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Abstract—Operators, struggling to continuously add capacity
and upgrade their architecture to keep up with data traffic
increase, are turning their attention to denser deployments
that improve spectral efficiency. Denser deployments make the
problem of user association challenging, and much work has
been devoted to finding algorithms that strike a tradeoff between
user quality of service (QoS), and network-wide performance
(load-balancing). Nevertheless, the majority of these algorithms
typically consider simple setups with a single type of traffic,
usually elastic non-GBR (Guaranteed Bit Rate). They also focus
on the radio access part, ignoring the backhaul topology and
potential capacity limitations. Backhaul constraints are emerging
as a key performance bottleneck in future networks, partly
due to the continuous improvement of the radio interface, and
partly due to the need for inexpensive backhaul links to reduce
capital and operational expenditures. To this end, we propose an
analytical framework for user association that jointly considers
radio access and backhaul network performance. Specifically, we
derive an algorithm that takes into account spectral efficiency,
base station load, backhaul link capacities and topology, and
two traffic classes (GBR and non-GBR) in both the uplink
and downlink directions. We prove analytically an optimal user
association rule that ends up maximizing either an arithmetic or
a weighted harmonic mean of the achieved performance along
different dimensions (e.g. UL and DL performance or GBR and
non-GBR performance). We then use extensive simulations to
study the impact of (i) traffic differentiation, and (ii) backhaul
capacity limitations and topology on key performance metrics.

Index Terms—hetnets; backhaul; optimization; traffic differ-
entiation; user-association; load balancing; spectral efficiency.

I. INTRODUCTION

DRIVEN by the exponential growth in wireless data
traffic, operators are increasingly considering denser,

heterogeneous network (HetNet) deployments. In a HetNet,
a large number of small cells (SC) are deployed along with
macrocells to improve spatial reuse [1], [2], [3]. The higher the
deployment density, the better the chance that a user equipment
(UE) can be associated with a nearby base station (BS) with
high signal strength, and the more the options to balance the
load. At the same time, denser deployments experience high
spatio-temporal load variations, and require sophisticated user
association algorithms. There are two key, often conflicting
concerns when assigning UEs to a BS: (i) maximizing the
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spectral efficiency, and (ii) ensuring that the load across BSs
is balanced to improve the utilization efficiency, and preempt
congestion events. The former is usually achieved by associ-
ating the UE to the BS with maximum SINR: this association
rule was the base up to LTE (Long-Term Evolution)-release 8.
While this rule also maximizes the instantaneous rate of a user
(i.e., the modulation and coding scheme - MCS - supported), it
reflects user QoS only when the BS is lightly loaded. However,
user performance, in terms of per flow delay, may be severely
affected if the BS offering the best SINR is congested [4], [5].

As a result, a number of research works have studied the
problem of user association in heterogeneous networks, opti-
mizing user rates [6], [7], balancing BS loads [8], or pursuing a
weighted tradeoff of them [9]. For instance, a distributed user-
association algorithm is proposed in [10], where the global
outage probability and the long term rate maximization are
well studied, in the context of load balancing. The authors
in [11] propose a framework that studies the interplay of
user association and resource allocation in future HetNets,
by formulating a non-convex optimization problem and deriv-
ing performance upper bounds. Range-expansion techniques,
where the SINR of lightly loaded BSs is biased to make them
more attractive to the users are also popular [2], [3]. Finally,
a framework that has received much attention is [9]. This
framework jointly considers a family of objective functions,
each of which directs the optimal solution towards different
goals (e.g. throughput optimal, delay-optimal, load balancing,
etc.), using an iterative algorithm. [12], [13], [14] extend this
framework to further include energy management, e.g., by
switching off under-loaded BSs.

Nevertheless, the majority of these works are relatively
simplified, not taking into account key features of future
networks. Firstly, most existing studies only consider homo-
geneous traffic profiles. For example, [9], [12] assume that
all flows generated by a UE are “best-effort” (i.e. elastic).
However, modern and future networks will have to deal with
high traffic differentiation, with certain flows being able to
require specific, dedicated1 (i.e., non-elastic) resources [15].
Such dedicated flows do not share BS resources like best-
effort ones, are subject to admission control, and sensitive to
different performance metrics [16]. Secondly, the majority of

1In terms of LTE systems, dedicated flows are differentiated by their QoS
class (QCI) with different rate, priority, and latency requirements, whereas
best-effort flows experience the same treatment as they belong to the same
data radio bearer.
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related studies only consider downlink (DL) traffic. Uplink
(UL) traffic is becoming important, due to symmetric (e.g. so-
cial networking) applications, Machine-Type Communication
(MTC), etc. Yet, due to the asymmetric transmit powers of
UEs and BSs, leading to different physical data rates, the BS
which is optimal for DL traffic might lead to severely degraded
performance for UL traffic. Summarizing, a proper user-
association scheme should consider all the above dimensions,
and attempt to strike an appropriate tradeoff between them.

On top of that, most related works focus on the radio access
part (e.g., considering the user rate on the radio interface or
BS load), ignoring the backhaul (BH) network. While this
might be reasonable for legacy cellular networks, given that
the macrocell backhaul is often over-provisioned (e.g., fiber),
this might be quite suboptimal for future cellular networks.
The considerably higher number of small cells, and related
Capital Expenditure (CAPEX) and Operational Expenditure
(OPEX) suggest that backhaul links will mostly be inexpensive
wired or wireless (in licensed or unlicensed bands), and
underprovisioned [17]. Multiple BS might also have to share
the capacity of a single backhaul link due to, e.g, point-to-
multipoint (PMP) or multi-hop mesh topologies to the aggre-
gation node(s) [18]. Finally, various BS-coordinated schemes
have been proposed in the literature as a promising way to
better use the available spectrum and further improve system
performance, e.g., enhanced Inter-Cell Interference Coordina-
tion (eICIC) [19], [20] and Coordinated Multi-Point (CoMP)
transmission [21] scenarios. Such schemes are expected to
further stress the backhaul network capacities. Hence, as the
radio access technologies are constantly improving, it is argued
that the backhaul network will emerge as a major performance
bottleneck, and user association algorithms that ignore the
backhaul load and topology can lead to poor performance [22].

As a result of this increasing focus on the backhaul, some re-
cent works have appeared that attempt to jointly consider radio
access and backhaul. These are mostly concerned with joint
scheduling issues (for in-band or PMP backhaul links) [22],
[23], signaling overhead and performance tradeoffs for co-
operative multi-point communication [24], Software-Defined-
Networking (SDN)-based implementation flexibility [25]. The
user rate maximization problem is studied in [26] under back-
haul capacity constraints, and in [27] jointly with backhaul re-
source allocation and flow control. Also, a distributed user as-
sociation scheme was developed for maximizing the network-
wide spectrum efficiency in [28] using combinatorial optimiza-
tion. Some backhaul aware association heuristics include: [29]
where the sum of user rates is attempted to be optimized in
an energy-efficient manner, [30] where the ergodic capacity
is maximized under an iterative algorithm, and [31] where
resource allocation is investigated in conjunction with carrier
aggregation. Other works in this context include investigation
of caching capabilities to overcome the backhaul capacity
limitations and enhance QoS [32], [33]. Finally, Chen et al.
attempt to derive the total expected delay by considering
retransmission over the wireless backhaul links [34].

Nevertheless, to our best knowledge, none of these works
formally addresses the problem of optimal user association in
future and potentially backhaul-limited HetNets. To this end,

we revisit the user association problem, jointly considering
the radio access and backhaul networks. Specifically, our main
contributions can be summarized as follows

1) We use the popular framework of α-optimal user asso-
ciation [9] as our starting point, and considerably extend it
to include (i) traffic differentiation, (ii) UL traffic, and (iii)
backhaul topology and capacity constraints.

2) We then analytically prove different association rules,
depending on whether UL and DL traffic of the same UE can
be “split” to different BSs or not [35]. Interestingly, depending
on this UL/DL “split” the derived rules end up maximizing
either an arithmetic or a weighted harmonic mean of optimal
association rules per problem dimension.

3) We use our framework to investigate the various tradeoffs
arising in this complex association problem, and provide some
initial insights and guidelines about the impact of traffic differ-
entiation and backhaul limitations in optimal user-association
policies for future HetNets.

4) Our results also highlight some shortcomings of future
HetNets, and indicate potential extensions to tackle them
within our framework. These include the need for joint radio
access and Layer 3 routing on the transport (backhaul) net-
work, and dynamic allocation of access as well as backhaul
resources (e.g., in the context of dynamic TDD).

The remainder of the paper is organized as follows: Sec-
tion II describes the system model and related assumptions.
In Sections III and IV we derive the optimal user-association
policies for provisioned and under-provisioned backhaul net-
work. In Section V we simulate our proposed optimal asso-
ciation rules and attempt to shed some light on the impact
of traffic differentiation, backhaul constraints and topology on
system performance. Section VI concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

In the following, we describe our traffic arrival model
(Section II-A), the discuss our assumptions related to the
access (Section II-B) and backhaul networks (Section II-C).

We use a similar problem setup as the one used in a number
of related works [9], [12], [36], [13], and extend it accordingly.
To keep notation consistent, for all variables considered a
first superscript “D” and “U” refers to downlink (DL) and
uplink (UL) traffic, respectively. A second superscript “b” or
“d” refers to best-effort and dedicated traffic, respectively.
For brevity, in the following we present most notation and
assumptions in terms of downlink traffic only, assuming that
the uplink case and notation is symmetric. Specific differences
will be elaborated, where necessary. In Table I, we summarize
some useful notation we use throughout the paper.

A. Traffic Model

(A.1 - Traffic arrival rates) Traffic at location x ∈ L

consists of file (or more generally flow) requests arriving
according to an inhomogeneous Poisson point process with
arrival rate per unit area λ(x)2. This inhomogeneity facilitates

2Without loss of generality, we do not distinguish between users at location
x, as we assume that all users/flows related to location x are treated similarly.
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TABLE I
NOTATION

Variable Best-Effort Flows Dedicated Flows
Downlink Uplink Downlink Uplink

Flow type superscript D,b U,b D,d U,d
Flow type probability zD ⋅ zb zU ⋅ zb zD ⋅ zd zU ⋅ zd

Devoted amount of bandwidth for BS i wDi ⋅ ζD wUi ⋅ ζU wDi ⋅ (1 − ζD) wUi ⋅ (1 − ζU )
Traffic arrival rate (flows/sec) at x λD,b(x) λU,b(x) λD,d(x) λU,d(x)

Maximum rate ∣ servers at x associated with i-th BS cD,bi (x) cU,bi (x) kDi (x) kUi (x)
System load (utilization density) at x associated with i-th BS ρD,b(x) ρU,b(x) ρD,d(x) ρU,d(x)

Load-balancing degree parameter ∈ [0,∞) αD,b αU,b αD,d αU,d

Total utilization (load) of the i-th BS ρD,b ρU,b ρD,d ρU,d

Probability that a specific flow arriving at x is routed to BS i pD,b(x) pU,b(x) pD,d(x) pU,d(x)
Flow size (in bits per flow) ∣ flow demand (in bps), duration (in sec) at x 1/SD,b(x) 1/SU,b(x) BD(x),1/µD,d(x) BU (x),1/µU,d(x)

Capacity of BH link j CDh (j) CUh (j) - -
Congestion indicator at BH link j ID(j) IU (j) - -

the creation of “hotspot” areas. Each new arriving request
is for a downlink (DL) flow, with probability zD, or uplink
(UL) flow with probability zU = 1 − zD. Each DL (or UL)
flow can further be a best-effort flow (e.g., file download)
with probability zb, or dedicated flow (e.g., a VoIP call), with
probability zd = 1 − zb. zD and zb are input parameters that
depend on the traffic mix.

Using a Poisson splitting argument [37], it follows that
the above gives rise to 4 independent, Poisson flow arrival
processes with respective rates

λD,b(x) = zD ⋅ zb ⋅ λ(x), λD,d(x) = zD ⋅ zd ⋅ λ(x) (1)
λU,b(x) = zU ⋅ zb ⋅ λ(x), λU,d(x) = zU ⋅ zd ⋅ λ(x), (2)

(λD,b(x) for the downlink best-effort flows, λU,b(x) for the
uplink best-effort flows, etc.).

(A.2 - Best effort flow characteristics) Each best-effort
flow is associated with a flow-size (in bits) drawn from a
generic distribution with mean 1/SD,b(x). This can model
heterogeneous flow characteristics across locations.

(A.3 - Dedicated flow characteristics) Each dedicated flow
has a required data-rate (in bits per second) that is drawn from
a generic distribution with mean BD(x). This rate must be
guaranteed by the network throughout the flow’s duration. This
duration (in seconds) is another, independent random variable
with mean 1/µD,d(x).

B. Access Network

(B.1 - Access network topology) We assume an area L ⊂

R2 served by a set of base stations B, that are either macro
BSs (eNBs) or small cells (SCs). These together constitute the
access network.

(B.2 - DL resources) Each BS i ∈ B is associated with a
transmit power Pi and a total downlink bandwidth wDi . Out of
the total bandwidth, ζDi ⋅wDi is allocated to best-effort traffic
and (1−ζDi )⋅wDi for dedicated traffic (0 ≤ ζDi ≤ 1). Throughout
this paper, we will assume that this allocation is static, at least
for a given time window of interest (based on long term traffic
characteristics and operator policy). Dynamically updating the
ζDi parameters could further improve performance, but is
related more to the MAC scheduler of each BS and is out
of the scope of this paper.

Fig. 1. The four queuing systems at the BS level. Flows, initiated from
potentially different user locations x, that belong to the same traffic-class are
aggregated to the same queue.

(B.3 - DL physical data rate) BS i can deliver a maximum
physical data transmission rate of cD,bi (x) to a user at location
x, in absence of any other best-effort flows served, which is
given by the Shannon capacity3

cD,bi (x) = ζDi ⋅wDi ⋅ log2(1 + SINRi(x)), (3)

where SINRi(x) =
Gi(x)Pi

∑j≠iGj(x)Pj+N0
. 4 N0 is the noise power,

and Gi(x) represents the path loss and shadowing effects
between the i-th BS and the UE located at x (as well as
antenna and coding gains, etc.)5. We assume that effects of
fast fading are filtered out. Our model assumes that the total
intercell interference at location x is static, and considered
as another noise source, as is previously considered in most
aforementioned works [9], [12].

3We use Shannon capacity for clarity of presentation. However, our
approach could be easily adapted to include modulation and coding schemes
(MCS). Furthermore, capacity improving technologies, e.g., the use of MIMO,
and modifications to this capacity formula are othogonal to our framework.

4We have assumed that the interference caused to a BS, does not depend on
the load of the (neighboring) BSs that interfere it. This is a standard practice
in the queue modeling, to avoid coupled queueing systems with no closed
form results, e.g. see [4],[9].

5In the case of UL, we assume that the Tx power of each user is PUE ,
and slightly abuse notation for SINR, G, etc., as these don’t play a major role
in the remaining discussion.
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The next 4 points (B.4-B.7) describe the scheduling and
performance model for best effort traffic only. We return to
dedicated traffic in (B.8-B.9).

(B.4 - Best effort load density) We define the service rate
of best effort flows at BS i to be µD,bi (x) = SD,b(x) ⋅ cD,bi (x)
per unit area. Now, we can introduce the load density for best
effort flows, at different locations x

ρD,bi (x) =
λD,b(x)

µD,bi (x)
=

λD,b(x)

SD,b(x) ⋅ cD,bi (x)
, (4)

which is the contribution of location x to the total load of a
BS i, when location x is associated to BS i.

(B.5 - Best effort load) Each location x is associated
with routing probabilities pD,bi (x) ∈ [0,1], which are the
probabilities that best effort DL flows generated for users at
location x get associated with (i.e., are served by) BS i. Then,
we can define the total best effort load ρD,bi for BS i as

ρD,bi = ∫
L

pD,bi (x)ρD,bi (x)dx. (5)

This is a generalization of a well known queueing result for
servers with multiple traffic types (each location x correspond-
ing to a different traffic type) [37], [4]. ρD,bi is the expected
utilization of BS i. We’ll use the terms load and utilization
interchangeably for this quantity. It must be lower than 1 for
the BS to be stable (or, to keep the delays finite). Note that it is
not the instantaneous load but rather the average load this BS
will experience, and is a function of the association variables
pD,bi (x) (which define an “association map”). Hence, similarly
to [4], [9], we are interested in the system flow-level dynamics,
and model the service of DL best-effort flows at each BS as a
queueing system with load ρD,bi shown in Fig. 1. Finally, since
we are interested in the aggregation of all flows at BS level
(i.e. all flows from all locations x associated with BS i), even
if flow arrivals at each x is not Poisson (as in A.1), the Palm-
Khintchine theorem [37] suggests that Poisson assumption is
a good approximation for the BS input traffic.

(B.6 - Best effort scheduling) Proportionally fair schedul-
ing is often implemented in LTE networks for best-effort flows,
due to its good fairness and spectral efficiency properties [4],
[9], [15]. This can be modeled as an M/G/1 multi-class pro-
cessor sharing (PS) system emulated by sharing the available
capacity within time slots or frequency resource blocks. It is
multi-class, because each flow might get different rates for
similarly allocated resources, due to different channel quality
and MCS at x. Interestingly, opportunistic scheduling can be
included into our framework using a multiplicative factor in
the average service rate, e.g. see [4]. Such a factor would
depend on the SINR distribution, the number of served users,
the type of opportunistic scheduling policy etc.

(B.7 - Performance for best effort flows) The stationary
number of flows in BS i is equal to E[Ni] =

ρD,bi

1−ρD,bi

[37].

Hence, minimizing ρD,bi minimizes E[Ni], and by Little’s law
it also minimizes the per-flow delay for that base station [37].
Also, the throughput for a flow at location x is cD,bi (x)(1 −

ρD,bi ). This observation is important to understand how the
user’s physical data rate cD,bi (x) (related to users at location

x only) and the BS load ρD,bi (related to all users associated
with BS i) affect the optimal association rule.

(B.8 - Dedicated traffic load density) Unlike best-effort
flows which are elastic, dedicated flows are subject to admis-
sion control, since they require some resources for exclusive
usage in order to be accepted in the system. Specifically, let
ci
D,d(x) denote the maximum offered rate to users at location

x corresponding to dedicated flows only (referred to (1−ζi) -
see B.3 above). If each flow at x demands, on average, a rate
of BD(x) (see A.3), then at most kDi (x) = ci

D,d
(x)

BD(x)
dedicated

flows from x could be served in parallel by BS i (assuming
again no other flows in the system), and any additional flows
would be rejected6. Similarly to the best effort case (B.4), we
can define a system load density for dedicated traffic at x

ρD,di (x) =
λD,d(x)

µD,d(x)kDi (x)
=
λD,d(x) ⋅BD(x)

µD,d(x) ⋅ ciD,d(x)
. (6)

Hence, a different number of resources kDi (x) can be offered
to different locations x, depending on the rate demand BD(x)
as well as the channel quality (rate ciD,d(x)) at location x.

(B.9 - Dedicated traffic performance) Given the above
heterogeneous blocking model for dedicated flows, we can
approximate the allocation of BS i dedicated resources with an
M/G/k/k (or k-loss) system, where the total load ρD,di can be
calculated as in (B.5) and Eq. (5), using the density of Eq. (6)
and corresponding routing probability pD,di (x) for dedicated
flows (see also Fig. 1). It is known that for M/G/k/k systems,
minimizing ρD,di is equivalent to minimizing the blocking
probability for new flows [37]. This observation is important
to understand that a similar tradeoff (as in B.7) exists between
choosing a BS at x that maximizes kDi (x) (related only to flow
and channel characteristics at x) and choosing a BS whose
total load ρD,di (related to all users attached to BS i).

(B.10 - UL/DL association split) We investigate two
scenarios, depending on the whether a UE is allowed to be
attached to different BSs for its DL and UL traffic [35]:

Split UL/DL: Each UE can be associated to different BSs
for its DL and UL traffic. This allows one to optimize UL and
DL performance independently [38].

Joint UL/DL: Each UE must be associated with the same
BS for both UL and DL traffic (standard practice currently).

C. Backhaul Network

(C.1 - Backhaul network topology) Each access network
node (either eNB or SC) is connected to the core network
through the eNB aggregation gateway via a certain number
of backhaul links that constitute the backhaul network. This
connection can be either direct (“star” topology) or through
one or more SC aggregation gateways (“tree” topology). Fig. 2
shows such a backhaul routing topology.

Without loss of generality, we assume that there is a fiber
link from the eNB to the core network, and focus on the set of
capacity-limited backhaul links (wired or wireless) connecting
SCs to the eNB, denoted as Bh. We denote as routing path

6In fact, since the rate requirement for each flow is a random variable,
using its mean BD(x) in the denominator yields a lower bound for kDi (x)
(by Jensen’s inequality), which can be used as a conservative estimate.
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Bh(i) the set of all backhaul links j ∈ Bh along which traffic is
routed from BS i to an eNB aggregation point. For example,
in Fig. 2, Bh(1) = {1}, and Bh(3) = {1,2,3}. We further
denote as B(j) the set of all BS i ∈ B whose traffic is routed
over backhaul link j. E.g., B(1) = {1,2,3,4} and B(2) =

{2,3,4} in Fig. 2. In the case of a star topology, there is
exactly one (unique) backhaul link used for each BS (i.e.,
∥Bh(i)∥ = ∥B(j)∥ = 1,∀i, j). We assume that the backhaul
route for each BS is given, e.g., calculated in practice as a
Layer 2 (L2) spanning tree, and is an input to our problem.
In Section V, we highlight some limitations of L2 routing.

(C.2 - Backhaul capacity requirement) Each backhaul
link j ∈ Bh is characterized by a DL and UL capacity,
denoted as CDh (j) and CUh (j) bps. These capacities might
be the same or different (e.g., Frequency-Division Duplex
(FDD), or fixed/dynamic Time-Division Duplex (TDD) sys-
tems [39]). Backhaul links usually don’t implement any par-
ticular scheduling algorithm, and can be seen as a data “pipe”.

Without loss of generality, we focus on a scenario with
only best-effort traffic. This not only keeps our backhaul
model tractable as we shall see later, but also allows us to
better understand the impact of backhaul limitations on the
wide system performance. Focusing on the DL, the backhaul
capacity requirement of a backhaul link j ∈ Bh in terms of bits
per sec, consists of the sum of downlink loads (corresponding
to best-effort traffic) of all BSs using that link

∑
i∈B(j)

ρD,bi ⋅ c̃Di . (7)

For example, if a single BS i only uses backhaul link j
(e.g. a star topology), and i has a load of ρD,bi = 0.7, i.e.,
is active 70% of the time on the downlink, then the average
downlink rate on backhaul j will be 0.7 ⋅ c̃Di . As for c̃Di , this is
a parameter tuned by the operator. It could be directly replaced
with the average rate considering all possible locations (e.g.
as in [4]). However, this is a rather optimistic value to use,
and would lead to backhaul link capacities being violated
often. Conversely, the use of peak rate (i.e. assuming the
maximum MCS used for every active flow) corresponds to
the most conservative choice for this parameter. However, it
is well known that this is much higher than the average “busy”
rate [17], and would lead to backhaul resources being wasted
too often. Finally, the direct usage of pi(x) to derive c̃i would
not only complicate significantly the problem at hand, but is
also somewhat superfluous since in most “busy” scenarios the
average rate mostly depends on the edge users [17] and does
not change much. We therefore leave this to the operator as a
design parameter, to set it depending on how conservative he
wants to be and past statistics.Note that Eq. (7) is neither the
BS load nor the backhaul link load but simply the total rate
requirement on the backhaul link (which should not exceed
capacity).

(C.3 - Backhaul provisioning) We have derived the back-
haul capacity requirement (∑i∈B(j) ρ

D,b
i c̃Di ) and defined the

backhaul capacity limitation (CDh (j)) for each link j ∈ Bh
in DL (see C.2). Thus, each of these links shall introduce a
backhaul constraint to avoid exceeding its maximum capacity

and prohibit backhaul congestion in either direction

∑
i∈B(j)

ρDi c̃
D
i ≺ CDh (j), ∑

i∈B(j)

ρUi c̃
U
i ≺ CUh (j), ∀j ∈ Bh. (8)

Throughout this paper, we assume that the backhaul network
is either under-provisioned if the capacity of at least one back-
haul link is exceeded, or provisioned otherwise. We investigate
the user-association problem separately for each scenario in
Sections III and IV, by focusing on different tradeoffs.

III. USER-ASSOCIATION FOR PROVISIONED BACKHAUL
NETWORKS

We start our discussion for optimal user-association by
assuming that the backhaul network is provisioned and so,
we can safely ignore it while deriving the optimal association
rules. Our aim is to focus on the radio access network
performance, and traffic-differentiation involved tradeoffs.

We remind to the reader that based on our system model, the
association policy consists in finding appropriate values for the
routing probabilities pl,ti (x), l ∈ {D,U}, t ∈ {b, d}, for DL
and UL, best-effort and dedicated traffic, respectively (defined
earlier in assumption B.5 and B.9). That is, for each location
x, we would like to optimally choose to which BS i to route
different flow types generated from (UL) or destined at (DL)
users in x7. Our goal for this association problem is threefold:
(i) ensure that the capacity of no BS is exceeded (later in
Section IV, we will also include the constraint of no backhaul
capacity is exceeded); (ii) achieve a good tradeoff between
user physical data rates, user QoS and load balancing, (iii)
investigate how UL/DL association split impacts the optimal
rule derivation and the performance benefits of split UL/DL.

We define the feasible region for the aforementioned routing
probabilities, by requiring that no BS capacity being exceeded.

Definition 1. (Feasible set): Let l ∈ {U,D}, t ∈ {b, d}, and
let ε be an arbitrarily small positive constant. The set f l,t of
feasible BS loads ρl,t = (ρl,t1 , ρ

l,t
2 , . . . , ρ

l,t
∥B∥

) is

f l,t = {ρl,t ∣ ρl,ti = ∫
L

pl,ti (x)ρl,ti (x)dx,

0 ≤ ρl,ti ≤ 1 − ε,

∑
i∈B

pli,t(x) = 1,

0 ≤ pli,t(x) ≤ 1,∀i ∈ B,∀x ∈ L}.

(9)

Lemma 3.1. The feasible sets fD,b, fD,d, fU,b, fU,d

as well as the [fD,b; fD,d], [fU,b; fU,d], [fD,b; fU,b],
[fD,b; fD,d; fU,b; fU,d], are convex.

Proof. The proof for the feasible set fD,b is presented in [9].
It can be easily adapted for the other cases, too (e.g., see [40]).

Following [9] we extend the proposed cost function to also
include the DL dedicated traffic (see B.8-B.9). We introduce
the parameter θ ∈ [0,1] that helps the operator weigh the

7The use of a probabilistic association rule simplifies solving the problem.
As it will turn out, the optimal values will be either 0 or 1 (deterministic).
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Fig. 2. Backhaul topology in future Hetnet.

importance of DL best effort versus DL dedicated traffic
performance. αD,b (αD,d) ≥ 0 controls the amount of load
balancing desired in the DL best-effort (dedicated) resources.
Lets denote αD = [αD,b;αD,d] and ρD = [ρD,b;ρD,d].

Definition 2. (Cost function for DL) Our cost function is

φαD(ρD) = ∑
i∈B

θ
(1 − ρD,bi )1−αD,b

αD,b − 1
+ (1 − θ)

(1 − ρD,di )1−αD,d

αD,d − 1
, (10)

when αD,d, αD,b ≠ 1. If αD,b (or, αD,d) is equal to 1, the
respective fraction must be replaced with log(1− ρD,bi )−1 (or,
log(1 − ρD,di )−1).

As a final step, we want to further extend this objective
to also capture the UL traffic performance and thus we
introduce τ ∈ [0,1] to trade it off with DL. Lets assume that
α = [αD,b;αD,d;αU,b;αU,d] and ρ = [ρD,b;ρD,d;ρU,b;ρU,d].

Definition 3. (Cost function for DL and UL) The cost function
that jointly considers DL and UL performance is

φα(ρ) = τ ⋅ φαD(ρD) + (1 − τ) ⋅ φαU(ρU). (11)

Lemma 3.2. The cost function φα(ρ) is convex in ρ.

Proof. Since φα(ρ) is a weighted sum of four convex func-
tions [9], convexity is preserved [41].

In the rest of the section we attempt to minimize the cost
function φα(ρ) and derive novel user association rules.

Solution Roadmap. Our approach to solve this problem can
be summarized as follows. (i) We first treat the BS loads ρi as
the control variables and derive a sufficient condition for the
optimal ρi values using a first order optimality condition (see
e.g. Eq. (13)). (ii) Since ρi is a function of the association
variables pi(x), we will use the optimal load to derive a
condition on the optimal association decisions conditional on
the BS loads being optimal (see e.g. Eq. (12) or Eq. (17)).
These essentially say where a new flow generated at location
x should go, if the BS loads where such to minimize the
desired objective. Finally, (iii) we use these association rules
to define an iterative algorithm (e.g. see Eq. (18)), where pi(x)
are updated based on a (estimate of the) current (possibly non-
optimal) load. (iv) And, we propose a distributed implemen-
tation of this iterative algorithm, and discuss why it converges
to the optimal loads and thus to the optimal association map.

A. Optimal Split UL/DL User Association

We start with the Split UL/DL scenario (we come back
to the Joint UL/DL scenario in the next section III-B). Here,
since UL and DL traffic can be split at location x, the problem
of optimal DL and UL association decouples into two inde-
pendent problems: one for DL and one for UL. Specifically,
minρ φα(ρ) = minρD φαD(ρD) +minρU φαU(ρU).

Note that all DL best-effort and dedicated flows at x have
to be downloaded from the same BS, i.e., pDi (x) = pD,bi (x) =

pD,di (x). Also, that all UL best-effort and dedicated should
be offloaded to the same BS, so pUi (x) = pU,bi (x) = pU,di (x).
Nevertheless, as explained in Split UL/DL scenarios pDi (x)
and pUi (x) can take different values (see B.10). In that case,
the optimal user association rules follow. In the remainder
of this section, we focus on the downlink, and we omit the
superscripts {D,U} to simplify notation.

Theorem 3.3. If ρ∗ = (ρ∗1, ρ
∗

2,⋯, ρ
∗

∣∣B∣∣
) denotes the optimal

load vector, the optimal association rule at x is

i(x) = arg max
i∈B

(1 − ρ∗bi )
αb

⋅ (1 − ρ∗di )
αd

eb(x) ⋅ (1 − ρ∗di )
αd
+ ed(x) ⋅ (1 − ρ∗bi )

αb

(12)
where eb(x) = θzDzb

Sb(x)ci(x)
and ed(x) =

(1−θ)zDzd

µd(x)ki(x)
, opti-

mally weight the corresponding individual rules, forming the
(weighted) harmonic mean, depending on the traffic statistics.

Proof. We prove that the above association rule (Eq. 12)
indeed minimizes the objective of Eq. (10). This is a convex
optimization problem. Let ρ∗ = [ρ∗b;ρ∗d] be the optimal
solution of Problem (10). (We will relax this assumption in
Section III-C, as the optimal vector ρ∗ is not necessarily
known.) Hence, it is adequate to check for optimality if

⟨∇φα(ρ
∗
),∆ρ∗⟩ ≥ 0 (13)

for all ρ ∈ f , where ∆ρ∗ = ρ − ρ∗. Let p(x) and p∗(x)
be the associated routing probability vectors for ρ and ρ∗,
respectively. Using the deterministic cell coverage generated
by(12), the optimal association rule is given by:

p∗i (x) = 1{i = arg max
i∈B

(1 − ρ∗bi )α
b

⋅ (1 − ρ∗di )α
d

eb(x) ⋅ (1 − ρ∗di )α
d

+ ed(x) ⋅ (1 − ρ∗bi )α
b
}.

(14)
Then the inner product in Eq. (13) can be written as:

⟨∇φα (ρ∗) ,∆ρ∗⟩ = ∑
z={b,d}

∂φα

∂ρz
(ρ∗) (ρz − ρ∗z)

= θ∑
i∈B

1

(1 − ρbi)α
b
(ρbi − ρ∗bi ) + (1 − θ)∑

i∈B

1

(1 − ρdi )α
d
(ρdi − ρd∗i )

= ∑
i∈B

θ ∫L ρbi(x)(pi(x) − p∗i (x))dx
(1 − ρbi)α

b
+

(1 − θ) ∫L ρdi (x)(pi(x) − p∗i (x))dx
(1 − ρdi )α

d

= ∫
L
λ(x)∑

i∈B
(pi(x) − p∗i (x))[

eb(x)(1 − ρ∗di )αd + ed(x)(1 − ρ∗bi )αb

(1 − ρ∗bi )αb(1 − ρ∗di )αd
]dx,

(15)

where eb(x) = θzDLzb

Sb(x)ci(x)
and ed(x) = (1−θ)z

Dzd

µd(x)ki(x)
. Note that,

∑
i∈B

pi(x)
eb(x)(1 − ρ∗di )αd + ed(x)(1 − ρ∗bi )αb

(1 − ρ∗bi )αb(1 − ρ∗di )αd
≥

∑
i∈B

p∗i (x)
eb(x)(1 − ρ∗di )αd + ed(x)(1 − ρ∗bi )αb

(1 − ρ∗bi )αb(1 − ρ∗di )αd

(16)
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holds because p∗(x) in (14) is an indicator for the minimizer

of eb(x)(1−ρ∗di )
αd

+ed(x)(1−ρ∗bi )
αb

(1−ρ∗bi )
αb(1−ρ∗di )

αd
. Hence, (13) holds.

While θ linearly weights the best effort versus dedicated
flow performance (see Eq. 10), the impact of αb, αd is not ob-
vious. We now discuss their impact on the system performance
and refer to [9], [42] for the respective proofs.

● Spectral Efficiency Optimization: αb = 0 maximizes the
average physical rate for best-effort flows (defined in
B.3), whereas αd = 0 maximizes the average dedicated
servers for dedicated flows (defined in B.8). Obviously,
these optimize the user SINR and spectral efficiency.

● Optimizing related QoS metrics: if αb = 1 the corre-
sponding optimal rule tends to maximize the average user
throughput. If αb = 2 the per-flow delay is minimized
since the objective for best effort flows corresponds
to the delay of an M/G/1/PS system. If αd = 1 the
corresponding optimal rule becomes equivalent to the
average idle dedicated servers in a k-loss system, and
the actual blocking probability is minimized.

● Load-Balancing Efficiency Optimization: As αb →∞, we
minimize the maximum BS utilization, i.e. load balancing
between the ρb is achieved. Similar for αd and ρd’s. Note
that, the point of αb that all BS best-effort utilizations are
equalized might be different from the one for dedicated,
depending on the respective traffic statistics.

In the case of split UL/DL association, the above analysis
can be applied separately on UL and DL traffic, and optimize
UL and DL associations independently.

B. Optimal Joint UL/DL User Association

Current cellular networks (e.g. 3G/4G) suggest that a UE
should be connected to a single BS for both UL and DL
traffic [43], i.e. pDi (x) = pUi (x). In that case, the two problems
are coupled and the (single) optimal association rule at x shall
appropriately weight DL and UL performance as it follows.

Theorem 3.4. If ρ∗ = (ρ∗1, ρ
∗

2,⋯, ρ
∗

∣∣B∣∣
) denotes the opti-

mal load vector, and given the set of all flow-types Ω =

{(D, b), (D,d), (U, b), (U,d)}, the optimal rule at x is

i(x) = arg max
i∈B

∏
c∈Ω

((1 − ρ∗c)α
c

)

∑
c∈Ω

ec(x) ∏
l∈Ω≠c

((1 − ρ∗c)αc)
, (17)

where eD,b(x) = τ θDzDzb

SD,b(x)cD,bi (x)
, eD,d(x) = τ (1−θ

D
)zDzd

µD,d(x)kDi (x)
,

eU,b(x) = (1 − τ) θUzUzb

SU,b(x)cU,bi (x)
and eU,d(x) = (1 −

τ) (1−θ
U
)zUzd

µU,d(x)kUi (x)
are the corresponding weight factors.

Proof. We refer the interested reader to [40].

Remark 1. The above optimal rule derived in Eq. (17)
suggests that in the Joint UL/DL scenario associated with
objectives that potentially conflict with each other (due to the
different flow type performances), it is optimal to associate
a user with the BS that maximizes a weighted version of
the harmonic mean of the individual association rules when

considering each objective alone. To better understand this,
we focus on a simple scenario with only DL and UL best-
effort traffic. And assume the following BS options for a
user: (BS A) offers 50Mbps DL and only 1Mbps UL; (BS
B) 200Mbps DL and 0.5Mbps UL; (BS C) 20Mbps DL and
5Mbps UL. If we care about UL and DL performance equally
(i.e. τ = 0.5), one might assume that the BS that maximizes
the arithmetic mean (or arithmetic sum) of rates would be a
fair choice (i.e. BS B). However, this would lead to rather
poor UL performance. Maximizing the harmonic mean would
lead to choosing (BS C) instead8. Additionally, note that in
the case of split UL/DL, covered in Section III-A, where each
user is free to be associated with two different BSs for the
DL and UL traffic offloading, DL traffic would be associated
with (BS B), and UL traffic with (BS C) by maximizing the
arithmetic mean (or, sum) of their throughputs 9. These simple
examples intuitively explain how split UL/DL impacts the user
association policies, by allowing to independently optimize
each objective. This also demonstrates why UL/DL split may
perform considerably better than the joint association. We will
further explore this in the Simulations.

Summarizing, we showed that our framework supports both
best-effort and dedicated (in both DL and UL direction) traffic
demand and we analytically found the corresponding optimal
rules in different scenarios. Nevertheless, we highlight that our
derived formulas allow to add more dimensions in our setup
and flexibly derive the optimal rules without any analytical
calculations (e.g., by using the arithmetic or harmonic mean
maximization). For instance, consider a more modern offload-
ing technique, where different downlink, or uplink, flow types
are able to be offloaded to different BSs (e.g., per flow/QCI
offloading) with conflicting aims. Using our model we can
consider an additional respective α-function for each flow
type, and either analytically or flexibly, optimize the complete
objective as showed earlier.

C. Iterative Algorithm Achieves Optimality

Eq. (12) (or, Eq. (17)) does not yet solve the problem, but
only defines the conditions that should hold at the optimal
point. They essentially define an optimal association map: if
all BS loads have converged to the optimal values, then a
new traffic flow generated at location x should be associated
according to Eq. (12). If the BSs do not currently have
the optimal loads ρ∗i , a distributed iterative algorithm can
be implemented by repeating the following k steps until
convergence (based on Eq. (12)):

Base Station. Each BS maintains an estimate ρ̂i of its
average utilization load. To deal with the utilization constraint
(ρi < 1− ε), the parallel and potentially asynchronous updates
of pi(x) variables, and non-stationarities in the traffic demand,
the BS load estimate ρ̂i is updated regularly as follows:

ρ̂
(k+1)
i = (1 − β(k)) ⋅ ρ

(k)
i + β(k) ⋅ ρ̂

(k)
i . (18)

8While this simple example captures the main principle, the actual rule is
more complex, as it weighs each objective with the complex factor el(x).

9The usage of harmonic mean and arithmetic mean/sum appears in a
number of physical examples, such as in the calculation of the total resistance
in circuits where all resistances are set in series or in parallel.
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This is an exponential moving average with parameter β(k) ∈
[0,1). 10 ρ

(k)
i is the current load measurement while ρ̂(k)i is

the current load average estimate. ρ̂(k+1)
i is used for the next

iteration broadcast message.
Mobile Device. Each user receives the BS broadcast mes-

sage and updates its association variables pi(x) (the real
control variables) according to Eq. (12), where ρ∗i is now
replaced with ρ̂i.

The above algorithm essentially implements a distributed
gradient descent on the ρi. Starting within a feasible point
ρ(0) it converges to the global optimum by requiring a simple
modification of the proof found on the original algorithm [9].
(The descent direction at x, improving the objective at the next
k + 1 iteration i.e. satisfying

⟨∇φα(ρ
(k)

), ρ(k+1)
− ρ(k)⟩ < 0, (19)

is now provided from Eq. (12) under joint DL dedicated/DL
best-effort association. This formula appropriately projects the
direction under the constraint pbi(x) = pdi (x); as shown in
the proof of Theorem 3.3. Similarly for the Joint UL/DL
association, where the problem does not decouple, as well.)

IV. USER-ASSOCIATION FOR UNDER-PROVISIONED
BACKHAUL NETWORKS

While the rules derived above, that try to reflect different
performance tradeoffs, always lead to BS loads that are
supported from the access network, they perhaps will not be
supported from the backhaul link (or the corresponding back-
haul link path) for that BS, since they ignore potential backhaul
limitations. To that end, in this section we try to extensively
consider the backhaul network and related limitations while
extracting the optimal association rules, and include to our
goals (i) that no backhaul link is congested, (ii) the impact of
backhaul topology and capacity on key performance metrics.
In order to better elucidate it at hand and without loss of
generality, we focus on a simple scenario with only best-
effort traffic. So, in the remainder of the section we drop the
corresponding superscripts “b”, “d” to simplify notation.

One of the main challenges when attempting to consider
these backhaul constraints is to maintain the user association
policy distributed (famous solvers for such convex problems,
e.g. through the Lagrangian dual function [41], require a
centralized controller entity). To that end, we chose to consider
the backhaul constraints in the cost function as appropriate
penalty functions [44]. This not only facilitates deriving a
distributed implementation of the policy, but also allows us
to treat the backhaul constraint as a “soft” constraint that ends
up being “hard” and satisfy convergence to a feasible solution.

A. Optimal Split UL/DL User Association

We follow the same presentation as the provisioned case,
and start out discussion with the Split UL/DL case. As the
association problem can be decoupled, in that case, into
two independent problems, we focus on the optimal DL

10In the Split UL/DL scenario the UL and DL loads can be independently
updated, otherwise they should use the same β(k).

association problem, and we omit the superscripts {D,U}.
We return to the Joint UL/DL case in the next section. To
better illustrate our approach, we first consider a simple BH
star topology, and then generalize for tree topologies.

Optimal User Association for Star BH Topology)
In the following, since for star topologies there is exactly

one backhaul link (j) associated with each BS (i), it is i = j
(see C.1). Let I(i) be an indicator variable showing if the i-th
BH link is congested (I(i)=1) or not (I(i)=0) (see C.2)

I(i) =

⎧⎪⎪
⎨
⎪⎪⎩

0, when ρic̃i
Ch(i)

< 1

1, otherwise.
(20)

Furthermore, the objective shall be extended to include the
penalty functions for the backhaul constraints, as it follows:

φα(ρ) =∑
i∈B

(1 − ρi)
1−α

α − 1
+ γ ∑

i∈Bh

I(i)(
ρic̃i
Ch(i)

− 1)

2

. (21)

The first term is the standard α-cost function for each BS
i, already analyzed in the previous section. The second sum
introduces a penalty for each backhaul link i whose capacity
is exceeded (I(i) = 1). γ could be chosen as a small constant,
introducing a “soft” constraint for the backhaul links (i.e.,
backhaul capacity could be slightly exceeded, if this really
improves access performance), or, preferably, be iteratively
adapted using increasing values, so as to converge to a “hard”
constraint. This penalty function is quadratic on the amount of
excess load (quadratic penalty functions are often considered
in convex optimization literature [45]). The corresponding
optimal backhaul-aware rules follow.

Theorem 4.1. If ρ∗ = (ρ∗1, ρ
∗

2,⋯, ρ
∗

∣∣B∣∣
) denotes the optimal

load vector, the optimal association rule at location x is

arg max
i∈B

ci(x)
(1 − ρ∗i )

α

1 + 2γ ⋅ (1 − ρ∗i )
α ⋅ c̃i ⋅

I(i)
Ch(i)

⋅ (
ρ∗i c̃i
Ch(i)

− 1)
.

(22)

Proof. We now prove that the above rule indeed minimizes
the cost function of Eq. (21) within the penalty term γ. This
is a convex optimization problem (quadratic penalty functions
are convex due to the composition property of convexity [41]).
Let ρ∗ be the optimal solution of this problem. (We will relax
this assumption in Section IV-C, as the optimal vector ρ∗ is
not necessarily known.) Again, it is adequate to check if

⟨∇φα(ρ
∗
),∆ρ∗⟩ ≥ 0 (23)

for all ρ ∈ f , where ∆ρ∗ = ρ − ρ∗. Let p(x) and p∗(x)
be the associated routing probability vectors for ρ and ρ∗,
respectively. Using the deterministic cell coverage generated
by (22), the optimal association rule is given by:

p∗i (x) = 1{i = arg max
i∈B

ci(x)(1 − ρ∗i )α

1 + 2γ ⋅ (1 − ρ∗i )α ⋅ c̃i ⋅
I(i)
Ch(i)

⋅ ( ρ∗
i
c̃i

Ch(i)
− 1)

}.

(24)
The i-th element of the derivative is

∇φα(ρi) =

⎧⎪⎪
⎨
⎪⎪⎩

(1 − ρi)
−α, if ρic̃i

Ch(i)
≤ 1

(1 − ρi)
−α + γI(i)

2ρic̃
2
i−2c̃iCh(i)

Ch(i)2
, if ρic̃i

Ch(i)
≥ 1.

(25)
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The inner product defined in Eq. (23), becomes:

⟨∇φα (ρ∗) ,∆ρ∗⟩ = ∑
i∈B

{ 1

(1 − ρ∗i )α
+ γI(i)

2ρ∗i c̃
2
i − 2c̃iCh(i)
Ch(i)2

}(ρi − ρ∗i )

= ∑
i∈B

1 + 2γI(i)(1 − ρ∗i )α
(ρ∗i c̃

2
i−c̃iCh(i))
Ch(i)2

(1 − ρ∗i )α
∫L

ρi(x) (pi(x) − p∗i (x))dx

= ∫
L

λ(x)
S(x) ∑i∈B

⎛
⎜⎜⎜
⎝

1 + 2γ(1 − ρ∗i )αc̃i
I(i)
Ch(i)

( ρ∗i c̃i
Ch(i)

− 1)

ci(x)(1 − ρ∗i )α

⎞
⎟⎟⎟
⎠
(pi(x) − p∗i (x))dx.

Note that,

∑
i∈B

pi(x){
1 + 2γ(1 − ρ∗i )

αc̃i
I(i)
Ch(i)

(
ρ∗i c̃i
Ch(i)

− 1)

ci(x)(1 − ρ∗i )
α

} ≥

∑
i∈B

p∗i (x){
1 + 2γ(1 − ρ∗i )

αc̃i
I(i)
Ch(i)

(
ρ∗i c̃i
Ch(i)

− 1)

ci(x)(1 − ρ∗i )
α

}

holds because p∗i (x) in (24) is an indicator for the minimizer

of
1+2γ⋅(1−ρ∗i )

α
⋅c̃i⋅

I(i)
Ch(i) ⋅(

ρ∗
i
c̃i

Ch(i)−1)

ci(x)(1−ρ
∗
i )
α . Hence (23) holds.

Regarding the optimal association rule of Eq. (22), we
note that when the capacity constraint for the backhaul link
i is not active (i.e., I(i) = 0, in provisioned BH networks),
the above theorem states that the optimal association rule
is the same as the one found in [9], or the one defined in
Eq. (12) when θ → 1. However, when the backhaul link
of BS i gets congested, a second term is added in the
denominator that penalizes that BS making it less preferable
to UEs at location i, even if the offered radio access rate
ci(x) is high, or the radio interface of i is not itself congested.

Optimal User Association for Tree BH Topology)
We now consider a more complex backhaul scenario, where

a single backhaul link might route traffic from multiple BSs,
and the traffic of a single BS might be routed over multiple
backhaul links (multi-hop path) towards the eNB. I(j) is now

I(j) =

⎧⎪⎪
⎨
⎪⎪⎩

0, when ∑i∈B(j) ρic̃i
Ch(j)

< 1

1, otherwise.
(26)

Similarly, the backhaul constraints shall be modified appro-
priately, and the cost function eventually becomes

φα(ρ) =∑
i∈B

(1 − ρi)
1−α

α − 1
+ γ ∑

j∈Bh

I(j)

⎛
⎜
⎜
⎝

∑
i∈B(j)

ρic̃i

Ch(j)
− 1

⎞
⎟
⎟
⎠

2

.

(27)

Theorem 4.2. If ρ∗ = (ρ∗1, ρ
∗

2,⋯, ρ
∗

∣∣B∣∣
) denotes the optimal

load vector, the optimal association rule at location x is

arg max
i∈B

ci(x)
(1 − ρ∗i )α

1 + 2γ ⋅ (1 − ρ∗i )α ⋅ c̃i ∑
j∈Bh(i)

I(j)
Ch(j)

⋅
⎛
⎝

⋅
k∈B(j)∑

ρ∗
k
c̃k

Ch(j)
− 1

⎞
⎠

(28)

Proof. The steps of this proof are similar to the star case, so
we present here directly the corresponding inner product.

⟨∇φα (ρ∗) ,∆ρ∗⟩ =

= ∑
i∈B

{ 1

(1 − ρ∗i )α
+ 2γ ∑

j∈Bh(i)
I(j)[

∑k∈B(j) ρ∗k c̃k
Ch(j)2

c̃i −
c̃i

Ch(j)
]}(ρi − ρ∗i )

⋅ ∫L
ρi(x) (pi(x) − p∗i (x))dx =

= ∫
L

λ(x)
S(x) ∑i∈B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 + 2γ(1 − ρ∗i )αc̃i ∑
j∈Bh(i)

I(j)
Ch(j)

⋅
⎛
⎜
⎝

∑
k∈B(j)

ρ∗k c̃k

Ch(j)
− 1

⎞
⎟
⎠

ci(x)(1 − ρ∗i )α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⋅ (pi(x) − p∗i (x))dx ≥ 0,
(29)

due to the corresponding maximizer p∗i (x) derived from (28).

There are a number of interesting differences between the
optimal association rules of star and tree topology. First, the
penalty term in the denominator of the rule (Eq. (28)) now
considers the whole backhaul path Bh(i) that traffic from BS i
traverses, and adds a penalty for every link along that path that
is congested (outer sum in the denominator). This observation
provides some support for the number of BH hops heuristic
proposed in [46], [29]. However, our analysis also suggests
that it can be suboptimal, as a path with few hops might still
include one or more congested links, and provides the optimal
way to weigh in the amount of congestion on each link.

Second, the actual congestion on each backhaul link j is
now not only dependent on the load of the candidate BS i,
but also on other BSs whose load is routed over j. Hence, a
BS i which would otherwise be a good candidate for traffic at
location x, might still be penalized and not selected, even if it
does not impose itself a large load on a backhaul link j. This
is because other BSs sharing the same backhaul link might be
heavily loaded or congested.

In the case of split UL/DL traffic, the above analysis can
be applied separately on UL and DL traffic, and optimize
UL and DL associations independently. Finally, although we
have provided separate solutions for star and tree topologies,
to better illustrate our approach, the optimal rule for the tree
topology is generic, and includes star topologies as well.

B. Optimal Joint UL/DL User Association

In the Joint UL/DL case, we remind the reader that each
user at x shall be associated with one BS for both UL
and DL traffic, i.e. pDi (x) = pUi (x) ∀i ∈ B , as discussed
in Section III-B. The penalty function should now consider
both uplink and downlink capacity being exceeded on each
backhaul link, and the cost function φα(ρ) becomes

τφαD(ρD) + (1 − τ)φαU(ρU) + γ ∑
k∈{D,U}

∑
j∈Bh

Ik(j)
⎛
⎜⎜⎜
⎝

∑
i∈B(j)

ρki c̃
k
i

Ck
h
(j)

− 1

⎞
⎟⎟⎟
⎠

2

(30)

Here, we present our results directly for the general case of
tree backhaul topology, and we remind the reader that this is
applicable to star backhaul topologies as well.
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Theorem 4.3. If ρ∗ = (ρ∗1, ρ
∗

2,⋯, ρ
∗

∣∣B∣∣
) denotes the optimal

load vector, the optimal user-association rule at location x is

i(x) = arg max
i∈B

(1 − ρ∗Di )
αD

⋅ (1 − ρ∗Ui )
αU

eD(x) ⋅ (1 − ρ∗Ui )
αU

+ eU(x) ⋅ (1 − ρ∗Di )
αD

,

(31)
where if gD = τ, gU = 1 − τ , then for l ∈ {D,U}:

el(x) =

zl
⎛
⎜
⎝
gl + 2γ (1 − ρ∗li )α

l

∑
j∈Bh(i)

Il(j)
Cl
h
(j)

⎛
⎜
⎝

∑
k∈B(j)

ρ∗lk c̃
l
k

Cl
h
(j) − 1

⎞
⎟
⎠

⎞
⎟
⎠

Sl(x)cli(x)
.

Proof. We refer the interested reader to [40].

C. Iterative Algorithm Achieves Optimality

Our proposed iterative framework stays similar in nature as
the one described in Section (III-C).

We now focus on the penalty method and the convergence
to the global optimal point. Using the proposed (quadratic)
penalty functions we now solve a sequence of unconstrained
problems (e.g. see Eq. (21)) with monotonically increasing
values of γ at each iteration (chosen so that the solution to
the next problem is “close” to the previous one; otherwise
we risk getting stuck in steep valleys). Thus, let ρ(k) =

{ρ(0), ρ(1), ..., ρ(k)} be a sequence generated within iterations,
where ρ(l),0 ≤ l ≤ k, is the global minimum of φ(ρ) with
penalty constant γ(l) at the l iteration. Then any limit point
ρ(k) of the sequence is a solution to this problem. This is a
well known result for such convex cost functions proposed
from Luenberger in 1984 [47].

Remark 2. In this remark we want to underline various
important properties of our derived rules (regarding both
Sections III and IV). Firstly, no matter the number of traffic
types and the backhaul topology design, all derived rules
are “device centric”. I.e., the user is able to optimally select
where to associate based on (i) its own measurements, e.g.
ci(x) in Eq. (22), and (ii) BS broadcast information that
jointly capture its access and backhaul performance, e.g. the
fraction seen in Eq. (22). 11 The latter clearly allows for
distributed implementations that do not require any controller
to govern the BSs and the UEs with access to all the necessary
information, e.g., as in [51] . 12 The backhaul penalties can
be seen as the “prices” calculated by each backhaul link and
sent to all connected BSs to express their usage. Alternatively,
the link cost could be measured implicitly [52] and then
broadcasted together with the BS loads ρ̂i, by allowing for
different distributed implementation setups. Finally, note that
our derived rules also satisfy the following important prop-
erties for distributed frameworks: scalable (constant amount
of the BS broadcast messages irrespective of the number of
users, backhaul topology), simple (constant complexity of the

11Such broadcast quantities can be easily integrated through the newly
proposed Access Network Discovery and Selection Function (ANDSF) mech-
anism [48], or in the absolute/dedicated priority list mechanisms of LTE [49],
or in IEEE 802.16m [50].

12Such centralized schemes usually imply a high (a) burden of collecting
all the necessary information to a central location (usually implemented in a
server deep in the core network), processing, and redistributing to every user,
(b) computational complexity that increases exponentially in the network size.

TABLE II
SIMULATION PARAMETERS

Parameter Variable Value
Transm. Power of eNB/ SC/ UE PeNB/PSC/PUE 43/24/12 dBm

BS Bandwidth for DL, UL w/W 10/10 MHz
Noise Power Density N0 -174 dBm/Hz

Splitting parameter for DL, UL ζDi , ζ
U
i 0.5/0.5

Average DL/UL flow sizes 1
SD,b

/ 1
SU,b

100/20 Kbytes
Average DL/UL flow demands BD(x)/BU (x) 512, 128 kbps

Different flow ratios zb, zD 0.3,0.6

rule with respect to the number of BSs), and offer flexible
performance optimization (through α values).

V. SIMULATIONS

In this section we briefly present some numerical results and
discuss related insights. We consider a 2 × 2 km2 area. Fig-
ure 3(a) shows a color-coded map of the heterogeneous traffic
demand λ(x) (flows/hour per unit area) (blue implying low
traffic and red high), with 2 hotspots. We assume that this
area is covered by two macro BSs and eight SCs. The macro
BSs that are shown with asterisks are numbered from 1-2, and
the SCs that are shown with triangles are numbered from 3-
10, as we can see in Fig. 3(b)-(c), Fig. 4, and in Fig. 5. We
also consider standard parameters as adopted in 3GPP [53],
listed in Table II13. If not explicitly mentioned, we assume
θD = θU = τ = 0.5, and the split UL/DL scenario as default.

Before proceeding, we need to setup a metric to evaluate
load balancing (or, utilization) efficiency. Thus, we introduce
the Mean Squared Error (MSED,b), between the DL best-
effort utilization of different BSs, normalized to 1:

MSED,b =
1

2 ⋅ ⌊ ∥B∥
2

⌋ ⋅ ⌈
∥B∥

2
⌉
∑
i

∑
j

(ρD,bi − ρD,bj )
2. (32)

We define the DL load balancing metric for best-effort traffic
to be 1 − MSED,b, that increases on the amount of load
balancing . Similarly, we can define them for the other three
cases 1 −MSED,d, 1 −MSEU,b, 1 −MSEU,d.

A. Provisioned Backhaul

We now focus on the case of provisioned backhaul as
considered in Section III and investigate the involved tradeoffs
both qualitatively and quantitatively. We will present the im-
pact of our proposed association rules via coverage snapshots
to show how users associate in the considered network, while
we will also provide values for related performance metrics
that complete our study numerically.

Spectral efficiency vs. Load balancing. Figure 3(b) outlines
the optimal DL user-associations if αD,b = αD,d = 0, i.e.,
when spectral efficiency is maximized. Thus, each UE at x
is attached to the BS that offers the highest DL SINR and
promises higher DL physical rate for best effort flows cD,bi (x),
and more “dedicated” servers kDi (x); i.e. most of UEs are

13As for (i) the sizes and ratios of different flows, (ii) splitting parameters,
we can use different values in order to capture different simulation scenarios,
and derive similar results.
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attached to macro BSs due to their high power transmission,
and fewer to SCs, forming small circles around them. Conse-
quently, macrocells are overloaded and load imbalance within
the cells is sharpened (decreased 1−MSED,b, 1−MSED,d;
see line 1 of Table III). However, in Fig. 3(c) we emphasize
the load-balancing efficiency and set αD,b = αD,b = 10. Now,
most SCs vastly increase their coverage area in order to offload
the overloaded macro BSs (e.g., BSs 6, 8, 10); “heavily”
loaded (due to the hotspots) BSs, roughly maintain the same
coverage (BS 4 and 7). Thus load balancing is improved, at the
cost of E[cD,b],E[kD] (see line 2 of Table III). For further
implications of α parameters we refer the reader to [9].

Best-effort versus dedicated traffic performance. Although
in the previous scenarios the best-effort- and dedicated- related
traffic rules (represented from αD,b, αD,d) are aligned, one
could ask how would two conflicting optimization objectives
affect our network? The answer lays in the usage of θD,
that judges which objective carries more importance. E.g.,
an operator has two main goals: (i) to maximize the average
number of servers for “dedicated” traffic captured by E[kD]

(set αD,d = 0), (ii) to better balance the utilization of best-
effort resources between BSs (set αD,b = 10). As shown in
Fig. 3(d), if θ → 0 E[kD] is maximized, whereas as θ → 1,
1−MSED,b (DL best-effort load balancing) is optimized, and
each objective comes at the price of the other.

(a) Traffic arrival rate.
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Fig. 3. DL Optimal user-associations (Spectral efficiency vs. Load balancing
and best-effort vs. ded. traffic performance)

TABLE III
NUMERICAL VALUES FOR FIGURE 3.

Rates and Servers Load Balancing
E[cD,b] (Mbps) E[kD] 1-MSED,b 1-MSED,d

Fig. 3(b) 16.3 32 0.77 0.78
Fig. 3(c) 14.3 27 0.96 0.995

DL vs. UL traffic performance is considered in Fig-
ure 3(b), 4(a)-4(b), with respective numerical performance
metrics in Table IV. The first two figures depict the DL and
UL optimal associations, in case of split UL/DL, for each user
at x. However, if split is not available from the operator point
of view, we have to weight whether the DL or UL performance
is more important while selecting a single BS for Joint UL/DL
association, using parameter τ . To that end, Figure 3(b) (also)
outlines the optimal associations in the Joint UL/DL case if
the whole emphasis is on the DL performance (τ = 1): this
hurts the UL performance due to the asymmetric transmission
powers of the UEs and BSs (see line 1 of Table IV). In
Fig. 4(a) the emphasis is moved on the UL performance
(τ = 0), and each UE is attached to the nearest BS, in order to
minimize the path loss [38] and enhance the UL performance;
this hurts its DL performance though (see line 3 of Table IV).
Finally, Fig. 4(b) shows the optimal coverage areas when one
assigns equal importance to the UL and DL performance (i.e.
τ = 0.5): this moderates both DL and UL performance (line
2 of Table IV). This also corroborates the notion that split is
able to simultaneously optimize UL and DL performances, as
already discussed in theory.
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τ = 0.5.

Fig. 4. Optimal user-associations (DL vs. UL traffic performance)

TABLE IV
NUMERICAL VALUES FOR FIGURE 4.

DL performance UL performance
E[cD,b] (Mbps) E[kD] E[cU,b] (Mbps) E[kU ]

Fig. 3(b) 16.3 32 2.3 18
Fig. 4(b) 14.7 28 3 24
Fig. 4(a) 13.3 26 3.6 28

B. Under-provisioned Backhaul

We now continue with some backhaul-limited network
scenarios. We remind to the reader that our focus is on the
backhaul links between the macro cells and SCs (for simplicity
we assume provisioned links between the macro cells and
core network). As already discussed in assumption C.1, we
investigate two different backhaul topology families: (i) “star”
topologies (single-hop paths), (ii) “tree” topologies (with
multi-hop paths), along with two backhaul links types: wired
and wireless.Our aim is to evaluate the derived association
rules described in Section IV for different under-provisioned
scenarios, by fixing the aforementioned trade-offs related to
the traffic differentiation as it follows: θD = θU = 1 (we only
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focus on the best-effort flows by dropping the superscripts “b”
and “d”), and αD = αU = 1 (throughput optimal values). Also,
we assume fixed backhaul routing paths, pre-established with
traditional Layer 2 routing, that the BH capacities on the DL
and UL are the same (i.e. CDh (j) = CUh (j) = Ch, ∀j ∈ Bh),
and if not explicitly mentioned we assume them to be equal
to 400Mbps. We maintain this assumption to facilitate our
discussion, although our framework works for heterogeneous
backhaul links and UL/DL capacities (see C.2). We finally
assumed that c̃i is the 80% of the maximum user capacity
associated with BS i (we have also tried higher values for more
“conservative” scenarios, and also lower for more “aggressive”
with similar conclusions).
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Fig. 5. DL optimal associations in different scenarios.

Before proceeding, we need to make an assumption about
the backhaul link capacities. In case of wired backhaul links,
we assume that the peak backhaul capacity Ch is always
guaranteed. For wireless backhaul links we adopt a simple
model associating peak backhaul capacity to distance: if the
length of the i-th link is ri, the peak capacity drops as:

d(ri) =

⎧⎪⎪
⎨
⎪⎪⎩

1, ri ≤ r0

( r0
ri
)n, otherwise,

(33)

where r0 is some threshold range within which the maximal
rate is obtained (e.g. Line-of-Sight), and n is the attenuation
factor. Hence, the available capacity drops to d(ri)Ch(j) (≤
Ch(j)). For our simulations, we assumed that r0 = 200m,
and n = 3. While the above model is perhaps oversimplifying,
our main goal is to simply include a generic model for the
propagation related impact on wireless backhaul, compared
to wired, without getting into the details of specific backhaul
implementations. For detailed path loss models for different
backhaul technologies, we refer the interested reader to [34].

Coverage Snapshots. In Fig. 5(a) we depict the optimal
DL user-associations for provisioned backhaul network with
respect to the traffic arrival rates shown in Fig. 3(a). Compared
to the associations showed in Figure 3(b) where αD = αU = 0,

we note that now some SCs have slightly increased coverage
area, in order to improve the mean user throughput [9].

In the following, we focus on different under-provisioned
backhaul scenarios, and study the DL associations (similar
behavior in the UL; we refer the interested reader to [40] for
them). In Fig. 5(b) we adopt a wired-star backhaul topology,
where SCs shrink their coverage areas, by handing-over users
to other BSs, in order to offload the corresponding (under-
provisioned) backhaul links; this phenomenon becomes more
intense in the “hot-spot” areas (e.g., BS7 have vastly de-
creased their coverage areas) due to the higher traffic demand.
Similarly, in Fig. 5(c), we assume a wireless-star backhaul
topology, where SCs further decrease their coverage areas,
due to the higher backhaul capacity loss caused from the long
wireless links (see Eq.(33)).

In Fig. 5(d) we adopt a wireless-tree topology, where
some SCs are required to carry also traffic of other SCs,
and end up more congested. As a result, most SCs further
decrease their coverage area, compared to the star-wireless
topology. However, BS7 and BS10 enlarge their coverage
areas, compared to the star case. This occurs because these
SCs are far from the eNB, and multi-hop topology allows
them to route their traffic over shorter wireless links with
smaller capacity losses, compared to the star case (Fig. 5(c)).
Hence, there are two main factors affecting the coverage areas
in such wireless backhaul networks: (topology) each BS-load
might traverse through multi-hop backhaul paths, by “wasting”
resources from more than one backaul links (drawback for
tree topologies); (location) the higher the η,r0 the worse the
capacity loss “wastage” over a dedicated direct backhaul link
(drawback for star topologies that require longer links).

As backhaul networks become increasingly complex, e.g.
“mesh” topologies, each BS has multiple possible routing paths
to follow, beyond what is shown in the figures (we remind
the reader that the above shown topologies are simply the
given spanning routing trees). The above observations thus
underline the shortcomings of predetermined, Layer 2 (L2)
backhaul routing mechanisms, and call for a joint optimization
of user-association on the radio access network along with
dynamic, Layer 3 (L3) backhaul routing.
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(b) UL (global) user throughput.

Fig. 6. Mean throughputs overall all users in the network.

Under-provisioning impact on user performance. Fig-
ure 6(a), 6(b) depict the average DL and UL user throughputs,
as a function of the backhaul capacity constraint Ch, on
different scenarios. Generally, as Ch drops, the mean through-
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puts are decreased, since users are handed over to (poten-
tially far-away) macro BSs, causing performance degradation.
Interestingly, the slope of the dropping rate becomes more
steep for lower values of Ch, due to the logarithimic capacity
formula chosen in assumption (B.2). Also, as Ch increases,
the average throughputs “converge” to the value corresponding
to a provisioned backhaul network. Note that the average
UL throughput convergences more quickly, compared to the
DL. This happens due to the asymmetry between the DL
and UL traffic demand on the radio access network: the UL
one is much lower, mainly due to the asymmetry between
the transmission powers of BSs and UEs, as well as differ-
ent file sizes assumed in each direction. Beyond this point,
the UL backhaul resources will be underutilized. This calls
for a flexible TDD duplexing scheme, that will dynamically
distribute the backhaul resources accordingly, for example by
giving more backhaul resources to DL when the UL demand
is already satisfied (e.g. the eIMTA scheme [54]). Finally, in
the wired case, star topology is always slightly better than the
tree, whereas in the wireless the opposite, as explained earlier.

TABLE V
MEAN THROUGHP. FOR HANDED-OVER USERS (IN MBPS).

Topology Ch = 50 250 500 (Mbps)
DL / UL thr.: Star-Wired 1.1 / 0.2 3.1 / 1.6 4.1 / X
DL / UL thr.: Tree-Wired 0.6 / 0.1 2.4 / 0.7 3.2 / X
DL / UL thr.: Tree-Wirel. 0.2 / 0.03 1.7 / 0.07 2.1 / 0.15
DL / UL thr.: Star-Wirel. 0.1 / 0.001 1.4 / 0.05 1.7 / 0.02

One could notice that user throughputs drop slightly on the
Ch constraint, e.g. in a wired-star topology if Ch drops 500→
50 Mbps (10 times), the mean user throughput only drops
15 → 6 Mbps (∼ 3 times). This is due to the fact that, under-
provisioned backhaul links do not affect the whole network,
but specific groups of users associated with the cells that suffer
from low backhaul capacity. To better illustrate this, in Table V
we show the average throughput of the handed-over users, as a
function of Ch. Indeed, their performance is severely affected:
for the same scenario, their DL throughput drops all the way
to 1.1 Mbps (∼ 15 times). (In scenarios with no handovers,
we mark the respective table entry with an X .)
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(a) DL Spectral efficiency.
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Efficiency.

Fig. 7. Downlink Network Efficiencies (normalized).

Under-provisioning impact on Network Performance. Turn-
ing our attention to network-related performance, Fig. 7(a)
considers spectral efficiency (bit/s/Hz), normalized by the

maximum corresponding value when the network is provi-
sioned. Load-balancing (“utilization”) efficiency is further
considered in Fig. 7(b) in terms of the MSE metric, described
earlier. Both efficiencies converge to 1 as the network gets
provisioned. Low Ch values will push users to handover to
far-away BSs, and this will potentially decrease their SINR
(spectral efficiency decrease), and create steep differences
between BSs loads, e.g. by congesting macro BSs and under-
utilizing the SCs (load balancing decrease). Note that, joint
degradation of these performances also impacts user perfor-
mance negatively (e.g. throughput), as explained in B.7.

Note that regarding spectral efficiency (for the wireless
scenario), there is a crucial point that judges which topology is
better than the other in different under-provisioned cases (that
is actually the point where the two curves meet). Obviously,
this point, that is highly affected by the network topology and
the given set of assumptions, can significantly vary between
different performance metrics (e.g., in terms of load balancing
and user throughput). Note that it is not possible to analytically
derive this cross point, as this depends on the value of the
objective function of the respective optimization problem. As
a result, the actual cross point can only be found via sensitivity
analysis. Nevertheless, we provide here the two main factors
that affect this tradeoff between star and tree topology, to
provide some qualitative insights. These factors are: (i) path
loss characteristics: the higher the path loss (e.g. higher η)
the worse the capacity loss on a long direct backhaul link
required for a star topology, favoring multi-hop connectivity
(i.e. a tree topology). (ii) the number of hops: the higher
the number of backhaul hops the higher the total backhaul
resources consumed “per BS” or “per bit of radio access”,
which might disfavor a tree topology.

TABLE VI
UL/DL SPLIT VS. JOINT-ASSOCIATION IMPROVEMENTS

Performance τ = 0 τ = 0.5 τ = 1

DL / UL Throughput 6% / 32% 4% / 35% 0% / 37%
DL / UL Spectr. Eff. 4% / 29% 3% / 31% 0% / 33%
DL / UL Uiliz. Eff. 7% / 34% 4% / 38% 0% / 41%

Split UL/DL impact. As discussed earlier, while split is able
to optimize the DL and UL performance, simultaneously, Joint
UL/DL association is incapable of this; using 0 ≤ τ ≤ 1 we
can trade-off which dimension is more important. Table VI
illustrates the performance improvements that Split promises
over the Joint UL/DL association, for various underprovi-
sioned scenarios. We underline that split enhances the UL
performance considerably, e.g. the average UL throughput is
increased up to 37%. This is due to the dependency that Joint
UL/DL generates between the DL and UL associations in the
access network, that often makes the DL the bottleneck in
the backhaul (due to aforementioned asymmetry between the
peak access rates). Thus, DL will often “preempt” the backhaul
constraint, and potentially (i) leave some UL resources unused,
(ii) cause UL performance degradation.

Comparison with existing work. We now compare our
proposed algorithm with two others user-association schemes;
specifically, we run them in our considered network topology
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for the wired backhaul case (similar behavior for the wireless).
In Table VII we depict the performance decrease compared
to our scheme in terms of: Spectral Efficiency (SE), User
Performance (UP) (in terms of idle dedicated servers for
dedicated traffic and throughput for best-effort) and Load
Balancing (LB). We have assumed that all BSs associated
with a BH link that is congested decrease their SE and UP
proportionally to the amount of congestion by illustrating the
effective corresponding performance.

Firstly, we investigate the algorithm proposed from Meso-
diakaki et al. that focuses on dedicated traffic demand [29],
[46]. This algorithm involves two stages, each of which
independently considers access and backhaul performance: in
the first, a subset of cells for each users’ association is selected
as candidates separately for DL and UL based on the radio
access conditions (i.e., the DL data rate or the UL path loss
without considering the BS load). Then, the best one among
them is selected based on the BH conditions: the BS with the
fewest backhaul hops to the core is selected as optimal. How-
ever, such a simplistic criterion can lead to rather suboptimal
performance as explained in Section IV-A. Specifically, in our
case, in both DL and UL, we see that effective SE and UP are
decreased since the path with the fewest hops might include
congested backhaul links (obviously, this is more intense in
the tree topology where multiple BSs share the resources of a
single backhaul link). LB is also slightly hurt (by also hurting
UP) since the reference algorithm ignores the BS loads.

Secondly, we consider the user-association algorithm pro-
posed by Domenico et al. for DL best-effort flows [30]. There,
the ergodic capacity is attempted to be maximized through
an iterative algorithm: at each step every user changes its
association if the gain in terms of ergodic capacity is positive.
Nevertheless, such an algorithm, strongly dependent on the
initial condition and the corresponding step directions, does
not necessarily converge to the best point by potentially getting
stuck in subpar steps. Also, heterogeneous traffic demand and
thus BS loads are not considered there. UL traffic and BH
tree topology are not considered, so we (i) assume that UL
associations are identical as DL, and (ii) extend the proposed
resource allocation policy to evenly split the available link
resources in tree topologies. Simulation results show sig-
nificant performance degradation since in the (suboptimal)
converged point (i) some users end up being attached to far-
away BSs, and (ii) some BSs are driven to congestion while
attempting to improve ergodic capacity by affecting LB and
SE, correspondingly. Joint degradation of them also impacts
UP negatively, as explained in (B.7).

TABLE VII
COMPARISON WITH EXISTING WORK.

DL performance UL performance
Algorithm SE UP LB SE UP LB

[29], [46] Star-Wired 1.4 1.3 1.2 1.8 2.1 1.3
[29], [46] Tree-Wired 1.5 1.4 1.2 2.2 3.2 1.4

[30] Star-Wired 5.3 5.6 2.1 3.9 5.1 1.1
[30] Tree-Wired 5.7 5.9 2.4 4.1 5.4 1.2

VI. CONCLUSION

In this paper, we propose a user-association framework
for future HetNets by investigating both (a) provisioned, and
(b) underprovisioned backhaul network scenarios. We showed
how traffic differentiation, different backhaul topologies and
capacity limitations affect the user and network performance,
with joint consideration of the access and backhaul resources.
Initial simulation results corroborate the correctness of our
framework, and reveal interesting tradeoffs for different net-
work scenarios, as well as potential drawbacks of schemes
operated in the backhaul, currently.
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