
Easing IoT Application Development Through
DataTweet Framework

Soumya Kanti Datta and Christian Bonnet
Communication Systems Department, EURECOM

Sophia Antipolis, France
Emails: {dattas, bonnet}@eurecom.fr

Abstract—Current IoT application development frameworks

have limited capabilities. There is a lack of horizontal
development approach, interoperability with standards, adequate
security mechanisms, integration of information centric
networking among others. The paper counters the challenges
using a novel DataTweet IoT application development
framework. It decouples application logic (AL) from common
IoT functionalities. This allows the IoT stakeholders to focus on
the AL and use open source, standardized APIs for the latter. An
automotive IoT application for Advanced Driver Assistance
System (ADAS) is developed using the framework and its
operational phases are highlighted. Initial evaluation shows that
the utilization of the framework results in 72.1% reduction of
hand-written codes.

Keywords—DataTweet; Data processing; Internet of Things;
Mobile Edge Computing; Security; Standards.

I. INTRODUCTION
The Internet of Things (IoT) have gained a lot of

momentum from the industry, academia and consumers in
recent years. The IoT market is expanding with applications
and services. Still the IoT ecosystem faces an important
challenge to enable experts and various stakeholders to rapidly
develop applications. IoT being a vast umbrella that includes
smart home, smart manufacturing, intelligent transportation
system, smart grid, fitness and health management and more
domains makes it even difficult for developers to create an
application. The developers would need to master domain
knowledge, interworking with physical things, communication
technologies, protocols, gateway programming, cloud
computing, semantic web, RESTful design and much more. All
such factors together point to the need of IoT application
development framework. It (i) simplifies development process,
(ii) hides the complexities of programming & security
mechanisms from developers, (iii) reduces time to market for
industries, (iv) provides standard oriented APIs & interfaces
and (v) offers state-of-the-art consumer experience.

This paper aims at easing the IoT application development
process through proposed DataTweet framework. Its novel
aspects and contributions are (i) open source APIs for common
IoT functionalities (e.g. discovery, registration, management,
security) to develop both vertical and horizontal applications,
(ii) incorporating strong security mechanism by design, (iii)
interoperability through oneM2M standard, (iv) separation of
application logic from common IoT functionalities, (v) wide
range of deployment capabilities and software tools for
developers, (vi) in-built life cycle management of the
developed application and (vii) integration of information

centric networking (ICN). We have also examined the
currently available frameworks, their merits and demerits.
Apart from that, requirements of such a generic IoT application
development framework is presented. Our proposed framework
meets the requirements and address the limitations in existing
literature.

Rest of the paper is organized as follows. Section II
presents the status of current literature. Section III presents the
generic requirements while Section IV describes the proposed
framework, its two main components. Interoperability and
deployment with respect to oneM2M architecture [15] is
highlighted here. Section V describes an automotive IoT
application developed with it, its operational phases and an
initial evaluation. Finally, the paper concludes with a summary
of contributions and future outlook.

II. STATE-OF-THE-ART
This section highlights the state-of-the-art in IoT

application development frameworks as well as their merits
and demerits.

A. Domain specific IoT application development
The paper [1] has provided an extensive study on IoT

application development. It identifies the relevant stakeholders
(e.g. software developers, domain experts), challenges and their
approach for application development. It involves conceptual
modelling with (i) domain specific concepts involving an
Entity of Interest (EoI), a resource (e.g. sensor, actuator,
storage or user interface) and a region (location of a device),
(ii) functionality specific concepts involving application logic
and interaction among computations elements, (iii) deployment
specific concepts, and (iv) platform specific concepts which
relates to operating system based drivers for a hardware device
running an IoT application. The evaluation of the framework
with respect to a fire detection application outlines the number
of handwritten codes for the above mentioned four concepts
and the generate lines of codes. In this case the percentage of
generated code is almost 84% compared to the total lines of
codes. This shows the ease of IoT application development
with the framework.

The paper [2] evaluates the ideas put forward in the paper
[1]. The authors used two criteria – expressiveness (ability to
develop wide range of applications) and development efforts
(denotes the no. of handwritten codes to develop an
application, more such code means more efforts). During the
evaluation based on expressiveness, the authors looked at the
characteristics of IoT applications that can be modelled by their
approach. The characteristics include the application logic,

goal, topology, scale, entity type, interaction pattern and
consumer logic. To calculate the development efforts, the
authors experimented with building automation (regulating
temperature, calculating average temperature and detecting
fire). Their approach showed the limited lines of handwritten
code that is necessary for the mentioned IoT application.

Authors of [3] focus on domain models with concepts and
associates suitable for IoT applications. They broadly
categorized the concepts into two sections – (i) the traditional
Internet concepts consisting of a computational service, storage
service or end-user application and (ii) thing oriented concepts
involving EoI, resource, raw data, event, property, action and
command. The associations are basically relations among the
mentioned concepts. Using these modelling, the authors
validated three applications – shared book reviews, HVAC
maintenance and smart plants.

B. Cross domain IoT application development
Majority of the current literature focus on domain specific

or vertical IoT application development frameworks. It is
widely agreed that the main innovations and values from IoT
can be derived through cross domain or horizontal applications.
The paper [4] investigates a semantic based Machine-to-
Machine Measurement (M3) Framework for cross domain
development. The M3 framework allows (i) semantic
annotation of sensor data originating at heterogeneous
domains, (ii) semantic reasoning on sensor data based on
Sensor based Linked Open Rules (S-LOR), (iii) infer high-
level abstraction from raw sensor data, (iv) uniform
nomenclature to describe sensor data, (v) generation of IoT
application development templates. The framework is
evaluated in terms of software performance and semantic best
practices. Integration of the M3 into oneM2M standard has
been described in [5]. An extension of the work is presented in
[6] which considers extending the M3 framework for consumer
mobile devices like smartphones and tablets. The original M3
is developed using Apache Jena Framework and is deployed in
the Google Cloud Platform. For Android powered mobiles
devices, AndroJena library has been used. The paper outlines
how consumer centric IoT applications can benefit from device
discovery, provisioning, semantic reasoning and actuation. The
implementation is oneM2M standard oriented and the
evaluation of the application is performed based on memory,
CPU load and battery requirements. The results prove that the
mobile application is lightweight.

C. IoT application development suite
The paper [7] presents IoTSuite which is a set of tools for

rapid prototyping of IoT applications. The proposed approach
includes several steps – (i) specifying domain vocabulary, (ii)
compiling vocabulary specification, (iii) specifying application
architecture, (iv) compiling architecture specification, (v)
implementing application logic, (vi) specifying target
deployment, (vii) mapping of computational services to a set of
devices, (vii) implementing device drivers, (viii) linking and
(ix) evolution. The IoTSuite is composed of – (i) an editor
which helps relevant stakeholders to create high level specs,
(ii) a compiler which translates the high level specifications
into codes, (iii) a mapper which produces a mapping from a set
of IoT services into a set of IoT devices, (iv) a linker that puts
together the generated codes to be deployed on IoT devices and

(v) runtime system. The paper also provides a comparison on
existing IoT tool suites including IoTSuite, DiaSuite, ATaG,
PervML, RuleCaster, VisualRDK, WoTKit, Context Toolkit
and Pantagruel. another detailed such survey is available at [8].

D. Context and discovery based IoT applications
Involving context awareness and semantic based discovery

into IoT application development is equally important. These
aspects are examined in [9]. The proposed architecture uses a
context manager that manages the user, service and
environment contexts. Each of these context modules receives
inputs from sensors in respective domains. But the user and
service context modules depend on additional requirements
like user requirement on service context and user requirement
on environment context. The discovery mechanism has been
intelligently merged on top of the entire context monitor. This
in turn allows the user context module to run basic or
sophisticated discovery for IoT applications. The same concept
extends the service context module to run search functions on
users and environment. This is helpful for service providers.
Filtering capabilities are also integrated and allows three types
of filtering – basic, semantic and context based filtering. The
work is highly relevant to IoT application development to
allow users or service providers to search for required devices
or services. Involving semantic web technologies allows high
richness in query as a part of discovery mechanism. The
filtering methods provide a concise view of the available
results. But the paper does not provide any implementation or
prototyping details.

E. Limitations
While performing the literature survey, we noticed several

limitations as mentioned below.
• Many papers limit their discussion to domain specific IoT

application development limiting the benefits to a
segment of IoT ecosystem.

• The state of security mechanisms in the mentioned
frameworks is not clear.

• The current works except [4] and [6] do not outline their
position with respect of IoT standards like oneM2M or
W3C Web of Things. This in turn encourages data,
product and implementation silos which stand in the way
of global interoperability.

• The studied frameworks do not provide any guidelines for
generic and wider deployment facilities including
smartphones, cloud and edge devices.

• The IoT application logic must be separated from
common IoT functionalities (e.g. resource discovery,
management, registration, binding to protocols). This
allows application logics to be decoupled from rest of the
functionalities. This is lacking in many approaches
presented in the literature.

• The data centric approach for IoT ecosystem [11] are not
explored in the literature.

• Traditional HTTP based information fetching and
dissemination does not work well in IoT scenarios
involving high degree of mobility. For those scenarios,
ICN is a better choice as identified in [12]. Current
literatures do not investigate implementation of any ICN

mechanism as a part of IoT application development
framework.

III. IOT APPLICATION FRAMEWORK REQUIREMENTS
This section highlights the generic requirements that such

frameworks must provide. We have previously studied the IoT
data cycle in [11] as a part of designing data centric IoT
services. The requirements below are derived from them. The
following list is non-exhaustive but comprise of the most
important requirements.

• Open source framework and APIs – For faster adoption
in the IoT and software developer community, the IoT
application development framework must be open source.
This will encourage collaborative development from
several contributors and will generate diverse IoT
functionalities and scenarios among other benefits. With
many industries adoption the “API First” approach for IoT
based development, the framework must incorporate open
and easy to use APIs. These should address common IoT
functions. Thus the software developers will be able to
concentrate on building the application logic while
utilizing the open APIs. This will potentially reduce the
time-to-market for any IoT application.

• Strong security mechanisms by design – The framework
must support state-of-the-art security mechanisms by
design to protect the privacy and ensure consumer trust on
the generated IoT applications.

• Interoperability through standards – To mitigate the
current silo based approaches, the framework must
integrate software components based on IoT standards.
This will pave way for interoperability at consumer IoT
devices, applications and services. Following the current
trends and recommendation for Standard Development
Organizations (SDO), the framework should provide
services over RESTful interactions.

• Separation of application logic from common IoT
functionalities – To allow the stakeholders in IoT
ecosystem to focus more on the M2M/IoT application, the
application logic should be decoupled from rest of the
common IoT functions. The framework must provide
appropriate APIs for the common functions to allow the
developers reduce application development cycle and
time-to-market.

• Wide range of software tools – In order to maximize the
adoption of the framework, it must offer the developers a
wide range of choices for software tools.

• Deployment capabilities – With the IoT umbrella growing
bigger every day to house new scenarios, it is necessary to
support wide range of deployment capabilities. This
includes constrained and powerful IoT devices, wearables,
smartphones, tablets, M2M gateways, edge devices (e.g.
road side units, base stations) as well as cloud computing
systems.

• Life-cycle management – The framework must also allow
the stakeholders in managing the IoT application lifecycle.

Extending, adding and removing application features must
be supported.

• Information centric networking (ICN) integration – To
cater to wide range of scenarios especially automotive IoT,
the framework must support ICN for secure and robust
data dissemination.

IV. DATATWEET IOT APPLICATION DEVELOPMENT
FRAMEWORK

This section dives deep into the proposed DataTweet IoT
framework for rapid IoT application development and
deployment. The software framework is depicted in Figure 1.

Fig. 1. The two entities and their components of DataTweet Application

Development Framework.

Fig. 2. Interaction of the IoT applications derived with the above

framework with consumer devices and physical things.

The framework itself and any IoT application derived
using that are composed of two main entities – (i) application
logic (AL) and (ii) common service entity (CSE) that houses
the mentioned common IoT related functionalities. The
interface between AL and CSE is denoted as Iac. The CSE
interacts with the IoT devices like sensors, actuators, RFID or
NFC tags through south interface. The AL allows the
consumers to connect with the underlying IoT application
through north interface. To promote cross domain IoT
application scenario, CSE can be connected sensors and
actuators belonging to different domain of operations (e.g.
building automation, fitness monitoring, transport). Figure 2
portrays how the application derived using the framework
interacts with consumers and physical things.

A. Application Logic
The application logic is where all stakeholders of the IoT

application are involved. AL includes design of the user
interface (UI) and its operational phases. Since the consumers
directly interact with the AL, it also enables search (basic and
advanced semantic searches), configuration updating
capabilities, sending command to actuators and any additional
features that is necessary. The AL belonging to one application
may need to interact with CSE of another to support horizontal
IoT use cases. The functionalities of the AL are mainly
developed using web services. The interactions taking place at
the north interface is mainly accomplished by RESTful web
services. Another important feature is that AL is separate from
the common IoT functions residing in CSE. The decoupling
allows developers focus more on the consumer centric aspects
of the overall IoT application and utilize the open APIs
provided for the CSE.

B. Common Service Entity
 Identifying and combining several common functionalities
necessary to any IoT application scenario is another stepping
stone for simplifying the framework. The CSE achieves that
purpose along with providing open source and standard APIs to
the developers. All included functionalities include security
algorithms by design. This conforms to the “API First” and
security by design criteria from the list of requirements. We
describe the common functionalities below.

1) Collection Proxies
In order to cater to a wide range of communication

technologies and protocols used by heterogeneous physical
things, we introduce a software module called “collection
proxies”. It includes the software drivers and libraries for
popular IoT protocols like HTTP, CoAP and MQTT as well as
communication technologies including Bluetooth Low Energy
(BLE), Wi-Fi and 3G/LTE. Another important contribution of
this module is that it provides binding to the mentioned
protocols. This is a significant extension to the proxy-in and
proxy-out concepts introduced in [13].

2) Registration
The registration module achieves two purposes within the

framework – (i) it allows AL of an authorized IoT application
to register with a registrar CSE in order to allow the AL use the
IoT devices connection to registrar CSE thereby facilitating
cross domain and inter application interaction (done through Iac
interface) and (ii) it also allows underlying IoT devices to
register themselves to provide data to applications. The IoT
device and endpoint descriptions (CoRE Link based or
semantic based [14]) are stored locally in a secure storage of
the CSE. In case of CoRE Link based description, the payload
supports both XML and JSON based encodings. For semantic
based payload, JSON-LD is supported which is a serialization
format of RDF. This gives developers more choices on the
software tools.

3) Configuration Management
The configuration of IoT devices being used by

applications can change due to mobility, ownership, location,
life cycle etc. Therefore, the IoT application must have
capabilities to understand the IoT device configuration as well
as equip the consumers with a way to add, modify or delete

configuration. This software module pertains to both these
tasks and implements the Open Mobile Alliance Lightweight
M2M (OMA LwM2M) technical specifications. Thus the CSE
not only benefits from an open and popular standard but allows
self-management of IoT devices and fine grain control over
management operations. The module depends on the previous
module for IoT device registration. Apart from that it provides
service enablement and un-registration functions.

4) Discovery
Any IoT application essentially needs to search for physical

things to get their descriptions, data and send actuation
commands [16]. The search function of the AL allows
consumers to enter queries based on keywords (e.g., “search all
temperature sensors in my house”). Also an IoT application can
itself initiate the search. In either case, the query is forwarded
to the discovery module in CSE which then searches in the
local database for required devices or data. The module
implements three kinds of discovery mechanisms.

• Search in the vicinity for BLE beacon enabled devices
e.g. things utilizing physical web approach.

• Search in a network using protocol like SSDP.
• Search in a local directory where the devices have

already registered.

To allow richness in consumer query, semantic based
discovery is implemented in the AL. This allows search
functions to identify which mechanism to adopt for device
discovery. Following that, the available results can be filtered
and ranked based on query parameters.

5) Data processing and semantic reasoning engine
The data processing module is composed of a data

collection service that fetches raw data from available sensors.
To promote interoperability at data processing stage and
utilization of a standard set of vocabulary, we advocate for
semantic web technologies for data processing. Thus a
semantic reasoning engine is integrated into the framework.
The data collection service receives data in Sensor Markup
Language (SenML) which supports XML, JSON, EXI and
CBOR encodings. Then the data is converted into RDF using a
converter before being fed to the reasoning engine. Finally,
SPARQL queries are run to generate high level abstractions as
well suggestions for consumers given the application scenario.
Semantic reasoning is particularly useful for cross domain IoT
application development. These modules implement the M3
Framework described in [4] and also promote a data centric
approach.

6) Subscription and notification
This module allows sending notifications for a subscription

API that tracks – (i) configuration changes of a thing, (ii)
occurrence of a predefined event. The notification function can
also be used to send alerts in case of emergency.

7) Application and service management
This module takes care of life cycle management for the

developed IoT application. It includes capabilities to configure,
update, troubleshoot and support the overall functions of the
application.

8) Security

For the overall framework, this module comprises of
mechanisms for – (i) sensitive data handling (e.g. location of
things), (ii) security administration, (iii) establishing security
association, (iv) enforcing access control policies for
identification, authorization and authentication, (v) identity
management, (vi) securing the local storage and (vii) secure
provisioning of registered IoT devices. As a part of sensitive
data handling, the module incorporates Elliptic Curve
Cryptography (ECC) based methods to protect AL and
consumer credentials. During security associate establishment
between the IoT application and consumer devices/physical
things, confidentiality, integrity and signature verification are
performed. The access control (AC) is utmost important to
limit the discovery to both authorized users as well as
authorized things. AC also necessary for consumer accessing
IoT device configurations for adding, updating or deleting
them. ECC is also used for security key generation, exchange
as well as encryption and decryption of discovery and
configuration metadata exchange. AC based on RBAC and
DCapBac [10] (capability based access control) are provided.
Utilization of CoAP further assures DTLS based security for
the data transfer with sensors and actuators.

9) Named Data Networking (NDN)
Integrating NDN module is a major contribution of this

work. The inherent issue with HTTP based IoT systems is that
they are not designed to handle mobility and suffer from
centralized DNS mechanism. With NDN, information can be
disseminated to any consumer device based on an interest.
NDN utilizes inbuilt security checks for data originator and
incorporates a message digest [12]. This allows the framework
to move beyond the client-server paradigm of the Internet.

C. Deployment capabilities
From the industrial perspective, wide range of deployment

capabilities are necessary for IoT applications. The framework
allows creation of applications that can be deployed in a
smartphone, an IoT gateway (edge device) or a cloud server.
This is possible due to the decoupling of AL from common IoT
functions. The CSE is developed in such a way that it can
generate executables for various runtime environments.

D. Interoperability with oneM2M standard
As a first step towards interoperability, we have mapped the

components of the proposed DataTweet framework to that of
the oneM2M standards.

Fig. 3. Deploying proposed IoT framework components as a part of

oneM2M standard architecture.

 The AL of any IoT application corresponds to the
Application Entity (AE). The interface Iac (in Figure 1) is
identical to Mca interface of the oneM2M architecture. In both
frameworks, CSE and its functionalities remain identical. In
terms of the deployment and architecture, our framework fits
well with the following oneM2M architecture as shown in
Figure 3. As seen, the application dedicated nodes (ADN)
consist of physical things like sensors and actuators. The
middle node (MN) corresponds to IoT gateways or edge
devices and is composed of just the CSE. The consumer
devices like connected cars, smartphones or laptop computers
form application service nodes (ASN) which comprises of both
the AL and CSE. The IoT applications developed using the
framework run here as well as can run the in the infrastructure
node (cloud system) as an extension to the oneM2M standard.
The framework also follows oneM2M recommendations
including utilization of RESTful web services for exchanging
data and control information, binding to common protocols and
utilization of semantic web technologies for uniform
vocabulary, metadata and reasoning engine.

V. PROTOTYPING AND EVALUATION
In this section, we describe an automotive IoT application

developed using this framework and its phases of operation.
We have envisioned an advanced driver assistance system
(ADAS) application for night time driving. This is an extension
to [17]. The application utilizes the raw data collected from
vehicular and environmental sensors. If the humidity
(environmental) sensor data processing reveals there is fog, the
ADAS application will automatically switch on the fog lamp.
We explain the utilization of AL and CSE for this particular
use case through the different phases of operations. Security
key exchange for establishing association and access control is
not shown but are included in the application. Note that the
derived application is running on a smartphone attached to the
vehicle. The first phase of operation (Figure 4) includes
vehicular and environmental sensors registering their
configurations to the CSE which stores the thing descriptions
in a secure local storage. When the driver is initiating the
search for available sensors, the request is forwarded to the
discovery module which employs the directory based search in
this scenario. The discovered list of devices is sent to the AL
which is then updated to the application user interface.

In the second phase of operation (Figure 5), the driver
provisions the IoT application for ADAS with a humidity
sensor (assuming it exists in the discovery list). Then the AL
instructs the collection proxies to collect data from the use
sensor. The collected data is in SenML form and undergoes
transformation into RDF at data processing module and later a
high level intelligence is measured from that using the
semantic reasoning engine. This can be accomplished in a
smartphone as the M3 framework can be ported to an Android
powered smartphone. If the high level intelligence suggests
there is fog in the driving environment, then a notification alert
can be sent to the driver. The embedded intelligence in the IoT
application can also use the “actuation” feature in AL to turn
on the fog lamp automatically. This will send actuation
command to the collection proxies module which will relay the
command (turn on) to the fog lamp. This completes the third
and final phase of operation of the scenario and is shown in
Figure 6.

A. Evaluation
At first, we evaluated the proposed framework with respect

to the limitations found in state-of-the-art and proposed
requirements. The framework successfully meets all
requirements. An initial evolution the prototype application
reveals that hand-written codes needed for the application is
reduced by 72.1% compared to the one without the framework.
This shows the importance of the open source CSE.

Fig. 4. Phase I with registration and discovery.

Fig. 5. Phase II with provisioning data processing with semantic reasoning.

Fig. 6. Phase II with provisioning data processing with semantic reasoning.

VI. CONCLUSION
The paper aims to ease the IoT development process

through the proposed DataTweet framework. It introduces
significant values and innovations that are not covered by
currently available frameworks. The paper also lists several
requirements for a generic IoT application development
framework. The application logic is decoupled from the
common service entity leading to stakeholders focusing more
on the AL. Through the open source APIs of the CSE, the
handwritten codes can be reduced to a great extent as found in
case of the described use case. The contributions of the
framework are highlighted throughout the paper. As future
work, we are integrating the framework into a test bed to
further examine its performance for industrial applications.

ACKNOWLEDGMENT
This work is supported by French ANR research project

DataTweet (ANR-13-INFR-0008).

REFERENCES
[1] Pankesh Patel, Damien Cassou, Enabling high-level application

development for the Internet of Things, Journal of Systems and
Software, Volume 103, May 2015, Pages 62-84, ISSN 0164-1212.

[2] Pankesh Patel, Ajay Kattepur, Damien Cassou, Georgios Bouloukakis.
Evaluating the Ease of Application Development for the Internet of
Things. [Technical Report] 2013.

[3] Pankesh Patel, Animesh Pathak, Thiago Teixeira, and Valérie Issarny.
2011. Towards application development for the internet of things. In
Proceedings of the 8th Middleware Doctoral Symposium (MDS '11).
ACM, New York, NY, USA, Article 5, 6 pages.

[4] A. Gyrard, S. K. Datta, C. Bonnet and K. Boudaoud, "Cross-Domain
Internet of Things Application Development: M3 Framework and
Evaluation," Future Internet of Things and Cloud (FiCloud), 2015 3rd
International Conference on, Rome, 2015, pp. 9-16.

[5] A. Gyrard, S. K. Datta, C. Bonnet and K. Boudaoud, "Integrating
machine-to-machine measurement framework into oneM2M
architecture," Network Operations and Management Symposium
(APNOMS), 2015 17th Asia-Pacific, Busan, 2015, pp. 364-367.

[6] S. K. Datta, A. Gyrard, C. Bonnet and K. Boudaoud, "oneM2M
Architecture Based User Centric IoT Application Development," Future
Internet of Things and Cloud (FiCloud), 2015 3rd International
Conference on, Rome, 2015, pp. 100-107.

[7] Soukaras, D., Patel, P., Song, H., Chaudhary, S.: Iotsuite: a toolsuite for
prototyping internet of things applications. In: The 4th International
Workshop on Computing and Networking for Internet of Things
(ComNet-IoT), co-located with 16th International Conference on
Distributed Computing and Networking (ICDCN 2015).

[8] Patel, P., Jardosh, S., Application Development Approaches for the
Internet of Things: A Survey, in IEEE Region 10 Symposium 2015.

[9] V. Suraci, S. Mignanti and A. Aiuto, "Context-aware Semantic Service
Discovery," 2007 16th IST Mobile and Wireless Communications
Summit, Budapest, 2007, pp. 1-5.

[10] Jose L. Hernandez, Antonio J. Jara, Leandro Marinc and Antonio F.
Skarmeta G6meza. DCapBAC: Embedding Authorization logic into
Smart Things through ECC optimizations. International Journal of
Computer Mathematics, 1-22,2014..

[11] S. K. Datta, C. Bonnet, R. P. Ferreira Da Costa and J. Härri,
"DataTweet: An architecture enabling data-centric IoT services," 2016
IEEE Region 10 Symposium (TENSYMP), Bali, 2016, pp. 343-348.

[12] S. K. Datta and C. Bonnet, "Integrating Named Data Networking in
Internet of Things architecture," 2016 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW), Nantou, 2016, pp. 1-2.

[13] S. K. Datta, C. Bonnet and N. Nikaein, "An IoT gateway centric
architecture to provide novel M2M services," Internet of Things (WF-
IoT), 2014 IEEE World Forum on, Seoul, 2014, pp. 514-519.

[14] S. K. Datta and C. Bonnet, "Describing things in the Internet of Things:
From CoRE link format to semantic based descriptions," 2016 IEEE
International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Nantou, 2016, pp. 1-2.

[15] J. Swetina, G. Lu, P. Jacobs, F. Ennesser and J. Song, "Toward a
standardized common M2M service layer platform: Introduction to
oneM2M," in IEEE Wireless Communications, vol. 21, no. 3, pp. 20-26,
June 2014.

[16] S. K. Datta, R. P. F. Da Costa and C. Bonnet, "Resource discovery in
Internet of Things: Current trends and future standardization aspects,"
Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on, Milan,
2015, pp. 542-547.

[17] S. K. Datta, C. Bonnet and J. Haerri, "Fog Computing architecture to
enable consumer centric Internet of Things services," 2015 International
Symposium on Consumer Electronics (ISCE), Madrid, 2015, pp. 1-2.

	I. Introduction
	II. State-of-the-Art
	A. Domain specific IoT application development
	B. Cross domain IoT application development
	C. IoT application development suite
	D. Context and discovery based IoT applications
	E. Limitations

	III. IoT Application Framework Requirements
	IV. DataTweet IoT Application Development Framework
	A. Application Logic
	B. Common Service Entity
	1) Collection Proxies
	2) Registration
	3) Configuration Management
	4) Discovery
	5) Data processing and semantic reasoning engine
	6) Subscription and notification
	7) Application and service management
	8) Security
	9) Named Data Networking (NDN)

	C. Deployment capabilities
	D. Interoperability with oneM2M standard

	V. Prototyping and Evaluation
	A. Evaluation

	VI. Conclusion
	Acknowledgment
	References

