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Delay Analysis of Epidemic Schemes in Sparse
and Dense Heterogeneous Contact Networks
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Abstract—Epidemic algorithms have found their way into many areas of computer science, such as databases and distributed systems,

and recently for communication in Opportunistic or Delay Tolerant Networks (DTNs). To ensure analytical tractability, existing analyses

of epidemic spreading predominantly consider homogeneous contact rates between nodes. However, this assumption is generally not

true in real scenarios. In this paper we consider classes of contact/mobility models with heterogeneous contact rates. Through an

asymptotic analysis we prove that a first-order, mean value approximation for the basic epidemic spreading step becomes exact in the

limiting case (large network size). We further derive simple closed form approximations, based on higher order statistics of the mobility

heterogeneity, for the case of finite-size networks. To demonstrate the utility of our results, we use them to predict the delay of epidemic-

based routing schemes and analyze scenarios with node selfishness. We validate the analytic results through extensive simulations

on synthetic scenarios, as well as on real traces to demonstrate that our expressions can be useful also in scenarios with significantly

more complex structure. We believe these results are an important step forward towards analyzing the effects of heterogeneity (of

mobility and/or other characteristics) on the performance of epidemic-based algorithms.

Index Terms—epidemic algorithms, heterogeneous mobility, opportunistic networks, performance analysis

✦

1 INTRODUCTION

E PIDEMIC spreading is probably one of the most popular

bio-inspired principles that have made their way into

computer engineering. Epidemic algorithms and variants (e.g.

gossip) have been used for communication in distributed

systems, synchronization of distributed databases, content

searching in peer-to-peer systems, etc. Recently, epidemic-

based schemes have also been proposed for routing and data

dissemination in Opportunistic Networks [1]. Opportunistic or

Delay Tolerant Networks (DTNs) are envisioned to support

communication in case of failure or lack of infrastructure

(disaster, censorship, rural areas), but also to enhance existing

wireless networks (e.g., offload cellular traffic, novel applica-

tions) [2], [3].

In Opportunistic Networks, when two mobile devices, e.g.

smartphones, laptops, etc., are in proximity (in contact) they

can exchange data or information using local wireless commu-

nication (e.g. Bluetooth or WiFi). Message dissemination can

be end-to-end or content-centric, yet neither the existence nor

the knowledge of an end-to-end path is assumed. Nevertheless,

over a sequence of node encounters, messages can get copied

to many nodes as well as forwarded over multiple hops. In

the epidemic routing case [4], any node that has a message

(referred to as “infected”) will forward it to any node encoun-

tered that does not have it yet (referred to as “susceptible”).

While this guarantees that every node in the network will

eventually receive the message, it comes with a high resource

overhead. Numerous variants have been proposed to improve

the resource usage of epidemic routing while maintaining good
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performance (see [1], [5], [6] for a detailed survey).

Since the mobility process of nodes involved (e.g. hu-

mans or vehicles carrying the devices) is, in most cases, not

deterministic, the performance of epidemic-based algorithms

heavily depends on the underlying contact patterns between

nodes. To this end, epidemic algorithms have been exten-

sively studied through both simulations and analytical models.

While simulations with state-of-the-art synthetic models or

real mobility traces can provide more reliable predictions for

the specific scenario tested, analytical models can give quick,

qualitative results and intuition, answer “what-if” questions,

and help optimize protocols (e.g. choosing the number of

copies in [7], or gossip probability [8]).

For the sake of tractability, state-of-the-art analytical mod-

els for epidemic spreading mainly rely on simple mobility

assumptions. Such examples are Random Walk or Random

Waypoint, where node mobility is stochastic and independent,

identically distributed (IID) (see e.g. [8], [9], [10]). Never-

theless, numerous studies of real mobility traces [11], [12],

[13], [14] reveal a different picture. One key finding is that

contact rates between different pairs of nodes can vary widely.

Furthermore, many pairs of nodes may never meet. This puts in

question the accuracy and utility of these models’ predictions.

Yet, departures from these assumptions [12], [15], [16] seem

to quickly increase complexity and/or limit the applicability

of results.

This raises the question: can we derive useful and accurate

closed form expressions for the performance of epidemic

schemes, under more generic mobility assumptions? To this

end, in this paper, we make contributions along the following

directions:

• Model. We shed light on the factors that increase the

complexity of the analysis for epidemic schemes when

departing from the homogeneous mobility model. To cope
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with complexity, we propose using a model (e.g., similar

to [17], [18]) that extends the homogeneous model by

incorporating heterogeneity in a probabilistic way. We

discuss how such a model (i) remains quite generic

(i.e., protocol independent) and analytically tractable,

as the homogeneous model, and, at the same time, (ii)

allows to study effects of heterogeneous mobility patterns.

Moreover, we show how to extend the model towards

capturing more complex characteristics (sparseness, node

selfishness, etc.).

• Analysis. We use the heterogeneous model to analyse

the delay of epidemic spreading: (i) We formally prove,

through an asymptotic analysis, that a first-order approx-

imation becomes exact in the limiting case. We also

provide intuition about when a prediction using a single

mobility parameter (e.g., similarly to the homogeneous

model) can be safely used in heterogeneous networks, and

how its accuracy is affected by the network parameters.

(ii) For finite network sizes, we derive simple, closed form

approximations for the epidemic delay. The expressions

we provide involve only the 1st and 2nd moments of

the contact rates distribution, which renders them easily

applicable in performance evaluation, protocol design,

etc.

• Applications. To demonstrate how our framework can

be used in practice, we (i) derive closed form expressions

for the delay of various epidemic based protocols, and (ii)

show how further complex characteristics of opportunistic

networks, like heterogeneous node selfishness, can be

captured. Further application-related issues are presented

along with simulation results, and highlight the useful-

ness of the heterogeneous model compared to previous

modeling approaches.

The structure of the paper is as follows. In Section 2 we

introduce the network model. Then, we commence our analy-

sis by discussing the main steps and challenges (Section 3.1).

We derive results for the delay of epidemic spreading for

the asymptotic case (Section 3.2) and finite-size networks

(Section 3.3), and extend our analysis for the case of sparse

networks (Section 3.4). Applications of our basic results

are presented in Section 4, where we calculate the message

delivery delay of routing protocols (Section 4.1), and analyze

scenarios of social selfishness (Section 4.2). In Section 5.1, we

validate all our results against various synthetic simulation sce-

narios, and show that their accuracy is significant. Moreover, in

Section 5.2, we test our theory against real traces, capturing

node mobility and respective contacts, and find that useful

levels of accuracy can still be achieved even for scenarios that

are known to entail considerably more complexity. Finally,

we discuss related work (Section 6) and conclude our paper

(Section 7).

As a final note, while our focus here will be in the domain

of Opportunistic and Delay-Tolerant Networking, we believe

our framework has more general applicability to epidemic

algorithms in many different contexts, as long as the contact

process between nodes fits our contact classes. For example,

one could imagine the probabilistic spread of malware over an

email or chat network [19], where the spread is possible when

two nodes decide to communicate. For this reason, we present

our analysis in the general context of epidemic spreading. We

focus on opportunistic networks when we discuss applications

and compare our results to real scenarios.

2 NETWORK MODEL

Let assume a network N with N nodes, where two nodes

can contact each other (i.e., exchange data, interact, etc.).

Depending on the scenario considered, a contact might be two

smartphones coming within (Bluetooth) transmission range,

two users sending a message (or posting) to each other in

an online social network (e.g. Facebook, Twitter), two people

meeting each other, etc.

Since nodes can contact only during their contact events, a

model needs only (from a performance analysis point of view)

to capture the sequence of these contact events between nodes.

Moreover, different node pairs might (i) contact regularly or

never contact each other, (ii) contact with different frequency

(rate) or with different contact processes. To this end, we can

model a network N and the contact processes between nodes,

in a generic way, as follows:

Definition 1 (Heterogeneous Contact Network). The sequence

of the contact events between each pair of nodes {i, j} is given

by a random point process with rate λij > 0. Some nodes

might never come in contact, in which case λij = 0.

Remark: From the above definition, it can be seen that

a Heterogeneous Contact Network N can be equivalently

represented by its contact matrix Λ,

Λ = {λij}

To simplify analysis, it is commonly assumed that all inter-

contact times are independent and exponentially distributed

with the same rate λij = λ [8], [9], [20], i.e., the contact

process between each pair of nodes {i, j} is a Poisson process

with rate λ. However, homogeneous rates assumption, λij =
λ, is rather strong. Study of real traces has provided strong

evidence that contacts between different pairs of nodes are

in fact largely heterogeneous, with some pairs never meeting

each other and others meeting much more frequently [12],

[13], [21], which is also consistent with our intuition.

Hence, our goal in this paper is to raise the homogeneity

assumption, and study the performance of epidemic spreading

under the more realistic case of heterogeneous contact patterns.

Specifically, we consider a Heterogeneous Contact Network

(Def. 1) and we further make the following assumptions, which

are a trade-off between realism and usability:

Assumption 1. The contact process between a pair follows a

Poisson process with rate λij .

Assumption 2. The contact rates λij are independently drawn

from an arbitrary distribution fλ(λ), with finite mean value

µλ and variance σ2
λ.

The first assumption (Poisson contact process) is common,

and necessary in order to use a Markovian framework for

the epidemic spreading. The majority of previous studies
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Fig. 1. Markov Chain for epidemic spreading over a ho-

mogeneous network with N nodes

in Opportunistic / Delay Tolerant Networks [9], [12], [16],

[22], [23] assume Poisson contact processes, whereas the few

studies we are aware of that assume more general inter-contact

times [24], [25], [26] only deal with asymptotic behavior (i.e.

whether delay is finite or infinite) [24], [25], or single-copy

cases [26]. Additionally, although inter-contact time intervals

cannot be expected to be always and exactly independent

and exponentially distributed [27], [28], [29], there exist

studies of real traces that do claim this to be the case [13],

[30], or show that (aggregate) intermeeting times exhibit an

exponential tail [31], [32]. Finally, findings of two recent

analytic studies are consistent with our model: (a) even if

the aggregate inter-contact time distribution is non-exponential

(as suggested in [24]), individual pair contacts might still be

exponential but with different rates [21]; and (b) even if the

actual contact times are not Poisson, we can, under certain

conditions, use a Markov Chain based analytical framework,

as a good approximation [33].

In Assumption 2, we raise the homogeneity assumption

and we allow different pairs to contact each other more

frequently than others. While this contact class is far from

exhaustive, fλ(λ) can describe a significantly broader range of

scenarios. For example, large σ2
λ values imply that the contact

frequencies between different pairs are very heterogeneous,

e.g., some pairs will rarely contact each other while others

much more often. An fλ(λ) symmetric around µλ (e.g.,

uniform distribution) implies a balanced number of high and

low contact rates, while a right-skewed fλ(λ) (e.g., Pareto)

describes a network with most pairs having large inter-contact

times, but few contacting very frequently. As a comparison,

we mention that the previous homogeneous models correspond

to one function fHOM
λ (λ) = λ0 = const., whereas the

heterogeneous model we use allows an infinite function space

for fλ(λ).

3 ANALYSIS

In this section we use the model of Section 2 to analyse the

delay of epidemic spreading. We first present the basic steps

of the analysis, and discuss the challenges when considering

heterogeneous networks (Section 3.1). Then, we derive results

for the delay prediction that become exact in the asymptotic

case (Section 3.2), as well as, approximations for finite-size

networks (Section 3.3). Finally, we extend our results for, the

more generic case of sparse networks (Section 3.4).

3.1 Preliminaries (or, what makes analysis difficult)

3.1.1 Epidemic Spreading Delay

Epidemic spreading. Having a contact model, allows to

analytically investigate how fast “messages” (i.e., data packets,

Fig. 2. Markov Chain for epidemic spreading over a het-

erogeneous network with 4 nodes

or files)1 can be exchanged between nodes in a network N .

During a contact event, a message currently on one of the

nodes could be forwarded to (“infect”) the other node as well.

In the basic epidemic scheme (called epidemic routing in the

context of DTNs [4]), a message starts from a source node,

and a message transfer occurs at every contact opportunity

involving a node with the message and one without it. We are

usually interested in calculating the spreading delay, i.e. the

time until either all nodes (broadcast), a percentage of them

(multicast) or a specific destination node (unicast) get infected.

Homogeneous model. In the homogeneous case (i.e., pre-

vious models [8], [9], [20]), where all inter-contact times

are i.i.d. and exponentially distributed with rate λij = λ,

the spreading delay is easy to derive. Specifically, one can

model epidemic spreading with a pure-birth Markov chain,

as depicted in Fig. 1, where a state k denotes the number

of “infected” nodes (i.e., nodes with the message). In this

homogeneous network, it is easy to show that the step delay

Tk,k+1 (i.e. the time to move from state k to state k + 1) is

exponentially distributed with rate k(N − k)λ. Its expected

value is then given by E[Tk,k+1] =
1

k(N−k)λ , and, therefore,

one could straightforwardly calculate the expected spreading

delay.

Heterogeneous model. In the, more realistic, Heteroge-

neous Contact Network (see Def. 1), in order to calculate the

expected step delay E[Tk,k+1] at a step k (i.e. the time till

one more node gets infected), we need to know which exactly

are the k infected nodes (in contrast to the homogeneous

case, where we only need to track the number of infected

nodes). As an example, in Fig. 2, we present the Markov

Chain of a message epidemic spreading in a heterogeneous

network with four nodes, {A,B,C,D}. This Markov Chain

is composed of 8 states (or 15 states, if we consider different

source nodes), whereas the respective Markov Chain of an

homogeneous network with 4 nodes would be composed of

only 4 states. Hence, it becomes evident that the complexity

increases quickly, even for this simple 4-node network. In a

network with N nodes, the state space explodes with 2N − 1
total states, or, equivalently, with

(

N
k

)

different states for step

k (i.e. k infected nodes).

3.1.2 Basic Analysis: Step Delay

We present here the basic steps one needs to follow to calculate

the step delay Tk,k+1 (and, consequently, the total epidemic

1. In this paper, we consider “messages” in the context of an opportunistic
network, i.e., a message denotes a data packet or a whole data file. Yet, a
“message” can have a different meaning when considering different cases.
For instance, a “message” could be a rumour or news in an online social
network [34], a virus in a computer network [19], a disease in the physical
world [35], etc.
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spreading delay). As said above, the step delay Tk,k+1 is the

time starting when the kth node just received the message (i.e.

any k nodes are infected) until the (k + 1)th node receives it

(i.e. any k + 1 nodes are infected).

The step delay Tk,k+1 is a random variable, and the calcu-

lation of its expectation, E[Tk,k+1], involves three sources of

randomness:

• A network is initially created according to fλ(λ). In other

words, N(N −1)/2 contact rates λij are drawn indepen-

dently from fλ(λ). The resulting graph or (symmetric)

contact rate matrix Λ = {λij} is a contact network

instance.

• At step k, there are k nodes with the message. Hence,

and conditioned on Λ, Tk,k+1 is a random variable whose

distribution will also depend on the actual set of k nodes

that have the message, and their contact rates with the

remaining nodes. Let Cm
k denote this set, where m is an

integer indicating one of the
(

N
k

)

possible sets of infected

relays at step k.

• Finally, conditional on both the network instance Λ and

Cm
k , Tk,k+1 will also depend on the randomness of the

inter-contact times involved.

Remark: For a clearer presentation of our analysis, in the

remainder, we omit the notation Λ, in the expressions that

are conditional on Λ. E.g., for simplicity we write E[Tk,k+1]
instead of E[Tk,k+1|Λ]. Nevertheless, we stress here that our

results hold for any network with a rate matrix Λ.

The expected step delay E[Tk,k+1] in a Heterogeneous

Contact Network is given by the following Lemma, which

we prove in Section 8.1.

Lemma 1. The expected delay for the transition from step k
to step k + 1 is given by

E [Tk,k+1] =

(Nk)
∑

m=1

1

Sm
k

· P{Cm
k } (1)

where P{Cm
k } is the probability that Cm

k is the set of infected

nodes at step k, and

Sm
k =

∑

i∈Cm
k

∑

j /∈Cm
k

λij (2)

While keeping track in Eq. (1) of the probabilities P{Cm
k }

and the rates Sm
k could be done recursively, the state space

grows exponentially fast, so even numerical solutions [23]

are infeasible beyond very simple problems. Instead, in the

following, we choose a different approach to compute the

expected delay E[Tk,k+1]: We prove that, in the limit of large

N , all such starting states become statistically equivalent, and

then collapse them (Section 3.2). Then we use our asymptotic

results, to derive useful, simple, closed-form expressions for

the spreading delay in finite-size and sparse networks (Sec-

tions 3.3 and 3.4, respectively).

3.1.3 A Note on Non-Poisson Contact Processes

Lemma 1 is derived under the assumption that the contact

process of a node pair {i, j} is given by a Poisson process

with rate λij (Assumption 1). However, it can be proved that

Lemma 1 (and the following results) can be used as a good

approximation also for non-Poisson cases. Here, we provide

an initial discussion about the applicability of our analysis in

such cases; however, a detailed investigation is out of the scope

of the paper.

Specifically, let the pairwise contact processes to be re-

newal processes (i.e., a generalization of the Poisson pro-

cess [36]) with exponential tail. This is a generic class of

processes, which is also in agreement with observations in real

traces [31], [32]. For this class of processes, the distribution of

the inter-contact times tij between a node pair {i, j} is given

by [33]

P{tij > x} =

{

Cij · x−αij · e−βij·x for x ≥ tij0
1 for 0 < x < tij0

where tij0 is the minimum inter-contact time for the node pair

{i, j}, and Cij a normalization constant. Then, following the

methodology of [33], we can prove that the expected step delay

E[Tk,k+1] is approximately given by Eq. (1) with

Sm
k =

∑

i∈Cm
k

∑

j /∈Cm
k

βij

In scenarios where contact processes do not exhibit an

exponential tail, it is not possible to follow an analysis similar

to Lemma 1. This is due to the fact that, after the first

step (k = 1), transitions between states are dependent on

previous time points (which also differ between node pairs),

and thus the epidemic spreading cannot be modeled with a

(semi-) Markov chain. To our best knowledge, when contact

processes are not Poisson or have not exponential tails, the

performance of message spreading can be analysed only for

(a) single-hop cases (i.e., the message is directly forwarded

to the destination(s) from its source(s), without intermediate

relay nodes) [37], or (b) multi-hop single-copy cases (i.e., at

each time only one node has the message) [26].

3.2 Asymptotic Analysis

3.2.1 Theoretical Results

In this section, we derive our main result, Theorem 1, for the

expected step delay E [Tk,k+1] (Eq. (1)) in the limit of a large

network.

To derive Theorem 1 we first need to make the following

assumption.

Assumption 3 (Full Mixing). The contact rate distribution

is defined in a positive, closed interval, i.e., fλ(λ), λ ∈
[λmin, λmax] ⊆ (0,∞).

With Assumption 3 we assume for the moment all contact

rates to be non-zero. Later, in Section 3.4, we relax this

assumption and allow some node pairs to never meet, i.e.

λij = 0.

We can now proceed and prove Lemmas 2 and 3, which

we use later in the proof of Theorem 1. Let us first define the

random variable Sk as

P{Sk = Sm
k } = P{Cm

k } (3)
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and the random variable Xk as Xk = Sk

k(N−k) , i.e.

P

{

Xk =
Sm
k

k(N − k)

}

= P{Cm
k } (4)

Lemma 2 gives the first two moments of the random

variable Sk, and Lemma 3 shows how the random variable

Xk converges as the network size N increases. The proofs

of Lemmas 2 and 3 can be found in Appendix A and B,

respectively.

Lemma 2. The expectation and variance of the random

variable Sk (Eq. (3)) at step k, are given by

E[Sk] = k(N − k) · µλ · (1− ǫk)

V ar [Sk] = k(N − k) · σ2
λ · (1− δk)

where ǫk = O
(

λmax

N

)

and |δk| = O
(

λ2

max

N

)

.

Lemma 3. As the network size N increases, the random

variable Xk (Eq. (4)) converges as follows

Xk
m.s.
−−−→ µλ

where
m.s.
−−−→ denotes convergence in mean square.

Using the above Lemmas, we prove (in Appendix C)

Theorem 1, which suggests that in a large Heterogeneous

Contact Network the expected step delay at a step k, can be

approximated with arbitrary accuracy as follows

E[Tk,k+1] ≈
1

k(N − k)µλ
(5)

Theorem 1. As the network size N increases, the relative

error REk between the expected step delay E[Tk,k+1] and

the quantity 1
k(N−k)µλ

converges to zero

lim
N→∞

REk = lim
N→∞

E[Tk,k+1]−
1

k(N−k)µλ

E[Tk,k+1]
= 0

3.2.2 Implications

Using the average contact rate µλ as a heuristic approximation

(similarly to Eq. (5)), is not uncommon in related literature.

For instance, in a heterogeneous network, one could calcu-

late µλ, and then use a homogeneous model with λij =
µλ, ∀{i, j}. However, depending on the contact patterns,

network size, etc., this approximation can deviate considerably

from the actual performance, making its applicability ques-

tionable. The contribution of the asymptotic analysis in this

section is towards answering if it is reasonable to use this

approximation and when it is correct. Specifically:

• Theorem 1 formally proves the asymptotic correctness

of the approximation of Eq. (5) for a large class of

contact networks (Heterogeneous Contact Networks). To

our best knowledge, the correctness of a single parameter

prediction (like, Eq. (5), or the similar expressions used

by homogeneous models) has not been studied before

under heterogeneous mobility assumptions.

• The analysis leading to Theorem 1 provides insights

about the accuracy of the approximation Eq. (5), i.e.,

how close the quantity 1
k(N−k)µλ

is to the expected delay

N:  20  50 100 200 500
0
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0.6
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R
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(a) spreading step: 20%

N:  20  50 100 200 500
0

0.2

0.4

0.6

0.8

1

R
E

k

(b) spreading step: 70%

Fig. 3. Relative Step Error REk for the step (a) k = 0.2 ·N
(i.e. message spreading at 20% of the network) and (b)
k = 0.7·N . Each boxplot correspond to a different network

size N (with µλ = 1 and CVλ = 1.5). In each box, the
central horizontal (red) line is the median, the edges of the

(blue) box are the 25th and 75th percentiles, the (black)

whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually

as (red) crosses.

TABLE 1

Relative Step Error REk: Averaged over All Steps and
over 100 Network Instances

N = 20 N = 50 N = 100 N = 200 N = 500
CVλ = 0.5 4.3% 2.8% 2.7% 2.6% 2.5%
CVλ = 1 10.6% 4.2% 3.1% 2.7% 2.6%
CVλ = 1.5 22.4% 8.2% 4.6% 3.2% 2.6%
CVλ = 3 126.7% 34.1% 15.3% 8.2% 3.8%

E[Tk,k+1]. As implied by Lemma 2 (see expressions for

ǫk and δk), as well as, by Lemma 3 and Theorem 1

(correctness for large N ):

(a) The approximation Eq. (5) becomes more accu-

rate as the network size N increases.

Moreover, the probabilistic convergence, in Lemma 3 and

the proof of Theorem 1 (see Appendix C), indicates that

distributions with lower heterogeneity converge faster, or,

in other words:

(b) The approximation Eq. (5) becomes more ac-

curate as the heterogeneity of the contact rates

(CVλ = σλ

µλ
) decreases.

• The discussion in Section 3.1.3, reveals in which other

cases (not conforming strictly to our model) it is, or it is

not, safe to use this approximation.

In the following section, we validate these insights with

simulations, and quantify the accuracy of the results for

different network sizes and contact patterns.

3.2.3 Validation

To verify our results, we test them against simulations. We

use a simulator that creates network instances belonging to the

class of Heterogeneous Contact Networks, we run Monte Carlo

simulations of epidemic spreading, and calculate the mean

step delay (further details for the simulation methodology are

given in Section 5). In Table 1, we present the values for

the relative error REk (Theorem 1) in simulation scenarios

of different network sizes N and contact rates heterogeneity
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CVλ. The values in Table 1 correspond to the relative error

REk averaged over all the steps k of the epidemic process

and over 100 different network instances Λ with equivalent

characteristics (N , fλ). It can be seen that in networks with

higher heterogeneity CVλ = σλ

µλ
(and, thus, larger ranges

[λmin, λmax], since we set the mean rate µλ = 1) the

errors are larger, as our theory predicts (cf. remark “(b)” in

Section 3.2.2). However, as the network size increases, the

errors for all scenarios become very small (cf. remark “(a)” in

Section 3.2.2).

The decrease of the relative errors can be observed also in

Fig. 3, where we present the distribution (i.e., boxplots) of

the values of REk over the different network instances. The

distribution/boxplots of REk allows to verify that Theorem 1

holds for every network instance (in contrast to Table 1, where

we present average values over different network instances).

Also in Fig. 3, the relative errors do not correspond to averaged

(over different steps) values, but we present the REk at the

steps that correspond at the 20% (e.g. in the scenario with

N = 100, we present the relative errors in the step k = 20)

and 70% of the spreading process, in Fig. 3(a) and Fig. 3(b),

respectively. As it can be observed, in later steps the error is

slightly larger, which is expected, due to the accumulation of

errors from all previous steps. Nevertheless, for large network

sizes, the error diminishes for every step considered.

3.3 Finite-Size Networks

The asymptotic analysis and results of the previous section

can be used to predict accurately the spreading delay in

large networks. We now study how the approximation for the

step delay can be improved, and derive simple, closed-form

approximations for finite size networks.

Specifically, from Theorem 1, as discussed in Section 3.2.2,

the quantity 1
k(N−k)µλ

can be used as a predictor for the step

delay, and the prediction error converges to 0 as networks

get larger. For finite cases though, this error might not be

negligible. This motivates us to investigate how to improve

the approximation for the step delay.

To this end, we derive in Result 1 a second order approxi-

mation for the expected step delay.

Result 1. In a Heterogeneous Contact Network the expected

step delay can be approximated by

E[Tk,k+1] =
1

k(N − k)µλ
·

(

1 +
CV 2

λ

k(N − k)

)

(6)

In Section 8.2, we provide the methodology we use to prove

Result 1, as well as, an extensive discussion and useful insights

relating to its accuracy.

More accurate approximations than Result 1 can be derived

by taking into account higher (than the 1st and 2nd) moments

of the contact rates distribution fλ(λ); more details are given

in Section 8.2.

3.4 Sparse Networks

To derive the results of the previous sections, we have so

far required all pairs of nodes to meet with non-zero rate,

i.e. λij > 0 (Full Mixing - Assumption 3). Even though

under this assumption we can capture the characteristics of

many contact environments, scenarios where some pairs of

nodes never contact cannot be adequately described. This is

an undesirable restriction. Intuition as well as studies of real

traces suggest that many pairs of nodes in fact never meet. To

this end, we now relax this assumption and extend our results

to a special case of sparse contact networks, described as:

Assumption 4 (Poisson Mixing). For each pair of nodes i and

j the following holds: (i) with probability ps they regularly

contact with rate λij , according to Assumptions 1 and 2;

(ii) with probability 1− ps they never contact each other, i.e.

λij = 0.

In other words, we now first create a Poisson (or Erdös-

Renyi) graph [20] between nodes. We then assign rates λij ,

as before, but only to the existing links. With the parameter ps,

we can now capture arbitrarily sparse scenarios, where each

node meets only a percentage of all nodes2.

The following corollary suggests that the previous analysis

is valid also in the case of a sparse network (Assumption 4)

and the results hold by just modifying the values of µλ and

σ2
λ.

Corollary 1. Under a Heterogeneous Poisson Mixing Con-

tact Network (Assumption 4), the theoretical results for a

Heterogeneous Full Mixing Contact Network (Assumption 3),

are modified by substituting the moments of the contact rate

distribution (µλ and σ2
λ) with the expressions

µλ(p) = ps · µλ (7)

σ2
λ(p) = ps ·

[

σ2
λ + µ2

λ(1− ps)
]

(8)

Corollary 1 can be proved similarly to the theoretical results

of Section 3.2. In Appendix D, we present a sketch of this

proof comprising the main analytical arguments and differ-

ences compared to the analysis for the full-meshed network

case.

A further utility of Corollary 1 is that it provides the

guidelines for analysing additional properties of Heteroge-

neous Contact Networks. We demonstrate such an example

in Section 4.2.

Remark: More complex models than the Poisson graph can

be used to capture in a more accurate way the structure of

a network. However, in these cases the complexity of the

analysis increases as well. We refer the interested reader

to [38] for such an example, where graphs with arbitrary

degree distributions are considered, i.e. some nodes (e.g.

because they are more mobile or social) contact regularly many

other nodes, while some nodes ever contact with only a few

of other nodes.

4 APPLICATIONS

In this section we turn our attention to some applications of

our model and analysis for opportunistic networking. We first

2. We do assume that the probability ps is large enough for connectivity to
be achieved. In practice, the theory of Poisson graphs tells us that connectivity
can be achieved with arbitrary low ps as long as N is large enough (with
percolation occurring at an average degree as low as 1 in the limit) [20].
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use our results for the individual epidemic steps to derive

expressions for the delivery delay of three epidemic-based

routing protocols (Section 4.1). As a second application, we

demonstrate how our model can be used to capture further

heterogeneous characteristics (other than mobility), namely the

node selfishness, in opportunistic networking scenarios and

how our analysis can be extended for these cases (Section 4.2).

The analytical methods we provide in the remainder of the

section can be used for the analysis of the performance of

other communication mechanisms in a range of scenarios (e.g.,

content-delivery schemes for mobile networks, information

spreading mechanisms for Online Social Networks, etc.) [39],

as well as for the investigation of the effects of heterogeneous

social characteristics in opportunistic networks [18], [40].

4.1 Delivery Delay of Routing Protocols

We first use the basic building blocks of our analysis to predict

the delivery (“end-to-end”) delay for epidemic routing [4], 2-

hop routing [9] and Spray and Wait routing [7].

In the following, we briefly present the mechanism of these

schemes:

Epidemic routing: In epidemic routing, the source node

forwards the message to every node it meets, rendering this

node a relay for the message. Similarly, each relay forwards

the message to every ”uninfected” node it meets. The first node

(source or relay) to meet the destination delivers the message.

2-hop routing: In the 2-hop routing scheme, the source sends

the message to every node it meets, like in epidemic routing.

However, other nodes receiving the message can only give it

directly to the destination, when and if they encounter it.

Spray and Wait (SnW) routing: In the Spray and Wait

scheme3, the source generates L copies of the message and

when it meets another node, it gives to it half of the messages

it holds at that time (if it holds more than one). The same

mechanism applies when a relay node with more than one

copies meets another node without the message. Eventually

there would be L nodes (including the source) holding the

message. If the message is not delivered to the destination

before the L message copies are spread (spray phase), it will

be delivered the first time any of the L nodes with the message

meets the destination (wait phase).

The analysis for the delivery delay for each of the above

protocols comprises the following steps:

(i) The protocol’s step delay E[T
(protocol)
k,k+1 ] is calculated

by taking into account the number of possible infections and

the delay till the next infection, which we compute based on

Result 1 4.

(ii) The delivery delay is calculated by summing the pro-

tocol’s step delays till the message delivery, given that the

3. Here we describe the binary Spray and Wait, which is the scheme with
the lowest expected delivery delay among all the SnW-based schemes (e.g.
source SnW) [7].

4. For instance, at step k, in epidemic routing there are k(N − k)
possible infections, while in 2-hop routing the number of the possible
infections are N − 1. Hence, this gives a protocol’s step delay equal to

E[T
(epidemic)
k,k+1 ] = 1

k(N−k)µλ
·
(

1 +
CV 2

λ

k(N−k)

)

and E[T
(2−hop)
k,k+1 ] =

1
(N−1)µλ

·
(

1 +
CV 2

λ

(N−1)

)

for epidemic and 2-hop routing, respectively.

delivery takes place at step k

E[T (protocol)|k] =
k−1
∑

i=1

E[T
(protocol)
i,i+1 ]

(iii) The probability of delivering the message at a step k
is calculated, P (k).

(iv) The expected delivery delay is given by the average

E[T (protocol)|k] =
∑

k

E[T (protocol)|k] · P (k)

Table 2 gives the approximate closed-form expressions for

the delivery delay (corresponding to the approximation of

Result 1 for the step delay). The detailed derivations of the

formulas can be found in [41].

4.2 Beyond Mobility: Social Selfishness

In this section, we predict the performance in networks where

some nodes are not willing to relay messages of other nodes.

In particular, we consider the generic case where this unwill-

ingness (or selfishness) is heterogeneous among different node

pairs and related to their social characteristics. We show that

even in this complex case (where both mobility and social

heterogeneity are considered), our model/analysis can be used

to derive simple predictions that require only one or two (1st

or 2nd order approximation, respectively) parameters.

In our analysis, we have assumed that all nodes can ex-

change messages when they contact. However, due to limited

resources (battery, bandwidth etc.) and/or privacy concerns,

some nodes might be reluctant to cooperate and forward

messages of other nodes. Although incentive mechanisms [42],

[43] can be applied, resource and privacy constraints might

still exist and, therefore, nodes might forward messages only

from/to some of the other nodes.

This node selfishness is not expected to be always homo-

geneous. Specifically, since nodes in an opportunistic network

are mobile devices handled by people, it is more probable

that two nodes will cooperate if they have a strong social tie

(e.g. friends or acquaintances), because they trust each other

and/or have cooperated in the past [40], [44]. Additionally,

studies from sociology [45], social media [46] and pervasive

social networks [21] have shown that the strength of social

ties can be predicted by the contact rate and, specifically, the

more frequent two nodes contact, the stronger their social tie

probably is.

Hence, combining the previous observations, i.e. (a) the

level of cooperation is related to social ties and (b) the strength

of the ties is related to the contact rate, we can model the node

selfishness in a probabilistic way, which allows us to predict

its effect on the network performance.

Definition 2 (Social Selfishness). A pair of nodes i and j
either can exchange messages in every contact event with

probability pij or can never exchange messages with prob-

ability 1 − pij . The probability pij depends on the meeting

rate between these nodes, i.e. λij , and is described by the

relation:

pij = p(λij), pij ∈ [0, 1] (9)
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TABLE 2

Approximative expressions for the Expected Delivery Delay of different routing protocols.

Epidemic E[T
(epid)
D

] ≈
1

N · µλ

·
(

ln(N) + CV 2
λ ·

1.65 ·N + 2 · ln(N)

N2

)

2-hop E[T
(2−hop)
D

] = AN−1 ·
N−1
∑

k=1

k2 · (N − 1)!

(N − 1)k+1 · (N − k − 1)!
≈

√

π
2

√
N · µλ

·

(

1 +
CV 2

λ

N

)

SnW, L copies E[T
(SnW )
D

] ≤ AN−1 ·
L−1
∑

k=1

k2 · (N − 1)!

(N − 1)k+1 · (N − k − 1)!
+ (L ·AN−1 +AL) ·

(N − 1)!

(N − 1)L · (N − L− 1)!

where Am =
1

mµλ

·

[

1 +
CV 2

λ

m

]

The above model is very generic, since any valid function

p(·) can be selected to describe a given setting. It can also

capture scenarios where node cooperation is determined by a

protocol (rather than social factors), as in the case of [47]

where decisions for message exchanges depend on nodes’

contact rates.

Under the social selfishness model of Def. 2, we can still use

our basic analysis for the message delivery delay. As is proved

in [48] (by applying similar arguments to the Poisson graph

case), we just need to substitute µλ and σ2
λ in the expressions

of our results with their effective values given in the following

result:

Result 2. The mean value, µλ−eff , and the variance, σ2
λ−eff ,

of the effective contact rates in a Heterogeneous Contact

Network with contact rate probability function fλ (µλ, σ2
λ)

and Social Selfishness (Def. 2), are given by

µλ−eff = E[λ · p(λ)] (10)

σ2
λ−eff = E[λ2 · p(λ)]− (E[λ · p(λ)])2 (11)

where the expectations are taken over the p.d.f. fλ.

Remark: The case where the selfishness is homogeneous

(independent of the contact rate), i.e. p(λ) = p0, is equivalent

to a Heterogeneous Poisson Mixing Network with ps = p0.

The effects of social selfishness in opportunistic networks

are extensively investigated in [48]. Hence, and due to space

limitations, in the model validation section (Section 5) we pro-

vide a few, indicative results for social selfishness scenarios,

and we refer the interested reader to [48] for further results

and applications.

Finally, we would like to note that Result 2 further high-

lights the contributions of the proposed mobility model and

analysis. As we showed, using our framework (i) it becomes

possible to analyse the effects of various heterogeneous char-

acteristics (not restricted to mobility), and (ii) derive simple,

closed form expressions even for very complex scenarios.

In [18], [37], we have similarly used this model, to incorporate

other heterogeneous characteristics observed in opportunistic

networks, and derive simple performance predictions.

5 MODEL VALIDATION

5.1 Synthetic Simulations

In order to validate the accuracy of our predictions for the

message delivery delay under different routing schemes, we
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(b) µλ = 1, CVλ = 3

Fig. 4. Relative Error
|ETsims−ETtheory |

ETtheory
between the simu-

lated expected delivery delay of epidemic routing and the

theoretical approximation. Each boxplot corresponds to a

different network size N . Box-plots show the distribution
of the Relative Error for 100 different network instances of

the same size.

first compare them against simulations of various synthetic

scenarios belonging to the class of Heterogeneous Contact

Networks. We use Monte Carlo simulations to examine the

accuracy of our various analytical expressions (i) in finite size

networks and (ii) as a function of other parameters of interest

(e.g. statistics of the contact rates generating function fλ).

In each simulation, we create a network of N nodes and a

contact pattern by generating a N×N matrix Λ = {λij}. Each

entry λij characterizes the contact process of the pair of nodes

i and j: it is zero with probability 1− ps (in Poisson mixing),

otherwise it takes values drawn from a chosen distribution fλ
with mean µλ and variance σ2

λ (CVλ = σλ

µλ
). Then for the

pairs that meet (λij > 0) we generate a sequence of contact

events with exponentially distributed intercontact times with

rate λij > 0.

For every network instance Λ, we run 1000 message spread-

ing simulations, choosing randomly the source and destination

nodes, and calculate the average delivery delay. We have

considered scenarios with contact rate distributions fλ with

varying heterogeneity (CVλ). Without loss of generality and

for a clearer comparison we set the average contact rate equal

to the unit, i.e. µλ = 1.

5.1.1 Prediction accuracy vs. network instances

We first investigate the accuracy of our theoretical results

in different network instances (i.e., with different contact



9

matrices Λ) of the same type (i.e., same network size N , and

contact rate distribution fλ(λ)).
Fig. 4 shows the distribution of the relative error between

theoretical and simulation results for the expected delay of

epidemic routing:
|ETsims−ETtheory |

ETtheory
, where ETsims is the

average delay observed in simulations in a network, and

ETtheory is the corresponding theoretical prediction given in

Table 2. We consider two set of scenarios with different contact

rates heterogeneity CVλ. Presenting the results in box-plots,

allows to observe the accuracy of the approximation over the

different network instances (i.e., different Λ) of the same size.

It can be seen that the accuracy of our prediction is significant,

even for small networks and for every network instance, when

the heterogeneity is not high (Fig. 4(a)). Although the accuracy

decreases with heterogeneity (Fig. 4(b)), for networks larger

than a hundred nodes, the relative errors are less than 10% for

the majority of (N = 100 and N = 200) or for all (N = 500)

the network instances.

These results verify the insights stemming from our analysis

(see, e.g., Section 3.2.2), and quantify the accuracy of our

predictions. They indicate that our approximation can be safely

used in networks of large size and/or moderate heterogeneity

(since they are accurate for every network instance). In more

challenging cases, i.e., small and very heterogeneous networks,

they are still accurate on average, however, there might exist

a small percentage of network instances where the error can

be more than 10%.

5.1.2 Prediction accuracy vs. network parameters

We now test our results under various network parameters

(N and CVλ). In each case, we compare our predictions

against the average simulation results values over 100 different

network instances.

In Fig. 5 we present the simulation results (continuous lines;

with confidence intervals) and theoretical predictions (dash

lines) for the expected delivery delay of epidemic routing.

We simulated networks of different sizes (from very small

N = 50 to large N = 500) and highly heterogeneous contact

patterns, i.e., CVλ = 3. As shown, our predictions are close

to the simulated results in most scenarios, and become more

accurate as the network size increases. Moreover, comparing

Fig. 5(a) and Fig. 5(b), we can see that in the Poisson-

mixing case a certain accuracy can be achieved in larger

networks compared to the Full-mixing case. This is due to

the fact that introducing sparseness in a network, increases the

heterogeneity of the contact patterns. Therefore, the theoretical

approximation becomes more accurate for larger networks

(see also the commentary related to the convergence of the

approximation, in Section 3.2.2). Finally, we would like to

stress here that in the presented scenarios the contact patterns

are very heterogeneous5; in scenarios with low/moderate het-

erogeneity, our predictions are more accurate (i.e., Fig. 5 could

be considered a “worst-case” for our predictions).

Fig. 6 shows simulation results for the case of Spray and

Wait routing, for scenarios with different number of copies

5. As a comparison, in the mobility traces from real opportunistic networks
we studied (see Section 5.2), we observed a much lower heterogeneity of the
(non-zero) contact rates distribution, i.e., CVλ < 2.
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Fig. 5. Delivery Delay of epidemic routing in (a) Full-
mixing and (b) Poisson-mixing (ps = 0.5) networks with

highly heterogeneous contact patterns CVλ = 3.
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Fig. 6. Delivery Delay of Spray and Wait routing in (a)

Full-mixing and (b) Poisson-mixing (ps = 0.5, CVλ = 0.5)

networks of size N = 500 and contact rates heterogeneity
CVλ = 1.5.

L, in networks with N = 500 nodes and CVλ = 1.5. In all

scenarios, simulation results are averaged over 100 network

instances. As it can be seen, the predictions of our approximate

expressions become more accurate as the number of copies L
increases. This is because the effect of the number of copies

L on the accuracy is similar to this of the network size N
in the epidemic routing case (i.e., the convergence of the

approximation is achieved earlier; see also the derivation of

the expressions of Table 2 in Section 4.1 and [41]).

5.1.3 Homogeneous vs. Heterogeneous model

In the theoretical predictions we presented in the previous

sections, we use the second order approximation (see Result 1

and Table 2), which takes into account the heterogeneity of

contact rates, i.e., CVλ. However, as discussed earlier, one

could omit the heterogeneity (a common approach in litera-

ture), and use a homogeneous model with λij = µλ, ∀{i, j}
(see, e.g., Eq. (5)). Hence, a question that naturally follows,

is: what is the added value of using a heterogeneous model?

Towards answering the above question, in this section,

we compare the performance predictions under the hetero-

geneous (i.e. our approach) and homogeneous (i.e., previous

approaches) models. Specifically, we consider two application

cases, and demonstrate how considering the heterogeneity of

the contact rates CVλ (i.e. the second order approximation)

can benefit the design and evaluation of routing protocols for

opportunistic networking.

Tuning the SnW protocol. The SnW protocol [7] can
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Fig. 7. Simulation results in scenarios where the copy
selection of SnW, Ltarget, is based on the heterogeneous

and homogeneous models. Networks with (a) moderate,

CVλ = 1.5, and (b) high, CVλ = 2, contact rate hetero-
geneity.

deliver messages, without flooding the network and draining

nodes’ resources. Selecting the number of copies L affects

the delivery delay: the more copies are used, the faster (on

average) a message is delivered. Here, we consider a scenario,

where the goal is to achieve a certain average delivery delay,

or a targeted delay. The expression E[T
(SnW )
D ] of Table 2

gives the expected delay of SnW as a function of L. Hence, to

achieve a targeted delay ETtarget, one can use our expression

and choose the lowest number of copies, under which SnW

can achieve this ETtarget, i.e,

Ltarget = min
{

L : E[T
(SnW )
D ] ≤ ETtarget, L ∈ [1, N − 1]

}

In the case that a homogeneous model is used for predicting

the performance, one could use a similar expression to this

of Table 2 with Am = 1
m·µλ

(i.e., the term containing CVλ

is omitted). Since the predictions E[T
(SnW )
D ] derived by a

heterogeneous and a homogeneous model differ, the selections

for the number of copies Ltarget can possibly differ as well.

In Fig. 7, we present the simulation results of the copy

selection process under the two models. The dashed line is

the targeted delay ETtarget, and the continuous lines denote

the delay that was achieved by tuning the SnW protocol, i.e.,

selecting the Ltarget, with the two models. Some important

observations are: (a) When tuning SnW using the predictions

of the heterogeneous model, the achieved delay is closer to the

targeted delay, than in the homogeneous model case. (b) As

expected, in more heterogeneous scenarios (i.e., Fig. 7(b)) the

difference between the achieved and targeted delays is larger

(the accuracy of the approximations decreases). However,

using the heterogeneous model gives results that are still rela-

tively close to the targeted delay, whereas in the homogeneous

model case the results are much farther (note the logarithmic

scale of the y-axis). (c) It becomes more crucial to use a

heterogeneous model for large values of ETtarget. This is

because the number of required copies Ltarget decreases, and

considering the second order term in the delay approximation

significantly improves the predictions.

Social Selfishness. As discussed in Section 4.2, in some

scenarios nodes do not always forward messages of other

nodes, and this behavior can be related to their social/mobility

characteristics. We consider here a scenario, where contact

rates are drawn from a uniform distribution6

fλ(λ) =
1

λmax − λmin
, λ ∈ [λmin, λmax]

and selfishness of nodes is characterised by the function

p(λ) =
c

λ
, c = λmin

In this scenario, nodes who contact less frequently (small

λ) have a higher probability to cooperate (large p(λ)). The

intuition behind this selfishness policy is to avoid consuming

too much resources by continuously exchanging messages

with frequently contacted nodes; more detailed discussions

about this type of selfishness can be found in [47], [48].

Using the expressions of Result 2, we can calculate

µλ−eff = c

σ2
λ−eff = c · µλ − c2

and use them, in our expressions of Table 2 to predict the

performance of routing protocols. Similarly to the previous

application case, we compare here the predictions that can

be made using our heterogeneous model and a homogeneous

model (with λij = µλ−eff , ∀i, j), and compare them with

simulation results in Fig. 8.

Specifically, in Fig. 8(a) we present scenarios where mes-

sages are delivered using SnW routing with different number

of copies L. As it can be seen, our predictions are always

accurate, while the predictions of the homogeneous model are

less accurate and their accuracy decreases for lower number of

copies L (for the same reasons as before: less copies, higher

importance of the heterogeneity). In Fig. 8(b) we present

scenarios with varying heterogeneity: we keep λmin equal to

1 and vary the values of λmax; higher values of λmax denote

a network with more heterogeneity. Messages are delivered

under the SnW protocol with L = 10 copies. This plot

demonstrates clearly the added value of the heterogeneous

model approach. When heterogeneity is low, both models

lead to similar, and accurate, predictions. As the heterogeneity

increases, the prediction of the homogeneous model becomes

less accurate (up to 35% error for λmax = 9), whereas the

accuracy of the heterogeneous model predictions remains the

same (∼ 1%).

The above results are indicative of the usefulness of the

proposed model in scenarios with heterogeneous selfishness.

Performance predictions can be significantly improved, and

this can help towards a more careful, or even optimal, protocol

design, as is discussed in more detail in [48].

5.2 Real Mobility Traces

The simulation results presented in Section 5.1 show that

our analytical predictions achieve significant accuracy even in

finite-size networks belonging to the Heterogeneous Contact

Networks (Def. 1) mobility class. While these contact classes

are rather broad, whether they capture “real” scenarios, and to

6. Note that in this set of simulations (in contrast to all previous scenarios)

the average contact rate is not always equal to 1: µλ = λmin+λmax

2
.
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Fig. 9. Box-plots of the message delivery delay under (a) epidemic, (b) 2-hop routing, and (c) SnW (with L = 6 copies)
routing. On each box, the central horizontal line is the median, the edges of the box are the 25th and 75th percentiles,

the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually as

crosses. The thick (black) horizontal lines represent the theoretical values predicted by our model.
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(b) Delay vs. heterogeneity

Fig. 8. Message delivery delay of SnW routing in social

selfishness scenarios with (a) varying number of copies
L, and (b) heterogeneity of contact rates.

what extent, depends on the application setting, contact sce-

nario, etc. To this end, in this section, we evaluate our analyt-

ical results against simulations on scenarios with real/realistic

mobility patterns.

In the context of opportunistic networking, some mobility

traces collected in real experiments and/or networks do exist.

Arguably, the size of most of them is small and they represent

each only a single instance of the random mobility process

at play, often with a number of measurement complications

and errors. Nevertheless, it is of interest to see how our

performance predictors behave in some of these scenarios,

and whether they can capture the quantities of interest (even if

qualitatively), despite the considerably higher complexity (e.g.

community structure) of such scenarios, and departures from

the assumptions for which our predictors are designed.

To this end, we use the following sets of real mobility traces:

• Cabspotting [49], which contains GPS coordinates from

536 taxi cabs collected over 30 days in San Francisco.

• Infocom [50], which contains traces of Bluetooth sight-

ings of 78 mobile nodes from the 4 days iMotes experi-

ment during Infocom 2006.

We also generated mobility traces with two recent mobility

models that have been shown to capture well different aspects

of real mobility traces,

• TVCM [51], scenario composed of 4 equal communities

of 26 nodes each; nodes mainly move within their com-

munity and have a small probability of going outside it.

• SLAW [52], scenario with 100 nodes, 30m transmis-

sion range; the other parameters are set as the default

from [52].

In order to compare with analysis, we parse each trace and

estimate the mean contact rate for all pairs {i, j}. We then

produce estimates for the 1st and 2nd moments of these rates,

µ̂λ and σ̂2
λ, and use them in our analytical expressions.

Fig. 9 shows the message delay under epidemic, 2-hop

routing, and SnW routing. Source and destination are chosen

randomly in different runs and messages are generated in

random points of the trace.

The first thing to observe is that delay values span a wide

range of values for different source-destination pairs. This

implies a large amount of heterogeneity in the “reachability”

of different nodes. Our analytical predictions are shown as

thick dark horizontal lines. As it can be seen, our result is in

most cases close to the median and in almost all cases between

the 25th and 75th percentile of the delay observed in both the

real traces and mobility models.

It is somewhat remarkable that our delay predictors are close

to the actual results (qualitatively or even quantitatively in

some cases) in a range of real or realistic scenarios; studies

of these scenarios reveal considerable differences to the much

simpler contact classes for which our results are derived. We

should also be careful not to jump to generalizations about the

accuracy of these results in all real scenarios, as we are aware

of situations that could force our predictors to err significantly.

Nevertheless, we believe these results are quite promising in

the direction of finding simple, usable analytical expressions

even for complex, heterogeneous contact scenarios.

6 RELATED WORK

Models for epidemic spreading of deceases [20] and/or com-

puter malware [19], were early derived, based on the well

known SIR model, and studied widely. In DTNs, efforts

to analyze the performance of epidemic routing and other

protocols also abound. Stochastic analyses, like the one in [9],

define a Markov chain as in Fig. 1, in order to give closed
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form results for epidemic and 2-hop routing. Fluid models [8],

[10], [53], take an approach similar to the SIR model in

biology, and define the number of messages in the network

as a continuous function (of time). Then, ordinary differential

equations (ODEs) are used to derive expressions for the total

delay, delivery probability etc. While these models provide

closed form results and thus can be used in tuning protocol pa-

rameters (e.g. gossiping probability [8], number of copies [7],

TTL [54], they all assume a homogeneous network with a

common meeting rate for every pair of nodes.

Recent studies on real network traces [11], [12], [13],

[14] suggest that the homogeneity assumption is not true. To

overcome this limitation, a number of works has introduced

heterogeneity in contact network models, by allowing differ-

ent meeting rates for each node pair [12], [14], [15], [16],

[22], [26]. Yet, most of these works use the heterogeneous

model to design new, better protocols (e.g. multicast [12] or

unicast [14]) that take heterogeneity into account, but do not

analyze performance. One exception is [16], but only for the

cases of direct transmission and 2-hop routing. To our best

knowledge, the work closer to this paper is that of [22], where

a very generic contact graph is considered. However, due to

the large generality of the contact model, only upper bounds

for the delay can be provided.

In our work, while we allow arbitrary link rates between

nodes, as in [12], [16], [22], we restrict the underlying contact

graph model, in order to derive closed-form expressions. We

validated our results with synthetic simulations for the targeted

contact classes, as previous work did [7], [8], [9], but also

demonstrate their applicability in real networks.

As a final note, in theoretical biology and epidemiology,

there are many studies trying to capture heterogeneity and

model it in the context of complex networks [55], [56], using

different levels of mixing [57] or stratified populations [58].

Yet, the majority of these works focus on deriving thresholds

above which the epidemic will spread and their results usually

consider infinite time.

7 CONCLUSIONS

In this paper, we have considered classes of heterogeneous

contact models that can be used to describe opportunistic

networking scenarios or even scenarios of different contexts,

where nodes interact with each other (e.g. P2P networks,

OSNs, etc.). We derived both asymptotic results and simple

closed form approximations for epidemic spreading. From the

validation of the model against synthetic models and realistic

traces we can conclude that: (a) simple delay expressions,

that can be used for performance prediction and protocol

optimization, exist not only for the homogeneous contact case;

(b) performance predictions that are accurate qualitatively, and

(somewhat more surprisingly) sometimes quantitatively also,

can be made even for a number of real scenarios, despite the

highly more complex structure of the latter. Our methodology

can be applicable in more generic contact graph structures

as well (e.g. as we did in [38] for configuration model [20]

contact graphs). However, we think that a limit exists, probably

related to the size of the min-cut of the contact graph, beyond

which are techniques are not applicable and other methods are

needed (e.g. [22]).

8 PROOFS OF THEORETICAL RESULTS

8.1 Proof of Lemma 1

Proof. At a step k, let i and j be two nodes, where i ∈ Cm
k and

j /∈ Cm
k . Let us denote as tij the first time (after the kth node

received the message) that nodes i and j contact each other.

As the next message exchange will take place when any of

the nodes with the message contacts any of the nodes without

it, the step delay is given by Tk,k+1 = mini∈Cm
k

j /∈Cm
k
{tij}.

Moreover, since tij are independent, exponentially distributed

random variables with rate λij , Tk,k+1 is also exponentially

distributed with rate
∑

i∈Cm
k

∑

j /∈Cm
k
λij :

tij ∼ exp(λij) ⇒ Tk,k+1 ∼ exp





∑

i∈Cm
k

∑

j /∈Cm
k

λij



 (12)

and, thus [36]

E [Tk,k+1|C
m
k ] =

1
∑

i∈Cm
k

∑

j /∈Cm
k
λij

(13)

Using the properties of conditional expectation, we get the

expected delay for the transition from step k to step k + 1:

E [Tk,k+1] =

(Nk)
∑

m=1

E [Tk,k+1|C
m
k ] · P{Cm

k }

=

(Nk)
∑

m=1

1
∑

i∈Cm
k

∑

j /∈Cm
k
λij

· P{Cm
k } (14)

Denoting Sm
k =

∑

i∈Cm
k

∑

j /∈Cm
k
λij proves the Lemma.

8.2 Proof or Result 1

From Eq. (1) we can express E[Tk,k+1] as

E [Tk,k+1] =

(Nk)
∑

m=1

1

Sm
k

· P{Cm
k } = E

[

1

Sk

]

(15)

where Sk is defined in Eq. (3). Since we do not know the

probabilities P{Cm
k } (i.e. the exact distribution of Sk), it

is not possible to calculate the quantity E
[

1
Sk

]

. However,

E
[

1
Sk

]

is the expectation of a function of Sk (i.e. the function

g(x) = x−1), and thus we can approximate it by using the

Delta method [59], where the expectation of a function of a

random variable (i.e. E[g(Sk)] ≡ E
[

1
Sk

]

) is approximated

using the Taylor expansion of the function and the first

moments of the random variable (i.e. E[Sk], V ar [Sk], etc.).

The calculation of these moments though, still depends

on the knowledge of the probabilities P{Cm
k }, and exact

expressions cannot be found. Hence, to proceed further and

be able to derive useful results, we approximate the first two
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central moments of Sk, by neglecting the terms ǫk and δk in

the expressions of Lemma 2, i.e.

E[Sk] ≈ k(N − k) · µλ (16)

V ar[Sk] ≈ k(N − k) · σ2
λ (17)

These approximations, as Lemma 2 implies, become more

accurate as (a) the size of the network N increases, or (b)

the heterogeneity of the contact rates CVλ = σλ

µλ
decreases

(see also, Section 3.2.2). To further support this argument, we

present some initial simulation results. Table 3 and Fig. 10 (in

a similar way to Section 3.2.3) show the relative errors be-

tween the quantity E[Xk] and the approximation we consider,

k(N−k)µλ. As it can be seen, the approximation is relatively

accurate even for moderate network sizes.

Now, using the Delta method and the expressions of Eq. (16)

and Eq. (17), we derive a second order approximation for

the expected step delay: To compute E
[

1
Sk

]

= E[g(Sk)], at

first we express the function g(Sk) = 1
Sk

as a Taylor series

expansion, centered at E[Sk], the mean value of Sk.

Tg(Sk) =

∞
∑

n=0

g(n)(E[Sk])

n!
(Sk − E[Sk])

n

=

∞
∑

n=0

(−1)n(Sk − E[Sk])
n

(E[Sk])n+1
(18)

We can approximate g(Sk) by taking the first m terms of the

Taylor series. That will result in:

g(Sk) ≈

m
∑

n=0

(−1)n

(E[Sk])n+1
(Sk − E[Sk])

n (19)

An approximation for the mean value of g(Sk) follows after

taking the expectation of both sides in the last equation.

E[g(Sk)] ≈

m
∑

n=0

(−1)n

(E[Sk])n+1
Mn (20)

where Mn = E[(Sk − E[Sk])
n] is the nth central moment.

Considering m = 2 in Eq. (20) and using the expressions

of Eq. (16) and Eq. (17) for the moments M0 = E[Sk] and

M2 = V ar [Sk], proves Result 1.

Remark: In the Delta method, different number of terms

of the Taylor series can be taken into account, depending

on the required accuracy (the more terms one considers,

the more accurate the result). For example, taking only the

first term (m = 0), we get the asymptotic expression, i.e.

E[Tk,k+1] =
1

k(N−k)µλ
. As a better approximation, we con-

sider here the first three terms (m = 2) of the Taylor series,

which involve the first two moments of Sk. Our choice for

using the approximation that depends on the first two moments

is a trade off between usability and expressibility of the result,

and its accuracy.
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APPENDIX A
PROOF OF LEMMA 2

Proof. The sum of the contact rates between infected nodes

(i ∈ Cm
k ) and susceptible nodes (j /∈ Cm

k ) at step k, is related

to the respective sum of the previous step as follows

Sm
k = Sm

k−1 −
∑

i∈Cm
k−1

,j=nk

λij +
∑

j=nk,i/∈Cm
k

λij (21)

where

(i) We denote as nk the kth infected node (i.e. the node

infected at the transition between step k − 1 and step k).

(ii)
∑

i∈Cm
k−1

,j=nk
λij is the sum of the contact rates between

the infected nodes at step k− 1 and node nk. These rates are

included in the sum Sm
k−1, but are not included to the sum Sm

k

(since at step k they belong to the set of contact rates between

infected nodes), and, hence, we subtract them in Eq. (21).

(iii)
∑

i/∈Cm
k
,j=nk

λij is the sum of the contact rates between

node nk and the susceptible nodes at step k. These rates are

included in the sum Sm
k , but are not included to the sum

Sm
k−1 (since at step k − 1 they belong to the set of contact

rates between susceptible nodes), and, hence, we add them in

Eq. (21).

Now, we first split the sum
∑

i∈Cm
k−1

,j=nk
λij in two terms7

∑

i∈Cm
k−1

,j=nk

λij = λnext
k−1 +

∑

i∈Cm
k−1

,j=nk,λij 6=λnext
k−1

λij

= λnext
k−1 + Snext

k−1 (22)

where we denoted as λnext
k−1 the meeting rate between the next

node to get the message (i.e. nk) and the node who infected

him, and

Snext
k−1 =

∑

i∈Cm
k−1

,j=nk,λij 6=λnext
k−1

λij (k − 2 terms) (23)

We further denote

Sk
next =

∑

i/∈Cm
k
,j=nk

λij (N − k terms) (24)

From Eq. (22), Eq. (23) and Eq. (24), Eq. (21) can be written

as

Sm
k = Sm

k−1 − λnext
k−1 − Snext

k−1 + Sk
next (25)

Based on the above recursive relation, in the remainder,

we calculate the expectation and variance of Sk. Before

proceeding, let us first define the following quantities (for

k = 1, · · · , N − 1)

µk =
E[Sk]

k(N − k)
(26)

σ2
k =

V ar [Sk]

k(N − k)
(27)

7. In Eq. (22)-Eq. (25), the quantities λnext
k−1 , Snext

k−1 and Sk
next correspond

to the sets Cm
k−1 and Cm

k . We dropped the superscripts m to avoid notation
complexity. Also, in the remainder, the expectations of these quantities are
taken over all the possible values (for different m) that these quantities can
take.

Expectation

Taking the expectation in Eq. (25), gives

E[Sk] = E[Sk−1]− E[λnext
k−1 ]− E[Snext

k−1 ] + E[Sk
next] (28)

Now, we express the terms in the right side of Eq. (28), as

follows:

(i) At first, by the definition of Eq. (26), we can write

E[Sk−1] = (k − 1)(N − k + 1) · µk−1 (29)

(ii) The probability that the node pair {x, y}, x ∈ Cm
k−1, y /∈

Cm
k−1 (among all the node pairs {i, j}, i ∈ Cm

k−1, j /∈ Cm
k−1),

is the pair through which the message is spread at step k − 1
(i.e. y is the kth node that is infected, and it is infected by

node x), is proportional to its contact rate λxy (because inter-

contact intervals are exponentially distributed). Hence, we can,

equivalently, write

P{λnext
k−1 = λxy|x ∈ Cm

k−1, y /∈ Cm
k−1}

=
λxy

∑

i∈Cm
k−1

∑

j /∈Cm
k−1

λij
=

λxy

Sm
k−1

(30)

From Eq. (30), it is easy to see that the rate λnext
k−1 will be on

average larger than the average rate between node pair {i, j},

i ∈ Cm
k−1, j /∈ Cm

k−1, i.e.

E[λnext
k−1 ] ≥ µk−1 (31)

Moreover, it holds (by definition) that

λnext
k−1 ≤ λmax (32)

Combining the two above inequalities, we can express the

expectation E[λnext
k−1 ] as

E[λnext
k−1 ] = µk−1 + ǫnextk−1 (33)

where

0 ≤ ǫnextk−1 ≤ λmax − µk−1 ⇒ ǫnextk−1 = O (λmax) (34)

(iii) The sum Snext
k−1 consists of k − 2 independent random

variables, whose mean value is slightly smaller than µk−1 (the

rate λnext
k−1 -see Eq. (33)- is not taken into account). Hence, we

can write

E[Snext
k−1 ] = (k − 2) · µk−1 + ǫ∗k−1 (35)

where, it can be shown (considering the effect of not consid-

ering the rate λnext
k−1 ) that

ǫ∗k−1 ≤
(λmax − µk−1) · (k − 1)

(k − 1)(N − k + 1) − 1
⇒ ǫ∗k−1 = O

(

λmax

N − k + 1

)

(36)

In Eq. (36) it is easy to see that ǫ∗k−1 ≪ (k− 2) · µk−1, ∀k
(for large N ). Therefore, in the remainder, we can ignore it8

and, thus, we write

E[Snext
k−1 ] = (k − 2) · µk−1 (37)

8. Additionally, since in Eq. (28) we consider ǫnext
k−1 = O (λmax)

(Eq. (34)), we can omit ǫ∗
k−1, for which it holds ǫ∗

k−1 = O
(

λmax

N−k+1

)

≤
ǫnext
k−1 .



(iv) At each step k, the values of the rates between the

uninfected nodes, i.e.

λout
k ∈ {λij : i /∈ Cm

k , j /∈ Cm
k }

are independent of the spreading process. Thus, these rates

are distributed with the initial contact rate distribution fλ(λ),
which means that

E[λout
k ] = E[λ] = µλ (38)

V ar
[

λout
k

]

= V ar [λ] = σ2
λ (39)

Therefore, from Eq. (38) it follows that the expectation of

the sum Sk
next, which consists of N −k contact rates between

nodes that are not infected in step k−1 (i.e. /∈ Cm
k−1), is equal

to

E[Sk
next] = (N − k) ·E[λout

k−1] = (N − k) · µλ (40)

Substituting in Eq. (28) the expressions we derived in (i)-

(iv) (Eq. (29), Eq. (33), Eq. (37) and Eq. (40)), we get

E[Sk] =

= (k − 1)(N − k + 1)µk−1 − (µk−1 + ǫnext
k−1 )

− (k − 2)µk−1 + (N − k)µλ

= (k − 1)(N − k + 1) · µk−1 − (k − 1) · µk−1 − ǫnext
k−1 + (N − k) · µλ

= (k − 1)(N − k) · µk−1 − ǫnext
k−1 + (N − k) · µλ

= k(N − k) ·

(

(k − 1) · µk−1 + µλ

k
−

ǫnext
k−1

k(N − k)

)

(41)

or

E[Sk] = k(N − k) ·

(

(k − 1) · µk−1 + µλ

k
− ǫ

′

k

)

(42)

where

ǫ
′

k = O

(

λmax

k(N − k)

)

(43)

Now, to calculate E[Sk] for every step k, we start from the

first step (k = 1), where Sm
1 is a sum of N − 1 i.i.d. random

variables λij with mean value µλ (by the definition of the

mobility class). Therefore,

E[S1] = (N − 1) · µλ (44)

For the second step (k = 2), substituting Eq. (44) in Eq. (42),

gives

E[S2] = 2(N − 2) · µλ · (1− ǫ
′

2), ǫ
′

2 = O

(

λmax

N − 1

)

(45)

Finally, following the same process recursively, for k =
3, 4, ..., it can be shown that ∀k it holds

E[Sk] = k(N − k) ·µλ · (1− ǫk), ǫk = O

(

λmax

N − 1

)

(46)

which proves the first item of Lemma 2.

Variance

The second item of Lemma 2, for the variance V ar [Sk], is

proved following a similar methodology as above. Taking the

variances in Eq. (25), gives [36]9

V ar [Sk] =

V ar [Sk−1] + V ar
[

λnext
k−1

]

+ V ar
[

Snext
k−1

]

+ V ar
[

Sk
next

]

− 2 · Cov
[

Sk−1, λ
next
k−1

]

− 2 · Cov
[

Sk−1, S
next
k−1

]

(47)

We proceed similarly to the derivation of the expectation, and

express the terms in the right side of Eq. (47), as follows:

(i) At first, by the definition of Eq. (27), we can write

V ar [Sk−1] = (k − 1)(N − k + 1) · σ2
k−1 (48)

(ii) Similarly to Eq. (37)-Eq. (36), it follows that

V ar
[

Snext
k−1

]

= (k − 2) · σ2
k−1 + δ∗k−1 (49)

and because δ∗k−1 is small, we ignore it:

V ar
[

Snext
k−1

]

= (k − 2) · σ2
k−1 (50)

(iii) Making similar arguments as in Eq. (40) and using

Eq. (39), it follows that

V ar
[

Sk
next

]

= (N − k) · σ2
λ (51)

(iv) The covariance of two random variables is given by the

expression

Cov [X,Y ] = E[X · Y ]− E[X ] · E[Y ]

Therefore, for the first covariance appearing in the sum of

Eq. (47) we can write

Cov
[

Sk−1, λ
next
k−1

]

= E[Sk−1 · λ
next
k−1 ]−E[Sk−1] · E[λnext

k−1 ] (52)

Since Sk−1 is a sum of (k − 1)(N − k + 1) independent

random variables, of which one of them is the contact rate

λnext
k−1 , it follows that

E[Sk−1 · λ
next
k−1 ] =

E[(λnext
k−1 )

2] + [(k − 1)(N − k + 1) − 1] · µk−1 ·E[λnext
k−1 ] (53)

Substituting Eq. (53) in Eq. (52), and using the expression

derived in Eq. (29), we get

Cov
[

Sk−1, λ
next
k−1

]

=

= E[(λnext
k−1 )

2] + [(k − 1)(N − k + 1)− 1] · µk−1 ·E[λnext
k−1 ]

− (k − 1)(N − k + 1) · µk−1 · E[λnext
k−1 ]

= E[(λnext
k−1 )

2]− µk−1 ·E[λnext
k−1 ]

=
(

V ar
[

λnext
k−1

]

+ (E[λnext
k−1 ])

2
)

− µk−1 ·E[λnext
k−1 ]

= V ar
[

λnext
k−1

]

+ E[λnext
k−1 ] ·

(

E[λnext
k−1 ]− µk−1

)

(54)

9. The covariances of independent variables are zero, and, thus, we do not
include them in Eq. (47).



Remark: In the previous derivations we used the the expression

that relates the second moment of a random variable with its

variance and mean value, i.e.

V ar [X ] = E[x2]−(E[x])
2 ⇔ E[x2] = V ar [X ]+(E[x])

2

Substituting in Eq. (54) the expression of Eq. (33), gives

Cov
[

Sk−1, λ
next
k−1

]

= V ar
[

λ
next
k−1

]

+
(

µk−1 + ǫ
next
k−1

)

· ǫ
next
k−1 (55)

(v) We, similarly, express the second covariance appearing in

the sum of Eq. (47) as

Cov
[

Sk−1, S
next
k−1

]

= E[Sk−1 · S
next
k−1 ]−E[Sk−1] ·E[Snext

k−1 ] (56)

The sum Snext
k−1 consists of k − 2 terms, which are also

included in the sum Sk−1. For each term λ∗ in Snext
k−1 , there

are (k−1)(N−k+1)−1 terms in Sk−1 that are independent

of λ∗. Hence, we can, successively, write for Eq. (56)

Cov
[

Sk−1, S
next
k−1

]

=

= (k − 2) ·E[Sk−1 · λ
∗]− E[Sk−1] · (k − 2) ·E[λ∗]

= (k − 2)
(

(σ2
k−1 + µ2

k−1) + [(k − 1)(N − k + 1)− 1]µ2
k−1

)

− (k − 1)(N − k + 1)µk−1 · (k − 2) · µk−1

= (k − 2) · σ2
k−1 (57)

Substituting in Eq. (47) the expressions we derived in (i)-(v)

(Eq. (48), Eq. (50), Eq. (51), Eq. (55) and Eq. (57)), we get

V ar [Sk] =

= (k − 1)(N − k + 1) · σ2
k−1 + V ar

[

λ
next
k−1

]

+ (k − 2) · σ2
k−1

+ (N − k) · σ2
λ − 2 ·

(

V ar
[

λ
next
k−1

]

+
(

µk−1 + ǫ
next
k−1

)

· ǫ
next
k−1

)

− 2 · (k − 2) · σ2
k−1

= (k − 1)(N − k + 1) · σ2
k−1 − (k − 2) · σ2

k−1 + (N − k) · σ2
λ

−

(

V ar
[

λ
next
k−1

]

+ 2 ·
(

µk−1 + ǫ
next
k−1

)

· ǫ
next
k−1

)

= (k − 1)(N − k) · σ2
k−1 + (N − k) · σ2

λ

−

(

V ar
[

λ
next
k−1

]

+ 2 ·
(

µk−1 + ǫ
next
k−1

)

· ǫ
next
k−1 − σ

2
k−1

)

= k(N − k) ·

[

(k − 1) · σ2
k−1 + σ2

λ

k

−

V ar
[

λnext
k−1

]

+ 2 ·
(

µk−1 + ǫnext
k−1

)

· ǫnext
k−1 − σ2

k−1

k(N − k)

]

(58)

or

V ar [Sk] = k(N − k) ·

(

(k − 1) · σ2
k−1 + σ2

λ

k
− δ

′

k

)

(59)

where

|δ
′

k| = O

(

λ2
max

k(N − k)

)

(60)

Following a recursive procedure (for k = 1, 2, ...) as

previously, it can be shown that ∀k it holds

V ar [Sk] = k(N−k)·σ2
λ·(1−δk), |δk| = O

(

λ2
max

N − 1

)

(61)

which proves the second item of Lemma 2.

APPENDIX B
PROOF OF LEMMA 3

Proof. Using Lemma 2 we can write for the random variable

Xk = Sk

k(N−k) :

E[Xk] =
E[Sk]

k(N − k)
=

k(N − k) · µλ(1− ǫk)

k(N − k)
= µλ(1−ǫk) (62)

and

V ar [Xk] =
V ar [Sk]

(k(N − k))
2 =

k(N − k) · σ2
λ · (1− δk)

(k(N − k))
2

=
σ2
λ · (1 − δk)

k(N − k)
(63)

The variance of Xk, Eq. (63), can be written as

V ar [Xk] = E
[

(Xk − E[Xk])
2
]

= E
[

(Xk − µλ · (1 − ǫk))
2
]

= E
[

(Xk − µλ)
2
]

− (µλ · ǫk)
2

(64)

where we used the expression of Eq. (62) for E[Xk].
Combining Eq. (63) and Eq. (64), we get

E
[

(Xk − µλ)
2
]

=
σ2
λ · (1− δk)

k(N − k)
+ (µλ · ǫk)

2
(65)

and taking the limit, for N → ∞, in both sides of Eq. (65),

gives

lim
N→∞

E
[

(Xk − µλ)
2
]

= lim
N→∞

(

σ2
λ · (1− δk)

k(N − k)
+ (µλ · ǫk)

2

)

= 0

Therefore, (by definition [60, Def. 5.3, p. 136]) it follows

that

Xk
m.s.
−−−→ µλ (66)

where
m.s.
−−−→ denotes convergence in mean square.

APPENDIX C
PROOF OF THEOREM 1

Proof. Lemma 3 shows the convergence in mean square

for Xk. Therefore, it follows directly that Xk converges in

probability as well [60, p. 140-141]

Xk
m.s.
−−−→ µλ ⇒ Xk

p
−→ µλ (67)

where
p
−→ denotes convergence in probability.

Let us, now, define the random variable Yk as Yk = 1
Xk

=
k(N−k)

Sk
, with probability distribution

P

{

Yk =
k(N − k)

Sm
k

}

= P{Cm
k } (68)

Since (see Eq. (67)) Xk
p
−→ µλ, it also holds that [60,

Thm. 5.23, p. 148]

Yk =
1

Xk

p
−→

1

µλ
(69)



Moreover, since each contact rate λij takes values in the

interval [λmin, λmax], it is easy to see that

1

λmax
≤ Yk ≤

1

λmin
(70)

Using Eq. (70) and the definition of uniform integrabil-

ity [60, Def. 5.15, p. 142], it follows that Yk is uniformly

integrable ∀N and ∀k ∈ [1, N − 1], i.e.

lim
α→∞

sup
N

E [|Yk|; {|Yk| > α}] = 0 (71)

because P{|Yk| > α} = 0 for α > 1
λmin

.

Eq. (69) states that Yk converges in probability to 1
µλ

and Eq. (71) that Yk is uniformly integrable. Therefore, [60,

Thm. 5.17, p. 144], it follows that Yk converges in mean value

to 1
µλ

:

Yk
m.
−−→

1

µλ
or E[Yk] = E

[

1

Xk

]

→
1

µλ
(72)

Finally, the relative error REk can be written as

REk =
E[Tk,k+1]−

1
k(N−k)µλ

E[Tk,k+1]
=

E
[

1
Sk

]

− 1
k(N−k)µλ

E
[

1
Sk

]

=
E
[

1
Xk

]

− 1
µλ

E
[

1
Xk

] =
E[Yk]−

1
µλ

E[Yk]
(73)

Taking the limit in Eq. (73) for N → ∞ and using Eq. (72),

gives

lim
N→∞

REk =

1
µλ

− 1
µλ

1
µλ

= 0 (74)

APPENDIX D
SKETCH OF PROOF OF COROLLARY 1

As previously defined, Cm
k is the set of nodes with the message

(the “infected” nodes) at step k. For each node i ∈ Cm
k , we

now define the set DCm
k
(i) as

DCm
k
(i) = {j : j /∈ Cm

k and λij > 0} (75)

DCm
k
(i) is the set of the nodes j that have not received

yet the message and can contact node i. In a full-mesh

network (Assumption 3), the cardinality of the set DCm
k
(i)

is ‖DCm
k
(i)‖ = (N − k), whereas in a sparse network

0 ≤ ‖DCm
k
(i)‖ ≤ N−k. In particular, for the case we consider

here (Poisson graphs), the sizes ‖DCm
k
(i)‖ are (approximately;

and exactly in the limit of large N ) binomially distributed10

as

P{‖DCm
k
(i)‖ = d} =

(

N − k

d

)

·(ps)
d·(1−ps)

(N−k)−d (76)

10. This is because, by the definition of a Poisson graph, for each node
i ∈ Cm

k , there are N − k other nodes j /∈ Cm
k , each of which is a neighbor

of i with probability ps and independently of all other links.

with

E
[

‖DCm
k
(i)‖

]

= (N − k) · ps (77)

V ar
[

‖DCm
k
(i)‖

]

= (N − k) · ps · (1− ps) (78)

where the probability space is defined over all possible sets

m at step k, and all nodes i.
Now, similarly to Eq. (2) and Eq. (3), we define

Sm
k(p) =

∑

i∈Cm
k

∑

j∈DCm
k

(i)

λij (79)

and the random variable

P{Sk(p) = Sm
k } = P{Cm

k } (80)

In a full-mesh network, Sm
k is a sum of k(N − k) terms

λij , and the moments of Sk are given by Lemma 2. In

the Poisson graph case we consider here, Sm
k(p) is a sum of

∑

i∈Cm
k
‖DCm

k
(i)‖ terms, where the quantity

Dm
k =

∑

i∈Cm
k

‖DCm
k
(i)‖ (81)

is a random variable as well.

Therefore, (i) taking into account that Sm
k(p), as a sum of a

random number (Dm
k ) of i.i.d. random variables (λij )11, (ii)

making similar arguments as in the proof of Lemma 2, and

(iii) neglecting terms O
(

1
N

)

(see e.g. ǫk and δk in Lemma 2),

it can be shown that the expectation and variance of Sk(p)

E[Sk(p)] = E[Dm
k ] · µλ (82)

V ar
[

Sk(p)

]

= E[Dm
k ] · σ2

λ + µ2
λ · V ar [Dm

k ] (83)

Then, since Dm
k is a sum of k independent random variables

(Eq. (81)), whose expectations and variances are given by

Eq. (77) and Eq. (78), respectively, it follows that [36]

E[Dm
k ] = k ·E

[

|DCm
k
(i)‖

]

= k(N − k) · ps (84)

V ar [Dm
k ] = k · V ar

[

|DCm
k
(i)‖

]

= k(N − k) · ps · (1− ps)
(85)

Substituting Eq. (84) and Eq. (85) in the expressions of

Eq. (82) and Eq. (83), we get

E[Sk(p)] = k(N − k) · ps · µλ (86)

V ar
[

Sk(p)

]

= k(N − k) · ps · σ
2
λ + µ2

λ · k(N − k) · ps(1− ps)

= k(N − k) · ps
[

σ2
λ + µ2

λ · (1− ps)
]

(87)

Comparing Eq. (86) and Eq. (87) to the corresponding

expressions of Lemma 2, we can observe the correspondence

suggested in Corollary 1.

11. Expressions for the statistic moments of sums of random number of
random variables are given in [36].


