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Abstract—In this paper1 we consider the Network MIMO
channel under the so-called Distributed Channel State Infor-
mation at the Transmitters (D-CSIT) configuration where the
precoder is designed in a distributed manner at each Transmitter
(TX) on the basis of local versions of Channel State information
(CSI) of various quality. In that setting, a novel transmission
scheme has been developed in [1] and surprisingly it was shown
that in a so-called regime of weak-CSIT it was possible to achieve
a centralized-outerbound obtained when all TXs exchange their
local channel estimates. The main novelty of the scheme was the
estimation of the interference at the TX having the most accurate
CSIT, followed by the quantization and the retransmission of
these interference terms using superposition coding. In this work,
we develop a new precoding scheme, coined as Hierarchical ZF
(HZF), which allows to efficiently exploit the CSI estimates at
all the TXs instead of relying on the estimate at a single TX
as in [1]. Combining HZF with the transmission scheme of [1],
a novel transmission scheme significantly enlarging the so-called
weak CSIT regime has been designed. Finally, HZF precoding
leads to a stronger interference attenuation as state-of-the-art
precoding from the literature and is expected to be useful in
other wireless settings with unequal CSIT.

I. INTRODUCTION

Multiple-antennas at the TX can be exploited to serve
multiple users at the same time, thus offering a strong DoF
improvement over time-division schemes [2]. This DoF im-
provement is however critically dependent on the accuracy of
the CSIT. Indeed, the absence of CSIT is known to lead to
the complete loss of the DoF improvement in the case of
an isotropic Broadcast Channel (BC) [3]. Going further, a
long standing conjecture by Lapidoth, Shamai, and Wigger
[4] has been recently settled in [5] by showing that a scaling
of the CSIT error in P−α for α ∈ [0, 1] leads to a DoF of
1 + (K − 1)α in the K antennas BC.

In the above literature, however, centralized CSIT is typi-
cally assumed, i.e., precoding is done on the basis of a single
imperfect/outdated multiuser channel estimate being common
at every transmit antenna. Although meaningful in the case
of a BC with a single TX, this assumption can be challenged
when the joint precoding is carried out across distant TXs
linked by heterogeneous and imperfect backhaul links, as in
the Network MIMO context. In this case, it is expected that
the CSI exchange introduces further delay and quantization
noise such that it becomes necessary to study the impact of
TX dependent CSI noise.

1D. Gesbert and P. de Kerret are supported by the European Research
Council under the European Union’s Horizon 2020 research and innovation
program (Agreement no. 670896).

To account for TX dependent feedback limitations, a dis-
tributed CSIT model has been introduced in [6]. In this model,
TX j receives its own multi-user imperfect estimate Ĥ(j) on
the basis of which it designs its transmit coefficients, without
additional communications with the other TXs [7]–[11].

In terms of DoF, it was shown in [6] that using a con-
ventional ZF precoder in the Network MIMO setting with
distributed CSIT leads to a severe DoF degradation caused by
the lack of a consistent CSI shared by the cooperating TXs.
More recently, a transmission scheme improving the DoF was
provided in [1]. Interestingly, it was shown that for some CSIT
configurations forming a so-called weak CSIT regime, it was
possible to achieve a centralized-outerbound obtained with full
exchange of the channel estimates between all TXs.

In this work, we improve this result by developing a new
precoding scheme called HZF which leads to an interfer-
ence reduction stronger than state-of-the-art schemes from
the literature. Combining HZF with the main ideas in [1]
(interference estimation at the TX having the most accurate
CSIT, quantization, and retransmission using superposition
coding) has lead to a new transmission scheme extending
significantly the so-called weak CSIT regime over which it
is possible to achieve the centralized outerbound.

Notations: We will use .
= to denote exponential equality,

i.e., we write f(P ) .
= P x to denote limP→∞

log f(P )
logP = x.

The exponential inequalities ≤̇ and ≥̇ are defined in the same
way. Let A be a matrix of size n×n, we denote by A[i:j,k:`]

for i, j, k, ` ∈ {1, . . . , n} be the submatrix of A formed by
selecting the rows i, . . . , j and the columns k, . . . , `.

II. SYSTEM MODEL

A. Transmission Model

We study a communication system where K TXs jointly
serve K Receivers (RXs) over a Network (Broadcast) MIMO
channel. We consider that each TX is equipped with a single-
antenna. Each RX is also equipped with a single antenna and
we further assume that the RXs have perfect CSI so as to
focus on the impact of the imperfect CSI on the TX side.

The signal received at RX i is written as

yi = h
H
i x + zi (1)

where hH
i ∈ C1×K is the channel to user i, x ∈ CK is the

transmitted multi-user signal, and zi ∈ C is the additive noise
at RX i, being independent of the channel and the transmitted
signal, and distributed as NC(0, 1). We further define the



channel matrix H , [h1, . . . ,hK ]H ∈ CK×K . The channel is
assumed to be drawn from a continuous ergodic distribution
such that all the channel matrices and all their sub-matrices
are full rank with probability one.

B. Distributed CSIT Model

The D-CSIT setting differs from the conventional central-
ized one in that each TX receives a possibly different multi-
user channel estimate on the basis of which it designs its own
transmission parameters without any additional communica-
tion to the other TXs. Specifically, TX j receives the imper-
fect multi-user channel estimate Ĥ(j) , [ĥ

(j)
1 , . . . , ĥ

(j)
K ]H ∈

CK×K where ĥ(j)H
i refers to the estimate of the channel from

all TXs to user i, at TX j. TX j then designs its transmit
coefficients solely as a function of Ĥ(j).

We model the CSI uncertainty at TX j by

Ĥ(j) = H +
√
P−α(j)∆(j) (2)

where ∆(j) is a random variable with zero mean and bounded
covariance matrix. The scalar α(j) is called the CSIT scaling
coefficient at TX j. It takes its value in [0, 1] where α(j) = 0
corresponds to a CSIT being essentially useless in terms of
DoF while α(j) = 1 corresponds to a CSIT being essentially
perfect in terms of DoF [5], [12].

The distributed CSIT quality is represented through the
multi-user CSIT scaling vector α ∈ RK defined as

α ,

α
(1)

...
α(K)

 . (3)

Without loss of generality, we assumed that the TXs are
ordered such that

α(1) ≥ α(2) ≥ . . . ≥ α(K). (4)

For ease of exposition, we consider the simple configuration
where the channel realizations and the channel estimates are
drawn in an i.i.d manner. Furthermore, we consider that for
a given transmission power P , the conditional probability
density functions verify that

max
H∈CK×K

(
pH|Ĥ(1),...,Ĥ(K)(H)

)
.
=
√
Pα(1) . (5)

Remark 1. This condition extends the condition provided in
[5] which writes in our setting as

max
H∈CK×K

(
pH|Ĥ(j)(H)

)
.
=
√
Pα(j) , ∀j ∈ {1, . . . ,K}. (6)

Condition (6) is a mild technical assumption, which holds
for the distributions usually considered, as for example with
Gaussian random variables [1].

C. Degrees-of-Freedom Analysis

Let us denote by C(P ) the sum capacity [13] of the MISO
BC with distributed CSIT considered. The optimal sum DoF
is then denoted by

DoFDCSI(α) , lim
P→∞

C(P )
log2(P )

. (7)

III. MAIN RESULTS IN THE 3-USER CASE

In order to better convey the main intuition, we present in
this work the 3-user case. The approach easily extends to an
arbitrary number of user and the K-user case will be described
in the extended journal version.

First, we extend the notion of Weak CSIT regime from [1].

Definition 1. In the 3-user MISO BC with D-CSIT, we define
the weak CSIT regime as comprising the CSIT configurations
that satisfy

α(1) ≤ 1

4
+

3

4
α(2). (8)

We can now state one of our main results.

Theorem 1. In the weak CSIT regime defined in Definition 1,
the optimal sum-DoF of the 3-user MISO BC with D-CSIT is
given by

DoFDCSI(α) = 1 + 2α(1). (9)

Comparing this result with the weak CSIT regime defined
in [1], the contribution of this works resides in the addition
of the term 3

4α
(2). This additional term is a consequence of

using the novel HZF precoding scheme as it will become clear
in the following.

Going beyond the weak CSIT regime, we introduce the
following definitions.

Definition 2. In the 3-user MISO BC with D-CSIT, we
define the heterogeneous CSIT regime as comprising the CSIT
configurations that satisfy that

α(1) ≥ min

(
2α(2),

1

4
+

3

4
α(2)

)
(10)

while the intermediate CSIT regime contains the CSIT config-
uration satisfying

1 + 3α(2)

4
≤ α(1) ≤ 2α(2). (11)

Extending the transmission scheme outside the weak-CSIT
regime leads to the following achievable DoF.

Theorem 2. In the 3-user MIMO BC with D-CSIT, it holds
that

DoFDCSI(α) ≥


1 + 2α(1) (Weak CSIT)
3
2 (1 + α(2)) (Intermediate CSIT)

1+α(1)+
3α(1)(1−α(1))+α(2)(5α(1)−3α(2)−1)

9α(1)−8α(2)

(Heterogeneous CSIT)

The different CSIT configurations are illustrated in Fig. 1.
As it can be clearly seen, one of the main contribution of this
work is the significant extension of the weak CSIT region.



This is practically interesting as it contains all the CSIT
configurations over which it has been possible to achieve the
optimal DoF. Furthermore, this weak CSIT regime does not
depend only on α(1) such that the results better adapt to more
users. Note that the different CSIT regimes only depend on
α(1) and α(2) but not on α(3), in agreement with previous
results [1], [6].
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Fig. 1: Representation of the different CSIT configurations as
a function of the CSIT scaling coefficients α(1) and α(2)

In Fig. 2, the sum DoF is shown as a function of α(1) for
α(2) = 2α(1)/3 and α(3) = 0. The proposed algorithm is
compared to the scheme in [1] and to conventional (regular-
ized) ZF. The improvement compared to the approach in [1]
is represented by the red triangle.

The novel transmission scheme extends the scheme of [1]
and relies on the same ideas: estimate and quantize the in-
terference (before their generation) at the TX having the most
accurate estimate (i.e. TX 1), and then transmit these quantized
interference terms using superposition coding to all the RXs.
The main improvement with respect to [1] consists in using
a novel precoding scheme, called Hierarchical ZF (HZF),
which allows to reduce the amount of interference generated,
thus reducing the amount of information to retransmit. The
transmission scheme achieving the results in Theorem 2 then
follows without major difficulty such that we focus in the rest
of this work on the detailed presentation of HZF precoding.
The description of the full scheme combining the approach of
[1] and HZF will be given in the extended journal version.

IV. HIERARCHICAL ZERO-FORCING

HZF is a distributed precoding scheme in which each
TX exploits its locally available CSIT to improve over the
precoding of the TXs having less accurate CSIT. Therefore,
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Fig. 2: Sum DoF as a function of α(1) for α(2) = 2α(1)/3
and α(3) = 0

the main interest of the HZF precoding lies in the fact that it
satisfies the following Lemma.

Lemma 1. In the K-user MISO BC with D-CSIT, if we denote
by tHZF

K the HZF beamformer towards user K with average
power P , it then holds that

|hH
j t

HZF
K |2 ≤̇ P 1−α(j)

, j = 1, . . . ,K − 1. (12)

The interference attenuation obtained using HZF is illus-
trated in the 3-user case in Fig. 3. Each of the K−1 best CSIT
coefficients controls the interference attenuation at one user.
The design of the HZF beamformer is given in the following
while the proof of Lemma 1 is given in the Appendix.

The main idea of HZF consists in letting TX j reproduce
the signal processing realized at TX k for k > j, i.e., at the
TXs having a less accurate CSIT. This is made possible thanks
to a particular Hierarchical Quantizer (HQ) introduced first in
[14] in the different context of delayed CSIT, and recalled for
completeness in Subsection IV-A. Applying this quantizer at
each TX allows to make the CSIT configuration hierarchical.

Once the precoding at the TXs having less accurate CSIT
is reproduced at a given TX, this TX then exploits its locally
available CSIT to further reduce the interference at one user
while preserving the interference reduction already realized
by the TXs having less accurate CSIT. The precoder design
achieving this goal is detailed in Subsection IV-B.

A. Hierarchical Quantizer

We start by recalling the original lemma given in [14,
Lemma 1] before providing an intuitive example to illustrate
its use in this work.

Lemma 2 ( [14, Lemma 1]). Let Y be a unit-variance zero-
mean random variable of bounded density pY . Then, there
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Fig. 3: Illustration of the interference reduction of the interference at each step of the HZF Algorithm.

exists a quantizer of rate β log2(P ) bits for any 0 < β ≤ 1,
denoted by Qβ , such that, for any unit-variance zero-mean
random variable n, it holds that

lim
P→∞

Pr{Qβ(y +
√
P−βn) = Qβ(y)} = 1 (13)

and at the same time

E
[
|Qβ(y)− y|2

]
≤̇ P−β . (14)

Let us now present a simple toy-example highlighting how
this lemma can be helpful to deal with D-CSIT.

Example 1. Let us consider two TXs, TX 1 and TX 2, with
scaling coefficients α(1) and α(2), respectively, and α(1) ≥
α(2). Let us define

ˆ̂
H

(1)

α(2) , Qα(2)

(
Ĥ(1)

)
(15)

ˆ̂
H

(2)

α(2) , Qα(2)

(
Ĥ(2)

)
. (16)

Then, as result of the quantizer’s properties mentioned above,
it holds that

lim
P→∞

Pr
{
ˆ̂
H

(1)

α(2) =
ˆ̂
H

(2)

α(2)

}
= 1 (17)

E
[
‖ ˆ̂H(j)

α(2) −H‖2F
]
≤̇ P−α

(2)

, j = 1, 2. (18)

Thus, at high SNR, we can consider that TX 1 has access
to ˆ̂

H
(1)

α(1) , and ˆ̂
H

(2)

α(2) , and TX 2 has access to ˆ̂
H

(2)

α(2) , with
the same CSIT scaling coefficients. As the CSIT scaling of
the estimate has remained the same, this approach effectively
transforms the CSIT configuration into a hierarchical one,
without degradation of the CSIT quality in terms of DoF.

B. Hierarchical ZF Precoding at TX j

We now focus on the computation of the HZF precoder
aimed at TX K, which we denote by tHZF (i.e., we omit
the index K for the sake of clarity) at TX j using the
locally available CSIT Ĥ(j) and the knowledge of the CSIT

configuration (i.e., α). As a preliminary step, the precoder is
decomposed as

tHZF =

K∑
`=1

[
tHZF(`)
0K−`

]
(19)

where tHZF(`) ∈ C` is vector designed at the first (most
accurate) ` TXs. As a consequence of the distributed precod-
ing, this means that it is sufficient for TX j to compute the
vectors tHZF(`) for ` ∈ {j, . . . ,K} to obtain its precoding
coefficient (i.e., the jth element of tHZF). We now present the
precoding algorithm used at TX j to compute these vectors.

First, the estimate Ĥ(j) is quantized using the Hierarchical
quantizer described in Subsection IV-A such that TX j obtains

ˆ̂
H(`) , Qα(`)(Ĥ(j)), ∀` ∈ {K, . . . , j}. (20)

Remark 2. Note that the probability that TX j is able to
accurately compute the estimate at TX ` for ` > j, i.e., that

Qα(`)(Ĥ(j)) = Qα(`)(Ĥ(`)), ` > j, (21)

goes only to 1 as the SNR goes to infinity. However, as we
study the DoF, and for the sake of clarity, we do the abuse of
notation of simply writing ˆ̂

H(`).
If TX j has the worst CSIT (i.e., j = K), then it computes

tHZF(K) = λHZF ˆ̂
H(j)H

(
ˆ̂
H(j)(

ˆ̂
H(j))H +

1

P
IK

)−1
(22)

with the power normalization λHZF ∈ R+ being given by

λHZF ,

√
P√√√√E

[∥∥∥∥∑K
`=1

[
tHZF(`)
0K−`

]∥∥∥∥2
] . (23)

Otherwise, for every n ∈ {K − 1, . . . , j}, it computes

tHZF(n) = − ˆ̂
H

(n)H
[1:n,1:n]

(
ˆ̂
H

(n)
[1:n,1:n]

ˆ̂
H

(n)H
[1:n,1:n] +

1

P
In

)−1
· ˆ̂H(n)

[1:n,1:K]

(
K∑

`=n+1

[
tHZF(`)
0K−`

])
. (24)



It is then shown in the Appendix how this design allows to
satisfy the interference attenuation claimed in Lemma 1 and
illustrated in Fig. 3.

V. CONCLUSION

Considering the MISO BC with distributed CSIT, we have
developed a new precoding scheme, called Hierarchical ZF,
which allows to efficiently exploit the CSI estimates of dif-
ferent qualities at all TXs thanks to an increased coordination
between the TXs. Combining HZF with the new approach of
interference estimation, quantization, and retransmission using
superposition coding at the TX having the most accurate TX,
has allowed to significantly enlarge the achievable DoF region.
Interestingly, the novel scheme also extends the so-called
weak CSIT regime over which it is possible to achieve the
centralized-outerbound, thus providing the optimal sum-DoF
expression. Whether this weak CSIT regime can be further
extended or finding the optimal DoF outside this CSIT regime
are very interesting directions of research. Finally, the novel
HZF precoding is expected to be a useful tool in other wireless
settings with unequal CSIT.

VI. APPENDIX

A. Proof of Lemma 1

For the sake of clarity, we present the proof in the 3-
user case. The proof for an arbitrary number of user will be
given in the extended journal version but does not present any
additional difficulties. Furthermore, as already mentioned in
Remark 2, we always consider that TX j has been able to
obtain accurately ˆ̂

H(`) for ` > j as the probability that this
holds true tends to one as P tends to infinity.

a) Interference at RX 2: Let us focus first on RX 2.

hH
2 t

HZF=hH
2

tHZF(1)
0
0

+hH
2

([
tHZF(2)

0

]
+tHZF(3)

)
. (25)

By design of tHZF(2), the second term of (25) satisfies that

hH
2

([
tHZF(2)

0

]
+tHZF(3)

)
.
=δ

(2)H
2

([
tHZF(2)

0

]
+tHZF(3)

)
(26)

due to the fact that

ˆ̂
h
(2)H
2

([
tHZF(2)

0

]
+ tHZF(3)

)
−−−−→
P→∞

0. (27)

Thus, it holds that∣∣∣∣hH
2

([
tHZF(2)

0

]
+ tHZF(3)

)∣∣∣∣2 ≤̇ P 1−α(2)

. (28)

Turning to the first term of (25), the precoding coeffi-
cient tHZF(1) is obtained from (24) and can be written as

tHZF(1) = − ˆ̂
H

(1)H
[1,1]

(
ˆ̂
H

(1)
[1,1]

ˆ̂
H

(1)H
[1,1] +

1

P

)−1
·

ˆ̂
h
(1)
1

([
tHZF(2)

0

]
+ tHZF(3)

)
(29)

Applying the same calculation as for (28), we obtain∣∣∣∣hH
1

([
tHZF(2)

0

]
+ tHZF(3)

)∣∣∣∣2 ≤̇ P 1−α(2)

. (30)

Inserting (30) in (29) then gives

|tHZF(1)|2 ≤̇ P 1−α(2)

. (31)

Inserting (31) and (28) in (25) yields the result for RX 2.
b) Interference at RX 1: Similar to (27), it also holds by

construction of tHZF(1) that

ˆ̂
h
(1)H
1

tHZF(1)
0
0

+

[
tHZF(2)

0

]
+ tHZF(3)

 −−−−→
P→∞

0

(32)

from which it follows directly that∣∣∣∣∣∣hH
1

tHZF(1)
0
0

+ hH
2

([
tHZF(2)

0

]
+ tHZF(3)

)∣∣∣∣∣∣
2

≤̇ P 1−α(1)

,

(33)
which concludes the proof.
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