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Abstract—Gender estimation has received increased attention
due to its use in a number of pertinent security and commercial
applications. Automated gender estimation algorithms are mainly
based on extracting representative features from face images.
In this work we study gender estimation based on information
deduced jointly from face and body, extracted from single-shot
images. The approach addresses challenging settings such as low-
resolution-images, as well as settings when faces are occluded.
Specifically the face-based features include local binary patterns
(LBP) and scale-invariant feature transform (SIFT) features,
projected into a PCA space. The features of the novel body-
based algorithm proposed in this work include continuous shape
information extracted from body silhouettes and texture infor-
mation retained by HOG descriptors. Support Vector Machines
(SVMs) are used for classification for body and face features. We
conduct experiments on images extracted from video-sequences
of the Multi-Biometric Tunnel database, emphasizing on three
distance-settings: close, medium and far, ranging from full body
exposure (far setting) to head and shoulders exposure (close
setting). The experiments suggest that while face-based gender
estimation performs best in the close-distance-setting, body-based
gender estimation performs best when a large part of the body
is visible. Finally we present two score-level-fusion schemes of
face and body-based features, outperforming the two individual
modalities in most cases.

I. INTRODUCTION

Soft biometrics are physical, behavioural or adhered ancil-
lary attributes that can be inferred from subjects in addition
to classical / primary biometrics [10], [31]. Related traits
include gender, age, ethnicity, body height, and eye color
among others. Despite the limited distinctiveness, as opposed
to primary biometrics, such traits have gained high pertinence
due to the plethora of benefits they encompass, such as the
ability to bridge the gap between human and machine in the
context of person recognition [39].

Gender estimation is a soft biometric trait, that has specifi-
cally received increased attention for its use in surveillance
applications [33], human computer interaction, anonymous
customized advertisement systems [30], and image retrieval
systems [28]. In the area of biometrics, gender estimation can
increase the reliability of a classical biometric system [19],
as well as reduce efficiently the search space for a primary
biometric [12], [11].

The majority of automated gender estimation algorithms
have been designed for face images (see Section I-A). We

note though, that in applications including video surveillance
and anonymous customized advertisement systems, image
or video-data often shows the face, as well as the body
of a subject. Limited attention has been given to the joint
exploitation of face and body for gender estimation, with only
few works analyzing jointly gait and face [35], [41]. One
challenge in such a multimodal approach is the requirement
of two acquisition cameras: one frontal (capturing the face)
and one lateral (capturing the gait), bringing to the fore the
need for camera-synchronization. In addition, capturing a full
gait cycle (a sequence of several images) without occlusions
(from persons, obstacles, etc.) is rather challenging in practical
scenarios.

Deviating from face and gait approaches, in this work we
propose a novel approach that extracts face and body features
from one single shot image, achieving promising gender esti-
mation results. The utilized body gender estimation algorithm
is novel and extracts geometric and texture features from
single-shot silhouettes. We provide analysis of performance of
the body and face algorithms vs. the distance-between-subject-
and-camera. In this context we define three distance-settings:
far, medium and close, where the visibility and resolution of
face and body improve / degrade for the three settings. We
chose the three distance-settings as representative examples for
varying subject-to-camera-distances. Finally we also present
fusion of the face and body gender estimation algorithms,
predominantly outperforming the individual algorithms.

The rest of the paper is organized as follows. Relevant
literature on gender estimation is reviewed in Section I.
Section II presents the utilized face and proposed body gender
estimation algorithms, a brief description of the used Tunnel
database [34] is given in Section III and the related results are
summarized in Section IV. Conclusions on the effectiveness of
the proposed multimodal gender estimation system are drawn
in Section V.

A. Gender from Face

Classical feature-based approaches extract discriminative
facial features and analyse these towards determining the
gender of a person. The challenge is inherited by the fact
that female and male average faces are very similar [22].
Further challenges are faced in unconstrained settings where



Fig. 1. Fusion of face and body information for gender estimation. Given a subject, gender is estimated through a state-of-the-art face-based algorithm
(OpenBR). We propose to additionally estimate gender through body information to improve the performance in challenging settings such as low-resolution-
images or occluded faces. Face and body gender estimates are combined to give an improved estimation of gender in the three specific distance-settings.

illumination, facial expressions and ethnicity can be confound
covariates. While gender estimation accuracy of up to 99.3%
is achieved in highly constrained settings, this performance
is substantially decreased in unconstrained settings. Gender
estimation algorithms are widely reviewed in Ng et al. [29],
Bekios-Calfa et al. [2], and Dantcheva et al. [10].

The majority of face gender estimation algorithms contain
two steps following face detection, namely feature extraction
and classification. In the context of feature extraction SIFT
[38], LBP [26], semi-supervised discriminant analysis (SDA)
[3] or combinations of different features [40] have been
studied. A review of classification methods used for gender
estimation [26] concluded that the best classification rates were
achieved by SVM.

B. Gender from Body

The human body contains some cues such as height, width,
waist, hips, chest, shoulder, etc, that may help humans as well
as automated systems to determine gender. Currie and Little
[8] give empirical evidence on the sexual dimorphism of such
body measures.

Cao et al. were the first to develop an algorithm predicting
gender from the body [5], based on full body-silhouette
(frontal and back) represented by histogram of oriented gra-
dients (HOG). Later Collins et al. [7] proposed the use
of body-appearance and shape, respectively represented by
pyramid histogram of words and pyramid HOG, respectively
(only frontal). Guo et al. [18] firstly classified the body pose
(frontal, back or mixed) and estimated gender based on a
view-dependent algorithm using biologically-inspired features

(BIF). The predominant classifier for body, as well as face
gender estimation has been SVM.

Latest works predict gender based on RGB-D (depth) data
[25] or learn features from deep learning techniques (from
front and from back) [1].

C. Gender from other traits

We note that gender has been predominantly estimated from
facial images [10]. Other modalities that have been studied in
this context include gait [36], facial smiling behavior [4], [9],
or speech [37]. In addition, there are some hybrid approaches
fusing algorithms based on different biometric modalities such
as face and gait [41], face and fingerprint [24] or face and the
shoulder region [23], among others.

Despite these recent works, automated gender estimation
still remains a challenge and it is impacted by other soft
biometrics, for example, age and ethnicity; gender dimorphism
is accentuated only in adults, and variations across different
ethnicities.

II. ALGORITHM DESCRIPTION

We show in Fig. 1 the general scheme presented in this
work. Given an image of a subject, the face is detected and
related appearance features are extracted and classified by a
face gender estimation algorithm. We additionally estimate
gender through body information already included in the same
image to improve the performance. For that aim, the silhouette
of the subject is extracted to first determine the distance from
the subject to the camera and then predict the gender according
to that specific distance setting. Later, shape and textures



information is used in our body gender estimation approach.
Finally, face and body gender estimates are combined to give
an improved estimation of the gender in the three specific
distance-settings.

We proceed to elaborate on the employed face and proposed
body gender estimation algorithms.

A. Face Gender Estimation algorithm (FGE)

Fig. 2. Body Shape and Texture Features of the BGE algorithm proposed
in this work for the far distance-setting. The sum of foreground pixels at
row level are computed from top to bottom (Row Profile) while the sum of
foreground pixels at column level are computed from left to right (Column
Profile). HOG features are also drawn in the lower corner.

For face-based gender estimation we use OpenBR [21], a
publicly available open source software for biometric recogni-
tion and evaluation. The utilized gender estimation algorithm
is based on the work by Klare et al. [20]. Specifically, a face
image is represented by extracting histograms of local binary
pattern (LBP) and scale-invariant feature transform (SIFT)
features computed on a dense grid of patches. Subsequently,
the histograms from each patch are projected onto a subspace
generated using PCA obtaining a feature vector. SVM is
used for the final gender classification. The OpenBR gender
classification algorithm has been validated on a FERET1

subset, attaining accuracies of 96.91% and 82.98% for male
and female classification respectively, and an overall true
classification rate of 90.57% [6], outperforming algorithms
such as Neural Networks on the same dataset [27].

1http://www.nist.gov/itl/iad/ig/colorferet.cfm

B. Body Gender Estimation algorithm (BGE)
For body-based gender estimation we propose a novel

algorithm that relies on shape-based features extracted from
body silhouettes and texture information using HOG features.

1) Body Shape-based features: We here compute continu-
ous key-measures related to body height, body width, shoulder,
hips or chest from the body silhouette, rather than obtaining
discrete values. By having such continuous body information,
we ensure to include mentioned key body-measurements, even
in unconstrained scenarios, where the extraction of individual
measures is problematic.

Silhouettes are first extracted by a baseline background
subtraction technique, setting the background as the initial
frame of the sequence. The background subtraction is carried
out in each of the 3 RGB channels and then the RGB
result is grayscaled. The binarized silhouette is obtained after
thresholding the gray scale image with a global threshold. The
foreground segmentation is followed by some morphological
noise reduction operations, in order to delete isolated fore-
ground areas in the image. We proceed to select the bounding
box around the foreground silhouette and normalize it to
300×600 pixels. For feature extraction, we compute the sum of
foreground pixels at row level from top to bottom (row profile)
and the sum of foreground pixels at column level from left
to right (column profile). The final body-shape feature vector
constitutes the concatenation of row and column profiles. On
the upper part of Fig. 2, we show the binarized image and the
row (right) and column (below) profiles of a subject at the far
distance-setting.

2) Texture information: Previous works predicting gender
based on body information have used texture information
through histogram of gradients (HOG) [5], [7]. Similarly,
in our work, texture information is retained by computing
HOG features from grayscale images using libraries from [13].
We use the same bounding box computed by the foreground
segmentation algorithm, and then divide the resulting image
into 3 × 6 blocks of size 100 × 100 pixels. We compute the
histogram of gradients feature vector of each block using 8
orientations. The final HOG feature vector is the concatenation
of the histograms computed per each block. Fig. 2 depicts an
example of the texture features proposed in this work at the
far distance-scenario.

3) Classification: Support vector machines (SVMs) with
linear kernels are used as classifiers for both, body shape-based
and texture algorithms. Subsequently scores of the body-shape
based and texture information are fused using a score-level
scheme.

We use a specific gender estimation model for each
distance-setting. We distinguish between three distance-
settings: far, medium and close. Although the algorithm em-
ployed is the same in all distance-settings, the gender model
highly depends on the distance (far, medium and close). As
a specific model is built for each distance-setting, a distance-
setting classifier is required. To classify an image into one of
the three distance-settings we use information based on the
face-height, face-width, number of foreground pixels, as well



as face quality (distance from the face space). All of these
measures are provided by OpenBR. We classify these features
by an SVM classifier with Gaussian kernel. While in images
complying to the close-setting mainly the face and upper torso
are visible, images complying to the far-setting expose the face
and the full body of the subject. The medium-setting represents
an intermediate setting between far and close distance-settings.
Fig. 1 shows example images of the three distance-settings.

III. DATABASE AND EXPERIMENTAL PROTOCOL

Datasets traditionally used for face gender estimation in-
clude Labeled Faces in the Wild (LFW)2, MORPH3 and Feret4.
For body-based gender estimation, the Pedestrian Database
from MIT [32] and VIPeR [17] databases, originally created
for pedestrian detection, are commonly used. However, those
databases do not have a standard experimental protocol for
gender recognition and do not contain ground-truth annota-
tions publicly available. Also, our body shape algorithm would
require foreground segmentation of the images that is not
provided along with those databases.

Furthermore, as one goal is to study the effect of the subject-
camera distance, we require a database that contains images of
the same subjects at different distances. The Multi-Biometric
Tunnel database [34] fits this requirement, as it was created to
simulate a constrained environment similar to airports, ideal
for automatic gait recognition. A tunnel was provided with
eight cameras to acquire side and frontal images while the
subject is walking through the tunnel. In this paper, only a
subset of frontal images obtained from one camera is used. The
frontal camera is placed at the end of the tunnel. We utilize
gender ground-truth annotations, which have been introduced
for previous works [39] and made publicly available.

The Multi-Biometric Tunnel database contains 222 subjects,
with 150 being male and 72 female. The predominant ethnicity
in the database is Caucasian (76%), followed by Asian (14%),
Middle-East (7%), Black (2%) and Indian (1%). Regarding the
age, the majority of the subjects (76.12%) are in the range of
18−28 years; a 17.11% are in the range of 28−40 years and
only a minority are above 40 years and under 18 years.

In this work, a subset of 140 subjects (70 male and
70 female) among the frontal images has been selected to
ensure a balanced dataset, with only 1 image per subject
and distance-setting. We utilize images conforming to three
distance-settings: a) far, b) medium and c) close corresponding
to a) beginning of the tunnel, b) middle and c) end of the
tunnel.

Experiments are carried out using a 5-fold cross validation
protocol. For the body algorithm, the set of 70 subjects per
gender is divided into 5 folds in order to assure a balanced
number of training images5. We use all scores from all folds
to compute the equal error rate (EER). With the threshold

2http://vis-www.cs.umass.edu/lfw/
3http://faceaginggroup.com/
4http://www.nist.gov/itl/iad/ig/colorferet.cfm
5The selected identities can be found at goo.gl/WnpNJD?gdriveurl

associated to the EER, overall accuracies and true positive
rates (TPR) for Male and Females are computed.

IV. EXPERIMENTAL RESULTS

A. Classification of distance-settings

Results of the distance-setting classification are reported
following a leave one out protocol having 140 samples per
distance. The true classification rates per distance-setting are:
97.85%, 98.57% and 100% for far, medium and close distance
respectively.

B. Face and Body Gender Estimation

Firstly, we estimate gender by the FGE and the proposed
BGE algorithms independently. Fig. 3 visually shows the
results obtained for the FGE and BGE algorithms in the three
distance-settings considered in red and blue colors respec-
tively. The specific True Positive Rates (TPR) for Male and
Female and overall Accuracies (Acc.) are reported in Table I.

Regarding FGE algorithm, as can be seen in Fig. 3, its
overall accuracy (Acc.) improves as the distance between
subject and camera decreases. This is intuitive, since both size
and resolution of faces increase with a decreased distance.
Specifically, a significant relative improvement of 56% is
achieved - from the close (89.28%) to the far (57.14%)
distance setting.

If we analyse in detail the FGE results through the Male
TPR and Female TPR reported in Table I, we notice that in
the far distance-setting, the FGE algorithm has a predominant
male-categorization (94.28% vs. 20%). Given the 2-class gen-
der classification problem, we observe a poor performance of
FGE in the far distance-setting. We note that the resolution of
a specific subject in the far distance-setting is 82× 94 pixels.
For medium distances, Male and Female TPR improve, as
well as the related difference reduces, obtaining an accuracy
of 80.71%. An improvement of accuracy was expected as
faces at medium distances are of size approximately 144×148
pixels. We observe though that in the close distance-setting,
TPR improve further and are very similar for both classes,
probably due to the increase of resolution (450 × 378 pixels
for a specific subject).

It is also worth noticing the striking improvement between
the far and medium scenario (from 57.14% to 80.71%),
suggesting us that the minimum resolution of faces should
be bigger than 82× 94 pixels. More intermediate frames will
be analysed to elaborate on the minimum resolution.

Correspondingly, the accuracy of BGE decreases as the
camera-subject distance decreases. The BGE algorithm per-
forms well (above 85% of accuracy) for the far and medium
distance-settings. Hence, we conclude from these results that
the torso might be more discriminative, as the accuracy is
stable, even if the lower part of the body (legs) is less visible
in the medium distance-setting. At close distances, only the
upper torso of the subject is visible and hence the accuracy
drops down to 79.28% (relative decreasing of 9.75% with
respect to the far distance-setting). We note that there are no



TABLE I
PERFORMANCE (%) OF THE FACE GENDER ESTIMATION ALGORITHM (FGE); THE BODY GENDER ESTIMATION ALGORITHM (BGE); SUM FUSION AND
SMARTER SUM FUSION OF FGE AND BGE IN TERMS OF TRUE POSITIVE RATE (TPR) FOR MALE AND FEMALE (FEM.), OVERALL ACCURACY (ACC.).

BEST PERFORMANCE (IN TERMS OF ACC.) OF EACH DISTANCE-SETTING IS BOLDED.

Distance FGE BGE Sum Fusion Prop. Sum Fusion
Scenario Male TPR Fem. TPR Acc. Male TPR Fem. TPR Acc. Male TPR Fem TPR Acc. Male TPR Fem TPR Acc.

Far 94.28 20 57.14 87.14 88.57 87.85 87.14 88.57 87.85 87.14 88.57 87.85
Medium 71.42 90 80.71 85.71 87.14 86.42 88.57 90 89.28 88.57 90 89.28

Close 88.57 90 89.28 78.57 80 79.28 87.14 88.57 87.85 92.85 94.28 93.57

significant differences between Male and Female TPR for the
BGE algorithm at any distance-setting.

As the FGE algorithm is based only on texture features, its
performance drops heavily with increased distance, in which
face resolution is too low to extract reliable texture features.
The BGE algorithm, however, is also based on shape features,
hence the performance depends more on the visibility of the
body, rather than the resolution.

C. Fusion of Face and Body

Two different approaches of fusion have been carried out
in this work: a single fusion and a weighted fusion, both
at a score level. In the first approach, firstly the scores are
normalized to the same range of values, then face and body
scores are combined following a sum fusion. Fig. 3 shows
in black and dashdot the performance of this first fusion
approach. From the curve, one may notice that the fusion of
the two modalities at the far distance-setting does not improve
the accuracy of the best modality, in this case BGE, meaning
that at that distance, the performance of the BGE algorithm is
best. In the medium distance-setting, the accuracy of the fusion
outperforms any of the individual modalities (face and body),
achieving a relative improvement of 10% with respect to the
FGE accuracy. For the close distance setting, the accuracy of
the fusion drops slightly, reaching results below the accuracy
of the FGE algorithm. This drop of accuracy coincides with the
drop of accuracy of the BGE due to the limited body-visibility
in the images in the close distance-setting. We follow with an
improved fusion scheme.

The improved fusion is inspired by the proportions of the
human body. From anthropometrical studies, it is known that
the height of a subject is approximately 7.5 times the height
of the head [16]. By exploring the ratio of the height of the
face h face and the height of the body h body presented in
a frame, one could estimate the body-visibility. For instance,
a ratio of 0.5 indicates that the portion of the body present in
the image is only 2 times the height of the head, therefore,
only the upper part of the body is visible. After carrying
out different experiments, we have reached improved fusion
results using different weights for FGE and BGE, where the
weight associated to the FGE is the ratio h face/h body
plus an offset and the weight associated to the BG estimation
is the complementary to 1. So, for the close distance-setting
the FGE-weight is bigger than the BGE-weight; for the far
distance-setting the FGE-weight would be smaller than the
BGE-weight, and similar weights would be used for the

medium distance-setting. Fig. 3 shows in cyan and dashed
the performance of this improved fusion scheme, in which
one may observe that the accuracy is always equal or bigger
than the baseline fusion scheme. The performance in the
close distance-setting is mostly improving from the proposed
improved fusion, with an absolute improvement of 5.72.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel gender-estimation algo-
rithm based on the fusion of extracted facial and body features.
The main benefit of this approach is that, unlike face and gait
multimodal approaches, the face and the body features can be
extracted from one single shot image.

The proposed algorithm utilizes and complements an exist-
ing state-of-the-art gender estimation algorithm based on facial
characteristics. The proposed algorithm exhibited performance
improvements over both, individual face and body algorithms
in scenarios where the quality of the face (in the image) was
too poor to determine the gender correctly. Such scenarios can
often occur in video surveillance-data.

The improvements are attributed to a novel body gender
estimation algorithm that we have introduced. Unlike previous
body gender estimation algorithms, our approach is the first
to extract shape information from binarized images. It is also
one of the few approaches that uses jointly shape and texture
related features in their model. We consider our approach
robust to challenging conditions thanks to the advancements
of people tracking and background substraction techniques.

We additionally analysed the impact of distance between
subject and camera, investigating different distance-settings,
that range from full body exposure to head and upper torso
visibility. The analysis showed that the body gender estimation
algorithm (BGE) performs reasonably well when a large part
of the body is visible, while the face gender estimation
algorithm (FGE) is robust only at close distances.

Future work will test the proposed algorithm on less con-
strained databases that include pose variations. Further, we
will explore other features recently employed for body-based
people identification such as contour coordinates [15] and will
study more sophisticated fusion schemes [14].
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