
\end{bmatrix}$

- Use in the following $\rho = 0.5$ and $\tau = 0.5 \text{bps/Hz}$
Ergodic rate of the PU

![Graph showing the ergodic rate of the PU with different transmit SNR values for centralized, statistically coordinated, and SU cognitive beamforming.]
Ergodic rate of the SU

![Graph showing the ergodic rate of the SU for different transmit SNR values.

- Centralized
- Statistically coordinated
- SU Cognitive beamforming

The graph plots the average SU rate in bps/Hz against transmit SNR in dB.]
Outline

1. Wireless Device Cooperation
2. Distributed Information Models
3. Coordination and Team decision: Problem formulation
4. Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View : Implicit Coordination
5. Key Aspects and Open Problems
Coded Power Control

- TX 1 with non-causal CSI knowledge
- TX 2 observes transmit power P_1:

![Diagram showing TX1, RX1, TX2, RX2, CSI feedback, and observation arrows between TX1 and TX2, with implicit coordination arrow]
Modelization

- Random state $H = \{G_{1,1}, G_{2,1}, G_{1,2}, G_{2,2}\}$ with fixed law $\rho(H)$ over \mathcal{H}
- TX i chooses its power levels P_i in \mathcal{P}_i
- TX 2 observes Z with fixed law $\Gamma(z|P_1)$.
- Strategy of Agent 1: $(w_{1,i})_{1\leq i \leq T}$ with:
 $w_{1,i} : \mathcal{H}^T \times \mathcal{P}_1^{i-1} \times \emptyset \rightarrow \mathcal{P}_1$
 \[\text{(CSI, past actions)}\]
- Strategy of Agent 2: $(w_{2,i})_{1\leq i \leq T}$ with:
 $w_{2,i} : \mathcal{H}^{i-1} \times \mathcal{Z}^{i-1} \times \mathcal{P}_2^{i-1} \rightarrow \mathcal{P}_2$
 \[\text{(past)}\]
Auxiliary notion

Definition (Implementability)

\(P_{H_i, P_1, i, P_2, i, Z_i} \): joint distribution induced by \((w_{1, i}, w_{2, i})_{i \geq 1}\) at stage \(i\).
The distribution \(Q(h, p_1, p_2) \) is implementable if there exists a pair of strategies \((w_{1, i}, w_{2, i})_{i \geq 1}\) such that for all \((h, p_1, p_2)\),

\[
\frac{1}{T} \sum_{i=1}^{T} \sum_{y} P_{H_i, P_1, i, P_2, i, Y_i}(h, p_1, p_2, z) \rightarrow Q(h, p_1, p_2)
\]
as \(T \rightarrow \infty\).

Feasible utilities

A certain utility value \(\underline{f}\) is reachable if and only if there exists an implementable distribution \(Q\) such that \(\underline{f} = \mathbb{E}_Q[f]\).
Theorem ([Larrousse and Lasaulce, 2013])

Let $Q \in \Delta(\mathcal{H} \times \mathcal{P}_1 \times \mathcal{P}_2)$ with $\sum_{(p_1, p_2)} Q(h, p_1, p_2) = \rho(h)$. The distribution Q is implementable if there exists $Q \in \Delta(\mathcal{H} \times \mathcal{P}_1 \times \mathcal{P}_2 \times \mathcal{Z})$ which verifies:

$$I_Q(H; P_2) \leq I_Q(P_1; Z|H, P_2)$$

where the arguments of the mutual information $I_Q(.)$ are defined from Q and $Q(h, p_1, p_2, y) = Q(h, p_1, p_2) \Gamma(z|p_1)$.

Remark: This theorem also characterizes expected payoff.
Convex Optimization Problem

\[
\begin{align*}
\text{maximize} \quad & \mathbb{E}_q[f] = \sum_{\ell=1}^{L} q_{\ell} f_{\ell} \\
\text{subject to} \quad & I_q(H; P_2) \leq I_q(P_1; Z|H, P_2) \\
& q_{\ell} \geq 0 \\
& \sum_{\ell=1}^{L} q_{\ell} = 1 \\
& \sum_{\ell \in \mathcal{L}_H(h)} q_{\ell} = \rho(h), \quad \forall \, h, \\
& \frac{\sum_{\ell \in \mathcal{L}_{P_1, Z}(p_1, z)} q_{\ell}}{\sum_{\ell \in \mathcal{L}_{P_1}(p_1)} q_{\ell}} = \Gamma(z|p_1), \quad \forall \, (p_1, z)
\end{align*}
\]
Application: MAC Power Control

- 2-user MAC with binary power control
- 2 possible states: \(\mathcal{H} = \{ \{g_{\text{min}}, g_{\text{max}}\}, \{g_{\text{max}}, g_{\text{min}}\} \} \)

\[
\begin{array}{cc}
P_{\text{min}} & P_{\text{max}} \\
P_{\text{min}} & 0 & 20 \\
P_{\text{max}} & 1 & \approx 10
\end{array}
\]

\(x_0 = (g_{\text{min}}, g_{\text{max}}) \)

\[
\begin{array}{cc}
P_{\text{min}} & P_{\text{max}} \\
P_{\text{min}} & 0 & 1 \\
P_{\text{max}} & 20 & \approx 10
\end{array}
\]

\(x_0 = (g_{\text{max}}, g_{\text{min}}) \)

Figure: Payoff table [Larrousse and Lasaulce, 2013]
Source Coding [Larrousse and Lasaulce, 2013]

Source coding:

\[f_S : \mathcal{H} \rightarrow \{ m_0, m_1 \} \]
\[h \mapsto i \]

TABLE IV
OPTIMAL MARGINAL AND JOINT DISTRIBUTIONS (EXPRESSED IN %) FOR THE SUM-RATE PAYOFF FUNCTION OF THE CPC POLICY, WITH SNR = 10 dB AND WITH FOUR POSSIBLE TRANSMIT POWER LEVELS \{0, 10/3, 20/3, 10\}.

TABLE V
PROPOSED SOURCE CODING AND DECODING FOR \(p = \frac{1}{2} \).

<table>
<thead>
<tr>
<th>(x_0^3)</th>
<th>Index (i = f_S(x_0^3))</th>
<th>(g_S(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(m_0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(0,0,1)</td>
<td>(m_0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(0,1,0)</td>
<td>(m_0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(0,1,1)</td>
<td>(m_0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>(m_0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(1,0,1)</td>
<td>(m_0)</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(1,1,0)</td>
<td>(m_1)</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>(1,1,1)</td>
<td>(m_1)</td>
<td>(0,0,1)</td>
</tr>
</tbody>
</table>
Channel Coding

- Channel coding:

\[f_C : \{m_0, m_1\} \rightarrow P_1 \]

\[i \mapsto p_1 = [p_1(1), p_1(2), p_1(3)] \]

- at block \(b \), find optimal \(p_1^{\text{opt}} = [p_1(1)^{\text{opt}}, p_1(2)^{\text{opt}}, p_1(3)^{\text{opt}}] \) and second optimal \(p_1^{\text{opt}''} = [p_1(1)^{\text{opt}''}, p_1(2)^{\text{opt}''}, p_1(3)^{\text{opt}''}] \)

 - If \(i = m_0 \), send with \(p_1^{\text{opt}} \)
 - If \(i = m_1 \), send with \(p_1^{\text{opt}''} \)
Channel Coding [Larrousse and Lasaulce, 2013]

<table>
<thead>
<tr>
<th>$x_0^3(b)$</th>
<th>$x_2^3(b)$</th>
<th>i_{b+1}</th>
<th>$x_1^3(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1,1,1)</td>
<td>m_0</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td></td>
</tr>
<tr>
<td>(0,0,1)</td>
<td>(1,1,1)</td>
<td>m_0</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(0,1,0)</td>
<td>(1,1,1)</td>
<td>m_0</td>
<td>(0,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(0,1,1)</td>
<td>(1,1,1)</td>
<td>m_0</td>
<td>(0,1,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>(1,1,1)</td>
<td>m_0</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(1,0,1)</td>
<td>(1,1,1)</td>
<td>m_0</td>
<td>(1,0,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>(1,1,0)</td>
<td>(0,0,1)</td>
<td>m_0</td>
<td>(1,1,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td>(1,1,1)</td>
<td>(0,0,1)</td>
<td>m_0</td>
<td>(1,1,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m_1</td>
<td>(1,1,0)</td>
</tr>
</tbody>
</table>
Simulations [Larrousse and Lasaulce, 2013]
Outline

1 Wireless Device Cooperation

2 Distributed Information Models

3 Coordination and Team decision: Problem formulation

4 Applications of Team Decision to Device-Centric Cooperation
 - Application to Network MIMO Precoding
 - Model-Based Approach
 - DoF Approach
 - Application to Power Control
 - Functional Optimization by Discretization
 - Application to Cognitive Radio Beamforming
 - Codebook-Based Approach
 - A Different Point of View : Implicit Coordination

5 Key Aspects and Open Problems
Device centric coordination

- Relying on local communications and decentralized computations
- Decentralized cooperation can aim at the good of the network
- **Challenge:** Develop robust one-shot schemes that cope with arbitrary information structures
- Heuristics can be obtained by decoupling the communication from decision problems

Open problems
- Joint optimization of communications and decision is very challenging
- Low complexity methods?
- Information theoretic aspects (capacity under decentralized information settings..) ?
- Coordination-aware feedback designs (hierarchical,...)
Other impact

- Coordination theory leads to new insights: Impact over network design?
- Implicit coordination: *Coordination for free?*
- Bridge the gap from implicit coordination to distributed optimization?
- Interactions with distributed optimization
Big thanks to
thanks
References I

