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ABSTRACT
This paper addresses the problem of data retrievability in
cloud computing systems performing deduplication to opti-
mize their space savings: While there exist a number of proof
of retrievability (PoR) solutions that guarantee storage cor-
rectness with cryptographic means, these solutions unfor-
tunately come at odds with the deduplication technology.
To reconcile proofs of retrievability with file-based cross-
user deduplication, we propose the message-locked PoR ap-
proach whereby the PoR effect on duplicate data is identical
and depends on the value of the data segment, only. As a
proof of concept, we describe two instantiations of exist-
ing PoRs and show that the main extension is performed
during the setup phase whereby both the keying material
and the encoded version of the to-be-outsourced file is com-
puted based on the file itself. We additionally propose a
new server-aided message-locked key generation technique
that compared with related work offers better security guar-
antees.

Keywords
secure cloud storage, proofs of retrievability, data dedupli-
cation, message-locked encryption, server aided encryption

1. INTRODUCTION
With the various advantages such as highly efficient and

reliable storage facilities and cost savings, the adoption of
the cloud technology is on a significant rise. Among major
cloud providers, Amazon S3 and Google drive nowadays offer
unlimited storage space almost for free [1, 2]. As the number
of customers and the volume of stored data continues to in-
crease, so do the concerns: On the one hand, by outsourcing
the storage of their data, customers lend the full control of
their data to cloud providers and have no means to verify
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the integrity of their services; on the other hand, cloud ser-
vice providers are facing an exponential storage consumption
which becomes extremely difficult to control.

To address the problem of data integrity and hence in-
crease customer trust in the cloud, several proof of retriev-
ability (PoR) schemes [18, 5, 23, 7] have been proposed
whereby the cloud storage server proves to its customers
that their data are correctly stored. Such techniques imple-
ment a secure encoding algorithm that incorporates some
integrity values within the file before the upload. These
values are further used during the PoR verification phase.
While existing PoR schemes mainly look for means to op-
timize the performance of PoR at the customer side, they
usually assume that cloud providers have potentially infinite
resources to store data and compute proofs of retrievability.
Such an assumption unfortunately becomes too strong with
the explosion of digital content. Cloud providers, nowadays,
look for different data reduction techniques including data
deduplication [14] to optimize their storage capacity: By
eliminating duplicate copies of data, cloud servers achieve
high storage space savings [20]. Unfortunately, current PoR
solutions are incompatible with data deduplication as the in-
tegrity values resulting from the encoding algorithm are gen-
erated using a secret key that is only known to the owner
of the file, and thus unique. Therefore, the encoding of a
given file by two different customers results in two different
outputs.

In this paper, we aim at consolidating PoR with file-based
deduplication and propose message-locked proofs of retriev-
ability (ML-PoR) which assure that the underlying encoding
algorithm is deterministic and hence produces the same out-
put for duplicate files. As its name suggests, in a message-
locked PoR, the PoR effect is derived from the file, solely.
Hence, the encoding of duplicate files by different customers
results in the same outputs which can thus be deduplicated.
A similar approach has been proposed to cope with the prob-
lem of deduplication over encrypted data: Secure deduplica-
tion solutions make use of message-locked encryption [14, 9]
whereby the encryption key is derived from the data. Since
a symmetric PoR scheme makes use of secret keys during
the encoding process and the verification of data retriev-
ability, we propose that, likewise, a ML-PoR extracts these
keys from the file. In order to protect the secrecy of these
message-locked keys which can easily be discovered if files
are predictable, the proposed message-locked PoR makes use



of a dedicated key generation technique such as the recently
proposed server-aided key generation techniques [8, 4] which
prevent cloud servers from discovering message-locked keys
through simple dictionary attacks. Such techniques output
a cryptographic key that not only depends on the actual file
but also on a secret key generated by a key server. In addi-
tion to the design of a message-locked PoR, we propose a new
server-aided message-locked key generation technique which
compared to existing solutions, relaxes the trust model and
ensures that neither the cloud server nor the key server can
guess message-locked keys.

The rest of this paper is organized as follows. Section 2
reviews the definition of a proof of retrievability scheme and
further introduces the inherent conflict between PoR and
deduplication. The idea of the underlying solution is pre-
sented in Section 3. Section 4 describes the entire solution
including the newly proposed server-aided message-locked
key generation technique. Section 5 specifies two instantia-
tions building upon two different PoR schemes. The security
and performance of the solution are analyzed in Sections 6
and 7, respectively.

2. PROBLEM STATEMENT
In this section, we remind the formal definition of a proof

of retrievability (PoR) scheme and briefly sketch existing
solutions. We further describe the main problem we tackle
in this paper, namely, the incompatibility of PoRs with data
deduplication.

2.1 Proofs of Retrievability
With the almost unlimited storage capacity offered by

cloud service providers, customers tend to outsource large
amounts of data. Since the storage operation is remotely
performed by potentially malicious cloud storage servers,
customers lose the control over their data and therefore look
for some guarantees on the correct storage operation. The
recently proposed proofs of retrievability (PoR) [5, 23, 18, 7]
are cryptographic techniques that enable customers to verify
the correct storage of their large data without the need for
retrieving it entirely.

Formally, a PoR scheme involves a data owner DO who
wishes to upload a file F to a cloud storage server CS and
to further query CS for some proofs on the integrity of F
using five polynomial-time algorithms:

• KeyGen(1τ ) → K: This probabilistic key generation
algorithm is executed by DO as a first step. It takes
as input a security parameter τ , and outputs some
keying material K for DO.

• Encode(K,F ) → (fid, F̂ ): DO calls this algorithm be-
fore the actual outsourcing of her file. It takes as inputs
the key K and the file F composed of n splits, namely,
F = {S1, S2, ..., Sn} and returns a unique identifier

fid for F and an encoded version F̂ = {Ŝ1, Ŝ2, ..., Ŝn}
which includes some additional information that will
further help for the verification of F ’s retrievability.

• Challenge(K, fid)→ chal: Once the encoded file F̂ with
identifier fid is outsourced to CS, DO invokes this algo-
rithm with secret key K and file identifier fid to com-
pute a PoR challenge chal and sends the result to CS.

• ProofGen(fid, chal) → P: This algorithm is executed
by CS and returns a proof of retrievability P given file
identifier fid and the PoR challenge chal.

• ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: Upon recep-
tion of P, data owner DO calls this algorithm which
takes as input the key K, the file identifier fid, the
challenge chal and the proof P and outputs b = 1 if P
is a valid proof and b = 0 otherwise.

Existing PoR schemes are probabilistic solutions: They
ensure the integrity of the entire data with a certain high
probability. For each PoR query, DO samples a subset of
file blocks and verifies their integrity. PoR solutions can
be classified into two categories which mainly differ with
respect to their setup phases where F is initially encoded
before its actual outsourcing to CS. Their respective encod-
ing functions either integrate pseudo-randomly generated
blocks within the data at random positions [18, 7], or com-
pute an authentication tag for each block [5, 23]. In the
first category of solutions, named as watchdog-based PoRs,
DO embeds pseudo-randomly generated “watchdogs” [7] or
“sentinels” [18] and further encrypts the data to make them
indistinguishable from original data blocks. During the ver-
ification phase, DO retrieves a subset of these watchdogs.
Other solutions which during the setup phase compute an
authentication tag for each data block, retrieve a subset of
data blocks together with the tags and verify their integrity.
Most of recent tag-based solutions [23, 6] employ homomor-
phic tags which during the verification phase, reduces the
communication overhead: DO will query the CS to receive
a linear combination of a selected subset of blocks together
with the same linear combination of the corresponding tags.

2.2 Conflict between PoR and deduplication
In the last decade a number of solutions have been sug-

gested to address PoR and deduplication as separate prob-
lems. Yet any attempt to come up with a monolithic cloud
storage system based on a simple composition of PoR with
deduplication seems to be doomed to fail due to some inher-
ent conflict between current PoR and deduplication schemes.

The root cause of the conflict is that PoR and dedupli-
cation call for diverging objectives: PoR aims at imprint-
ing the data with retrievability guarantees that are unique
for each user whereas deduplication tries, whenever feasi-
ble, to factor several data segments submitted by different
users into a unique copy kept in storage. Indeed, in the
case of watchdog-based PoR schemes such as [18, 7] that
insert pseudo-randomly generated sentinels or watchdogs in
the outsourced data, simple composition with deduplication
would fail because the pre-processing akin to this family
of PoR schemes includes semantically secure encryption by
each user that prevents the detection of duplicate data seg-
ments (see Fig. 1). In the case of tag-based PoR solutions
such as [5, 23], the users append a tag to each data seg-
ment before storing them in the cloud. Since the tags are
computed under a private key generated by each user, the
tags stored with the duplicate copies of identical segments
submitted by different users will still be different; and in
case of deduplication, even if storing a single copy for all
duplicate segments would be consistent with respect to ba-
sic data management, the PoR scheme would still require
that the tags generated by each user for the deduplicated
data segment be kept separately in storage (see Fig. 2).



Figure 1: Conflict between deduplication and watchdog-based PoR

Figure 2: Conflict between deduplication and tag-based PoR

The additional storage resulting from these tags increase
very rapidly with the number of users sharing the same data.
In the private PoR scheme described in [23] with a split of
160 blocks of size 80 bits, the storage overhead resulting
from PoR tags of 80 bits each, is 0.625% per user. For
example, a 4GB file uploaded by 100 users would require
62.5% additional storage, that is 2.5GB whereas if tags are
to be deduplicated this overhead would remain constant and
equal to 25.6MB only.

3. MESSAGE-LOCKED POR

3.1 Idea
In this section we sketch the idea of a generic approach

that solves the conflict between PoR and deduplication paving
the way for a simple integration of PoR and deduplication
within the same cloud storage system. The root cause of the
conflict is the difference in the way duplicate data segments
submitted by different customers are handled by PoR and
deduplication, namely, the fact that deduplication summa-
rizes all duplicates into a single copy whereas PoR requires
that every duplicate segment be kept separately in order to
preserve the user-specific effect of PoR on each duplicate.
Consequently, a new approach aiming at achieving identical
PoR effects on duplicates submitted by different customers
seems to be the right solution for a simple composition of
PoR with deduplication. Further along the same direction,
the new approach should assure that PoR’s effect on each
data segment depends on the value of the data segment re-
gardless of the difference in the identity of the customers
submitting the data segments, in other words, these PoR
operations should be a function of the data segment’s value
independently of the customer’s identity. We thus define
such PoR schemes that would be compatible with dedupli-
cation as message-locked proofs of retrievability.

A straightforward technique to implement message-locked
PoR consists of defining the PoR operation on the data seg-
ment as a one-way function of the data segment. Without
loss of generality existing PoR schemes can be represented

by P (d,K) as a function P of the data segment d and a key
K that is determined by each data owner performing the
PoR processing on d. In the case of tag-based PoR schemes
K is the secret key used to produce the tags, whereas in
PoR schemes relying on watchdogs K is the secret key used
to generate the watchdogs and encrypt the data. Given
a one-way hash function f , existing PoR schemes can be
transformed to become message-locked by simply substitut-
ing K with f(d) in the existing PoR function P (d,K). Based
on this technique any existing PoR scheme can be trans-
formed into a message-locked PoR and as such be smoothly
integrated with a deduplication function. Yet a new con-
cern arises about the substitution of the secret key K with
the result of a one-way hash function of the data segment.
A similar question has been tackled when dealing with the
problem of deduplication of encrypted data and several so-
lutions ranging from convergent encryption [14] to schemes
exploiting the popularity of data segments [25, 22] through
server-based protocols [8, 21] have been suggested. Like
message-locked PoR, these solutions also rely on a key de-
rived from the data segment using some one-way function
often called a message-locked key. The message-locked PoR
transformation suggested in this paper can be based on any
secure message-locked key generation technique. Therefore,
for the sake of completeness, we review next, previous work
on message-locked key generation protocols that were tai-
lored for secure deduplication.

3.2 Message-Locked Key Generation for Se-
cure Deduplication

The problem of secure message-locked key generation was
already analyzed in the context of secure deduplication. In-
deed, cross-user deduplication also raises an inherent incom-
patibility with data confidentiality: The semantically secure
encryption of a same data segment performed by different
data owners ensues completely different results for the same
original copies.

To show that deduplication and encryption can coexist,
authors in [14] introduce the concept of convergent encryp-



tion whereby all existing copies of a file is encrypted with the
same encryption key: the encryption key simply is the hash
of the file. While this initial approach where the encryption
key is derived from the file itself seems ideal to achieve stor-
age efficiency and data confidentiality at the same time, it
unfortunately suffers from several weaknesses including dic-
tionary attacks during which a cloud storage server CS can
try to guess the file. A curious CS can compute the hash
of potential candidates of a given file, derive an encryption
key, and check whether the encryption of the file with this
key is actually stored at its premises.

To thwart this type of attacks, [8] introduces a key server
KS. The idea is that every time a user wants to upload
a file it will engage in an instance of an oblivious pseudo-
random function (OPRF) protocol [11] with KS to generate
a secret key with which the file to be uploaded is going to be
encrypted. In order to ensure that users owning the same
file agree on the same key, the user’s input to the OPRF will
depend on the file. As a result, the proposed scheme puts
an end to offline attacks and forces the cloud storage server
CS (or a user) to contact KS whenever it makes a guess for
an uploaded file. This allows KS to implement rate-limiting
measures to restrict the number of queries CS can issue, and
as a by product limit the number of dictionary attacks CS
can conduct in a given period of time.

Building on the same idea, the authors of [4] propose
ClearBox which is a transparent storage service that pro-
vides privacy-preserving deduplication while making sure
that users are charged only for the storage they actually
use. The main contributions of ClearBox are twofold: Re-
place OPRF with a BLS blind signature [10] to reduce the
communication and the computation cost of the key genera-
tion protocol; and combine Merkle trees and time-dependent
randomness (obtained by leveraging some bitcoin function-
alities) to ensure that the amount of money users pay is
proportional to the rate of deduplication of their uploaded
files.

While the work of [8, 4] succeeds in circumventing offline
dictionary attacks by CS, they are both prone to offline dic-
tionary attacks by KS. To address this issue, Liu et al.
[19] devised a solution that allows users to agree on a secret
key without connecting to a key server. The proposed solu-
tion relies on additively homomorphic encryption, password-
authenticated key exchange (PAKE) and low-entropy hash
to empower users uploading the same file to derive the same
encryption key. Furthermore by using low-entropy hash, the
scheme in [19] is able to have a rate-limiting strategy per file,
which offers better security guarantees than [8, 4] that de-
ploy rather a rate-limiting strategy per user.

As stated in the previous section, any of these solutions
can be used as a building block to achieve message-locked
PoR, nevertheless, we propose a different approach that does
not rely on a single key server, but without the complexity
of peer-to-peer systems. The idea is to have the data owner
DO interact with both cloud server CS and key server KS
to generate the message-locked secret key that will later be
used as input to the message-locked PoR. The new solution
will be described in Section 4.3.

4. MESSAGE LOCKED POR - SOLUTION

4.1 Overview
We consider a cloud storage model that comprises a num-

ber of affiliated data owners who are interested in securely
outsourcing their files to a cloud storage server CS. More-
over, these data owners wish to take advantage of the ben-
efits of cross-user file-level deduplication performed by CS
(e.g., reduced storage costs) whilst still being assured of the
integrity of their outsourced data. The latter goal is achieved
through proofs of retrievability which, as discussed earlier,
offer a data owner DO cryptographic guarantees on the cor-
rect storage of her outsourced data at the cost of a pre-
processing (setup) phase during which algorithms Keygen
and Encode are executed to prepare the DO’s files for up-
load. Generally, the Encode algorithm consists of combining
error-correcting codes (ECC) with cryptographic primitives
such as encryption and MACs to build a verifiable version
of the file to be uploaded.

This entails that in order to allow CS to deduplicate the
outsourced files, data owners uploading the same file should
provide algorithm Encode with the same input. Notably, the
data owners should agree on the secret keys of the crypto-
graphic functions. To that effect, we propose a new ML-
KeyGen algorithm that allows a data owner DO with some
file F to generate a key KF by communicating with a key
server KS and cloud storage server CS such that KF is gen-
erated using a one-way function of file F , and the secret keys
of KS and CS (cf. Section 4.3). Thanks to ML-KeyGen, we
can transform any PoR scheme into a message-locked PoR
by applying minor changes to the Encode algorithm. This
provides data owners with secure means to verify the in-
tegrity of their outsourced files while at the same time saving
storage (via deduplication) at the cloud storage server.

As to what type of deduplication to use, ML-PoR goes
with server-side deduplication. We recall that in server-
side deduplication, the data owners upload their files to CS,
which in turn performs the deduplication. Client-side dedu-
plication on the other hand lets data owners upload their
files only if copies of these files are not already stored. Al-
though in terms of bandwidth, client-side deduplication is
generally more efficient, it requires that each data owner up-
loading an already existing file engages in a Proof of Owner-
ship (PoW) protocol [16] with CS. While to simplify the pre-
sentation we opt for server-side deduplication, we note that
our solution marries well with any existing PoW scheme, as
will be discussed in Section 7.

In subsequent sections, we describe ML-KeyGen, our pro-
tocol for message-locked generation and how to change the
Encode algorithm of any PoR scheme to get a new algo-
rithm ML-Encode that is message-locked (i.e the same input
file results in the same encoding).

4.2 Threat model
Since the solution uses a server aided key generation solu-

tion for deduplication, similarly to all previously proposed
server-aided encryption solutions, it assumes that the cloud
server CS does not collude with the key server KS. Further-
more, cloud users are assumed not to collude either with
the cloud server or with the key server. Therefore, the only
information the cloud server can have access to is users’ en-
coded (encrypted) data and the messages exchanged during
the message-locked key generation protocol.

4.3 ML-Keygen: Server-aided message-locked
key generation

In this section, we describe a new server-aided message-



Data Owner Key Server Cloud Storage Server

h← H∗(F )

α, β
R← Z∗p

ĥ← h · gα1
ĥ−−−−−−−−→

ŝ← (ĥ)
κ

ŝ←−−−−−−−−
s← ŝ · y−αKS,1

s̃← s · gβ1
s̃−−−−−−−−−−−−−−−−−−−−−−−−−→

c̃← (s̃)γ

c̃←−−−−−−−−−−−−−−−−−−−−−−−−−
c← c̃ · y−βCS,1

ret: KF ← H(c)

Figure 3: ML-KeyGen- Protocol Description

locked key generation protocol, ML-KeyGen, that will be
used by ML-PoR to generate the keying material for PoR.
Compared to related work, this new solution offers better se-
curity guarantees, as it protects against dictionary attacks
that could be launched by the key server as well. ML-KeyGen
extends the solution in [4] by generating the message-locked
key using two secret keys each of them generated by KS and
CS respectively. Thanks to this solution, neither KS nor CS
can solely mount dictionary attacks.

The proposed protocol is executed among a data owner
DO, the key server KS and the cloud storage server CS.
Let G1 and G2 be two groups of prime order p with g1 and
g2 as their respective generators, and e : G1 × G2 → GT be
a bilinear pairing. We also define two cryptographic hash
functions H∗ : {0, 1}∗ → G1 and H : G1 → {0, 1}τ with τ
being a security parameter. During a setup phase, KS and
CS, respectively choose a private key κ ∈ Z∗p and γ ∈ Z∗p
and publish their corresponding public keys (yKS,1 = gκ1 ,
yKS,2 = gκ2 ) and (yCS,1 = gγ1 , yCS,2 = gγ2 ). As depicted in
Figure 3, DO computes an initial message-locked key h for
file F by simply computing the hash of F : h← H∗(F ). This
key is further blinded using a pseudo randomly generated
value α ∈ Z∗p and the result denoted by ĥ is sent to KS.
Thanks to the underlying blinded signature, KS computes
the signature of ĥ using its private key κ. Upon reception of
this blinded signature, data owner DO unblinds this value
to derive the signature of h. Hence: s = hκgακ1 g−ακ1 . Once
s is successfully verified by checking if e(s, g2) = e(h, yKS,2),
DO blinds s using a second random value β ∈ Z∗p and sends
the result s̃, this time, to cloud server CS. Similarly to
KS, CS signs s̃ and returns this signature to DO. DO in
turn, unblinds c̃ to derive the signature c = hκγgβγ1 g−βγ1

and verifies the signature using yCS,2. If the verification
succeeds, the message-locked key KF equals H(c) = H(hκγ).
Thanks to this new key generation solution neither party
can perform offline dictionary attacks. More details on the
security of ML-KeyGen are provided in Section 6.1.

4.4 ML-Encode: Message-Locked POR En-
coding

Generally speaking, the preprocessing step of PoR schemes

consists of the following operations: (i) applying an error-
correcting code to the file to be uploaded so as to allow DO
to recover from accidental errors; (ii) encrypting and per-
muting the file to hide the dependencies between data blocks
and redundancy (ECC) blocks; (iii) incorporating some in-
tegrity values to authenticate the file. It follows that for
message-locked PoR to work, users should not only generate
the same secret for the same file, but also agree on the the
ECC parameters, the encryption and the permutation algo-
rithms and the integrity mechanisms. Accordingly in our
scheme, we let KS choose and advertise these parameters
and algorithms before any data owner joins the system. In
this manner, we ensure that the encoding operation yields
the same output for a fixed input file regardless of the data
owner carrying it out.

To summarize, ML-Encode runs in the same way as a reg-
ular Encode, except for the following: The secret keys are
generated using ML-KeyGen and all the parameters related
to PoR (e.g. ECC algorithm and cryptographic functions)
are provided by KS.

5. ML-POR INSTANTIATIONS
To illustrate the feasibility of message-locked PoRs, we

describe in what follows two instantiations that build upon
the PoR schemes from [7, 23]. Before the detailed descrip-
tion of our instantiations, we note that like a regular PoR a
message locked PoR comprises five algorithms: ML-KeyGen,
ML-Encode, ML-Challenge, ML-ProofGen and ML-ProofVerif.
We note that algorithms ML-Challenge, ML-ProofGen and
ML-ProofVerif are executed in the same way as their coun-
terparts in the original protocols. Therefore, in the follow-
ing we only describe ML-KeyGen and ML-Encode algorithms.
The interested reader may refer to [7, 23] for more details
on the original algorithms.

5.1 ML-Stealthguard: A message-locked PoR
scheme based on watchdogs

This section describes a message-locked PoR that extends
an existing watchdog-based solution named StealthGuard
[7]. In StealthGuard, data retrievability is achieved thanks
to the oblivious insertion of pseudo-random generated blocks



Table 1: ML-StealthGuard’s Public Parameters

Public Parameter Description

τ security parameter of StealthGuard
l size of a block
m number of blocks in a split Si
v number of watchdogs in one split
ρ ECC code rate ρ = m

m+d

(D,m, d)-ECC ECC correcting up to d
2

errors per split
Enc : {0, 1}τ × {0, 1}∗ → {0, 1}∗ encryption algorithm
Φ : {0, 1}τ × {0, 1}∗ × {0, 1}∗ → {0, 1}l watchdog generator
ΠF : {0, 1}τ × [[1, n ·D]]→ [[1, n ·D]] pseudo-random file-level permutation
ΠS : {0, 1}τ × [[1, D + v]]→ [[1, D + v]] pseudo-random split-level permutation
HpermF : {0, 1}∗ → {0, 1}τ file-level permutation key generator
Henc : {0, 1}∗ → {0, 1}τ encryption key generator
Hwdog : {0, 1}∗ → {0, 1}τ watchdog key generator
HpermS : {0, 1}∗ × [[1, n]]→ {0, 1}τ split-level permutation key generator

named watchdogs. Furthermore, StealthGuard leverages a
privacy-preserving word search scheme in order to query
the watchdogs without leaking any information about their
value or their position within the data.

5.1.1 Overview of StealthGuard
A data owner DO wishing to outsource a file F proceeds

as follows:

• DO calls the algorithm KeyGen to derive a secret key
K that is used to process F before outsourcing it to
cloud server CS as well as to verify its retrievability
later.

• DO then calls algorithm Encode, which is the algo-
rithm that prepares file F for upload. Hence, algo-
rithm Encode applies ECC to F , and then using se-
cret key K determines the value and location of the
watchdogs within the encoded file and permutes and
encrypts the file.

Once F is uploaded, DO can indefinitely query randomly
chosen watchdogs thanks to the underlying privacy preserv-
ing search mechanism without leaking any information about
the actual watchdog and its position.

5.1.2 ML-StealthGuard
In order for StealthGuard to become compatible with se-

cure deduplication, it needs to be slightly modified such that
all data owners who outsource the same file F to cloud stor-
age server CS compute the same verifiable version of that
file. In particular, we make StealthGuard message-locked
by leveraging the newly proposed ML-KeyGen. Additionally,
KS publishes some parameters which should be common for
all data owners in the system in order for ML-Encode to be
deterministic and return the same output for each of its exe-
cution over the same file. These public parameters are listed
in Table 1.

Given file F , DO first runs the ML-KeyGen protocol to de-
rive a message-locked key KF from F . Subsequently, with
secret key KF and the public parameters advertised by KS,
DO invokes ML-Encode that performs the following opera-
tions:

1. Error-correction: As a first step, ML-Encode divides
file F into n splits {S1, S2, ..., Sn} where each split Si

with 1 ≤ i ≤ n, regroups m blocks of size l. ML-Encode
further applies the error-correcting code published by
KS to each file split Si. This yields a new encoded file
Ḟ .

2. File block permutation: At this step, ML-Encode first
generates a permutation key KpermF such that KpermF =
HpermF(KF ). This key and the published pseudo-random
permutation ΠF are used to shuffle all the blocks in file
Ḟ . Let F̈ denote the resulting file.

3. File encryption: Given secret key KF , ML-Encode de-
rives an encryption key Kenc = Henc(KF ), and with
this encryption key ML-Encode further encrypts the
blocks in file F̈ using the semantically secure encryp-
tion algorithm Enc published by KS. We denote by F̃
file F̈ after encryption.

4. Watchdog insertion: ML-Encode computes a watchdog
generation key Kwdog = Hwdog(KF ) and uses this key
and the published pseudo-random function Φ to gen-
erate n × v watchdogs wij = Φ(Kwdog, i, j) for 1 ≤
i ≤ n and 1 ≤ j ≤ v. Since the watchdogs are
pseudo-randomly generated and the blocks in the splits
are encrypted using a semantically secure encryption,
CS cannot differentiate between watchdogs and data
blocks. Once all watchdogs are generated, ML-Encode
appends v watchdogs {wi1, ..., wiv} to each S̃i

1 in F̃ .
Each split is permuted using their corresponding newly
generated permutation key KpermS,i = HpermS(KF , i)
and the published pseudo-random permutation ΠS .
Without loss of generality, we denote F̂ file F̃ after
the insertion of watchdogs.

At the end of its execution, algorithm ML-Encode returns
file F̂ . Thereupon, DO selects a unique file identifier fid for
file F̂ and outsources file F̂ together with identifier fid to
CS. Finally, DO securely keeps the secret key KF and file
identifier fid in her local storage.

Using secret key KF , file identifier fid and the public pa-
rameters of the system, DO is able to run the algorithms
ML-Challenge and ML-ProofVerif (which are the same as the

1We note here that the size of split S̃i is D = m + d − 1,
where d is the number of redundancy blocks of the ECC
algorithm.



Table 2: ML-CompactPoR’s Public Parameters.

Public Parameter Description

τ security parameter of Compact PoR
l size of a block
m number of blocks in a split Si
p large prime with |p| ≈ l
ρ ECC code rate ρ = m

m+d

(D,m, d)-ECC ECC correcting up to d
2

errors per split
Enc : {0, 1}τ × {0, 1}∗ → {0, 1}∗ encryption algorithm
ΠF : {0, 1}τ × [[1, n ·D]]→ [[1, n ·D]] pseudo-random file-level permutation
f : {0, 1}τ × {0, 1}∗ → Zp pseudo-random function
Hperm : {0, 1}∗ → {0, 1}τ file-level permutation key generato
Henc : {0, 1}∗ → {0, 1}τ encryption key generator
Hmac : {0, 1}∗ → {0, 1}τ MAC key generator
Hα : {0, 1}∗ × [[1,m]]→ Zp MAC coefficient generator

original Challenge and ProofVerif of StealthGuard) to check
the retrievability of her outsourced file F .

Furthermore, another data owner DO′ wishing to out-
source an already uploaded file F , will compute the same
message-locked key thanks to the newly proposed ML-KeyGen
protocol; KF together with the public parameters will be
subsequently used by ML-Encode to output the same ver-
ifiable file F̂ . Thanks to their deterministic nature, ML-
KeyGen and ML-Encode enable CS to perform cross-user
deduplication while still providing cryptographic assurances
on the retrievability of the outsourced files.

5.2 ML-CompactPoR: A message-locked PoR
scheme based on homomorphic tags

As in the case of watchdog-based PoRs, tag-based PoR
schemes need to be adapted in order to be compatible with
secure deduplication. To show how a tag-based PoR can be
transformed into a message-locked PoR, we instantiate the
private Compact POR scheme proposed in [23].

5.2.1 Overview of Compact PoR
A data owner DO wishing to outsource a file F proceeds

as follows:

• DO calls algorithm KeyGen in order to generate a se-
cret key K that will be used to prepare F for upload
and to verify its retrievability later.

• DO then calls algorithm Encode, which is in charge of
preparing the file for upload. Accordingly, algorithm
Encode applies ECC to F and then uses the secret key
K to encrypt, shuffle and authenticate the output of
the ECC. The authentication consists of generating a
homomorphic MAC for each split within the file.

At any time DO wishes to check the retrievability of file
F , she calls the Challenge algorithm to generate a query
chal that includes the indices of randomly-chosen splits to-
gether with some randomly-generated coefficients. On re-
ceiving the challenge chal, cloud storage server CS calls al-
gorithm ProofGen to generate a proof of retrievability. Such
a proof consists of a linear combination of the randomly cho-
sen splits using the randomly-generated coefficients and the
corresponding MAC. The latter is computed by applying the
same linear combination over each split’s homomorphic tag.
DO decides that F is retrievable if the proof produced by
CS is correctly formed: She uses her secret key to check if

the MAC in the proof successfully authenticates the linear
combination of the file splits.

5.2.2 ML-CompactPoR
Similarly to StealthGuard, the original compact PoR be-

comes compatible with deduplication whenever it uses a
message-locked key together with some other parameters
that are common for all users in the system. Therefore ML-
CompactPOR builds upon the newly proposed ML-KeyGen
and assumes that all users fetch the public parameters from
a key server KS that are listed in Table 2.

Assume that data owner DO intends to outsource a file F .
Accordingly, DO prepares F for upload by first invoking the
ML-KeyGen protocol. Without loss of generality, we denote
KF the resulting message-locked key.

Given secret key KF and the public parameters advertised
by KS, DO calls algorithm ML-Encode that performs the
following operations:

1. Error-correction: Algorithm ML-Encode applies the
error-correcting code published by KS to file F . This
yields file Ḟ .

2. File block permutation: At this step, ML-Encode com-
putes a permutation key Kperm = Hperm(KF ) which to-
gether with the published pseudo-random permutation
ΠF is used to permute all the blocks in file Ḟ . Without
loss of generality, we denote the resulting permuted file
F̈ .

3. File encryption: Having KF , ML-Encode derives an
encryption key Kenc = Henc(KF ), and uses this en-
cryption key and the semantically secure encryption
algorithm Enc published by KS to encrypt the blocks
in file F̈ . Let F̂ denote the encrypted file.

4. Tag generation: F̂ is further divided into n equally-
sized splits each comprising m blocks. We denote b̂ij
the jth block of the ith split where 1 ≤ i ≤ n and
1 ≤ j ≤ m. ML-Encode then generates a MAC key
Kmac = Hmac(KF ) and generates m random numbers
αj = Hα(KF , j) where 1 ≤ j ≤ m. Then, for each split

Ŝi, ML-Encode computes the following homomorphic
MAC σi:



σi = f(Kmac, i) +

m∑
j=1

αj b̂ij

Once ML-Encode is executed, DO picks a unique file iden-
tifier fid for file F̂ and uploads file F̂ together with its iden-
tifier fid and the MACs {σ1, ..., σn}. We note that DO keeps
the secret key KF and file identifier fid in her local storage.

Given secret key KF , file identifier fid and the public pa-
rameters proposed by KS, DO is able to run the algorithms
ML-Challenge and ML-ProofVerif to verify the retrievability
of her outsourced file F .

Notice that if there is another data owner DO′ wishing to
outsource the same file F , CS will easily detect the duplicate
copy if she executes the proposed ML-CompactPOR and
consequently remove it to save storage space. Thanks to the
deterministic nature of the underlying algorithms, DO′ will
still be able to check the retrievability of F .

6. SECURITY ANALYSIS
Based on previous work on message-locked key generation

[8, 4], we sketch the security analysis of ML-KeyGen and fur-
ther briefly show that a message-locked PoR assures storage
correctness as long as the message-locked key is not compro-
mised.

6.1 Message-Locked Key Generation
The work of [8, 4] on secure deduplication relies on the as-

sumption that the key server KS is not interested in learning
the content of the files kept at the cloud storage server CS;
and thus the key generation protocol only involves the user
–having as input the file to be uploaded– and KS–having as
input its secret key. Yet, it is easy to see that there is no real
countermeasure to deter KS from running offline dictionary
attacks to compromise the confidentiality of the uploaded
files. Our solution addresses this problem by having CS take
part in the ML-KeyGen forcing as a result KS to go online
and connect to the CS whenever it makes a guess for an out-
sourced file. Luckily, such online attacks can be obstructed
using rate-limiting measures that bound the number of ML-
KeyGen runs (and therewith the number of online attacks)
that a given user can initiate within a given time period.
Hence, as long as CS and KS do not collude, none of them
can perform offline dictionary attacks.

6.2 Message-Locked PoR

6.2.1 Security Guarantees of PoR
Proofs of retrievability ensure that if the cloud storage

server CS succeeds in providing a valid PoR (i.e. proof that
passes the verification at the user) for some outsourced file,
then one can have the assurance that file is stored in its
entirety and can be correctly retrieved from CS. This secu-
rity guarantee derives from a combination of error correcting
codes that allow file recovery from accidental errors, and in-
tegrity mechanisms (e.g. PRFs, MACs or signatures) that
detect deliberate file corruption. More specifically, the secu-
rity of PoR mechanisms relies on two measures:

• hiding the dependencies between ECC blocks and data
blocks through semantically-secure encryption and se-
cure permutations;

• authenticating the outsourced files either by inserting
(unforgeable) watchdogs (cf. [7, 18]) or by computing
(unforgeable) tags (cf. [23, 26]).

6.2.2 Security of Message-Locked PoR and File Un-
predictability

Note that the security of our message-locked PoR is as-
sured so long as the key derived in the key generation phase
is not compromised. By having access to the secret key used
during upload, the CS not only can compromise the confi-
dentiality of the file, but can also corrupt the uploaded file
without being detected. Notably, CS can mount the follow-
ing types of attacks:

• Use the secret key to find the dependencies between
ECC blocks and data blocks by decrypting the file and
inverting the permutations used to shuffle the blocks.
In this fashion, CS can corrupt the file in such a way
that the file becomes irretrievable while ensuring that
the probability of detecting the tampering is negligible.

• In the case of [7, 18], the secret key enables CS to
discover which blocks are data blocks and which are
watchdogs, and accordingly, it can keep only the watch-
dogs and get rid of the data blocks.

• In the case of [23, 26], given the secret key CS can
modify the data block and compute the corresponding
tags correctly.

Taking these attacks into account, we conclude that simi-
larly to previous work on secure deduplication, the security
of our scheme is closely tied to how well CS guesses the con-
tent of the uploaded file (i.e. the unpredictability of the
uploaded file). Nevertheless thanks to our ML-KeyGen pro-
tocol, CS cannot run offline dictionary attacks, as it must
go online and connect to the key server KS to generate the
secret key and test the correctness of its guesses.

6.3 Rate Limiting
The confidentiality and the integrity guarantees of our

scheme depend on the unpredictability of the file and the
number of message-locked key generation queries a user is
allowed to issue. Intuitively, the more predictable the file
is, the less the number of key generation queries an adver-
sary (e.g. storage server CS) has to make to divulge its
content; inversely, the more key generation queries an ad-
versary makes, the more predictable the file becomes (by
ruling out the files that do not match). It follows that in
order to contain the threat of online attacks, it is impor-
tant to limit the number of such queries a given user makes.
This in reality will be implemented through authentication
mechanisms: Both CS and KS will authenticate and iden-
tify (and therewith keep track of) users submitting upload
queries. Still as rightly pointed out by [19], CS or KS for
instance can masquerade as any number of users voiding
thus the benefits of any rate limiting countermeasure. This
illustrates that in order for rate limiting to work, we need
to put in place mechanisms to verify the identity of users
engaging in the key derivation protocol. One approach to
achieve this is to link the user’s identity to the user’s IP
address; however, this approach can be insufficent if users
mount spoofing attacks. A more secure alternative, albeit
more costly is to have an identity manager – as in [25] – that
verifies the identity of the users and provides these with the



credentials necessary to operate the functionalities of the
storage service.

7. PERFORMANCE EVALUATION
Thanks to the newly proposed message-locked PoR scheme,
CS succeeds in saving storage space using deduplication tech-
niques and data owners are provided with some guaran-
tees with respect to the integrity of their data. The gen-
eration of a message-locked key and the use of determinis-
tic operations for the pre-processing (encoding) of the out-
sourced files enable CS to discover redundant data and fur-
ther perform deduplication while still being able to produce
cryptographic proofs for data retrievability. The only addi-
tional cost added by the newly designed ML-PoR schemes,
compared with their original versions is the one originating
from the server-aided message-locked key generation pro-
tocol which is mandatory to ensure the security of PoR.
Concerning the server-aided message-locked key generation
protocol, the proposed ML-KeyGen protocol, compared to
existing solutions [8, 4], relaxes the trust towards KS at the
cost of one more communication round. However, in both
cases the overhead of the key generation protocol can be
considered as minimal compared to the computational cost
of the remaining algorithms.

The currently proposed message-locked PoR schemes can
achieve even more savings by implementing a client-side
deduplication strategy whereby a cloud customer uploads
a file F only if not already stored. Consequently, both cloud
customers and the cloud provider benefit from bandwidth
savings. To enable client-side deduplication, a data owner
DO only needs to execute ML-KeyGen and ML-Encode and
to check whether the resulting encoded file is already stored
at CS (e.g. by hashing this file and comparing it with a
hash table stored at CS). However, as noted in [17], client-
side deduplication is exposed to some attacks launched by
potentially malicious users: An adversary that discovers the
identifier of a file can claim possession of it. To circumvent
such attacks, solutions in the literature [13, 4] propose to
combine client-side deduplication mechanisms with proofs
of ownership (PoW) [16] which help CS verify that a user
owns a file without the need to upload it.

A solution implementing client-side deduplication using
PoW, would require DO to first execute the most costly al-
gorithm of message-locked PoR (namely, ML-Encode), and
thereafter to prove to CS the ownership of the verifiable
file F̂ . Given that the computational cost of current PoW
schemes is linear to the size of the file (see Table 2 in [15]),
data owners have to consider the trade-off between the band-
width savings and the computational overhead of PoW be-
fore deciding to use client-side deduplication.

When using client-side deduplication, one might argue
that if data owner DO does not upload the file, then she
should not be burdened with the execution of the ML-Encode
algorithm, and instead compute the proof of ownership us-
ing the original file F . Unfortunately, this approach would
break the security of PoR since to be able to verify a PoW,
CS needs to process the original file F . Hence, CS would
immediately derive the secret message-locked key KF , thus,
a PoW should be computed using the verifiable version F̂ .

8. RELATED WORK
Authors in [12] propose a secure data deduplication mech-

anism and observe that it is inherently compatible with the
PoR scheme proposed in [27] without providing any details.

Moreover, in [28], a new proof of storage with deduplica-
tion (POSD) was introduced whereby thanks to a publicly
verifiable proof of data possession scheme, users can verify
the correct storage of deduplicated data using the public
key of the first user actually storing the data. This solution
has been proved insecure in [24] and additionally does not
prevent the cloud from cheating.

Very recently, the authors in [3] introduce a multi-tenant
PoR framework that marries well with deduplication and
propose a solution that relies on the homomorphic proper-
ties of the signature in [23]. Contrary to our solution, the
proposed scheme considers a stronger and more realistic se-
curity model in which users can be corrupted by the cloud
server. This however comes at a higher cost at the user side
in terms of bandwidth and computation; namely, the verifi-
cation complexity of the storage of a file grows linearly with
the number of users outsourcing that file.

9. CONCLUSION
In this paper, we identified an inherent incompatibility

of existing proof of retrievability schemes with data dedu-
plication which, nowadays, is inevitable to real-life cloud
storage systems to maximize their storage space savings.
Similarly to secure deduplication solutions, we proposed the
message-locked PoR approach which makes sure that all al-
gorithms in a PoR scheme are deterministic and therefore
enables file-based deduplication. The two described instan-
tiations of existing PoR solutions (ML-StealthGuard and
ML-CompactPOR) mainly implement a new encoding al-
gorithm, ML-Encode, that basically differs from the original
one in one aspect: instead of pseudo-randomly generated,
the required keying material is derived from the file itself.
Thus, for a given file, ML-Encode will always output the
same encoded file irrespective of the identity of the cloud
customer executing it. As such message-locked keys are ex-
posed to dictionary attacks that could be launched by poten-
tially malicious cloud providers, the proposed ML-PoR solu-
tions initially call for a server-aided key generation technique
(ML-KeyGen) which helps in protecting the secrecy of such
keys. Thanks to the newly proposed ML-KeyGen solution
that involves both the key server and the cloud provider,
none of these parties can discover the message-locked key
alone.
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APPENDIX
A. STEALTHGUARD

In what follows, we briefly describe StealthGuard [7], a
PoR scheme that achieves data retrievability thanks to the
oblivious insertion of pseudo-random generated blocks named
watchdogs.

• KeyGen(1τ ) → (K, param): Data owner DO calls this
algorithm in order to generate a secret key K and a set
of parameters param (such as ECC rate, size of split,
etc.) that will be used to prepare F for upload and to
verify its retrievability later.



• Encode(K,F ) → (fid, F̂ ): DO calls this algorithm to
prepare her file F for outsourcing to cloud server CS.
It applies ECC to F and divides the encoded file into
equally-sized splits. Subsequently, Encode uses the se-
cret key K to determine the value and position of the
watchdogs, inserts them within the splits accordingly
and further permutes and encrypts the file.

• Challenge(K, fid)→ chal: DO calls this algorithm which
chooses a split and a watchdog within this split and gen-
erates a challenge chal consisting of a privacy preserving
search query for the selected watchdog.

• ProofGen(fid, chal) → P: Upon receiving the challenge
chal CS invokes this algorithm which processes the rel-
evant split and generates a proof P that consists of a
correct response to the search query. Thanks to the
underlying privacy preserving word search scheme, CS
can never learn the content of the query (hence discover
the watchdog) and the corresponding response.

• ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: DO calls this
algorithm which processes the received proof P and
outputs a bit equal to 1 if the proof is valid or 0 oth-
erwise. Only DO can verify this proof using secret key
K.

In order to decide if F is retrievable, DO needs to issue
at least γ PoR queries (γ depending on param) from ran-
domly selected splits: if DO receives γ valid PoR responses
then, she concludes that F can be retrieved, otherwise, she
concludes that CS has corrupted part of the file.

B. PRIVATE COMPACT POR
In what follows, we briefly describe the private compact

PoR scheme proposed in [23]. This scheme takes advantage
of a pseudo-random function f .

• KeyGen(1τ ) → (K, param): Data owner DO calls this
algorithm in order to generate a secret key K and a set
of parameters param (such as ECC rate, size of split,
etc.) that will be used to prepare F for upload and to
verify its retrievability later.

• Encode(K,F ) → (fid, F̂ ): DO calls this algorithm to
prepare her file F for outsourcing to cloud server CS.
It applies ECC to F and then uses the secret key K
to permute and encrypt the encoded file, and further
outputs the result F̂ . Subsequently, Encode divides F̂
in n equally-sized splits each comprising m blocks. We
denote b̂ij the jth block of the ith split where 1 ≤ i ≤ n
and 1 ≤ j ≤ m. Encode then generates a MAC key
Kmac, chooses m random numbers αj where 1 ≤ j ≤ m
and computes for each split the following homomorphic
MAC σi:

σi = f(Kmac, i) +

m∑
j=1

αj b̂ij

F̂ together with the homomorphic MACs {σi}, 1 ≤ i ≤
n, is then outsourced to CS.

• Challenge(K, fid)→ chal: DO calls this algorithm which
outputs a challenge chal, consisting of a random l-element
set I ⊂ [1, n] and l random coefficients vi.

• ProofGen(fid, chal) → P: Upon receiving the challenge
chal, CS invokes this algorithm which computes the
proof P := (βj , σ), for 1 ≤ j ≤ m as follows:

βj =
∑

(i,vi)∈chal

vib̂ij , σ =
∑

(i,vi)∈chal

viσi

• ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: DO calls this
algorithm which checks if the received proof P is well
formed as follows:

σ
?
=

∑
(i,vi)∈chal

vif(Kmac, i) +

m∑
j=1

αjβj

ProofVerif outputs a bit equal to 1 if the proof valid or
0 otherwise.

Thanks to the unforgeability of homomorphic MACs, a ma-
licious cloud cannot corrupt a file without being detected.


