
MIMO OFDM Capacity Maximizing Beamforming
for Large Doppler Scenarios

Kalyana Gopala, Dirk Slock
EURECOM, Sophia-Antipolis, France

Email: gopala,slock@eurecom.fr

Abstract—Performance of OFDM systems is limited by inter
carrier interference (ICI) under high Doppler scenarios such
as that encountered in high speed trains such as TGV. Several
publications have addressed the receiver design for SISO (single
input single output) and SIMO (single input multiple output) to
combat ICI. Notably, the use of multiple receive antennas is a very
effective way to combat ICI. In this paper, we consider a MIMO
(multiple input multiple output) scenario and iteratively design a
transmit beamformer to maximize the sum capacity across all the
subcarriers in the presence of ICI. Our interest lies in analyzing
the impact of excess of transmit (Tx) antennas in combating
ICI. A time varying frequency selective channel is considered.
In particular, we consider a linear model for the channel
variation across the OFDM symbol as we focus on LTE(long
term evolution)-like systems and train velocities up to 450kmph.
As the original cost function is non-convex, we first follow the
difference of convex functions (DC) approach to obtain a convex
cost function. However, we later reinterpret the DC approach as
a majorization technique. To solve the joint problem of power
allocation across subcarriers and precoder design for all the
useful subcarriers, we employ the cyclic minimization approach
to alternately optimize the precoder design and transmit power
allocation across subcarriers. The convergence of the iterative
approach is proved and the theory is validated via numerical
simulations.

I. INTRODUCTION

As is well known, high Doppler encountered in HST
(high speed train) environments violates the orthogonality
requirement for OFDM (Orthogonal Frequency Division Mul-
tiplexing), resulting in ICI. The SINR (signal to interference
plus noise ratio) analysis due to ICI can be found in ([1],[2]).
Several prior publications have focused on receiver techniques
to mitigate ICI. It is known that multiple receive antennas in
a SIMO scenario is very effective in cancelling out the ICI
(for example, see [3]). In this paper, we focus on a MIMO
scenario and derive the channel capacity in the presence of ICI
caused by channel variation. Our interest lies in analyzing the
impact of excess of antennas in combating ICI. Specifically, for
LTE systems, due to the large subcarrier spacing, we consider
a linear channel variation as was done in ([4], [5], [3]).We
consider a frequency selective scenario and iteratively arrive
at the optimal beamformer for every subcarrier. The algorithm
can also easily account for the presence of the guard and DC
subcarriers to model a realistic transmission scenario. To solve
the joint problem of power allocation across subcarriers and
precoder design for all the useful subcarriers, we employ the
cyclic minimization([6]) approach to alternately optimize the
precoder design and transmit power allocation across subcar-
riers. As a first step, the DC convex approach ([7]) is used
to get a convex cost function. Alternatively, we also interpret

this as a minorization([6]) of the original cost function. Using
this approach, the beamformer directions for every subcarrier
is readily obtained as generalized eigen vectors. Once the
beamformer directions are obtained, the power allocations
across the MIMO streams of all the subcarriers are jointly
derived. The convergence of the proposed methodology is also
shown. The main contributions of this paper are as follows

• We design an ICI-aware beamformer for a MIMO
OFDM system under FIR (finite impulse response)
multipath channel that can also take into account guard
subcarriers and DC subcarrier.

• To solve the joint problem of power allocation across
subcarriers and precoder design for all the useful
subcarriers, we employ the cyclic minimization ap-
proach to alternately optimize the precoder design and
transmit power allocation across subcarriers.

• We reinterpret the difference of convex approach as a
majorization technique

• The convergence of the entire beamformer design
including the power allocation is proved and then
shown numerically via simulations.

The rest of the paper is organized as follows. We first
present the system model in Section II. This is followed
by the design of the beamformer in section III. Simulation
results are presented for different scenarios in section IV.
Finally, conclusions are given in section V. In the following
discussions, a bold notation in small letters indicates a vector
and bold notation with capital letters indicates a matrix. We
use the abbreviation DC to refer to both the DC subcarrier as
well as the difference of convex approach.

II. SYSTEM MODEL

Consider a multiple input multiple output (MIMO) system
with Nt transmit antennas and Nr receive antennas. An OFDM
framework is chosen with N subcarriers and sampling rate fs.
Out of the total N subcarriers, let Nu be the number of utilized
subcarriers. For instance, this would account for the guard
subcarriers and DC subcarrier in an OFDM system.Let P be
the maximum sum power requirement across all the subcarriers
and let Pi be the individual power at any subcarrier i such that∑N−1
i=0 Pi = P . We consider a time-varying Rician fading

FIR channel. Thus for every combination of Tx(transmit) and
Rx(receive) antenna, the time domain channel at sample n of
an OFDM symbol may be represented as

h(n) = h0 + h
′
(n) (1)



where h0 represents the average channel across the OFDM
symbol and h

′
captures the time variation,has average value

zero, and is orthogonal to h0. It is easy to see that with
this formulation, the ICI contribution comes entirely from
h
′
(n) (see [3] for example). To continue the analysis, we can

approximate h
′
(n) by a polynomial function. For instance, a

linear model is considered in [4], [5]. For an LTE-like OFDM
system, we also choose a linear model due to the significant
subcarrier spacing compared to the Doppler frequency being
considered. Thus, for the duration of an OFDM symbol, (1)
may be rewritten as

h(n) = h0 + (n− N − 1

2
)h1 (2)

where h1 is a constant across the OFDM symbol and captures
the time variation per sample.

Upon taking the N -point FFT, the frequency domain rep-
resentation of carrier index k across the Nr receive antennas
would become

yk = H0kdk +

N−1∑
l=0,l 6=k

H1ldlΞk,l + ν̂k (3)

H0k (dimension Nr × Nt) is the mean frequency domain
channel observed at subcarrier k. The second term in equation
(3) represents the ICI (inter carrier interference) caused by
time variance due to Doppler. H1k is the frequency domain
channel component corresponding to h1 at subcarrier k, dk =
[dk(1) · · · dk(Nt)]

T is the Nt × 1 vector of transmitted data
symbols on the carrier k. ν̂k is the Nr × 1 vector of AWGN
(additive white Gaussian noise) noise observed at carrier index
k. The variance of ν̂k is normalized to be unity.

Ξk,l =
1

N

N−1∑
n=0

(
n− N − 1

2

)
ej2π(k−l) nN (4)

Let the transmit covariance matrix of subcarrier k be Qk =
E(dkd

H
k ) where E(·) is the expectation operator. Thus, the

capacity of this MIMO system across all the subcarriers in
the presence of both ICI and AWGN noise would be given as
follows.

C =

N−1∑
k=0

log |I + H0kQkH
H
0kR̄

−1
k | (5)

where R̄k = I +
∑N−1
l=0,l 6=k |Ξk,l|2H1lQlH

H
1l . Note that this

formulation can include guard subcarriers and DC subcarrier
by simply forcing their respective transmit covariances to zero.

We are interested in determining the optimal Qk such that
the capacity of the link is maximised under a power constraint

f0 : max
Qk

C = max
Qk

N−1∑
k=0

log |I + H0kQkH
H
0kR̄

−1
k |

subject to

N−1∑
k=0

tr {Qk} ≤ P.

(6)

III. BEAMFORMER DESIGN

The objective function f0 in (6) is non-convex in the covari-
ance matrix Qi and hence we follow an iterative approach. In
addition, to solve the joint problem of power allocation across
subcarriers and precoder design for all the useful subcarriers,
we employ the alternating (cyclic) minimization approach to
alternately optimize the precoder design and transmit power
allocation across subcarriers. At the beginning of the iteration
for the subcarrier i, let Pi be the power constraint and let Q̄i

be the current values of the precoder. The objective is now
two-fold,

• Update the value of Qi for every used subcarrier i.
This is done similar to ([7], [8]), but we later interpret
this as a majorization technique ([6]). This is given in
subsection III-A.

• Updation of power allocation across all the subcarri-
ers. This is given in subsection III-B.

A. Covariance matrix update

Our iterative optimization algorithm operates one subcar-
rier at a time. With focus on subcarrier i, on the same lines as
[7], the objective function f0 may be rewritten as

max
Qi

N−1∑
k=0

log |I + H0kQkH
H
0kR̄

−1
k |

= max
Qi

{log |I + H0iQiH
H
0iR̄

−1
i |+ fi(Qi,Q−i)}

(7)

where fi(Qi,Q−i) =
∑
l 6=i log |I + H0lQlH

H
0lR̄

−1
l |. Q−i

refers to the transmit covariances of all the subcarriers except
the ith. It is shown in [7] (Lemma 1) that fi(Qi,Q−i) is
convex in Qi.Thus, equation (7) is the sum of a concave and
convex function and hence the overall capacity is a non-convex
function.

As in [7], we replace the convex function fi(Qi,Q−i)
by the linear term in it’s Taylor series expansion evaluated
at Q̄i and Q̄−i (current value of the covariance matrices
Qi and Q−i). However, we also add an additional constant
term fi(Q̄i, Q̄−i) which is the value of fi(Qi,Q−i) evaluated
at Q̄i, Q̄−i. Thus effectively, we replace a convex function
fi(Qi,Q−i) by it’s tangent at Q̄i, Q̄−i. This insight is used
to give an alternative interpretation of this step in Proposition
1. We thus construct an alternative convex sub-problem to f0

at each subcarrier i.

f1 : log |I + H0iQiH
H
0iR̄

−1
i | − tr

{
Bi(Qi − Q̄i)

}
+

fi(Q̄i, Q̄−i)

subject to tr {Qi} ≤ P̄i
(8)

where Bi is the negative Hermitian of the derivative of
fi(Qi,Q−i) with respect to Qi evaluated at Q̄i, Q̄−i. P̄i
indicates the current value of Pi at any give stage of the
algorithm. Bi is given in equation (9) below (see also [9]).



Bi = −
[
∂fi(Qi,Q−i)

∂Qi

]H
=
∑
l 6=i

|Ξl,i|2H1i

{
R̄−1
l − (R̄l + H0lQlH

H
0l)
−1
}

HH
1i

(9)

The Lagrangian for f1 may now be written as

L(Qi, µi)

= log |I + H0iQiH
H
0iR̄

−1
i | − tr

{
Bi(Qi − Q̄i)

}
+

fi(Q̄i, Q̄−i)− µi(tr{Qi} − P̄i)
(10)

where µi ≥ 0.

The term log |I+H0iQiH
H
0iR̄

−1
i | is concave in Qi. As Bi

is a constant, tr
{
Bi(Qi − Q̄i)

}
is an affine function. Thus

−tr
{
Bi(Qi − Q̄i)

}
and −µi(tr{Qi}−P̄i) are also concave.

This makes L(Qi, µi) a concave problem (see [10]). We now
proceed to solve this convex optimization problem.

We derive the optimal transmit directions for subcarrier
i along the same lines as [7],[11]. Let Ai = HH

0iR̄
−1
i H0i.

Taking Qi = ViΛiV
H
i ,where Vi is a square matrix of

dimension Nt with unit norm columns and Λi be a diagonal
matrix with non-negative entries that represent the power
allocation across the different transmit streams. Ignoring the
constant terms, the maximization may be written as

max
Vi

log |I+VH
i AiViΛi|−tr

{
VH
i (Bi + µiI)ViΛi

}
(11)

Note that Bi is symmetric positive semi-definite and hence,
so is Bi+µiI. We can then define the Cholesky decomposition
for Bi + µiI as WWH where W is a lower-triangular
Cholesky factor. Define Ṽi = WHVi. Equation (11) may
be rewritten as

max
Ṽi

log |I+ṼH
i W−1AiW

−HṼiΛi|−tr
{

ṼiṼ
H
i Λi

}
(12)

Let the eigen decomposition of W−1AiW
−H be UΣUH ,

where U is a unitary matrix. Then if Q̃i = UHṼiΛiṼ
H
i U,

equation (12) may be rewritten as

max
Q̃i≥0

log |I + ΣQ̃i| − tr
{

Q̃i

}
(13)

By Hadamard inequality ([12, p.279]), the optimal Q̃i has to
be diagonal. Hence, ŨHṼiΛ

1
2
i = Q̃

1
2
i = UHWHViΛ

1
2
i . By

direct substitution, it is easy to see that VH
i (Bi+µiI)ViΛi =

Q̃i. Now, VH
i AiViΛi = Q̃iΣ.

Thus the optimal Vi diagonalizes both Bi+µiI and Ai and
can be interpreted as solution for the generalized eigenmatrix
condition ([13])

AiVi = (Bi + µiI) ViΣ (14)

While (14) provides the directions for transmission, the
optimal power allocation Λi has to be determined. This can

be done as follows. The Lagrangian in equation (10) may be
rewritten as

L(Qi, µi) = log |I + ΛiV
H
i AiVi|−

tr
{
VH
i (Bi + µiI)ViΛi

}
+ µiP̄i + fi(Q̄i, Q̄−i)

(15)

Let VH
i AiVi = D1i, where D1i is a diagonal matrix as

Vi is generalized eigenmatrix of Ai, Bi + µiI. Let D2i be a
diagonal matrix containing the diagonal elements of the matrix
VH
i BiVi. Equation (15) may be rewritten as

L(Qi, µi) = log |I + ΛiD1i|−
tr {(D2i + µiI)Λi}+ µiP̄i + fi(Q̄i, Q̄−i)

(16)

Differentiating this with respect to λij (the jth diagonal
entry of Λi ) yields the water filling equations,

D1i(j, j)

1 + D1i(j, j)λij
− (D2i(j, j) + µi) = 0 (17)

λij =

[
1

D2i(j, j) + µi
− 1

D1i(j, j)

]+

∀j such that D1i(j, j) > 0

(18)

where [x]
+ indicates max(x, 0).

The optimal µi can now be determined using a bisection
search (see Table I) as λij is monotonic in µi. Thus, the
convex objective function f1 can be solved iteratively till Qi

converges.

B. Power allocation across the subcarriers

After obtaining one set of updated Qi for all the subcarri-
ers, one can now update the power allocation across the various
subcarriers. Note that in this step, the optimal transmit direc-
tions across all the used subcarriers remain unchanged, and
only the power allocation across the various transmit streams
of all the used subcarriers is optimized. The Lagrangian for
this scenario may be written as follows.

L(Λ, η) =

N−1∑
k=0

log |I + ΛkD1k|−

tr {D2kΛk} − η

(
N−1∑
k=0

tr(Λk)− P

) (19)

where η is the Lagrangian multiplier. Differentiating this with
respect to λij (the jth diagonal entry of Λi) yields the water
filling equations,

D1i(j, j)

1 + D1i(j, j)λij
− (D2i(j, j) + η) = 0 (20)

λij =

[
1

D2i(j, j) + η
− 1

D1i(j, j)

]+

∀i such that D1i(j, j) > 0

(21)

The optimal η can now be determined using a bisection
search as λij is monotonic in η. Once all the λij across all
the subcarriers and their transmit streams are obtained, this is
in turn used to update the transmit covariance matrix Qi and
the power allocation Pi of each used subcarrier i.



TABLE I. OVERALL ALGORITHM TO SOLVE OBJECTIVE FUNCTION f0

for i = 0,1 . . . N − 1

Initialize Pi = P
Nu

I and Qi =
Pi
Nt

I

Initialize R̄i = I +
∑N−1

l=0,l 6=k
|Ξi,l|2H1iQlH

H
1i

Repeat until convergence
Update Tx covariance matrix
for i = 0,1 . . . N − 1

Repeat until convergence

R̄i = I +
∑N−1

l=0,l6=k
|Ξi,l|2H1iQlH

H
1i

Compute Ai = HH
0iR̄
−1H0i

Compute Bi =
∑

l6=i
|Ξl,i|2H1l

{
R̄−1
l
− (R̄l + H0lQlH

H
0l)
−1
}

HH
1l

Set µi = 0, µ̄i = µmax

Repeat until convergence

µi =
µ
i
+µ̄i

2

Compute the generalized eigenmatrix of Ai and Bi + µiI

Normalize the generalized eigenmatrix to have unit norm; denote it as Vi.
Set D1i = ViAiV

H
i

Set D2i as the diagonal elements of ViBiV
H
i

Compute the transmit powers, λij =
[

1
D2i(j,j)+µi

− 1
D1i(j,j)

]+
If any diagonal entries of D1i are zero, corresponding λij is set to zero.
if tr(Λi) > Pi, set µ

i
= µi ,else set µ̄i = µi

Set Qi = ViΛiV
H
i

Perform power allocation update
Set η = 0, η̄ = ηmax

Repeat until convergence

η =
η+η̄

2

for l = 0,1 . . . N − 1

Set D1l = VlAlV
H
l

Set D2l contain the diagonal elements of VlBlV
H
l

Compute the transmit powers, λlj =
[

1
D2l(j,j)+η

− 1
D1l(j,j)

]+
If any diagonal entries of D1l are zero, corresponding λij is set to zero.

if
∑N−1

l=0
tr(Λl) > P , set η = η ,else set η̄ = η

for l = 0,1 . . . N − 1

Set Ql = VlΛlV
H
l

Set Pl = tr(Λl)

C. Overall Algorithm and Convergence

The overall algorithm that solves f0 is given in Table I.
At every iteration, a convex sub-problem f1 is created and
optimized based on the updated value of Qi,Q−i from the
last iteration. A power allocation across all the subcarriers
is performed at the end of one round of transmit covariance
update for all subcarriers.

We now show that this algorithm is monotonically non-
decreasing at each step of the iteration and hence attains
convergence.

Proposition 1 : f1 is a minorization ([6]) function for f0

at any Qi, Q̄i, Q̄−i.

Proof: f1 was constructed by replacing a convex function
with it’s tangent. For a convex function, it is well known that
the tangent is always a minorizer.

The non-decreasing behaviour of the algorithm in Table I
is now shown below on the same lines as in [6]. Let Q̄i be
the current value of Qi at the beginning of an iteration, and

let Q∗i be the updated value. Then,

f0(Q̄i, Q̄−i) = f1(Q̄i, Q̄−i)

≤ f1(Q∗i , Q̄−i)

≤ f0(Q∗i , Q̄−i)

(22)

where the first equality can be observed to be true by direct
inspection whenever Qi = Q̄i. The first inequality is because
Q∗i is the result of optimization in III-A, and the second
inequality is due to Proposition 1. This shows that the transmit
covariance update is non-decreasing.

The iterations for optimization of Qi and power allocations
are steps in cyclic minimization (actually maximization in this
problem, also see [6]). Thus the overall algorithm in Table I
results in a non-decreasing updated value of f0 at each step of
the iteration. This ensures convergence to a maximum value.

IV. NUMERICAL RESULTS

We consider a MIMO fading channel based on equation
(2). A single user MIMO scenario with signal to AWGN noise
ratio of 25dB is considered. For every Tx-Rx pair,FIR Rayleigh
fading channels are generated independently with the power
delay profile (PDP) as [0 -5 -5] in dB for h0 and h1. An
LTE OFDM system operating at unlicensed 2.4GHz band is
considered with 15KHz of channel spacing. For simplicity,
we consider 16 subcarriers though the proposed algorithm can
support any FFT size. A Doppler frequency corresponding
to 450kmph is assumed. The entries of h1 are scaled such
that the overall ICI power experienced at any receive antenna
corresponds to a Doppler frequency shift of 450kmph. The
capacity of the iterative scheme under different scenarios is
considered. In the simulation results presented, all subcarriers
are assumed to be used.

Figure 1 shows a scenario with Nt = 6 transmit antennas
and Nr = 3 receive antennas. As a reference, the capacity
of a transmitter that implements the water filling algorithm
without taking into account the ICI observed at the receiver
is also shown. As expected, with the knowledge of ICI at
the transmitter, the iterative algorithm is able to significantly
improve the performance of the link. Also shown in the same
figure is the performance with a scaled identity matrix used
for transmit covariance on all the subcarriers. Figure 2 shows
the performance of the the above schemes in the absence of
ICI, as expected, the iterative method gives the same result as
that of the standard MIMO water filling ([14]) in the absence
of ICI.

Figure 3 considers a scenario with more number of receive
antennas (Nr = 5) compared to transmit antennas (Nt = 3).
Here, we find that the knowledge of ICI at the transmitter only
results in marginal improvement of the overall capacity as the
excess of receive antennas can be used effectively to suppress
the ICI.

In all the simulation scenarios considered, we see that the
iterations always exhibit a non-decreasing behaviour in the
capacity as is predicted by the theory (section III-C).

V. CONCLUSION

In this paper, we present an iterative algorithm for the joint
design of the optimal MIMO transmit precoder and the trans-
mit power allocations for an OFDM system, in the presence
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of ICI. The channel variations due to Doppler are modelled
to be linear across the OFDM symbol. To solve the joint
problem of power allocation across subcarriers and precoder
design for all the useful subcarriers, we employ the cyclic
minimization approach to alternately optimize the precoder
design and transmit power allocation across subcarriers. As the
problem of transmit covariance matrix design is not convex,
we first construct an approximate convex problem following
the difference of convex functions (DC) approach as in [7].We
reinterpret the DC approach as a majorization technique([6]).
The optimal Q is then derived iteratively for each subcarrier for
a given power allocation. The updated covariance matrices are
then used to update the power allocation across subcarriers.
We are able to show analytically, the convergence of the
iterative method and then give numerical results that show
the convergence behaviour. Our iterative algorithm can also
easily accommodate any unused subcarriers, like for instance,
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the guard subcarriers or the DC subcarrier.
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