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Abstract—The problem of Angle of Arrival estimation of multiple
sources in the presence of mutual coupling is addressed. The presence of
unknown mutual coupling between antenna array elements is known to
degrade the performance of super resolution direction-finding algorithms.
In this paper, we propose an iterative algorithm based on Alternating
Projection in order to optimise the Maximum Likelihood cost function,
which takes mutual coupling into account. Simulation results demonstrate
the potential of the proposed algorithm, as it is compared to the Cramer-
Rao bound of joint mutual coupling and Angle of Arrival estimation.

Index Terms—Maximum Likelihood Estimation, Angle-of-Arrival, Mu-
tual Coupling Agnostic, Alternating Projection

I. INTRODUCTION

Mutual coupling between antennas is a popular problem in array
signal processing. This phenomenon arises when antennas are close
to each other [1], and thus the current developed in an antenna
element depends on its own excitation and on the contributions
from adjacent antennas. As a consequence, an ideal model is no
longer valid, and therefore the performance of the high resolution
algorithms that perform Angle-of-Arrival (AoA) estimation, such
as MUSIC [2], ESPRIT [3], etc., deteriorate significantly. It is also
worth mentioning other phenomena that perturb an ideal model,
when not taken into account, such as different gain/phases [4] across
antennas, synchronization and jitter effect [5], local scattering [6], etc.

Methods that aim on solving the mutual coupling problem are
sometimes referred to as calibration methods, which are of two
types: Offline and Online. In an offline calibration approach, one
estimates the mutual coupling parameters using known locations,
such as the techniques in [7]–[9]. In contrast, online calibration
consists of jointly estimating the coupling and AoA parameters. In
this paper, our main focus is on the latter.

In the literature, several techniques deal with the online calibration
problem, such as those found in [10]–[14], [18]–[23] and references
within. The authors in [10] jointly estimate the coupling parameters
and AoAs by alternating minimisation steps between the former
and the latter using the MUSIC cost function. In [11], the algorithm
is iterative and the sources are assumed to be totally uncorrelated.
Moreover, the method in [11] estimates the coupling parameters in
order to utilise it in the MUSIC cost function. In [12], [13], the
array elements are assumed to be partly calibrated. In other words,
one has access to a few coupling parameters. Moreover, methods
in [19]–[21] propose to use the ”middle sub-array”. In particular,
let N be the number of antennas placed in a uniform and linear
fashion, and p be the number of coupling parameters. If p ≤ N

2
,

then there exists a ”middle sub-array”, of size N − 2p + 2, over
which the effect of the mutual coupling preserves the Vandermonde
structure of the array response [19]–[21]. As a matter of fact, one
could mathematically show that the array response on the ”middle

sub-array” is a known functional Vandermonde vector multiplied by
an unknown scalar, and therefore high resolution techniques could
be applied to estimate the AoAs. Also, spatial smoothing [27] could
be employed only on the ”middle sub-array” to ”de-correlate” the
signals so as subspace techniques work properly [19]. However, this
is highly suboptimal because only an effective number of antennas,
i.e. N −2p+2, are utilised for parameter estimation. To address this
major loss of antennas, the authors in [23] suggest to add ”Guard”
antennas on the edges of the array, in particular p − 1 antennas on
the left edge and the other p − 1 on the right edge. Therefore, the
main array of size N plays the role of a ”middle sub-array”. The
aforementioned arguement on the ”middle sub-array” holds on the
main array. Unfortunately, appending antennas is not possible in
some applications, such as Wi-Fi.

In this paper, we are motivated by the classical Alternating
Projection (AP) method, which was utilised by Ziskind and Wax in
[29] to obtain a Maximum Likelihood (ML) estimate of the AoAs,
in the absence of mutual coupling. The method is computationally
efficient, as it requires multiple 1-dimensional searches to optimise
the ML cost function. It is well-known that ML algorithms, such as
[25], [29], can estimate the AoAs of coherent sources [24], which
is the case of multipath propagation. The contribution of this paper
is the derivation of a suitable AP algorithm that could estimate
the AoAs of different sources in the presence of mutual coupling,
thus ”Mutual Coupling Agnostic”. Furthermore, the proposed
AP algorithm could also deal with coherent sources, whereas the
algorithms in [10]–[14], [18] can not.

The paper is divided as follows: Section II presents the system
model, assumptions, and problem statement. Section III reviews
the Deterministic Maximum Likelihood (ML) of joint Angle and
mutual coupling estimation. The proposed mutual coupling agnostic
ML Angle of Arrival (AoA) estimator by Alternating Projection
is presented in Section IV. Simulation results of the proposed
algorithm for different scenarios are demonstrated in Section V, with
comparison to the Cramer-Rao bound that takes into account joint
AoA and mutual coupling parameter estimation. We conclude the
paper in Section VI.

Notations: Upper-case and lower-case boldface letters denote ma-
trices and vectors, respectively. (.)T and (.)H represent the transpose
and the transpose-conjugate operators. The matrix I is the identity
matrix with suitable dimensions. For any matrix B, the (i, j)th entry
of B is represented as [B](i,j). For any two variables A and B,
the notation A ← B means that the value of B is stored in A.
Furthermore, the symbol ∅ indicates an empty matrix. For any matrix
B, the operators ‖B‖, det{B}, and vec(B) denote the Frobenius



norm, determinant, and vectorisation, respectively.

II. SYSTEM MODEL

A. Mathematical Formulation

Assume a planar arbitrary array of N antennas. Furthermore,
consider q < N narrowband sources attacking the array from
different angles, i.e. Θ = [θ1 . . . θq]. Collecting L time snapshots
and following [26], we can write

X = Ã(Θ)S + N (1)

where X ∈ CN×L is the data matrix with lth time snapshot,
x(tl), stacked in the lth column of X. The matrix S ∈ Cq×L
is the source matrix. Similar to X, matrix S contains the lth

transmitted source vector s(tl) in its lth column. Moreover, rhe
steering matrix Ã(Θ) ∈ CN×q is composed of q steering vectors, i.e.
Ã(Θ) = [ã(θ1) . . . ã(θq)]. Each vector ã(θi) is the response of the
array to a source impinging the array from direction θi. Note that we
shall use the notations ã(θ) and a(θ) to denote an array response
due to angle θ in the presence and absence of mutual coupling,
respectively. The matrix N ∈ CN×L is background noise.

In this paper, we restrict ourselves with Uniform Linear Arrays
(ULAs). Furthermore, it is well known that the response of a ULA
in the absence of mutual coupling is given as

a(θ) = [1, zθ, . . . z
N−1
θ ]T (2)

where zθ = e−j2π
d
λ

sin(θ), d is the inter-element spacing and λ is
the signal’s wavelength. Following [14], the response ã(θ) could be
modelled as

ã(θ) = Tp(m)a(θ) (3)

where Tp(m) ∈ CN×N is a banded symmetric Toeplitz matrix
defined as follows

Tp(m) =


1 m1 m2 · · · mp−1 0 · · · 0
m1 1 m1 · · · mp−2 mp−1 · · · 0

...
. . .

. . .
...

0 · · · mp−1 mp−2 · · · m1 1 m1

0 · · · 0 mp−1 · · · m2 m1 1


(4)

Note that the matrix Tp(m) is independent from the AoAs. The model
in equations (3) and (4) suggest that antennas that are placed at least
p inter-element spacings apart do not interfere, i.e. mi = 0 for all
i ≥ p. This is due to the fact that the mutual coupling is inversely
proportional to the distance between antennas.

B. Assumptions and Problem Statement

Throughout the paper, we assume the following:

• A1: Ã(Θ) is full column rank.
• A2: The transmitted signals s(tl) are fixed within a snapshot.

The signals are allowed to be highly or fully correlated.
• A3: The number of sources, i.e. q, is known.
• A4: The vector n(tl) is Gaussian noise with zero mean and

covariance σ2I and independent from the sources.

For assumption A3, algorithms exist for estimating the number of
sources, such as Minimum Description Length [15], Modified MDL
[16], Benjamin Hochberg procedure [17], and so forth. We are now
ready to address our problem:

”Given {x(l)}Ll=1, p and q, estimate the AoAs Θ in the presence
of mutual coupling Tp(m).”

III. THE DETERMINISTIC MAXIMUM LIKELIHOOD (ML)
ESTIMATOR

This section is a review of the Deterministic ML estimators of the
angles of arrival of the transmitting sources. In a deterministic ap-
proach [28], these parameters are modelled as unknown deterministic
sequences, i.e. the signal parameters are assumed to be nonrandom
and unknown. Under assumption A4, we can say that all snapshots
{xl(t)}Ll=1 are independent and

x(tl) ∼ N
(
Ã(Θ)s(tl), σ

2In
)
, l = 1 . . . L (5)

To simplify notation, we stack all signal and noise parameters into
one vector, say

Ω =
[
ΘT,mT, vec(S), σ2

]T
(6)

We can now express the joint probability distibution function of all
the snapshots X, given the unknown signal and noise parameters Ω
as

f
(
X|Ω

)
=

L∏
l=1

1

πdet
{
σ2IN

} exp
{
− 1

σ2

∥∥x− Ã(Θ)s(tl)
∥∥2
} (7)

The Deterministic ML estimates of the noise and signal parameters,
i.e. Ω̂ML, are obtained through the following criterion

Ω̂ML = arg max
Ω

f
(
X|Ω

)
(8)

Finally, Ω̂ML is given by the following

Ω̂ML =
[
Θ̂T, m̂T, vec(Ŝ), σ̂2

]T
(9a)

σ̂2 =
1

NL

∥∥X− Ã(Θ̂)Ŝ
∥∥2 (9b)

Ŝ =
(
ÃH(Θ̂)Ã(Θ̂)

)−1

ÃH(Θ̂)X (9c)

[Θ̂, m̂] = arg max
Θ,m

tr
{

PÃ(Θ)R̂
}

(9d)

where PÃ(Θ) is the projector onto the signal subspace, i.e. the space
spanned by columns of PÃ(Θ)

PÃ(Θ) = Ã(Θ)
(
ÃH(Θ)Ã(Θ)

)−1

ÃH(Θ) (9e)

and R̂ is the sample covariance matrix of the snapshots

R̂ =
1

L
XXH (9f)

Note that once the estimate [Θ̂, m̂] is obtained by solving (9d), then
one could plug [Θ̂, m̂] in (9b) and (9c) to obtain the ML estimate
of the noise variance and signal matrix, respectively. It turns out that
the optimisation problem in (9d) is highly nonlinear, as it requires a(
q+2(p−1)

)
-dimensional search1, and its direct optimisation would

require cumbersome optimisation techniques. It is worth stressing a
point here: The rest of the paper focuses on solving (9d) in order to
estimate Θ, by treating m as a nuissance parameter. The problem
of estimating the coupling parameters m is beyond the scope of this
paper. Once again, our aim is to estimate the AoAs of multiple sources
in the presence of mutual coupling, thus the term ”Mutual Coupling
Agnostic”.

1It is a
(
q + 2(p − 1)

)
-dimensional search: q is due to the number of

parameters in Θ and 2(p− 1) is the number of real and imaginary unknown
parameters in m.



IV. MUTUAL COUPLING AGNOSTIC ML ANGLE OF ARRIVAL

ESTIMATOR BY ALTERNATING PROJECTION

In the absence of mutual coupling, i.e. p = 1 and m = 1,
Ziskind and Wax have proposed to optimise (9d) in order to estimate
Θ via Alternating Projection [29]. That is, the value of θi at the
kth iteration is obtained by solving the following 1-dimensional
optimisation problem

θ̂
(k)
i = arg max

θi

aH(θi)P
⊥
Aī

R̂P⊥Aīa(θi)

aH(θi)P⊥Aīa(θi)
(10)

where P⊥Y = I−PY and Aī is obtained by omitting the ith column
from matrix A(Θ(k)). The vector Θ(k) represents the estimated
AoAs at iteration k, in an attempt of estimating the ith AoA. In
other words, at iteration k and sub-iteration i, vector Θ(k) could be
expressed as

Θ̂(k) = [θ̂
(k)
1 , θ̂

(k)
2 . . . θ̂

(k)
i−1, θ̂

(k−1)
i , θ̂

(k−1)
i+1 . . . θ̂(k−1)

q ]T (11)

Naturally, the algorithm is iterative. At each iteration, the 1-
dimensional search in (10) is done per AoA (i = 1 . . . q) in a
successive manner until the vector Θ̂(k) converges.

Notice that, in the presence of mutual coupling, we could follow
similar steps as in [29] to get

[θ̂
(k)
i , m̂

(k)
i ] = arg max

[θi,m]

ãH(θi)P
⊥
Ãī

R̂P⊥
Ãī

ã(θi)

ãH(θi)P⊥
Ãī

ã(θi)
(12)

where the maximisation is also done over the coupling parameters
m. To proceed, we find the following definition and theorem useful:

Definition 1: For any vector a ∈ CN×1 and matrix Bp ∈ CN×p.
We say that ”a generates Bp”, or Bp , Gp(a), if

Bp =
[

a S1a . . . Sp−1a
]

(13)

where Sk ∈ CN×N is an all-zero matrix except at the kth sub- and
super-diagonals, which are set to 1.

Theorem 1: (Commutativity of Symmetric Toeplitz Matrices) Let
m = [m0,m1 . . .mp−1]T ∈ Cp×1 and a ∈ CN×1. Define the
corresponding matrix Tp(m) as in equation (4). Then the following
is true for any 1 ≤ p ≤ N

Tp(m)a = Bpm (14)

where Bp = Gp(a). (See Definition 1)

Proof: See [10], [30].
Using Theorem 1, we can say that

ã(θ) = Tp(m)a(θ) = B(θ)m (15)

where B(θ) = Gp(a(θ)). Equation (12) is re-written as

[θ̂
(k)
i , m̂

(k)
i ] = arg max

[θi,m]

mHQ(θi)m

mHS(θi)m
(16a)

where

Q(θi) = BH(θi)P
⊥
Ãī

R̂P⊥Ãī
B(θi) (16b)

S(θi) = BH(θi)P
⊥
Ãī

B(θi) (16c)

Maximising first with respect to m according to the following
criterion maximise

m∈Cp×1
mHQ(θi)m

subject to mHS(θi)m = 1
(17)

gives rise to the following cost function

θ̂
(k)
i = arg max

θi

λmax

(
Q(θi); S(θi)

)
(18a)

where λmax(Y; Z) is the maximum generalised eigenvalue of the
matrix pencil (or matrix pair) (Y; Z). Then, the vector m̂

(k)
i is

estimated after maximising (18a) and obtaining θ̂(k)
i , viz.

m̂
(k)
i = vmax

(
Q(θ̂

(k)
i ); S(θ̂

(k)
i )
)

(18b)

where vmax(Y; Z) is the generalised eigenvector corresponding to the
maximum generalised eigenvalue of the matrix pencil (Y; Z). The
vector m̂

(k)
i is also normalised with respect to its first element. Then,

an update is done on the vector Θ̂(k) by replacing θ(k−1)
i with θ(k)

i .
After estimating θ̂(k)

i and m̂
(k)
i , an update should be done on the

corresponding column of Ã according to equation (15) as follows[
Ã
]
(:,i)
← Tp(m̂(k)

i )a(θ̂
(k)
i ) (19)

Then, increment i ← i + 1 and do the same procedure to estimate
the next AoA. If i > q, then i← 1, and k ← k + 1. The procedure
is repeated until the vector Θ̂(k) shows no satisfying improvement.
The algorithm is summarised in the table Algorithm 1, below.

Algorithm 1: Implementation of the Proposed Agnostic Mutual
Coupling ML AoA Estimator by Alternating Projection

DATA: Collect X and compute R̂ according to equation (9f).

INITIALISATION:
k ← 0; Ã← ∅; P⊥ ← I; Θ̂(k) ← ∅;
for i = 1 to q do

• Step I.1: Estimate θ̂(k)
i via 1D search using (18a), where:

– Q(θ) = BH(θ)P⊥R̂P⊥B(θ).
– S(θ) = BH(θ)P⊥B(θ).

• Step I.2: Obtain m̂
(k)
i using equation (18b) and θ̂(k)

i .
• Step I.3: Update the following quantities:

– [Ã](:,i) ← Tp(m̂(k)
i )a(θ̂

(k)
i ).

– P⊥ ← I− Ã(ÃHÃ)−1ÃH.
– [Θ(k)](i,1) ← θ̂

(k)
i .

MAIN LOOP:
do
• Θ̂old ← Θ̂(k)

• k ← k + 1

for i = 1 to q do
• Compute P⊥ ← I− Ãī(Ã

H
ī Ãī)

−1ÃH
ī , where Ãī is

obtained by omitting the ith column from matrix Ã.
• Do Step I.1 to estimate θ̂(k)

i .
• Do Step I.2 to obtain m̂

(k)
i .

• Update [Ã](:,i) ← Tp(m̂(k)
i )a(θ̂

(k)
i ) and [Θ(k)](i,1) ← θ̂

(k)
i

as done in Step I.3.

while ‖Θ̂(k) − Θ̂old‖ > ξ

V. SIMULATION RESULTS

This section presents some simulations to demonstrate the potential
of the proposed algorithm. More simulation results should be found in
[32]. We have conducted three experiments by fixing the following
simulation parameters: N = 7 antennas, q = 2 sources, and the
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Fig. 1: RMSE of AoAs on a log-scale vs. SNR of the 1st experiment.
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Fig. 3: RMSE of AoAs on a log-scale vs. Number of Snapshots of the
3rd experiment.

RMSE is averaged over 200 trials. In all the experiments, we compare
the RMSE of the AoA estimates with the Cramer-Rao bound that

takes into account joint estimation of AoAs and coupling parameters
[31]. This threshold indeed depends on several factors, such as
separation, correlation, and number of sources.

In the 1st experiment (Fig. 1), we have fixed the AoAs to
θ1 = 0◦ and θ2 = 20◦. The sources are uncorrelated and are
generated as independent and identically distributed (i.i.d) according
to a Gaussian distibution. The number of snapshots is L = 100.
Also, the number of coupling parameters are p = 3 with m =
[1, 0.3115+0.3911j,−0.3063−0.1314j]. We can see that the RMSE
of both AoA estimates via the proposed method are close to their
corresponding CRBs when SNR exceeds 5 dB.

In the 2nd experiment (Fig. 2), the two sources are coherent.
the AoAs are now more separated compared to the 1st experiment,
namely θ1 = 0◦ and θ2 = 35◦. The number of snapshots is L = 100.
Moreover, the number of coupling parameters are p = 2, with
m = [1, 0.1563 − 0.475j]. We can see that the RMSE per SNR
is higher than those of the 1st experiment, even though we have less
coupling parameters and AoAs being more separated. This is due to
coherency of the sources. However, we see that the RMSE of both
AoA estimates are close to their corresponding CRBs, when SNR
exceeds 15 dB.

In the 3rd experiment (Fig. 3), we plot the RMSE v.s. number of
snapshots L, with SNR fixed to 5 dB. The sources are uncorrelated
and are generated as i.i.d according to a Gaussian distibution. The
AoAs are brought back to the values of experiment 1, i.e. θ1 = 0◦ and
θ2 = 20◦, but with less coupling parameters, i.e. p = 2 with m =
[1, 0.3561 − 0.22j]. The RMSE of θ̂1 is close to its corresponding
CRB, when L exceeds 75, however, θ̂2 still shows some error of
about 0.1◦.

VI. CONCLUSION

In this paper, we have proposed an iterative algorithm based
on Alternating Projection in order to optimise the Deterministic
Maximum Likelihood cost function that takes into account mutual
coupling. Throughout the operation of the algorithm, mutual coupling
parameters were treated as nuissance parameters, thus the name
”Mutual Coupling Agnostic”. Furthermore, the sources are allowed
to be coherent. Simulation results demonstrate the potential of the
proposed algorithm, as it does attain the Cramer-Rao bound, when
the SNR or number of snapshots exceed a certain threshold.
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