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Abstract

The past decade has witnessed the era of big-data. Due to the vast volume of data, tra-

ditional databases and data warehouses are facing problems of scalability and e�ciency.

As a consequence, modern data management systems that can scale to thousands of

nodes, such as Apache Hadoop and Apache Spark, have emerged and quickly become

the de-facto platforms to process data at massive scales.

In these large-scale systems, many data processing optimizations that were well studied

in the database domain have now become futile because of the novel architectures and

distinct programming models. In this context, this dissertation pledged to optimize one

of the most predominant operations in data processing: data aggregation for such large-

scale data-intensive systems.

Our main contributions were the logical and physical optimizations for large-scale data

aggregation, including several algorithms and techniques. These optimizations are so

intimately related that without one or the other, the data aggregation optimization prob-

lem would not be solved entirely. Moreover, we integrated these optimizations as essen-

tial components in our multi-query optimization engine, which is totally transparent to

users. The engine, the logical and the physical optimizations proposed in this disserta-

tion formed a complete package that is runnable and ready to answer data aggregation

queries from users at massive scales. To the best of our knowledge, this dissertation is

among the foremost to provide a complete and comprehensive solution to execute ef-

�cient and scalable data aggregation queries for large-scale data-intensive applications

using MapReduce-like systems.

Our optimization algorithms and techniques were evaluated both theoretically and ex-

perimentally. The theoretical analyses showed the reasons why our algorithms and tech-

niques are a lot more scalable and e�cient than other state of the art works. The exper-

imental results using a real cluster with synthetic and real datasets con�rmed our anal-

yses, showed a signi�cant performance improvement and revealed various angles about

our algorithms. Last but not least, our works are published as open source softwares for

public usages and studies.
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Chapter 1

Introduction

Data is arguably the most important asset to a company because it contains invaluable

information. In large organizations, users share the same data management platform

to manage and process their data, whether it is a relational database, a traditional data

warehouse or a modern big-data system. Regardless of the underlying technology, users

or data analytic applications would like to process their data as fast as possible, so that

they can rapidly obtain insights and make critical decisions. Even more compelling, the

current era of big-data, in which data has dramatically grown in terms of both volume
and value, has seen datasets of petabytes or even zetabytes becoming the norm. The

enormous amount of data puts an immense pressure on data management systems to

achieve e�cient data processing at such massive scales.

To response to this challenging but realistic demand, the two following requirements

must be together to enable any e�cient data processing at massive scales:

• A data management system that is capable of scaling up to the massive size of a

large-scale cluster (hundreds, thousands or even more number of nodes).

• Scalable and e�cient algorithms and optimization techniques that are able to run

in parallel across the whole cluster.

Luckily, the �rst requirement has several adequate answers. Nowadays, modern large-

scale data management systems such as Apache Hadoop [1] or Apache Spark [2] have

proven that they are able to scale out to clusters of thousand nodes [3]. Companies

already use these systems, or similar ones, to power their daily data processing like to

compute web tra�c, to visualize user patterns, etc.. For the second requirement, the

answer is to �nd e�cient and scalable algorithms to leverage the computing power of

these systems. This is a profound mission as various data processing tasks requires their

own algorithms and optimization techniques.

15



16 CHAPTER 1. INTRODUCTION

In this dissertation, we focus on one of the most predominant operations in data pro-

cessing, data aggregation, or sometimes called data summarization. Users that interact

with data, especially big-data, constantly feel the needs of computing aggregates to ex-

tract insights and obtain value from their data assets. Of course, humans can not be

expected to parse through terabytes or petabytes of data. In fact, typically, users inter-

act with data through data summaries. A data summary is obtained by grouping data

on various combinations of dimensions (e.g., by location and/or time), and by computing

aggregates of those data (e.g., count, sum, mean, etc.) on such combinations. These sum-

maries, or data aggregates, are then used as input data for all kinds of purposes such as

joining with other data, data visualization on dashboards, business intelligence decision

making, data analysis, anomaly detection, etc.. From this perspective, we consider data

aggregation as a crucial task that is performed extremely frequently. The workload and

query templates of industrial benchmarks for databases justify this point. For instance,

20 of 22 queries in TPC-H [23] and 80 out of 99 queries in TPC-DS [22] are data aggre-

gation queries. This bestows a great chance for optimizing data aggregation to achieve

superior performance.

However, algorithms and optimization techniques available for data aggregation on

modern large-scale systems are still in their infancy: they are ine�cient and not scalable.

In addition, despite the tremendous amount of work of the database community to come

up with e�cient ways to compute data aggregates, the parallel architectures and distinct

programming models of these systems render those works incompatible. In other words,

the problem of e�cient data aggregation in large-scale systems lacks the instruments to

answer the second aforementioned requirement. This is our comprehensive motivation,

and this dissertation is an e�ort to �ll in the current gap.

Thesis Statement: We design and implement novel algorithms, optimization techniques
and engines that, all together, provide automatic scalable and e�cient data aggregation in
large-scale systems for data-intensive applications.

In the remainder of this Chapter, we highlight our key contributions and lay out this

dissertation plan.

1.1 Contributions and Dissertation Plan

The central contribution of this dissertation was an automatic optimization that enables

e�cient and scalable data aggregation for large-scale data-intensive applications. This

is achieved through two phases: logical optimization and physical optimization. The
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whole optimization was contained in an optimization engine, which is a fundamental

component of any data management system whose purpose is to �nd the execution plan

of queries of the highest performance.

Users process their data by issuing queries using a speci�c language (e.g. Structured

Query Language - SQL) to the data management platform. After parsing and validating

users’ queries to ensure that they are syntactically correct, the data management system

sends these queries to its optimization engine. Here, for data aggregation queries, our

optimization engine �rst performs the logical optimization using one of our cost-based

optimization algorithms. Then, it proceeds to the physical optimization phase, in which

we introduce a light-weight, cost-based optimization module. This module is capable of:

i) selecting the most e�cient from our families of physical techniques to actually mate-

rialize data aggregates; ii) balancing the workload across di�erent nodes in a cluster to

speed up performance. The output of the physical optimization phase is an optimized ex-

ecution plan. Finally, the data management takes this plan and executes it on the cluster,

using the selected physical technique of ours. All of these steps are done automatically

and are completely transparent to users.

The rest of this Section is dedicated to an overview of our contributions.

1.1.1 Logical Optimization for Data Aggregation

Our optimization starts with the logical optimization phase. In this phase, data aggre-

gation queries are logically modeled using a Directed Acyclic Graph (DAG). Because a

DAG is just a logical representative of the problem, we can indeed re-use many available

logical optimization algorithms from the database domain. However, none of the prior

works can scale well to a large number of queries, which happens frequently (e.g. in ad-

hoc data exploration), and/or a large number of attributes that are frequently revealed

in modern datasets.

Our main contribution is to propose a new algorithm, Top-Down Splitting, which scales

signi�cantly better than state of the art algorithms. We show, both theoretically and ex-

perimentally, that our algorithm incurs in extremely small optimization overhead, com-

pared to alternative algorithms, when producing optimized solutions. This means that,

in practice, our algorithm can be applied at the massive scale that modern data process-

ing tasks require, dealing with data of hundreds or thousands of attributes and executing

several thousands of queries. Even more, this comes without any sacri�ce: in general,

our algorithm is able to �nd comparable, if not better, solutions than others as illustrated

in our experimental evaluation.
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1.1.2 Physical Optimization for Data Aggregation

The physical optimization phase is in charged of taking the solution from the logical

optimization and deciding what is the best way for the data management system to

carry it out. The output of this phase is the de�nitive execution strategy that is later

on physically run on the cluster. Thus, the physical optimization depends exhaustively

on the underlying architecture and programming model. With respect to computing

data aggregates on a large-scale cluster (e.g. a Hadoop or a Spark cluster), the physical

optimization consists of: i) picking the most e�cient algorithm with the appropriate

parameters; ii) balancing the workload across di�erent nodes in a cluster to speed up

performance.

Our �rst main contribution in this phase is that we systematically explore the design

space of algorithms to physically compute aggregates through the lenses of a general

trade-o� model [49]. We use the model to derive the upper and lower bounds of the

parallel degree and the communication cost that are inherently present in these large-

scale cluster. As a result, we design and implement new data aggregation algorithms that

match these bounds and swipe the design space we were able to de�ne. These algorithms

prove to be remarkably faster than prior works when properly tuned.

Our second main contribution is that, we design and implement a light-weight, cost-

based optimization module, which is the heart of the physical optimization. The module

collects data statistics and uses them to properly pick the most e�cient algorithm and

parameters. This selection process is done in a cost-based manner: the module predicts

the indicative runtime of each algorithm and parameter, then chooses the best one. Last

but not least, it also performs workload balancing across nodes in the cluster to further

speed up the performance.

1.1.3 Multi-Query Optimization Engine

None of the above optimizations would work without an optimization engine. The pur-

pose of this engine is to gather and orchestrate multiple types of query optimization

using a uni�ed query and data representations. Each data management system has their

own optimization engine. There are two types of query optimization: single-query and

multi-query. The single-query optimization treats each query separately and indepen-

dently, while the multi-query one optimizes multiple queries together. Both type of

optimization are important, and lacking one of them would results in a suboptimal per-

formance. Actually, the problem of optimizing data aggregations includes both single-

query and multi-query optimizations.

Our optimization algorithms can be implemented inside the optimization engine of cur-

rent large-scale systems like Hadoop and Spark. However, such systems currently pro-
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vide only single-query optimization engines. Thus, our main contribution here is to �ll

in the gap by designing and implementing a multi-query optimization engine for such

systems. Our design is �exible and general that it is actually easy to implement many

kinds of multi-query optimization, including ours.

1.1.4 Dissertation Plan

This dissertation is organized as follows. Chapter 2 presents the fundamental back-

ground necessary to fully appreciate the context of this dissertation.

Chapter 3 is dedicated to present our logical optimization algorithm. We introduce our

formal de�nition of the problem, as well as thoroughly discuss the state of the art algo-

rithms and their limitations. Then, we describe in details our algorithm and give a theo-

retical analysis on the best case and worst case scenarios. An experimental evaluation is

conducted to evaluate the e�ectiveness our algorithm compared to other works.

Chapter 4 presents our contributions in physical optimization for data aggregation. The

�rst part of this Chapter describes the mathematical model that we use to calculate the

bounds of data aggregation algorithms and derive its design space to match these bounds.

This part is ended with an experimental evaluation to demonstrate the competence of

our algorithms. The second part of this Chapter is allocated for the heart of the physical

optimization: the design and implementation of the cost-based optimization module.

Using our data aggregation algorithms, we show on synthetic and real datasets that our

design is very light-weight and has low optimization latency.

Chapter 5 describes the design and implementation of our multi-query optimization en-

gine. We also show how to implement the data aggregation optimization in our engine,

including our techniques as well as other works. The experiments show not only the

�exibility and generality of our engine, but also the end-to-end evaluation of di�erent

logical optimization algorithms to validate our work in Chapter 3.

The last Chapter, Chapter 6 of this dissertation summarizes the main results we obtained.

In the last part of this Chapter, we provide a set of possible future directions and discuss

our intuitive idea.





Chapter 2

Background

In this Chapter, we presents the fundamental background on data aggregation and query

optimization, both logical and physical. Because the physical optimization is tied with

the underlying data management systems, we also cover the basis of our chosen pro-

gramming models and execution engines for data-intensive applications with a discus-

sion about reasoning behind our choices.

2.1 Data Aggregation

In a data management system, data aggregation maintains a signi�cant portion of user

queries [71]. The family of data aggregation queries consists of four operators: Group By,

Rollup, Cube and Grouping Sets. A Group By operator �nds all records having identical

values with respect to a set of attributes, and computes aggregates over those records.

For instance, consider a table CarSale (CS) with two attributes model (M), and package
(P), the query Select M, Count(*)From CarSale Group By (M) counts the

volume of car sales for each model. The Group By operator is the building block of data

aggregation, as all other operators are generalizations of Group By. For this reason, the

multiple data aggregation query optimization can be also called the multiple Group By
query optimization.

A Cube operator (introduced by Gray et al. [64]) computes Group Bys corresponding to

all possible combinations of a list of attributes. For instance, a Cube query like Select
M, P, Count(*)From CS Group By Cube(M, P) can be rewritten into four
Group By queries:

Q1: Select M,P,Count(*) From CS Group By(M, P)
Q2: Select M, Count(*) From CS Group By(M)
Q3: Select P, Count(*) From CS Group By(P)

21
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Q4: Select Count(*) From CS Group By(*)

The Group By (*) in Q4 denotes an all Group By, (or sometimes called empty Group By),

in which all records belong to a single group.

A Rollup operator [64] considers a list of attributes as di�erent levels of one dimen-

sion, and it computes aggregates along this dimension upward level by level. Thus a

Rollup query like Select M, P, Count(*)From CS Group By Rollup(M,
P) computes volume sale for Group Bys (M, P), (M), (*) (or Q1, Q2, Q4) in

the above example.

The Rollup and Cube operators allow users to compactly describe a large number of

combinations of Group Bys. Numerous solutions for generating the whole space of data

Cube and Rollup have been proposed [26, 37, 58, 66, 74]. However, in the era of “big
data”, datasets with hundreds or thousands of attributes are very common (e.g. data in

biomedical, physics, astronomy, etc.). Due to the large number of attributes, generating

the whole space of data Cube and Rollup is ine�cient. Also, very often users are not in-

terested in the set of all possible Group Bys, but only a certain subset. The Grouping Sets

operator facilitates this preference by allowing users to specify the exact and arbitrary

set of desired Group Bys. In short, Cube, Rollup and Grouping Sets are convenient ways

to declare multiple Group By queries.

Example 1: Consider a scenario in medical research, in which there are records of patients

with di�erent diseases. There are many columns (attributes) associated with each patient

such as age, gender, city, job, etc. A typical data analytic task is to measure correlations

between the diseases of patients and one of the available attributes. For instance, heart

attack is often found in elderly people rather than teenagers. This can be validated by

obtaining a data distribution over two-column Group By (disease, age) and by comparing

the frequency of heart attack of elderly ages (age ≥ 50) versus teenagers age (12 ≤
age ≤ 20). Typically, for newly developed diseases, a data analyst would look into

many possible correlations between these diseases and available attributes. A Grouping

Sets query allows her to specify di�erent Group Bys like (disease, age), (disease, gender),
(disease, job), etc.

2.2 Large-Scale Data Processing Model

In this Section, we introduce the fundamental of the MapReduce [60] programming

model and its extension: the Resilient Distributed Datasets [17]. In data-intensive appli-

cations, these two models are the most popular tools to handle a vast amount of data

due to its outstanding scalability and cost-e�ectiveness, and they are our models of

choice.
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2.2.1 MapReduce Model Fundamentals

MapReduce is a batch-oriented large-data processing model that was put forward by

Google [60]. The MapReduce programming model is useful in a wide range of applica-

tions, for example: to extract, transform and load data (ETL); compute the Page-rank al-

gorithm; sort terabytes or petabytes of data; distributed pattern-based search; etc.. Over

the time, MapReduce has evolved into being the primary tool to turn big data of compa-

nies into useful information, i.e. to perform data processing.

The MapReduce programming model has two main phases: map and reduce. The map

phase processes input records (in the form of 〈key, value〉 pairs) to produce a list of

intermediate 〈key, value〉 pairs. Before the map phase, the input data is distributed across

a cluster of machines as input splits [19]. A node that is assigned to handle the map

phase of an input split is called mapper. Similarly, a node that is assigned to handle

the reduce phase is called reducer. The mapper outputs are partitioned to reducers by

a partitioner in a way such that pairs with the same intermediate key go to the same

reducer. The transferring data from mappers to reducers is called the shu�e phase, and

is done automatically. After collecting all 〈key, value〉 pairs from every mapper through

network, a reducer sorts its input data by the intermediate key and constructs a list of

values for that key. Finally, a reducer processes each key and its list of values to produce

the �nal results. In brief, two phases transform the data as below:

map(K1, V1)− > [K2, V2]
1

reduce(K2, [V2])− > [K3, V3]

In MapReduce model, there is an essential function called combine that lowers the

amount of intermediate data considerably. A combiner is like a mini-reducer that runs

in the map phase to combine intermediate data locally before sending them over net-

work to reducers. An example is to count the total request of a web service for each

day over a period of time. To reduce intermediate data, the combiner partially com-

putes the number of requests for each day within the local mapper, and sends them to

reducers. The reducers then can assemble the partial results to produce the total num-

ber of requests. The map phase now can be written as: map(K1, V1)− > [K2, V2]− >

combine(K2, [V2])− > [K2, V2]. However if the reduce function (e.g. count unique) can-

not construct �nal results from partial results, the combiner cannot be used.

2.2.2 Resilient Distributed Datasets Fundamentals

MapReduce is a simple programming model for batch processing, yet it is also e�ciently

applicable to a wide range of applications. Nevertheless, there are still other major �elds

1
The bracket denotes a list
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of applications that MapReduce struggles to run e�ciently. In this context, Resilient

Distributed Datasets [17] (RDDs) extends the data �ow programming model introduced

by MapReduce [60] to provide a common programming model to solve these diverse dis-

tributed computation problems. RDD is a fault-tolerant, parallel data structure which let

users explicitly store data in memory or on disk, manage data partitions, and manipulate

them through a rich set of operators. RDD can capture most current specialized models

and new applications like streaming, machine learning or graph processing.

An RDD is an immutable, partitioned set of records. An RDD can only be created through

a set of operations, called transformation, from only two sources: the storage input and

other RDDs. Some transformations are: map, �lter, union, groupByKey, etc..

The connection of an RDD and its parent RDDs is represented by dependencies. There are

two kinds of dependencies: narrow dependency where each partition of the parent RDD

is used by at most one child RDD, wide dependency where each partition of parent RDD

is used by multiple child RDDs. For example, a �lter transformation creates a narrow

dependency while a groupByKey transformation creates a wide dependency. The

wide dependency is an abstraction of the shu�e phase in MapReduce, while the narrow

dependency is an abstraction of computation in the map and reduce phase. This is the

reason why RDD is an extension of the MapReduce model. Besides, these dependencies

form a Directed Acyclic Graph (DAG) of RDDs.

RDDs provides users two useful features: persistence and partitioning. Persistence is

similar to caching, and very helpful when an RDD is reused many times. When per-

sisting an RDD, each node stores any partitions of that RDD that it computes in mem-

ory and reuses them in other transformations. This allows future transformations to

be much faster. Persisting is a key tool for iterative algorithms and fast interactive us-

age. Partitioning lets users manage how their data is split and parallelized, which is

necessary for some optimizations required location information, for example, join is a

transformation which would perform signi�cantly better if having information about

data location.

All transformations in Spark are lazy, which means Spark does not compute their re-

sults right away. Instead, they just remember the transformations applied to some base

datasets using the DAG. The transformations are only computed when an action is called.

To obtain the result from processing the data, users call an action which triggers a Spark

job. Table 2.1 gives us some basic transformations and actions inside Spark.

To summarize, each RDD is characterized by �ve main properties:

• A list of partitions.

• A function to compute each partition (each split).

• A list of dependencies on other RDDs.
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Table 2.1: Some transformations and actions in Spark

Transformation

map(f : T ⇒U) : RDD[T ]⇒RDD[U]

�lter(f : T ⇒Bool) : RDD[T ]⇒RDD[T]

�atMap(f : T ⇒Seq[U]) : RDD[T ]⇒RDD[U]

sample(fraction : Float) : RDD[T ]⇒RDD[T]

groupByKey() : RDD[(K,V )]⇒RDD[(K, Seq[V])]

reduceByKey(f : (V, V )⇒V) : RDD[(K,V )]⇒RDD[(K, V)]

union() : (RDD[T ], RDD[T ])⇒RDD[T]

join() : (RDD[(K,V )], RDD[(K,W )])⇒RDD[(K, (V, W))]

cogroup() : (RDD[(K,V )], RDD[(K,W )])⇒RDD[(K, (Seq[V], Seq[W]))]

crossProduct() : (RDD[T ], RDD[U ])⇒RDD[(T, U)]

mapValues(f : V ⇒W) : RDD[(K,V )]⇒RDD[(K, W)]

sort(c : Comparator[K]) : RDD[(K,V )]⇒RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K,V )]⇒RDD[(K, V)]

Actions

count() : RDD[T ]⇒Long

collect() : RDD[T ]⇒Seq[T]

reduce(f : (T, T )⇒T) : RDD[T ]⇒T

lookup(k : K) : RDD[(K,V )]⇒Seq[V]

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

• A partitioner to partition its data.

• A list of preferred data locations for computation.

2.2.3 Discussion of Our Choices

Nowadays, both MapReduce and RDD are the most popular programming models for

large-scale data processing due to its three main advantages: high scalability, fault-

tolerance and high cost-e�ectiveness. The computation in both phases of MapReduce is

distributed to many nodes in a cluster, which helps producing a great parallelism for a

single job. If a node fails, the fault-tolerance mechanism will schedule another node to

re-compute its work. If an organization wants to expand their cluster, they may easily

add more nodes to further speed up the job. This horizontal scalability allows clusters

to scale up to several ten thousands node [3]. Moreover, nodes in a cluster can be built

from commodity hardware, which is remarkably cheaper than specialized hardware like

mainframes and supercomputers [60].

A MapReduce program can be easily expressed using RDDs. In addition, if we look at two

RDDs that are connected by a wide dependency, this is basically similar to a MapReduce

program. Again, RDD is an extension of MapReduce with other useful features, but the
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fundamental di�erence is that: the computation of RDDs happens not necessarily in two

phase like MapReduce, but in an arbitrary number of phases. Thus, RDD also inherits

the advantages of MapReduce, and is quickly becoming the next most popular tool for

large-scale data processing.

With that being said, since this dissertation is about e�cient and scalable data aggrega-

tion, we strongly believe that building physical optimization of our work upon the two

most popular models, MapReduce and RDD, would allow us to make an immense impact

to both the research and industrial communities.

2.3 Execution Engines, High-level Languages and
Query Optimization

2.3.1 Execution Engines

Since the time MapReduce programming model was �rst introduced by Google [60],

there have been tons of e�ort to provide di�erent implementations for it. These im-

plementations are called execution engines, and they allow users to write a MapRe-

duce program using their e�ortless application programming interfaces (APIs). Af-

ter that, they execute the program on a cluster and automatically manage scalability

and fault-tolerance. The most well-known execution engine for MapReduce is Apache
Hadoop [1, 75], and for RDD, it is Apache Spark [2].

2.3.2 High-level Languages

Immediately, users �nd that writing a MapReduce (or RDD) program is low-level, te-

dious and error-prone. In addition, users have to optimize their programs themselves,

which proves to be troublesome and di�cult from time to time. Therefore, users really

like to write their programs in form of queries using a high-level language (e.g. SQL) and

have their queries automatically optimized. This allow users to think about the semantic

of their programs, not about the details of the underlying system and its APIs. Unsur-

prisingly, these two features are long-established in traditional database management

systems, and contribute enormously to their success. Thus, for MapReduce and RDDs to

reach the same height of success, there have been e�orts to answer these requirements,

such as:

• Apache Pig [8] with its high-level language called Pig Latin [73] for MapReduce.

• Apache Hive [7] with its HiveQL, a variant of SQL, for MapReduce.
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Figure 2.1: Query Processing

• SparkSQL [14] provides SQL engine for RDDs.

2.3.3 Query Optimization

Figure 2.1 shows the query processing pipeline. To maximize performance, queries re-

ceived from users are automatically optimized through an automatic optimization en-

gine. This engine has two phases:

• Logical optimization: it takes a logical plan, which is a logical representation of

queries, and performs several optimizations over this plan. These optimizations

do not care about the underlying execution engine and model but only the logical

view and reasoning of these queries. For example, in any systems, running Filter
before Cube would cut down a lot of execution time, since the amount of data

is reduced vastly before an expensive computation is performed. Therefore, for

di�erent systems with the same logical view of queries, they can share the same

logical optimization techniques.

• Physical optimization: optimizations in this phase focus on how to carry out the

optimized logical plan, which is output of logical optimization, in an e�cient way

taking into account the underlying engine and model. Di�erent models and/or
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execution engines have di�erent physical optimizations. For instance, for Hadoop

MapReduce, the optimization has to decide how to form a 〈key, value〉 pair, which

is a non-exist thing in traditional databases. The output of this phase is an opti-

mized physical plan, and is ready for execution engine to pick up and carry out to

obtain the �nal results.

2.4 Summary

In this Chapter, we present the basic background of data aggregation and query opti-

mization and give principal reasons behind their enormous importance. We also shed

light on the current most popular large-scale data processing tools, including the pro-

gramming model as well as the execution engines. We remark that, to acknowledge

users’ requirements for optimizing large-scale data aggregation, this dissertation is ca-

pable of providing them:

1. Logical optimization for data aggregation (Chapter 3).

2. Physical optimization for data aggregation (Chapter 4).

3. A automatic query optimization engine that accepts high-level language queries

(Chapter 5).



Chapter 3

Logical Optimization for Large-Scale
Data Aggregation

In this Chapter, we present our work on the logical optimization for large-scale data

aggregation.

3.1 Introduction

In this Chapter, we tackle the most general problem in optimizing data aggregation: how

to e�ciently compute a set of data aggregation queries. We remind that, in Section 2.1,

this problem is also equivalent to the problem of how to e�ciently compute a set of

multiple Group By queries. This problem is known to be NP-complete ( [26, 31]), and

all state of the art algorithms ( [24, 26, 31, 32]) use heuristic approaches to approximate

the optimal solution. However, none of prior works scales well with large number of

attributes, and/or large number of queries. Therefore, in this Chapter, we present a novel

algorithm that:

• Scales well with both large numbers of attributes and numbers of Group By

queries. In our experiment, the latency introduced by our query optimization al-

gorithm is several orders of magnitude smaller than that of prior works. As the

optimization latency is an overhead that we should minimize, our approach is truly

desirable.

• Empirically performs better than state of the art algorithms: in many cases our

algorithm �nds a better execution plan, in many other cases it �nds a comparable

execution plan, and in only a few cases it slightly trails behind.

In the rest of the Chapter, we formally describe the problem in Section 3.2. We then

discuss the related work and their limitations in Section 3.3 to motivate the need for a

29
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new algorithm. The details of our solution with a complexity analysis are presented in

Section 3.4 . We continue with our experimental evaluation in Section 3.5. A discussion

about our algorithm and its extension is in Section 3.6. Finally we summarize our work

and present our perspectives in Section 3.7.

3.2 Problem Statement

There are two types of query optimization: single-query optimization and multi-query

optimization. As its name suggest, single-query optimization optimizes a single query

by deciding, for example, which algorithm to run, con�guration to use and optimized

values for parameters. An example is the work in [29]: when users issue a Rollup query

to compute aggregates over day, month and year, the optimization engine automatically

picks the most suitable state of the art algorithms [28] and set the appropriate parameter

to obtain the lowest query response time.

On the other hand, multi-query optimization optimizes the execution of a set of multiple

queries. In large organizations, there are many users who share the same data manage-

ment platform, resulting in a high probability of systems having concurrent queries to

be processed. A cross industry study [71] shows that not all data is equal: in fact, some

input data is “hotter” (i.e. get accessed more frequently) than others. Thus, there are

high chances of users accessing these “hot” �les concurrently. This is also veri�ed by

in industrial benchmarks (TPC-H and TPC-DS) in which their queries frequently access

the same data. The combined outcome is that optimizing multiple queries over the same
input data can be signi�cantly bene�cial.

The problem we address in this Chapter, the multiple Group By query optimization

(MGB-QO), can come from both scenarios. From the single-query optimization perspec-

tive, any Cube, Rollup or Grouping Sets query is equal to multiple Group Bys. From the

multi-query optimization perspective, the fact that many users issue one Group By over

the same data means multiple Group Bys and it requires optimization. More formally,

we consider an o�ine version of the problem:

• For a time window ω, without loss of generality, we assume the system receives

data aggregation queries over the same input data that contains one of the follow-

ing operators:

– Group By

– Rollup

– Cube

– Grouping Sets
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• These queries correspond to n Group By queries {Q1, Q2, ..., Qn}

In reality, hardly any query arrives at our system at the exact same time. The time win-

dow ω can be interpreted as a period of time in which queries arrive and are treated as

concurrent queries. The value of ω can either be predetermined or dynamically adjusted

to suit the system workload and scheduler, which lead to the online version of this prob-

lem. However, the online problem is not addressed in this dissertation: it remains part

of our future work.

3.2.1 De�nitions

We assume that the input data is a table T with m attributes (columns). Let S =

{s1, s2, ..., sn} be the set of groupings that have to be computed from n queries

{Q1, Q2, ..., Qn}, where si is a subset of attributes of T . Each query Qi is a Group By

query:

Qi: Select si, Count(*) From T Group By si

To simplify the problem, we assume that all queries perform the same aggregate measure

(function) (e.g. Count(*)). Later in Section 3.6.2, we discuss the solution to adapt to

di�erent aggregate measures.

3.2.1.1 Search DAG

Let Att = {a1, ...am} =
⋃∞
i=1 si be the set of all attributes that appear in n Group By

queries. We construct a directed acyclic search graph G = (V,E) de�ned as follows.

A node in G represents a grouping (or a Group By query). V is the set of all possible

combinations of groupings constructed from Att plus a special node: the root node T .

The root node is essentially the input data itself.

An edge e = (u, v) ∈ E from node u to node v indicates that grouping v can be computed

directly from grouping u. For instance, an edge AB → A means that grouping A can be

computed from grouping AB. There are two costs associated with an edge e between

two nodes: a sort cost csort(e) and a scan cost cscan(e). If groupingAB is sorted in order of

(A,B), computing groupingAwould require no additional sort, but only a scan over the

grouping AB. We denote this cost by cscan(e). However if grouping AB is not sorted,

or sorted in order of (B,A), computing grouping A would require a global sort on the

attribute A, incurring a sort cost csort(e). The costs are of course di�erent in two cases.

We note the only exception: the root node. If input data is not sorted, then all outgoing

edges from the root node have only one sort cost.

We call G a search DAG. Next, we show an example with four queries. In this example,

we have an input table T (A,B,C) and four Group By queries:
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ABC

ACAB BC
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Figure 3.1: An example of a search DAG

Q1: Select A, Count(*) From T Group By(A)
Q2: Select B, Count(*) From T Group By(B)
Q3: Select C, Count(*) From T Group By(C)
Q4: Select A,B,Count(*) From T Group By(A,B)

From the above de�nitions, we have:

• S = {A,B,C,AB}.

• Att = {A,B,C}.

• V = {T, ∗, A,B,C,AB,AC,BC,ABC}.

It is easy to see that S ⊆ V . We call S the terminal (or mandatory) nodes: all of these

nodes have to be computed and materialized as these are outputs of our Group By queries

{Q1, Q2, Q3, Q4}. Other nodes in V \ S are additional nodes which may be computed if

it helps to speed up the execution of computingS. In this example, even though grouping

ABC is not required, computing it allows S = {A,B,C,AB} to be directly computed

from ABC rather than the input table T . If the size of ABC is much smaller than T ,

the execution time of S is indeed reduced. Because V contains all possible combinations

of groupings constructed from Att, we are sure that all possible groupings that help

reduce the total execution cost are inspected. We also prune the space of V to exclude

nodes that have no outgoing edges to at least one of the terminal nodes, i.e. these nodes
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certainly cannot be used to compute S. The �nal search DAG for the above example is

shown in Figure 3.1.

Intuitively if a grouping is used to compute two or more groupings, we want to store it

in memory or disk to serve later rather than recompute it.

3.2.1.2 Problem Statement

In data management systems, the problem of multiple Group By query optimization is

processed through both logical and physical optimization. In logical optimization, we set

to �nd an optimal solution tree G′ = (V ′, E ′). The solution tree G′ is a directed subtree

from G, rooted at T , that covers all terminal nodes si ∈ S. It can be seen as a logical

plan for computing multiple Group By queries e�ciently. This is the main objective of

this Chapter.

The physical optimization, as its name suggests, takes care of all physical details to exe-

cute the multiple Group By queries and return actual aggregates. Understandably, di�er-

ent data management systems have di�erent architectures to organize their data layout,

disk access, indexes, etc. Thus, naturally each system may have is own technique to im-

plement the physical multiple Group By operator. For reference purpose, some example

techniques are PipeSort, PipeHash [26], Partition-Cube, Memory-Cube [74] or newer

technique for multiprocessors in [20] for databases, or In-Reducer Grouping [28, 80]

for MapReduce and its extensions. We note that the physical optimization is not this

Chapter’s target: our solution is not a�ected by any particular physical technique. Also,

regardless of the physical techniques, the grouping order is guided by the solution tree

G′ obtained from our logical optimization.

More formally, in the optimized solution tree G′ we have:

1. S ⊆ V ′ ⊆ V .

2. E ′ ⊂ E and for any edge e(u, v) ∈ E ′, there is only one type of cost associated to

edge e:

c(e) =

{
csort(e)

cscan(e)

3. From any node u ∈ V ′, there is at most one outgoing scan edge.

An optimal solution tree is the solution tree with the minimal total execution cost

C(E ′) =
∑

e∈E′ c(e). Figure 3.2 shows an optimal solution tree for the above exam-

ple. The dotted lines represent sort edges, and the solid lines show the scan edges. The

bold nodes are the required grouping (i.e. terminal nodes). The italic node (ABC) is



34
CHAPTER 3. LOGICAL OPTIMIZATION FOR LARGE-SCALE DATA

AGGREGATION

ABC

AB

CA B

T

Figure 3.2: An example of a solution tree

the additional node whose computation helps to reduce the total execution cost of G′.

Additional groupings BC and AC are not computed as doing so does not bring down

the cost of G′.

Finding the optimal solution tree for multiple Group By queries is an NP-complete prob-

lem [31, 51]. State of the art algorithms use heuristic approaches to approximate the

solution. In the next Section, we discuss in more detail why none of those algorithms

scale well with large number of attributes, and/or large number of Group By queries.

This motivates us to �nd a more scalable approach.

3.2.2 Cost model

Our primary goal is to �nd the solution tree G′ with a small total execution cost. The

total execution cost is the sum of the cost from all edges inG′. Therefore, we need a cost

model that assigns the scan and sort costs to all edges in our search graph. However,

our work does not depend on a speci�c cost model as its main purpose is to quantify the

execution time of computing a node (a Group By) from another node. Any appropriate

cost model for various systems like parallel databases, MapReduce systems, etc. can be

plugged into our algorithm.
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3.3 Related Work

Optimizing data aggregation in traditional databases has been one of the main tasks

in database research. The multiple Group By query problem are studied through the

lenses of the most general operator in data aggregation: Grouping Sets. The Grouping

Sets is syntactically an easy way to specify di�erent Group By queries at the same time,

therefore all of Group By, Rollup, Cube queries can be translated directly into a Grouping

Sets query.

To optimize Grouping Sets queries, the common approach is to de�ne a directed acyclic

graph (DAG) of nodes, where each node represents a single Group By appearing in the

Grouping Sets query [24, 26, 31, 32, 51]. An edge from node u to node v indicates that

grouping v can be computed from grouping u. For example: groupBC can be computed

from BCD.

There are two major di�erences among various works to compute Grouping Sets. The

�rst di�erence is the cost model: how to quantify a cost (expressed as a weight of an edge)

to compute a group v from a group u. PipeSort [51] sets the weight of an edge (u, v) to

be proportional to the cost of re-sorting u to the most convenient order to compute

v. For example, to compute BC , the main cost would be to resort ABC to BCA to

compute (B,C). This is a sort cost. However, if grouping ABC is already in the sorting

order of (B,C,A), the cost to compute BC would be mainly scan (hence scan cost). In

contrast, [24] and [31] simplify the cost model by having only one weight for each edge

(u, v), regardless of how physically v is computed: the weight of an edge (u, v) is equal

to the cardinality of group u.

The other di�erence is, given a DAG of Group By nodes and weighted edges with appro-

priate costs, how to construct an optimal execution plan that covers all required Group

Bys with the minimum total cost. This problem is proven to be NP-complete ( [31, 51]),

thus approximations through heuristic approaches are studied.

The work in [24] gives a simple greedy approach to address the problem. It considers

Group By nodes in descending order of cardinality. Each Group By is connected to one

of its super nodes. Super nodes of v is any node u such that (u, v) exists. If there are

super nodes that can compute this Group By without incurring a sorting cost, it chooses

the one with the least cost. This Group By becomes a scan child of its parent node. If

all super nodes already have a scan child, it chooses the super nodes with the least sort

cost. This approach is called Smallest Parent. It is simple and fast, however it does not

consider any additional node that can help reducing the total cost. In the rest of this

section, we consider algorithms that include also additional nodes.

In [26], the authors transform the problem into a Minimal Steiner Tree (MST) on directed

graph problem. Because the cost of an edge depends on the sorting order of the parent
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node, a Group By node is transformed into multiple nodes: each corresponds to a sort-

ing order that can be generated (using permutation) from the original Group By node.

Then the approach in [26] adds cost to all pairs of nodes, and uses some established

approximation of MST to retrieve the optimized solution. The main drawback of this

approach is that, the transformed DAG contains a huge number of added nodes and

edges (because of permutation), and even a good approximation of MST problem cannot

produce solutions in feasible time, as any good MST approximation is at least O(|V |2)
where |V | is the number of nodes. For example, to compute Cube with 8 attributes, the

transformed DAG consists of 109, 601 nodes and 718, 178, 136 edges, w.r.t. 256 nodes

and 6, 561 edges of the original DAG.

In another work [32], the authors present a greedy approach on the search DAG of

Grouping Sets. Given a partial solution tree T (which initially includes only the root

node), the idea is to consider all other nodes to �nd one that can be added to T with the

most bene�t. When the node x is added to T , it is �rst assumed to be computed from

the input data set, and this incurs a sort cost. Then the algorithm in [32] tries to mini-

mize this cost, by �nding the best parent node from which x can be computed. Once x’s

parent is chosen, this approach �nds all the nodes that are bene�cial if computed from

x rather than its current parent. This bene�t is then subtracted by the cost of adding

x to yield the total bene�t of adding x to T (which the bene�t value can be positive

or negative). This process is repeated until it cannot �nd any node that brings positive

bene�t to add to T. The complexity of this approach isO(|V ||T |2) where |V | = 2m, m is

the number of attributes and |T | is the size of the solution tree, which is typically larger

than the number of terminal nodes (|T | ≥ n). Note that while |V | is much smaller than

the number of nodes in [26] because of no added permutation, it is still problematic if m

is large.

While the approach in [32] is more practical than the approach in [26], it cannot scale

well with a search DAG of a much larger number m of attributes, in which the full

space of additional nodes and edges can not be e�ciently enumerated. To address this

problem, [31] proposes a bottom-up approach. It �rst constructs a naïve plan in which

all mandatory nodes are computed from the input data set. Then from all children nodes

of the input data set, it considers all pairs of nodes (x, y) that can be merged. For each

pair, it computes the cost of a new plan obtained by merging this pair of nodes. After

that, it pick the pair, say (v1, v2), that has the lowest cost and replace the original plan

with this new plan. In this new plan, the node v1 ∪ v2 is included to the solution tree.

In other words, an additional node is only considered and added if and only if it is the

parent of at least two di�erent nodes. This eliminates the task of scanning all nodes in

the search DAG, making this algorithm a major improvement over previously described

algorithms. At some point in time, if all the possible pairs result in a worse cost then

the current plan, the algorithm stops. This algorithm callsO(n3) times the procedure of
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merging two nodes where n is the number of terminal nodes. The merging procedure

has the complexity of O(n). Overall, the complexity of this algorithm is O(n4).

The advantage of the algorithm described in [31] is that, it scales irrespectively to the

space of |V | but only to n, the number of Group By queries. If n is small, it scales better

than [26,32]. However, for dense multiple Group By queries, i.e. large n and smallm (e.g.
computing Cube of 10 attributes results in n = 1024), this algorithm scale worse than

[26,32]. This motivates us for a more scalable and e�cient algorithm to approximate the

solution tree.

3.4 The Top-Down Splitting Algorithm

In this Section, we propose a heuristic algorithm called Top-Down Splitting to �nd a

solution tree in the multiple Group By query optimization discussed in Section 3.2. Our

algorithm scales well with both large numbers of attributes and large number of Group

By queries. Compared to state of the art algorithms, our algorithm runs remarkably

faster without sacri�cing the e�ectiveness. In Section 3.4.1, we present our algorithm

in detail with its complexity evaluation in Section 3.4.2. Finally, we discuss the choice

of appropriate values for an algorithm-wise parameter, as it a�ects directly the running

time of our algorithm.

3.4.1 Top-Down Splitting algorithm

Our algorithm consists of two steps. The �rst step is to build a preliminary solution tree

that consists of only terminal nodes and the root node. Taking this preliminary solution

tree as its input, the second step aims to repeatedly optimize the solution tree by adding

new nodes to reduce the total execution cost. While the second step sounds similar

to [32], we do not consider the whole space of additional nodes. Instead, we consider

only additional nodes that can evenly split a node’s children into k subsets. Here k is an

algorithm-wise parameter set by users. By trying to split a node’s children into k subsets,

we apply a structure to our solution tree: we transform the preliminary tree into a k-way

tree (i.e. at most k fan-out). Observing the solution trees obtained from state of the art

algorithms, we see that most of the times they have a relatively low fan-out k.

3.4.1.1 Constructing the preliminary solution tree

This step returns a solution tree including only terminal nodes (and of course, the root

node). Later, we further optimize this solution tree. The details of this step are shown in

Algorithm 1.
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We sort the terminal nodes in descending order of their cardinality. As we traverse

through terminal nodes in descending order, we add them to the preliminary solution

tree G′: we �nd their parent node in G′ with the smallest sort cost (line 5). Obviously,

nodes with smaller cardinality cannot be parents of a higher cardinality node. Thus we

assure that all possible parent nodes are examined. Up to this point, we have consid-

ered only the sort cost. When all terminal nodes are added, we update the scan/sort

connection between a node u and its children. Essentially, the fix_scan(u) procedure

�nds a child node of u that brings the biggest cost reduction when its edge is turned

from sort to scan mode. The output of Algorithm 1 is a solution tree G′ which is not yet

optimized.

Algorithm 1 Step 1: Constructing preliminary solution

1: function build_preliminary_solution

2: G′ ← T
3: sort S in descending order of cardinality

4: for v ∈ S do
5: umin = argminu csort(u, v)|u ∈ G′
6: G′ ← G′ ∪ v: add v to G′

7: E ′ ← E ′ ∪ esort(umin, v)
8: end for
9: for u ∈ G′ do

10: fix_scan(u)
11: end for
12: return G′

13: end function

Algorithm 2 Step 2: Optimizing G′

1: procedure topdown_split(u, k)

2: repeat
3: b← partition_children(u, k)
4: until (b == false)
5: Children = {v1...vq}|(u, vi) ∈ E ′
6: for v ∈ Children do
7: topdown_split(v, k)
8: end for
9: end procedure

3.4.1.2 Optimizing the solution tree

In this step, we call topdown_split(T, k), with T is the root node, to further optimize the

preliminary solution tree obtained in Algorithm 1. The procedure topdown_split(u, k)
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(Algorithm 2) repeatedly calls partition_children(u, k) (Algorithm 3) that splits the

children of node u into at most k subsets. The function partition_children(u, k) re-

turns true if it can �nd a way to optimize u, i.e. split children of node u into smaller

subsets and reduce the total cost. Otherwise, it returns false to indicate that children of

node u cannot be further optimized. We then recursively apply this splitting procedure

to each child node of u. Since the �ow of our algorithm is to start partitioning from the

root down to the leaf nodes, we call it the Top-Down Splitting algorithm.

Algorithm 3 Find the best strategy to partition children of a node u to at most k subsets

1: function partition_children(u, k)

2: CN = {v1...vq}|(u, vi) ∈ E ′
3: if q ≤ 1 then . q: number of child nodes

4: return false

5: end if
6: Cmin = cost(G′)
7: SS ← ∅
8: if k > q then
9: k = q . constraint: k ≤ q

10: end if
11: for k′ = 1→ k do
12: A = divide_subsets(u, k′)
13: compute the new cost C ′

14: if C ′ < Cmin then
15: Cmin ← C ′ . remember the lowest cost

16: SS ← A . remember new addition nodes

17: end if
18: end for
19: if SS 6= ∅ then
20: Update G′ according to SS
21: return true

22: else
23: return false

24: end if
25: end function

The function partition_children(u, k) (Algorithm 3) tries to split the children of u into

at most k subsets. Each of these k subsets is represented by an additional node that is

the union of all nodes in that subset. The intuition is that, instead of computing children

nodes directly from u, we try to compute them from one of these k additional nodes and

check if this reduces the total execution cost. Observing the solution tree obtained from

state of the art algorithms, we see that in many situation, the optimal splitting strategy

may not be exactly k, but a value k′ (1 ≤ k′ ≤ k). By trying every possible split k′ from

1 to k, we compute the new total execution cost with new additional nodes, and retain

the best partition scheme, i.e. the one with the lowest total cost. Then, we update the
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solution graph accordingly: removing edges from u to children, adding new nodes and

edges from u to new nodes, and from new nodes to children of u.

Algorithm 4 Dividing children into k′ subsets

1: function divide_subsets(u, k′)
2: CN = {v1...vq}|(u, vi) ∈ E ′
3: sort CN by the descending order of cardinality

4: Cmin = cost(G′)
5: for i = 1→ k′ do
6: SSi ← ∅ . initialize subsets ith

7: end for
8: for v ∈ CN do
9: imin = argmini attach(v, SSi)|i ∈ 1, ...k′

10: SSimin ← SSimin ∪ v
11: end for
12: return SS = {SSi}∀1 ≤ i ≤ k′

13: end function

The divide_subsets(u, k′) (Algorithm 4) is called to divide all children of u into k′ sub-

sets and return k′ new additional nodes. At �rst, we sort the children nodes (CN ) in

descending order of their cardinality. As we traverse through these children nodes, we

add each child node into a subset that yields the smallest cost. The cost of adding a child

node v into a subset SSi is:

attach(v, SSi) =
[
csort(u, SSi ∪ v)

+ csort(SSi ∪ v, v)− csort(u, v)
]

Here SSi denotes the additional node representing the ith subset (i ≤ k′). If a node v is

attached to a subset SSi, the new additional node is updated: SSi ← SSi ∪ v.

Now that we have described our two steps, our algorithm is described in Algo-

rithm 5.

Algorithm 5 Top-Down Splitting algorithm

1: G′ = build_preliminary_solution()
2: topdown_split(G′.getRoot(), k)

3.4.2 Complexity of our algorithm

In this Section, we evaluate the complexity of our algorithm in the best case and the worst

case scenarios. The average case complexity depends on uncontrolled factors such as:
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input data distribution, relationship among multiple Group Bys, speci�c cost models,

etc. We cannot compute the average complexity without making assumptions on such

factors. Therefore this remains part of our future work. Empirically, we observe that in

our experiments the average case leans towards the best case with just a few exceptions

that are closer to the worst case.

3.4.2.1 The worst case scenario

As the �rst step and the second step of our algorithm are consecutive, the overall com-

plexity is the maximum complexity of two steps. It is easy to see that the complexity of

Algorithm 1 is O(n2) where n = |S| is the number of Group By queries.

For the second step, we �rst analyze the complexity of Algorithm 3: it calls O(k)
times the divide_subsets function and it computes O(k) times the cost of the modi-

�ed solution tree. The complexity of the divide_subsets function (i.e. Algorithm 4) is

O(max(k2, kq)). As we cannot divide q children nodes into more than q subsets, k ≤ q.

Therefore the complexity of Algorithm 4 is O(kq). It is not di�cult to see that q is

bounded by n, i.e. q ≤ n. The case of q = n happens when all mandatory nodes connect

to the root node. Therefore the worst case complexity of Algorithm 4 is O(kn)

Since Algorithm 3 limits itself in only modifying node u and its children, we can compute

the new cost by accounting only altered nodes and edges. There are at most k new

additional nodes, and there are q children nodes of node u, so computing each time a

new cost of the solution tree is in O(k + q) time. As k ≤ q ≤ n, the complexity of

computing a new cost is O(n), which is smaller than O(kn) of Algorithm 4. As such,

the worst case complexity of Algorithm 3 is O(k2n)

The complexity of Algorithm 2 depends on how many times partition_children is

called. Let |V ′| be the number of nodes in the �nal solution tree. Clearly topdown_split

is called at most |V ′| times, and each time it calls partition_children at least once. In

order for topdown_split to terminate, partition_children has to return false, and it

does so in O(|V ′|) time.

Now, for each time topdown_split is called, partition_children is called more than once

if and only if it returns true, which means at least an additional node is added to V ′.

When an additional node is added, it puts together a new subset, which consists of at
least 2 children nodes or more. In other words, if an additional node is formed, in the

worst case it applies a binary structure to the solution tree that has maximum n leaves

nodes. A property of binary trees states that |V ′| ≤ 2n − 1, which means there are no

more than n−1 additional nodes in the �nal solution tree. As a consequence, in the worst

case, partition_children returns true in essentially O(n) time. Since |V ′| ≤ 2n− 1, it

also returns false in O(|V ′|) ≡ O(n) time.
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Figure 3.3: An example of worst case scenario with k = 2

The worst-case complexity of Algorithm 2 (i.e. our second step) isO(k2n2). AsO(k2n2)

is higher than O(n2) of the �rst step, the worst case complexity of our algorithm is

O(k2n2). Figure 3.3 shows an example of the optimized solution tree obtained in the

worst case scenario.

3.4.2.2 The best case scenario

In the best case scenario, we obtain a balanced k-way solution tree. Figure 3.4 shows

an example of such a balanced solution tree. In this scenario, Algorithm 2 calls

partition_children to return true in O(logkn) times instead of O(n) times like the

worst case scenario. Therefore, the best case complexity is O(k2nlogkn).
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Figure 3.4: An example of best case scenario with k = 2

3.4.3 Choosing appropriate values of k

Our algorithm depends on an algorithm-wise parameter: k representing the fan-out of

the solution tree. We observe that for solution trees obtained from state of the arts

algorithm, the value of k is rather small. For example, let us consider a primary study

case that motivates the work in [31]: a Grouping Sets query to compute all single-column

Group By in a table withm attributes (i.e. the number of Group By is equal tom). In this

example, small values of k such as 2 ≤ k ≤ 4 are su�cient to �nd an optimized solution

tree. In our experiments in Section 3.5, high values of k do not result in a lower cost

solution tree. We note that our observation is in line to what observed in [31].

For any node u, let qu be the number of its children. Clearly we cannot force to split u’s

children into more than qu subsets, i.e. k ≤ qu. We denote k_maxu = qu. Thus, any

value of k higher than qu is wasteful, and our algorithm does not consider such values

(line 9 in Algorithm 3).

On the other hand, for some node u, we cannot split its children into less than a certain

number of subsets. Let us consider an example in which we want to partition 5 children

nodes of u = ABCDE: ABCD,ABCE,ABDE,ACDE and BCDE. Clearly split-

ting these children nodes into any number of subsets smaller than 5 is not possible, as

merging any pairs of nodes results in the parent node u itself. In this example, 5 is the

minimum number of subsets for node u. Values of k smaller than 5 result in no possible
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splits. We call this the lower bound of k. To �nd an exact lower bound of k in a speci�c

node u is not a trivial task. For instance, let us replace 5 children nodes of u = ABCDE

with: A,B,C,D,E. In this situation, the lower bound of k for node u is 2. We denote

k_minu = 2

As k is an algorithm wise parameter, we have the following: k_minu ≤ k, ∀u ∈ T .

Obviously, we can set k = max(k_minu). However, doing this is not always bene�cial.

Let us continue with our example, as Figure 3.3 and Figure 3.4 suggests, for nodeABCD

and its children (A,B,C,D), k = 2 is su�cient to obtain an optimized solution tree; in

other words, for this node, k = 5 is wasteful.

Algorithm 6 Adaptively dividing children

1: function divide_subsets(u, k′)
2: CN = {v1...vq}|(u, vi) ∈ E ′
3: sort CN by the descending order of cardinality

4: Cmin = cost(G′)
5: p = k′ . p: the current number of subsets

6: for i = 1→ p do
7: SSi ← ∅ . initialize subsets ith

8: end for
9: for v ∈ CN do

10: imin = argmini attach(v, SSi)|(SSi ∪ v) 6= u
11: if imin 6= null then
12: SSimin ← SSimin ∪ v
13: else
14: p← p+ 1 . increase number of subsets

15: SSp ← v . add v to the new subset

16: end if
17: end for
18: return SS
19: end function

In the general case, if we partition children nodes of u into a predetermined number of

subsets k, i) for some node u it could be impossible to partition in such a way; ii) for

some node u′ it may be wasteful. Again, our observation is that most nodes have a very

low fan-outs. Nodes with high upper bound of k are relatively scarce. So our strategy

is to attempt partitioning children nodes of u into small numbers of subsets (i.e., k is

small). Whenever such a split is unachievable, we dynamically increase our number of

subsets until the partition is possible. We modify Algorithm 4 to re�ect the new strategy

(Algorithm 6). The gist of this algorithm is that, we can attach a child node v of u to a

subset SSi if and only if (SSi∪ v) 6= u. When there is no such SSi, we add a new subset

(i.e. at this node, we increase the number of subsets by 1).
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3.5 Experiments and Evaluation

An optimization algorithm for the multiple Group By query problem can be evaluated

from three di�erent aspects:

• Optimization latency: the time (in second) that an algorithm takes to return the

optimized solution tree. It is also the optimizing overhead. The lower the opti-

mization latency, the better. This is an important metric to assess the scalability

of an algorithm.

• Solution cost: given a cost model and a solution tree, it is the total of scan and sort

cost associated to edges of the tree. A lower cost means a better tree. This metric

assesses the e�ectiveness of an algorithm.

• Runtime of the solution tree: the execution time (in second) to compute n Group

By queries using the optimized execution plan.

In this Section, we empirically evaluate the performance of our algorithm compared

to other state of the art algorithms. The experimental results of this Section can be

summarized as follows:

• The optimization latency of our algorithm is up to several orders of magnitude

smaller than other algorithms when scaling to both large number of attributes

and large number of Group By queries. In our experiments, the empirical results

suggest that, on average, our algorithm leans towards the best case scenario more

than to the worst case scenario (analyzed in Section 3.4.2).

• We do not sacri�ce the e�ectiveness of �nding an optimized solution cost for low

latency. In fact, compared to other algorithms, in many cases our algorithm �nds

better solutions, in many other cases it �nds comparable ones, and in only a few

cases it slightly trails behind.

• Using PipeSort as the physical implementation to compute multiple Group By

queries, we show that our algorithm can reduce the execution runtime signi�-

cantly (up to 34%) compared to the naïve solution tree, in which all Group Bys are

computed from the input data.

3.5.1 Experiment Setup

The experiments are run on a machine with 8GB RAM. To evaluate the latency and the

solution cost of various algorithms, we synthetically generate query templates. Each

query template consists of i) a list of Group By queries; ii) cardinalities of nodes. The

cardinalities of nodes can be obtained from available datasets using the techniques de-

scribed in [25, 42], or can be randomly generated (with an uniform distribution, or a
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power law distribution to represent skewed data). In some situations (e.g. large number

of attributes), we cannot e�ectively generate all node cardinalities. In this situation, we

take the product of cardinality of each attribute in a node to be the cardinality of that

node.

To evaluate the improvement that an optimized solution tree brings compared to a naïve

one, we issue a query that contains all two-attribute Group Bys from the lineitem table

of TPC-H [23]. This table contains 10 million records with 16 attributes. For each algo-

rithm, we report its optimization latency as well as the query runtime obtained when

we execute the PipeSort operator guided by its solution tree.

The state of the art algorithms that we compare are the ones presented in [32] and in [31].

We omit the algorithm presented in [26] because it is shown to be inferior to the algo-

rithm in [32]. For convenience, we name our algorithm Top-Down Splitting or TDS, the

one in [31] Bottom-Up Merge (BUM), and �nally the one in [32] Lattice Partial Cube or

LPC. For the case of our algorithm, as k can have multiple values, we evaluate both cases:

small value k = 3 and large value k = n.

3.5.2 Cost model in our experiments

As discussed in Section 3.2.2, we need a cost model to assign scan and sort cost to edges

of the search graph. In our experiments, we use a simple cost model as a representative

in evaluating all di�erent algorithms to �nd G′. Again, we stress that any appropriate

cost model can be used. We de�ne the two costs of an edge as follows:

• Scan cost: cscan(u→ v) = |u| where |u| is the size (cardinality) of node u

• Sort cost: csort(u→ v) = |u| ∗ log2|u|

We assume that the cardinality of any node u is readily available: estimating |u| is not

the focus of our work, and we rely on works of cardinality estimation such as [25, 42].

Clearly, a bad cardinality estimation worsen the quality of a solution tree, but all algo-

rithms su�er from the same issue.

3.5.3 Scaling with the number of attributes

In this experiment, we generate the query templates as follows: i) each query template

consists of all single-column (or single-attribute) Group By be generated from a table

T ; ii) the number of attributes, m, in table T is from 5 to 49; iii) for each number of

attributes, we randomly generate 100 di�erent sets of grouping cardinalities, in which

50 sets have uniform distribution, and 50 sets have power law distribution with α = 2.5.
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Figure 3.5: Single-attribute Group By - Optimization latency.
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Figure 3.6: Single-attribute Group By - Normalized solution cost.

For each number of attributes and algorithm, we compute the average of the solution cost

of the optimized solution tree; as well as the average of its optimization latency.

The results for optimization latency are plotted in Figure 3.5. The latency of the Lattice

Partial Cube algorithm exponentially increases with the number of attributes. This is

in line with its complexity of O(2m|T |2) where m is the number of attributes. For the

sake of readability, we omit the latency of LPC for large number of attributes. In this
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experiment, with its complexity of O(n4) the Bottom-Up Merge latency scales better

than LPC. Nevertheless, as the line of BUM starts to take o� at the end, we expect that

for large n (e.g. n ≥ 100), BUM has a rather high optimization latency. Our algorithm

achieves the best scalability: it takes less than 0.01 second to optimize n = 49 queries

for both cases of k: k = 3 and k = n. Understandably, the latency of TDS with k = n

is higher than TDS with k = 3. However, as both cases have very small latencies, this is

indistinguishable in Figure 3.5.

We note that the solution cost depends on the cost model, and our cost model (see Sec-

tion 3.5.2) depends on grouping cardinalities, which are di�erent in every query template

we generate. Thus, we normalize every cost to a fraction of the solution cost obtained

by a baseline algorithm (here we choose BUM) so that it is easier to compare the solu-

tion costs obtained by di�erent algorithms. The normalized solution costs are shown in

Figure 3.6. Due to the large amount of time for LPC to complete with large number of

attributes m, we skip running LPC for m ≥ 20. For most number of attributes, on aver-

age, our algorithm �nds better solution trees than BUM, sometimes its cost is up to 20%

smaller. Only in few query templates, our solution tree’s cost is a little higher (within

1.5%) than BUM. Compared to LPC, TDS produces comparable execution plans. We no-

tice several spikes of TDS and LPC. The reason is because BUM merges 2 Group Bys at a

time and tends to produce uneven subsets, especially when the number of queries is an

odd number. However, for some queries, BUM merging results in even subsets. In this

case, its solution trees are close to TDS and LPC - thus the spikes.

Table 3.1 shows the average of solution costs obtained by each algorithm for every query

template, normalized to fractional costs of BUM. Altogether, our algorithm is a little bet-

ter than LPC. Also as expected, the execution cost acquired by TDS k = 3 is a little higher

than for k = n, however by not much (less than 0.5%). In summary, our results indicate

that for a comparable, and often lower cost than that of prior works, our approach yields

substantial savings in optimization latency and scalability.

Algorithm BUM LPC TDS k = 3 TDS k = n
Normalized Cost 1 0.9419 0.9406 0.9361

Table 3.1: Average solution cost - Single-attribute queries

3.5.4 Scaling with the number of queries

In this experiment, we assess the scalability of various algorithms with respect to the

number of queries. To ful�ll such a goal, we limit the number of attributes to be very

small (3 ≤ m ≤ 9), and generate the query templates for a Cube query, i.e. all possi-

ble combination of Group By queries. The node cardinalities are generated similarly to

Section 3.5.3.
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Figure 3.7: Cube queries - Optimization latency
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Figure 3.8: Cube queries - Normalized solution cost

The optimization latency for this experiment is in Figure 3.7. To emphasize the di�erence

in latency between two cases TDS k = 3 and TDS k = n, we select the log scale for the

y-axis. From Figure 3.7, we see that the latency of TDS k = 3 is slightly lower than TDS

k = n. Nevertheless, in both cases our algorithm still scales remarkably better than other
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algorithms. With m = 9, there are 29 = 512 number of queries: it takes our algorithm

less than 0.1 second to complete. As we mentioned in Section 3.3, in the case of dense

multiple Group By queries, i.e. large n and small m, the BUM algorithm actually scales

worse than the LPC algorithm (of which the complexity in the case of a Cube query of

becomes O(n3)).

Figure 3.8 shows the solution cost of di�erent algorithms in a Cube query. Despite having

the highest latency and thus more time to generate optimized plans, the BUM algorithm

does not produce the best solution tree (i.e. lowest execution cost). The reason is that

BUM starts the optimization process from a naïve solution tree where all nodes are com-

puted directly from the input data. For each step, BUM considers all possible pairs to

merge and it selects the one with the lowest cost. As BUM is a gradient search approach,

for large number of queries, there are too many paths that can lead to local optimum.

In contrast to BUM, LPC and TDS start the optimization process from a viable solution

tree T , which i) has much lower cost compared to the naïve solution tree; ii) has far

less cases (e.g. paths) to consider. In the case of a Cube query, the initial solution tree

T in LPC and TDS is closely similar to the �nal solution tree, with only some minor

modi�cations. This helps both algorithms to achieve much lower latency. Between our

algorithm and LPC, generally the solution tree obtained by LPC is slightly better than

TDS (both cases). However, the di�erences are within 1.5%, which is acceptable if we

want to trade e�ectiveness in �nding solution tree for better scalability. For example,

whenm = 9, our algorithm runs in less than 0.05 second, while LPC runs in 1.5 second.

Between two cases of TDS, we actually �nd very similar solution trees since they both

start from similar preliminary trees.

3.5.5 Scaling with both number of queries and attributes

In this experiment, we compare optimization algorithms by scaling both the aforemen-

tioned factors at the same time: number of attributes and number of queries. To achieve

such a goal, we design the query templates to include all two-attribute Group By queries

from a table T . We set the number of attributesm from 5 to 21, and this makes the num-

ber of queries, which is

(
m
2

)
, increase as well. The grouping cardinalities are generated

similarly to Section 3.5.3.

The optimization latency shown in Figure 3.9 exhibits the same traits that we observe in

Sections 3.5.3 and 3.5.4. For low number of attributes, LPC has lower latencies compared

to BUM. However, the space of additional nodes scales exponentially with the number

of queries, so starting from m = 15 (n = 91), optimization latency of BUM gets smaller

than that of LPC. Unsurprisingly, our algorithm has distinctly low overhead. In fact,

the experimental results give us strong con�dence that our algorithm is ready to scale

up to hundreds or even thousands of attributes and queries. An end-to-end evaluation
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Figure 3.9: Two-attribute Group By - Optimization latency
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Figure 3.10: Two-attribute Group By - Normalized solution cost

of our optimization techniques handled with the physical implementation of Group By

operators is part of our on-going work, which will ultimately validate the scalability and

e�ciency of our approach.

Figure 3.10 shows the solution cost of di�erent algorithms. Again, we normalize it to a

fraction of the BUM total cost. In some cases, we have spikes where BUM merging results

in even subsets, which is also the goal of TDS. In most cases, TDS actually �nds smaller
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solution costs than that of BUM. Even in minor cases where TDS trails behind BUM,

the di�erence is less than 3%, which is acceptable considering such a low optimization

latency it brings. Table 3.2 presents the total average of execution cost obtained from

each algorithm. An interesting observation here is that, despite having as much as 5

times the latency of TDS k = 3 (see Figure 3.9), the solution tree returned by TDS k = n

actually has less than 1% smaller total cost on average. In general, our solution trees

have lower execution cost than LPC, but not by much. For some cases, both LPC and

our algorithm �nd signi�cantly smaller solution trees than BUM.

Algorithm BUM LPC TDS k = 3 TDS k = n
Fractional Cost 1 0.9186 0.8760 0.8732

Table 3.2: Average solution cost - Two attribute queries

3.5.6 The impact of cardinality skew

As we mention in Section 3.5.3, the node cardinalities are randomly generated with two

di�erent distributions: uniform and power law with α = 2.5. Overall, the skew intro-

duced by the power law distribution does not a�ect the latency of our algorithm: on

average, queries generated from both distributions have roughly the same runtime
1
. In

spite of that, the total cost obtained from skewed cardinalities is generally higher than

the solution cost from uniform cardinalities. On average, it is 6.8% higher, with some

particular cases that are up to 18% higher. Our explanation is that, for uniform cardinali-

ties, it is easier to evenly partition children nodes into subsets, while skewed cardinalities

tend to return a very big subset and many small subsets. As a very big subset is used to

compute other nodes, most likely it increases the solution cost by a large margin.

3.5.7 Quality of solution trees

A solution tree is a logical plan to direct the physical operator to execute multiple Group

By operator. A solution tree G′1 is of higher quality than a solution tree G′2 if the run-

time to execute G′1 is smaller than the runtime to execute G′2. In this experiment, we

implement the PipeSort algorithm as the physical operator to execute the solution trees

returned from TDS, LPC and BUM. We also execute a naïve solution tree to prepare a

baseline for comparison.

The dataset we use in this experiment is the lineitem table from the industrial bench-

mark TPC-H [23]. It contains 10 million records with 16 attributes. Our query consists

1
Uniform distribution has a slightly higher running time of 1.4%
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Figure 3.11: The optimization latency and query runtime.
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Algorithm

BUM LPC TDS Naïve

Optimization Latency (s) 66 87 0.17 0

Query Runtime (s) 632 551 547 826

Total Runtime (s) 698 638 547.17 826

Improvement (%) 15.49 22.76 33.75 0

Table 3.3: The optimization latency and query runtime

of all two-attribute Group Bys from lineitem. For each algorithm, we report, in Fig-

ure 3.11, its optimization latency as well as its query runtime. Detail numbers found

in Table 3.3 indicate that multiple Group By query optimization techniques actually re-

duce the query runtime over a naïve solution. We observe that, in this workload, the

optimization latency of TDS is almost 0% of the total runtime. This is in contrast to that

of BUM (9.45%) and LPC (13.63%). With BUM and LPC, since the optimization latency

contributes a non-negligible part to the total runtime, instead of 23.48% and 33.29%

improvement respectively, they improve only 15.49% and 22.76%. Also, we note that

the solution trees of LPC and our algorithm, TDS, are identical. This lead to the virtually

same query runtime. Nevertheless, overall our algorithm provides greater performance

boost because of its close-to-zero latency.
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3.6 Discussions and Extensions

In this Section, �rst we discuss about the intuition of our algorithm, and attempt to ex-

plain why its solution cost may be better than other algorithms in many cases. Then

we discuss about solutions to extend our algorithm to handle di�erent aggregate func-

tions.

3.6.1 Intuition and Discussion

In the multiple Group By query optimization problem, to design a scalable algorithm, the

�rst building block to consider is how to explore the potential additional groupings (i.e.
nodes) to include in a solution. As the space of additional groupings can be very large,

they cannot be e�ectively generated. Therefore, to scale to a large number of queries

and attributes, we cannot explore all possible additional groupings. A more scalable

approach is to consider merging terminal nodes to form new groupings, as the subset

of these additional groupings is much likely considerably smaller than their full space.

Both our algorithm and BUM in [31] use this approach.

The di�erence between TDS and BUM is the process to construct new groupings. At

each step, BUM only considers merging two groupings into a new one. Meanwhile,

TDS evaluates splitting all children nodes of a grouping into at most k subsets, each

with a new grouping. The implication of these steps on the algorithm’s complexity is

already discussed in Section 3.3 and 3.4.2. Here, we intuitively discuss why, in general,

we believe that TDS can produce better solution trees than BUM. The main reason is

because TDS makes a more “global” decision than BUM at each step of their process.

When considering partitioning children nodes, TDS uses available information at the

moment: i) cardinalities of all nodes; ii) associated costs to pair of nodes; iii) multiple

ways to split. In addition, while it is making a decision of putting together a new group-

ing, TDS inspects the connection of this newly formed grouping with respect to all other

groupings available. As a top-down approach, when TDS triggers a splitting decision in

a high-level grouping (e.g. the root node), it dramatically decreases the total execution

cost. Even though the subtree optimization might be far from optimal, early decisions

are more important.

In contrast, the merging process in BUM solely depends on two individual nodes. With

so little information at hand, BUM tends to trigger groupings that decrease the solution

cost by a relatively small margin (because BUM is a bottom-up approach). In addition,

since the initial solution tree is a naïve solution, there are so many pairs of nodes such

that inspecting the potential merging of all pairs leads to a local optimum.
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3.6.2 Di�erent Aggregate Functions

The multiple Group By optimization problem is based on the premise that a Group By

can be computed from the results of another Group By, instead of the input data. To

assure this property, the aggregate measure (function) must be either distributive, or al-
gebraic [64]: fortunately, almost all common aggregate functions are so. Let us consider

an input data T which is split into p chunks Ci. A function F is:

• Distributive if there is a function G such that: F (T ) =

G(F (C1), F (C2), ..., F (Cp)). Usually, for many distributive functions like

Min,Max, Sum, etc., G = F . For G 6= F , an example is Count which is also

distributive with G = sum().

• Algebraic if there are functions G and H such that:

F (T ) = H(G(C1), G(C2), ..., G(Cp)). Examples are

Average,MinN,MaxN, Standard_deviation. In function Average, for

instance, G is to collect the sum of elements and the number of elements, while

H adds up these two components and divides the global sum by the total number

of elements from all the chunks to obtain �nal results.

Thus far, we have assumed that all Group By queries compute the same aggregate func-

tion (Count(∗) in our example). Typically this is the case in single-query optimization

when a user issues a Grouping Sets query. Nonetheless in multi-query optimization,

more often the aggregate functions are di�erent. An easy way to adapt our solution to

di�erent aggregate functions is to separate Group By queries into groups of the same

aggregate function. However, this approach may decrease the opportunity to share pre-

computed Group Bys, and it may end up computing a large portion of Group Bys from

the input data (or from a much larger Group Bys). For instance, let us consider the fol-

lowing queries:

Q1: Select A, Count(*) From T Group By(A)
Q2: Select B, Sum(v) From T Group By(B)

Here v is an integer value in table T . Using the aforementioned approach we end up

with both Group Bys A and B computed from the input data T .

Another approach is to apply our optimization to the set of all Group Bys queries. For a

Group By, not only its aggregates are computed, but also are all those of their successors.

To continue our example, our algorithm suggests computing groupingAB from T , then

A and B from AB. When computing AB from T , we evaluate and store both aggre-

gates, Count(∗) and Sum(v). At this moment, Group By Q1 is obtained from grouping

AB with aggregate Count(∗), while we use AB with aggregate Sum(v) to calculate

Group By Q2. The downside of this approach is to incur the cost of storing potentially

numerous intermediate aggregates.
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For systems in which the storage cost is relatively expensive compared to reading/sort-

ing a large amount of data, the �rst approach may be preferred. For other systems, in

which the sorting cost is relatively expensive (e.g. it requires a global shu�e of data

over network), the second approach may be a more viable option. Facilitating users in

making the right choice of approaches is the challenge that we will tackle in our future

work.

3.7 Summary

Data aggregation is a crucial task to understand and interact with data. This is exacer-

bated by the increasingly large amount of data that is collected nowadays. Such data

is often multi-dimensional, characterized by a very large number of attributes. This

calls for the design of new algorithms to optimize the execution of data aggregation

queries.

In this Chapter, we presented our method to address the general problem of optimizing

multiple Group By queries, thus �lling the gap left by current proposals that cannot scale

in the number of concurrent queries or the number of attributes each query can handle.

We have shown, both theoretically and experimentally, that our algorithm incurs in ex-

tremely small latencies, compared to alternative algorithms, when producing optimized

query plans. This means that, in practice, our algorithm can be applied at the scale that

modern data processing tasks require, dealing with data of hundreds of attributes and

executing thousands of queries. In addition, our experimental evaluation illustrated the

e�ectiveness of our algorithm to �nd optimized solution trees. In fact, in many cases,

our algorithm outperformed others in terms of producing optimized solutions, while

being remarkably faster. Finally, we discussed about the intuition behind our algorithm

and the possible approaches to extend it to handle general, heterogeneous queries in

terms of diversity of aggregate functions. A version of this Chapter is published in the

International Conference on Data Engineering 2016 [30].

We conclude this Chapter by noting that our algorithm can be easily integrated to cur-

rent optimization engines of relational databases, to traditional data warehouses or to

modern big-data systems like Apache Hadoop [1], Apache Spark [2]. Instead, using

our algorithm to optimize query execution on recent systems such as Hadoop, Spark

and their respective high-level, declarative interfaces, requires the development of an

appropriate cost model as well as an optimization engine to transform original query

plans into optimized ones. We cover this in Chapter 5. In the next Chapter, Chapter 4,

we continue the �ow of our query optimization and go on to the next phase: physical

optimization.
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Chapter 4

Physical Optimization for Data
Aggregation

This Chapter presents our contributions in physical optimization for data aggregation:

i) our novel algorithms for data aggregation; ii) our light-weight, cost-based optimization

module.

4.1 Design Space of MapReduce-like Rollup Data Ag-
gregates

4.1.1 Introduction

Despite the tremendous amount of work carried out in the database community to come

up with e�cient ways of computing data aggregates, little work has been done to ex-

tend these lines of work to cope with massive scale. Indeed, the main focus of prior

works in this domain has been on single server systems or small clusters executing a

distributed database, implementing e�cient implementations of Grouping Sets, Cube

and Rollup operators, in line with the expectations of low-latency access to data sum-

maries [51,58,61,65,66,74]. Only recently, the community devoted attention to solve the

problem of computing data aggregates at massive scales using large-scale data-intensive

computing engines such as Hadoop [1] and Spark [2] . In support of the growing interest

in computing data aggregates on batch-oriented systems, several high-level languages

built on top of Hadoop MapReduce, such as PIG [8] and HIVE [7], support simple im-

plementations of, for example, the Rollup operator.

The endeavor of this work is to take a systematic approach to study the design space of

the Rollup operator: besides being widely used on its own, Rollup is also a fundamental

59
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building block used to compute more general data aggregation queries (e.g. Grouping

Sets [30, 52]). We discuss this in more details in Section 4.3. In this Section, we study

the problem of de�ning the design space of algorithms to implement Rollup through

the lenses of a recent model of MapReduce-like systems [49]. The model explains the

trade-o�s that exist between the degree of parallelism that is possible to achieve and the

communication costs that are inherently present when using the MapReduce program-

ming model. In addition, we overcome current limitations of the model we use (which

glosses over important aspects of MapReduce-like computations) by extending our anal-

ysis with an experimental approach. We present instances of algorithmic variants of the

Rollup operator that cover several points in the design space, implement and evaluate

them using a Hadoop cluster.

In summary, our contributions are the following:

• We study the design space that exists to implement Rollup and show that, while it

may appear deceivingly simple, it is not a straightforward embarrassing parallel

problem. We use modeling to obtain bounds on parallelism and communication

costs.

• We design and implement new Rollup algorithms that can match the bounds we

derived, and that swipe the design space we were able to de�ne.

• We pinpoint the essential role of combiners (an optimization allowing pre-

aggregation of data, which is available in real instances of the MapReduce

paradigm, such as Hadoop [1]) for the practical relevance of some algorithm in-

stances, and proceed with an experimental evaluation of several variants of Rollup

implementations, both in terms of their performance (runtime) and their e�cient

use of cluster resources (total amount of work).

• Finally, our Rollup implementations exist in Java MapReduce and have been inte-

grated in our experimental branch of PIG, which are available in a public reposi-

tory.
1

The remainder of this Section is organized as follows. Section 4.1.2 provides background

information on the model we use in our work and presents related work. Section 4.1.3 il-

lustrates a formal problem statement and Section 4.1.4 presents several variants of Rollup

algorithms. Section 4.1.5 outlines our experimental results to evaluate the performance

of the algorithms we introduce in this work. The summary of the work in this Section

is presented in Section 4.4.

1h�ps://bitbucket.org/bigfootproject/rollupmr

https://bitbucket.org/bigfootproject/rollupmr
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4.1.2 Background and Related Work

We assume the reader to be familiar with the MapReduce [60] paradigm and its open-

source implementation Hadoop [1, 75]. First, we give a brief summary of the model

introduced by Afrati et al. [49], which is the underlying tool we use throughout our

Section. Then, we present related works that focus on the MapReduce implementation

of popular data analytics algorithms.

The MapReduce model. Afrati et al. [49] recently studied the MapReduce program-

ming paradigm through the lenses of an original model that elucidates the trade-o�

between parallelism and communication costs of single-round MapReduce jobs. The

model de�nes the design space of a MapReduce algorithm in terms of replication rate
and reducer-key size. The replication rate r is the average number of 〈key, value〉 pairs

created from each input in the map phase, and represents the communication cost of a

job. The reducer-key size q is the upper bound of the size of list of values associated

to a reducer-key. Jobs have higher degrees of parellelism when q is smaller. For some

problems, parallelism comes at the expense of larger communication costs, which may

dominate the overall execution time of a job.

Afrati et al. show how to determine the relation between r and q. This is done by �rst

bounding the amount of input a reducer requires to cover its outputs. Once this relation

is established, a simple yet e�ective “recipe” can be used to relate the size of the input

of a job to the replication rate and to the bounds on output covering introduced above.

As a consequence, given a problem (e.g., �nding the Hamming distance between input

strings), the model can be used to establish bounds on r and q, which in turn de�ne the

design space that instances of algorithms solving the original problem may cover.

Relatedwork. Designing e�cient MapReduce algorithms to implement a wide range of

operations on data has received considerable attention recently. Due to space limitations,

we cannot give justice to all works that addressed the design, analysis and implemen-

tation of graph algorithms, clustering algorithms and many other important problems:

here we shall focus on algorithms to implement SQL-like operators. For example, the

relational JOIN operator is not supported directly in MapReduce. Hence, attempts to

implement e�cient JOIN algorithms in MapReduce have �ourished in the literature:

Blanas et al. [59] studied Repartition Join, Broadcast Join, and Semi-Join. More recent

work tackle more general cases like theta-joins [72] and multi-way-joins [50].

With respect to OLAP data analysis tasks such as Cube and Rollup, e�cient MapReduce

algorithms have only lately received some attention. A �rst approach to study Cube and

Rollup aggregates has been proposed by Nandi et al. [69]; this algorithm, called “naive”

by the authors, is called Vanilla in this work. MR-Cube [69] mainly focuses on algebraic
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aggregation functions, and deals with data skew; it implements the Cube operator by

breaking the algorithm in three phas-es. A �rst job samples the input data to recognize

possible reducer-unfriendly regions; a second job breaks those regions into sub-regions,

and generates corresponding 〈key, value〉 pairs to all regions, to perform partial data

aggregation. Finally, a last job reconstructs all sub-regions results to form the complete

output. The MR-Cube operator naturally implements Rollup aggregates. However in

the special case of Rollup, the approach has two major drawbacks: it replicates records

in the map phase as in the naive approach and it performs redundant computation in

the reduce phase.

For the sake of completeness, we note that one key idea of our work (in-reducer group-

ing) shares similar traits to what is implemented in the Oracle database [52]. However,

the architectural di�erences with respect to a MapReduce system like Hadoop, and our

quest to explore the design space and trade-o�s of Rollup aggregates make such work

complementary to ours.

4.1.3 Problem Statement

We now de�ne the Rollup operation as a generalization of the SQL Rollup clause, in-

troducing it by way of a running example. We use the same example in Section 4.1.4

to elucidate the details of design choices and, in Section 4.1.5, to benchmark our re-

sults.

Rollup can be thought of as a hierarchical Group By at various granularities, where the

grouping keys at a coarser granularities are a subset of the keys at a �ner granular-

ity. More formally, we de�ne the Rollup operation on an input data set, an aggregation
function, and a set of n hierarchical granularities:

• We consider a data set akin to a database table, with M columns c1, . . . , cM and L

rows r1, · · · rL such that each row ri corresponds to the (ri1, . . . , riM) tuple.

• Given a set of rows R ⊆ {r1, · · · rL}, an aggregation function f(R) produces our

desired result.

• n granularities d1, . . . , dn determine the groupings that an input data is subject to.

Each di is a subset of

{c1, · · · cM}, and granularities are hierarchical in the sense that di ( di+1 for each

i ∈ [1, n− 1].

The Rollup computation returns the result of applying f after grouping the input by

the set of columns in each granularity. Hence, the output is a new table with tuples

corresponding to grouping over the �nest (dn) up to the coarsest (d1) granularity,
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denoting irrelevant columns with an ALL value [64].

Example. Consider an Internet Service provider which needs to compute aggregate

tra�c load in its network, per day, month, year and in overall. We assume input data

to be a large table with columns (c1, c2, c3, c4) corresponding to (year, month, day, pay-

load
2
). A few example records from this dataset are shown in the following:

(2012, 3, 14, 1)
(2012, 12, 5, 2)
(2012, 12, 30, 3)
(2013, 5, 24, 4)

The aggregation function f outputs the sum of values over the c4 (payload) column.

Besides SUM, other typical aggregation functions are MIN, MAX, AVG and COUNT; it is

also possible to consider aggregation functions that evaluate data in multiple columns,

such as for example correlation between values in di�erent columns.

Input granularities are d1 = ∅, d2 = {year}, d3 = {year,
month}, and d4 = {year,month, day}. The highest granularity, d1 = ∅, groups on no

columns and is therefore equivalent to a SQL Group By ALL clause that computes the

overall sum of the payload column; such an overall aggregation is always computed in

SQL implementations, but it is not required in our more general formulation. We will

see in the following that “global” aggregation is problematic in MapReduce.

In addition to aggregation on hierarchical time periods as in this case, Rollup aggrega-

tion applies naturally to other cases where data can be organized in tree-shaped tax-

onomies, such as for example country-state-region or unit-department-employee hier-

archies.

If applied on the example, the Rollup operation yields the following result (we use ‘*’ to

denote ALL values):

(2012, 3, 14, 1)
(2012, 3, *, 1)
(2012, 12, 5, 2)
(2012, 12, 30, 3)
(2012, 12, *, 5)
(2012, *, *, 6)
(2013, 5, 24, 4)
(2013, 5, *, 4)
(2013, *, *, 4)
( *, *, *, 10)

2
In Kilobytes
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Rows with ALL values represent the result of aggregation at coarser granularities: for

example, the (2012, *, *, 6) tuple is the output of aggregating all tuples from

year 2012.

Aggregation Functions andCombiners. In MapReduce, it is possible to pre-aggregate

values computed in mappers by de�ning combiners. We will see in the following that

combiners are crucial for the performance of algorithms de�ned in MapReduce. While

many useful aggregation functions are subsceptible to being optimized through combin-

ers, not all of them are. Based on the de�nition by Gray et al. [64], when an aggregation

function is holistic there is no constant bound on the size of a combiner output; repre-

sentative holistic functions are MEDIAN, MODE and RANK.

The algorithms we de�ne are di�erently subsceptible to the presence and e�ectiveness

of combiners. When discussing the merits of each implementation, we also consider the

case where aggregation functions are holistic and hence combiners are of little or no

use.

4.1.4 The design space

We explore the design space of Rollup, with emphasis on the trade-o� between com-

munication cost and parallelism. We �rst apply a model to obtain theoretical bounds

on replication rate and reducer key size; we then consider two algorithms (Vanilla and

In-Reducer Grouping) that are at the end-points of the aforementioned trade-o�, hav-

ing respectively maximal parallelism and minimal communication cost. We follow up

by proposing various algorithms that operate in di�erent, and arguably more desirable,

points of the trade-o� space.

4.1.4.1 Bounds on Replication and Parallelism

Here we adopt the model by Afrati et al. [49] to �nd upper and lower bounds for the

replication rate. Note that the model, unfortunately, does not account for combiners nor

for multi-round MapReduce algorithms.

First, we de�ne the number of all possible inputs and outputs to our problem, and a

function g(q) that allows to evaluate the number of outputs that can be covered with i

input records. To do this, we refer to the de�nitions in Section 4.1.3:

1. Input set: we call Ci the number of di�erent values that each column ci can take.

The total number of inputs is therefore |I| =
∏M

i=1Ci.
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2. Output set: for each granularity di, we denote the number of possible grouping

keys as Ni =
∏

Ci∈di Ci and the number of possible values that the aggregation

function can output asAi.
3

Thus, the total number of outputs is |O| =
∑n

i=1NiAi.

3. Covering function: let us consider a reducer that receives q input records. For

each granularity di, there are Ni grouping keys, each one grouping |I|/Ni inputs

and producing Ai outputs. The number of groups that the reducer can cover at

granularity di is therefore no more than bqNi/|I|c, and the covering function is

g(q) =
∑n

i=1Ai

⌊
qNi
|I|

⌋
.

Lower Bound on Replication Rate. We consider p reducers, each receiving qi ≤ q

inputs and covering g(qi) outputs. Since together they must cover all outputs, it must

be the case that

∑p
j=1 g(qj) ≥ |O|. This corresponds to

p∑
j=1

n∑
i=1

Ai

⌊
qjNi

|I|

⌋
≥

n∑
i=1

NiAi. (4.1)

Since qjNi/|I| ≥ bqjNi/|I|c, we obtain the lower bound of the replication rate r

as:

r =

p∑
i=1

qi
|I|
≥ 1. (4.2)

Equation 4.2 seems to imply that Rollup aggregates is an embarassingly parallel problem:

the r ≥ 1 bound on replication rate does not depend on the size qi of reducers. In

Section 4.1.4, we show – for the �rst time – an instance of an algorithm that matches the

lower bound. Instead, known instances of Rollup aggregates have a larger replication

rate, as we shall see next.

Limits on Parallelism. Let us now reformulate Equation 4.2, this time requiring only

that the output of the coarsest granularity d1 is covered. We obtain

p∑
j=1

⌊
qjN1

|I|

⌋
≥ N1.

Clearly, the output cannot be covered (the left side of the equation would be zero) unless

there are reducers receiving at least qj ≥ |I|/N1 input records. Indeed, the coarsest

granularity imposes hard limits on the parallelism, requiring to broadcast the full input

on at most N1 reducers. This is exacerbated if – as it is the case with the standard SQL

Rollup – there is an overall aggregation, resulting in d1 = ∅, N1 = 1 and therefore

3
For the limit case di = ∅, Ni = 1, corresponding to the single empty grouping key.
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qj ≥ |I|. A single reducer needs to receive all the input: it appears that no parallelism

whatsoever is possible.

As we show in the following, this negative result however depends on the limitations of

the model: by applying combiners and/or multiple rounds of MapReduce computation,

it is indeed possible to compute e�cient Rollup aggregates in parallel.

Maximum Achievable Parallelism. Our model considers parallelism as determined

by the number of reducers p and the number of input records qj each of them processes.

However, one may also consider the number of output records produced by each reducer:

in that case, the maximum parallelism achievable is when each reducer produces at most

a single output value. This can be obtained by assigning each grouping key in each

granularity to a di�erent reducer; the aggregation function is then guaranteed to output

only one of the Ai possible values. This, however, implies a replication rate r = n; an

implementation of the idea is described in the following section.

4.1.4.2 Baseline algorithms

Next, we de�ne two baseline algorithms to compute Rollup aggregates: Vanilla, which is

discussed in [69], and In Reducer Grouping, which is our contribution. Then, we propose

a hybrid approach that combines both baseline techniques.

Vanilla Approach.

We describe here an approach that maximizes parallelism at the detriment of communi-

cation cost; since this is the approach which is currently implemented in Apache Pig [67]

we refer to it as Vanilla. Nandi et al. [69] refer to it as “naive”.

The Rollup operator can be considered as the result multiple Group By operations: each

of them is carried out at a di�erent granularity. Thus, to perform Rollup on n granular-

ities, for each record, the vanilla approach generates exactly n records corresponding to

these n grouping sets (each grouping sets belongs to one granularity). For instance, tak-

ing as input the (2012, 3, 14, 1) record of the running example, this approach

generates 4 records as outputs of the map phase:

(2012, 3, 14, 1) (day granularity)
(2012, 3, *, 1) (month granularity)
(2012, *, *, 1) (year granularity)
( *, *, *, 1) (overall granularity)

The Reduce step performs exactly as the reduce step of a Group By operation, using the

�rst three records (year, month, day) as keys. By doing this, reducers pull all the data

that is needed to generate each output record (shu�e step), and compute the aggregate
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(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 3,  *), 1>

<(2012, 12, *), 2>

<(2012, *,  *), 1>

<(2012,  *, *), 2>

<(   *, *,  *), 1>

<(   *,  *, *), 2>

<(2012,  3, 14), 1>

<(2012, 12,  5), 2>

<(   *,  *,  *), 1>

<(   *,  *,  *), 2>

<(2012,  *,  *), 1>

<(2012,  *,  *), 2>

<(2012,  3,  *), 1>

<(2012, 12,  *), 2>

Reducer 1

Reducer 2

Mappers Shuffle

Figure 4.1: Example for the vanilla approach.

(reduce step). Figure 4.1 illustrates a walk-through example of the vanilla approach with

just 2 records.

Parallelism and Communication Cost. The �nal result of Rollup is computed in a single

MapReduce job. As discussed above, this implementation obtains the maximum possible

degree of parallelism, since it can be parallelized up to a level where a single reducer is

responsible of a single output value. On the other hand, this algorithm requires maximal

communication costs, since for each input record, n map output records are generated.

In addition, when the aggregation operation is algebraic [64], redundant computation is

carried out in the reduce phase, since results computed for �ner granularities cannot be

reused for the coarser ones.

Impact of Combiners. This approach largely bene�ts from combiners whenever they are

available, since they can compact the output computed at the coarser granularity (e.g.,
in the example the combiner is likely to compute a single per-group value at the year
and overall granularity). Without combiners, a granularity such as overall would result

in shu�ing data from every input tuple to a single reducer.

While combiners are very important to limit the amount of data sent along the network,

the large amount of temporary data generated with this approach is still problematic:

map output tuples need to be bu�ered in memory, sorted, and eventually spilled to disk

if the amount of generated data does not �t in memory. This results, as we show in

Section 4.1.5, in performance costs that are discernible even when combiners are present.
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(2012,  3, 14, 1)

(2012, 12,  5, 2)

Reducer IRGMappers Shuffle

(2012, 12, 30, 3)

(2013,  5, 24, 4)

<(2012,  3, 14), 1>

<(2012, 12,  5), 2>

<(2012, 12, 30), 3>

<(2013,  5, 24), 4>

<(2012,  3, 14), 1>

<(2012, 12,  5), 2>

<(2012, 12, 30), 3>

<(2013,  5, 24), 4>

<(2012,  3,  *), 1>

<(2012, 12,  *), 5>

<(2012,  *,  *), 6>

<(2013,  5, *), 4>

<(2013,  *, *), 4>no more input

<(   *,  *, *), 10>

Figure 4.2: Example for the IRG approach.

In-Reducer Grouping. After analyzing an approach that maximizes parallelism, we

now move to the other end of the spectrum and design an algorithm that minimizes

communication costs. In contrast to the Vanilla approach, where the complexity resides

on the Map phase and the Reduce phase behaves as if implementing an ordinary Group

By clause, we propose an In-Reducer Grouping (IRG) approach, where all the logic of

grouping is performed in the Reduce phase.

In-Reducer Grouping makes use of the possibility to de�ne a partitioner in Hadoop [60,

75]. The mapper selects the columns of interest (in our example, all columns are needed,

so the map function is simply the identity function). The keys are the �nest granularity

dn (day in our example) but data is partitioned only by the columns of the coarsest gran-

ularity d1. In this way, we can make sure that 1) each reducer receives enough data to

compute the aggregation function even for the coarsest granularity d1; 2) the intermedi-

ate keys are sorted [60, 75], so for every grouping key of any granularity di, the reducer

will process consecutively all records pertaining to the given grouping key.

Figure 4.2 shows an example of the IRG approach. The mapper is the identity function,

producing (year, month, day) as the keys and payload as the value. The coarsest granu-

larity d1 is overall, and N1 = 1: hence, all 〈key, value〉 pairs are sent to a single reducer.

The reducer groups all values of the same key, and processes the list of values associated

to that key, thus computing the sum of all values as the total payload t. The grouping
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logic in the reducer also takes care of sending t to n grouping keys constructed from the

reducer input key. For example, with reference to Figure 4.2, the input pair (<2012,
3, 14>, 1) implies that value t = 1 is sent to grouping keys (2012, 3, 14),

(2012, 3, *), (2012, *, *) and (*, *, *). The aggregators in these

grouping keys accumulate all t values they receive. When there is no more t value for

a grouping key (in our example, when year or month change, as shown by the dashed

lines in Figure 4.2), the aggregator outputs the �nal aggregated value.

The key observation we exploit in the IRG approach is that a secondary, lexicographic

sorting, is fundamental to minimize state in the reducers. For instance, at month granu-

larity, when the reducer starts processing pair (<2013, 5, 24>, 4), then we are

guaranteed that all grouping keys of month smaller than (2013, 5) (e.g. (2012,
12)) have already been processed and should be output without further delay. This way

reducers need not keep track of aggregators for previous grouping keys: reducers only

use n aggregators, one for each granularity.

To summarize, the IRG approach extensively relies on the idea of an on-line algorithm:

it makes a single pass over its input, maintaining only the necessary state to accumulate

aggregates (both algebraic and holistic) at di�erent granularities, and produces outputs

as the reduce function iterates over the input.

Parallelism and Communication Cost. Since mappers output one tuple per input record,

the replication rate of the IRG algorithm meets the lower bound of 1, as showed in Equa-

tion 4.2. On the other hand, this approach has limited parallelism, since it uses no more

reducers than the number N1 of grouping keys at granularity d1. In particular, when

an overall aggregation is required, IRG can only work on a single reducer. As a result,

IRG is likely to perform less work and require less resources than the Vanilla approach

described previously, but it cannot bene�t from parallelization in the reduce phase.

Impact of Combiners. Since the IRG algorithm minimizes communication cost, combiners

only perform well if pre-aggregation at the �nest granularity dn is bene�cial – i.e., if the

number of rows L in the data set is de�nitely larger than the number of grouping keys at

the �nest granularity,Nn. As such, the performance of the IRG approach su�ers the least

from the absence of combiners, e.g. when aggregation functions are not algebraic.

If the aggregate function is algebraic, however, the IRG algorithm is designed to re-use

results from �ner granularities in order to build the aggregation function hierarchically:

in our running example, the aggregate of the total payload processed in a month can

be obtained by summing the payload processed in the days of that month, and the

aggregate for a year can likewise be computed by adding up the total payload for each

month. Such an approach saves and reuses computation in a way that is not possible to

obtain with the Vanilla approach.
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overall: d1 year: d2 month: d3 day: d4

P=1 P=2 P=3 P=4

Selected

pivot position

Vanilla-

approach

IRG-approach

Figure 4.3: Pivot position example.

Hybrid approach: Vanilla + IRG. We have shown that Vanilla and IRG are two “ex-

treme” approaches: the �rst one maximizes parallelism at the expense of communication

cost, the second one instead minimizes communication cost but does not provide good

parallelism guarantees.

Neither approach is likely to be an optimal choice for such a tradeo�: in a realistic sys-

tem, we are likely to have way less reducers than number of output tuples to generate

(therefore making the extreme parallelism guarantees produced by Vanilla excessive);

however, in particular when an overall aggregate is needed, it is reasonable to require

an implementation that does not have the bottleneck of a single reducer.

In order to bene�t at once from an acceptable level of parallelism and lower commu-

nication overheads, we propose an hybrid algorithm that �xes a pivot granularity P :

all aggregate functions on granularities between dP and dn are computed using the IRG

algorithm, while aggregates for granularities above dP are obtained using the Vanilla ap-

proach. A choice of P = 1 is equivalent to the IRG algorithm, while P = n corresponds

to the Vanilla approach.

Let us consider again our running example, and �x the pivot position at P = 3, as shown

in Figure 4.3. This choice implies that aggregates for the overall and year granularities

d1, d2 are computed using the Vanilla approach, while aggregates for the other granu-

larities d3, d4 (month and day) are obtained using the IRG algorithm. For example, for

the (2012, 3, 14, 1) tuple, the hybrid approach produces three output records

at the mapper:

(2012, 3, 14, 1) (day granularity)
(2012, *, *, 1) (year granularity)
( *, *, *, 1) (overall granularity)

In this case the map output key space is partitioned by the month granularity, so that

there is 1) one reducer per each month in the input dataset, that computes aggregates

for granularities up to the month level, and 2) multiple reducers that compute aggre-
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Reducer 2

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *,  *), 1>

<(2012,  *, *), 2>

<(  *,  *,  *), 1>

<(  *,  *,  *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(  *,  *,  *), 1>

<(  *,  *,  *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

Reducer 1Mappers Shuffle

<(2012,  3, 14), 1>

<(2012,  3,  *), 1>

<(   *,  *,  *), 3>

<(2012, 12,  5), 2>

<(2012, 12,  *), 2>

<(2012,  *,  *), 3>

Figure 4.4: Example for the Hybrid Vanilla + IRG approach.

gates for the overall and year granularities. Figure 4.4 illustrates an example with two

reducers.

Some remarks are in order. Assuming a uniform distribution of the input dataset, the load

on reducers of type 1) is expected to be evenly shared, as an input partition corresponds

to an individual month and not the whole dataset. The load on reducers of type 2) might

seem still prohibitive; however, we note that when combiners are in place they are going

to vastly reduce the amount of data sent to the reducers responsible of the overall and

year aggregate computation. For our example, the reducers of type 2) receive few input

records, because the overall and year aggregates can be largely computed in the map

phase. Furthermore, we remark that the e�ciency of combiners in reducing input data to

reducers (and communication costs) is very high for coarse granularities, and decreases

towards �ner granularities: this is why the IRG algorithm applies the Vanilla approach

from the pivot position, up to coarse granularities.

Parallelism and Communication Cost. The performance of the hybrid algorithm depends

on the choice of P : the replication rate (before combiners) is P . The number of reducer

that this approach can use is the total of 1) NP grouping keys that are handled with

the IRG algorithm, and 2)
∑P−1

i=0 Ni grouping keys that are handled with the Vanilla

approach. Ideally, an a priori knowledge of the input data can be used to guide the

choice of the pivot position. For example, if the data in our running example is known

to span over tens of years and we know we only have ten reducer slots available (i.e., at

most ten reducer tasks can run concurrently), a choice of partitioning by year (P = 2)

would be reasonable. Conversely, if the dataset only spans a few years and hundreds of

reducer slots are available, then it would be better to be more conservative and choose
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Reducer 1

Reducer 2

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

Mappers Shuffle

<(2012,  3, 14), 1>

<(2012,  3,  *), 1>

<(   *,  *,  *), 3>

<(2012, 12,  5), 2>

<(2012, 12,  *), 2>

<(2012,  *,  *), 3>

Figure 4.5: Example for the Hybrid IRG + IRG approach.

P = 3 or P = 4 to obtain better parallelism at the expense of a higher communication

cost.

Impact of Combiners. The hybrid approach heavily relies of combiners. Indeed, when

combiners are not available, all input data will be sent to the one reducer in charge of

the overall granularity; in this case, it is then generally better to choose P = 1 and

revert to the IRG algorithm. However, when the combiners are available, the bene�t for

the hybrid approach is considerable, as discussed above.

4.1.4.3 Alternative hybrid algorithms

We now extend the hybrid approach we introduced previously, and propose two alter-

natives: a single job involving two parallel IRG instances, and a chained job involving a

�rst IRG computation and a �nal IRG aggregation.

Hybrid approach: IRG + IRG. In the previous section, we have shown that it is pos-

sible to design an algorithm aiming at striking a good balance between parallelism and

replication rate, using a single parameter, i.e. the pivot position. In the baseline hybrid

approach, parallelism is an increasing function of the replication rate, so that better par-

allelism is counterbalanced by higher communication costs in the shu�e phase.

Here, we propose an alternative approach that results in a constant replication rate of 2:

the “trick” is to replace the Vanilla part of the baseline hybrid algorithm with a second

IRG approach. Using the same running example as before, for the tuple (2012, 3,
14, 1), and selecting the pivot position P = 3, the two map output records are:

(2012, 3, 14, 1) (day granularity)
(2012, *, *, 1) (year granularity)
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Figure 4.5 on the facing page illustrates a running example. In this case, the map out-

put key space is partitioned by the month granularity, such that there is one reducer

per month that uses the IRG algorithm to compute aggregates; in addition, there is one
reducer receiving all tuples having ALL values taking care of the year and overall gran-

ularities, using again the IRG approach. As before, the role of combiners is crucial: the

amount of (year, *, *, payload) tuples that are sent to the single reducer taking

care of year and overall aggregates is likely to be very small, because opportunities to

compute partial aggregates in the map phase are higher for coarser granularities.

Parallelism and Communication Cost. This algorithm has a constant replication rate of 2.

As we show in Section 4.1.5, the choice of the pivot position P is here much less decisive

than for the baseline hybrid approach: this can be explained by the fact that moving the

pivot to �ner granularities does not increase communication costs, as long as the load

on the reducer taking care of the aggregates for coarse granularities remains low.

Impact of Combiners. Similarly to the baseline hybrid approach, this algorithm relies

heavily on combiners; if combiners are not available, then, a simple IRG approach

would be preferable.

Chained IRG. It is possible to further decrease the replication rate and hence the com-

munication costs of computing Rollup aggregates by adopting a multi-round approach

composed of two chained MapReduce jobs. In this case, the �rst job pre-aggregates

results up to the pivot position P using the IRG algorithm; the second job uses partial

aggregates from the �rst job to produce – on a single reducer – the �nal aggregate result,

again using IRG. We note here that a similar observation, albeit for computing matrix

multiplication, is also discussed in detail in [49].

Parallelism and Communication Cost. The parallelism of the �rst MapReduce job is deter-

mined by the amount NP of grouping keys at the pivot position; the second MapReduce

job, has a single reducer. However, the input size of the second job is likely to be orders

of magnitude smaller than the �rst one, so that the runtime of the reduce phase of the

second job – unless the pivot position puts too much e�ort on the second job – is gen-

erally negligible. The fact that the second reducer operates on a very small amount of

input, results in a replication rate very close to 1.

The main drawback of the chained approach is due to job scheduling strategies: if jobs

are scheduled in a system with idle resources, as we show in Section 4.1.5, the chained

IRG algorithm results in the smallest runtime. However, in a loaded system, the sec-

ond (and in general very small) MapReduce job could be scheduled later, resulting in

arti�ciously large delays between job submission and its execution.
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Impact of Combiners. This approach does not rely heavily on combiners per se. However,

it requires the aggregation function to be algebraic in order to make it possible for the

second MapReduce job to re-use partial results.

4.1.5 Experimental Evaluation

We now proceed with an experimental approach to study the performance of the algo-

rithms we discussed in this work. We use two main metrics: runtime – i.e. job execution

time – and total amount of work, i.e. the sum of individual task execution times. Runtime

is relevant on idle systems, in which job scheduling does not interfere with execution

times; total amount of work is instead an important metric to study in heavily loaded

systems where spare resources could be assigned to other pending jobs.

4.1.5.1 Experimental Setup

Our experimental evaluation is done on a Hadoop cluster of 20 slave machines (8GB

RAM and a 4-core CPU) with 2 map and 1 reduce slot each. The HDFS block size is set

to 128MB. All results shown in the following are the average of 5 runs: the standard

deviation is smaller than 2.5%, hence – for the sake of readability – we omit error bars

from our �gures.

We compare the �ve approaches described in Section 4.1.4: baseline algorithms (Vanilla,

IRG, Hybrid Vanilla + IRG) and alternative hybrid approaches (Hybrid IRG + IRG

Chained IRG). We evaluate a single Rollup aggregation job over (overall, year, month,

day, hour, minute, second) that uses the SUM aggregate function which, being algrebraic,

can bene�t from combiners. Our input dataset is a synthetic log-trace representing his-

torical tra�c measurements taken by an Internet Service Provider (ISP): each record in

our log has 1) a time-stamp expressed in (year, month, day, hour, minute, second); and 2)
a number representing the payload (e.g. number of bytes sent or received over the ISP

network). The time-stamp is generated uniformly at random within a variable number

of years (where not otherwise speci�ed, the default is 40 years). The payload is a uni-

formly random positive integer. Overall, our dataset comprises 1.5 billion binary tuples

of size 32 bytes each, packed in a SequenceFile [75].

4.1.5.2 Results

This section presents a range of results we obtained in our experiments. Before delving

into a comparative study of all the approaches outlined above, we �rst focus on studying

the impact of combiners on the performance of the Vanilla approach. Then, we move

to a detailed analysis of runtime and amount of work for baseline algorithms (Vanilla,



4.1. DESIGN SPACE OF MAPREDUCE-LIKE ROLLUP DATA AGGREGATES 75

Figure 4.6: Impact of combiners on runtime for the Vanilla approach.

IRG, and Hybrid), and we conclude with an overview to outline merits and drawbacks

of alternative hybrid approaches.

The role of combiners. Figure 4.6 illustrates a break-down of the runtime for

computing the Rollup aggregate on our dataset, showing the time a job spend in the

various phases of a MapReduce computation. Clearly, combiners play an important role

for the Vanilla approach: they are bene�cial in the shu�e and reduce phases. When

combiners cannot be used (e.g. because the aggregation function is not algebraic),

the IRG algorithm outperforms the Vanilla approach. With combiners enabled, the

IRG algorithm is slower (larger runtimes) than the Vanilla approach: this can be

explained by the lack of parallelism that characterizes IRG, wherein a single reducer is

used as opposed to 20 reducers for the Vanilla algorithm. Note that, in the following

experiments, combiners are systematically enabled. Finally, Figure 4.6 con�rms that

the IRG approach moves algorithmic complexity from the map phase to the reduce phase.

Baseline algorithms. In Figure 4.7 we compare the runtime of Vanilla, IRG, and the

hybrid Vanilla + IRG approach. In our experiments we study the impact of the pivot

position P , in lights of the “nature” of the input dataset: we synthetically generate data

such that they span 1, 10 and 40 years worth of tra�c logs.
4

Clearly, IRG (which corresponds to P = 1) is the slowest approach in terms of run-

time. Indeed, using a single reducer incurs in prohibitive I/O overheads: the amount of

4
Note that the size – in terms of number of tuples – of the input data is kept constant, irrespectively

of the number of represented years.
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Figure 4.7: Runtime comparison of baseline approaches.

data shu�ed into a single reducer is too large to �t into memory, therefore spilling and

merging operations at the reducer proceed at disk speeds. Although no redundant com-

putations are carried out in IRG, I/O costs outweigh the savings in computations.

A hybrid approach (2 ≤ P ≤ 6) outperforms both IRG and Vanilla algorithms, with

runtime as little as half that of the Vanilla approach. Communication costs make the

runtime grow slowly as the pivot position moves towards �ner granularities, suggesting

that in doubt, it is better to position the pivot to the right (increased communication

costs) rather than to the left (lack of parallelism). In our case, where a maximum of 20

reduce tasks can be scheduled at any time, our results indicate that P should be chosen

such that NP is larger than the number of available reducers. As expected, experiments

with data from a single year indicate that the pivot position should be placed further to

the right: the hybrid approach with P = 2 essentially performs as badly as the single-

reducer IRG.

Now, we present our results under a di�erent perspective: we focus on the total amount
of work executed by a Rollup aggregate implemented according to our baseline algo-

rithms. We de�ne the total amount of work for a given job as the sum of the runtime of

each of its (map and reduce) tasks. Figure 4.8 indicates that the IRG approach consumes

the least amount of work. By design, IRG is built to avoid redundant work: it has mini-

mal replication rate, and the single reducer can produce Rollup aggregates with a single

pass over its input.

As a general remark, that applies to all baseline algorithms, we note that the total amount

of work is largely determined by the map phase of our jobs. The trend is tangible as P

moves toward �ner granularities: despite communication costs (the shu�e phase, which
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Figure 4.8: Amount of work comparison of baseline approaches.

accounts for the replication rate) do not increase much with higher values of P thanks

to the key role of combiners, map tasks still need to materialize data on disk before it can

be combined and shu�ed, thus contributing to a large extent to higher amounts of work.

AlternativeHybrid Approaches. We now give a compact representation of our exper-

imental results for variants of the Hybrid approach we introduce in this work. Figure 4.9

o�ers a comparison, in terms of job runtime, of the Hybrid Vanilla + IRG approach to

the Hybrid IRG + IRG and the Chained IRG algorithms. For the sake of readability, we

omit from the �gure experiments corresponding to P = 1 and P = 7.

Figure 4.9 shows that the job runtime of the Hybrid Vanilla + IRG algorithm is sensitive

to the choice of the pivot position P . Despite the use of combiners, the Vanilla “com-

ponent” of the hybrid algorithm largely determines the job runtime, as discussed above.

The IRG + IRG hybrid algorithm obtains lower job runtime and is less sensitive to the

pivot position, albeit 3 ≤ P ≤ 5 constitutes an ideal range in which to place the pivot.

The best performance in terms of runtime is achieved by the Chained IRG approach: in

this case, the amount of data shu�ed through the network (aggregated over each in-

dividual job of the chain) is smaller than what can be achieved by a single MapReduce

job. We further observe that placing P towards �ner granularities contributes to small

job runtime: once an appropriate level of parallelism can be achieved in the �rst job

of the chain, the computation cost of the second job in the chain is negligible, and the

total amount of work (not shown here due to space limitations) is almost constant and

extremely close to the one for IRG.
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Figure 4.9: Comparison between alternative hybrid approaches.

We can now summarize our �ndings as follows:

• All the approaches that we examined greatly bene�t from the, fortunately com-

mon, property that aggregation functions are algebraic and therefore enable com-

biners and re-using partial results. If this is not the case, approaches based on the

IRG algorithm are preferable.

• If total amount of work is the metric to optimize, IRG is the best solution because

it minimizes redundant work. If low latency is also required, hybrid approaches

o�er a good trade-o�, provided that the pivot position P is chosen appropriately.

• Our alternative hybrid approaches are the best performing solutions; both are very

resilient to bad choices of theP pivot position, which can therefore be chosen with

a very rough a-priori knowledge of the input dataset. Chained IRG provides the

best results due to its minimal communication costs. However, chained jobs may

su�er from bad scheduling decisions in a heavily loaded cluster, as the second job

in the chain may “starve” due to large jobs being scheduled �rst. The literature on

MapReduce scheduling o�ers solutions to this problem [27].
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4.2 E�cient and Self-Balanced Rollup Operator for
MapReduce-like Systems

4.2.1 Introduction

Despite the importance of data aggregation, the �eld of large-scale data-intensive com-

puting systems – where data can reach petabytes and be distributed on clusters of thou-

sands of nodes – has not seen much e�ort toward e�cient implementations of the above

concepts. In the Hadoop MapReduce ecosystem [1,60], high-level query languages such

as Pig Latin [8] and HiveQL [7] o�er simple implementations of the above constructs,

which do not perform aggressive optimizations. In enterprise workloads, jobs coming

from queries written in high-level languages are the majority [71]; an optimized imple-

mentation of these operators is therefore truly desirable.

Our work in the previous Section 4.1 proposes several e�cient physical algorithms for

MapReduce-like Rollup. In this Section, we focus on the design and implementation of

a light-weight, cost-based optimization module for Rollup for high-level languages. We

call this module: a Rollup operator.

Existing implementations are not satisfying: as we discuss in Section 4.2.2, current

Rollup algorithms are naively biased toward extreme levels of parallelism. As a con-

sequence, these approaches trade a theoretical possibility of scaling several orders of

magnitude beyond the scale attainable by real-world clusters with a very signi�cant

overhead in terms of communications.

There are alternative Rollup algorithms (Section 4.1) that allow tuning the level of paral-

lelism and the communication overhead of their implementation: with a proper setting,

these algorithms perform better than naive implementations. Such approaches are ap-

pealing in the abstract, but they are practically very di�cult for users to apply, since to

determine the proper setting, they would require users to know: (i) the internals of the

algorithm’s implementation; (ii) statistical information about data distribution; (iii) size

and performances of the cluster on which the algorithm is implemented. These require-

ments are di�cult to meet at once, and they are essentially prohibitive in the context of

high-level languages, whose very reason of existence is to hide this kind of complexities

and allowing users to concentrate on extracting meaning from data.

As a result, in this Section, we design (in Section 4.2.3) and implement a new Rollup

operator that is completely transparent to users. Our operator automatically collects

statistics about data and cluster performance. Subsequently it uses this information to:

(i) balance load across di�erent nodes in the cluster; (ii) determine an appropriate oper-

ation point of Rollup algorithms using a lightweight cost-based optimizer.
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We perform an extensive experimental campaign (Section 4.2.5) to assess the validity

of our design choices, using both real and synthetic datasets, and comparing the per-

formance of a variety of di�erent Rollup algorithms. Results indicate that our Rollup

operator, that relies on automatically tuned algorithms, delivers superior performance

when compared to current Rollup implementations for the Apache Pig system. Our

operator is released as open source software
5
, and is currently in the process of being

integrated in the upstream Apache Pig Latin language implementation. We summarize

this work in Section 4.4.

4.2.2 Preliminaries & Related Work

E�cient computation of data summaries is an important topic that has received wide

attention by the database community. Recently, such interest has led to several works

to bring the bene�ts of data aggregation to MapReduce systems as well.

In this Section, we review several Rollup algorithms, for both traditional databases and

MapReduce systems, and motivate the need for a substantially di�erent approach. Rollup

is a data operator �rst introduced by Gray et al. [64] as a special case of Cube. The Rollup

operator aggregates data along a dimension by “climbing up” the dimension hierarchy.

For example, to aggregate the volume of cars sold in the last several years, it is possible

to use the Rollup operator to obtain sales along the time dimension, including multi-

ple levels: total, year, month, and day. These levels form a hierarchy, of which

total is the top level that includes aggregates from all records.

4.2.2.1 Rollup in Parallel Databases

Traditionally, the Rollup operator was studied through the lenses of its generalized op-

erator, Cube, that groups data along all combinations (called views) of di�erent levels in

hierarchies. In Rollup, a view is equivalent to a level of the rollup hierarchy. In our car

sales example, we have 4 di�erent views.

Harinaryan et al. [66] introduced a model to evaluate the cost of executing Cube and

a greedy algorithm to select a near-optimal execution plan. Agarwal et al. [51] pro-

posed top-down algorithms (PipeSort, PipeHash) to optimize Cube computation: using

�ner group-bys to compute coarser ones (i.e. using month to compute year). Beyer

and Ramakrishnan [58] suggested a bottom-up computation (BUC) to construct results

from coarser to �ner group-bys by reusing as much as possible the previously com-

puted sort orders. All of these works are sequential algorithms which focus on single

servers.

5h�ps://bitbucket.org/bigfootproject/rollupmr

https://bitbucket.org/bigfootproject/rollupmr
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Scalable algorithms to handle the Rollup and Cube operators in parallel databases also

received considerable attention. They are divided into two main groups: work partition-
ing [37,48] and data partitioning [45,46]. In work partitioning, each processor (or node)

of the cluster computes aggregates for a set of one or many views independently. To

do that, all processors access concurrently the entire dataset. Typically such an access

is o�ered by a shared-disk array that is both expensive and di�cult to scale in term of

performance and size. Instead, data partitioning algorithms divide the input data set into

various subsets. A node computes all views associated to the subsets of data it hosts. To

obtain global aggregates, a subsequent merge phase is required. The main advantage of

such a Two Phase algorithm is that nodes need not to have access to the whole data set

but work on a small portion that can be easily stored on local memory/disks.

4.2.2.2 Rollup in MapReduce

In what follows, we assume the reader to be familiar with the MapReduce paradigm and

its well-known open-source implementation Hadoop [60, 75].

Currently, MapReduce high-level languages such as Apache Pig and Hive borrow from

parallel databases the Two Phase algorithm described previously. Its MapReduce vari-

ant is straightforward: each mapper computes aggregates of the whole Rollup hierarchy

from its local data, then sends the partial results to reducers which merge and return the

�nal aggregates. The MapReduce Two Phase (MRTP) algorithm, which can use combin-

ers as an optimization, produces a large quantity of intermediate data that impose strain

on network resources. In addition, a large number of intermediate data increases notice-

ably mapper overheads to sort and eventually spill them to disk. Similarly, since reducers

compute aggregates in each view separately, the MRTP algorithm presents signi�cant

overheads due to redundant computation.

These overheads are the main reason for the MRTP ine�ciency, and they can be avoided

by employing the in-reducer grouping (IRG) design pattern [80]. IRG computes aggre-

gates in a top-down manner by exploiting custom partitioning and sorting in MapReduce

to move the grouping logic from the shu�e phase to reducers. However, IRG severely

lacks parallelism: all processing is performed by a single reducer.

More recent works explore the design space of one-round MapReduce Rollup algorithms

by studying the trade-o� between communication cost (amount of data sent over net-

work) and parallelism [28]. Through a parameter called pivot position, the Hybrid

IRG+IRG algorithm (HII) provides users with the �exibility of choosing a sweet spot

to balance parallelism and communication cost. For one-round MapReduce algorithms,

the HII algorithm is shown (analytically and experimentally) to achieve the best perfor-

mance, if and only if the pivot position is set to the optimal value. Otherwise, the HII
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algorithm represent a valid theoretical contribution, albeit impractical to be used as a

baseline for a high-level language operator.

For multi-round MapReduce Rollup algorithms, the work in [28] also proposes the

ChainedIRG algorithm, which splits a Rollup operator into two chained MapReduce jobs

based on a parameter (again, a pivot position). The pivot position divides the Rollup hier-

archy between two jobs. The �rst job computes a subset of the hierarchy and the second

job takes the �rst job’s results to compute the rest.

Finally, MRCube, proposed by Nandi et al. [69], implements Cube and Rollup operators

in three rounds. The �rst round performs record random sampling on input data and es-

timates the cardinality of reducer keys. It serves identifying large groups of keys whose

cardinality exceeds the capacity of a reducer, and set a partition factor N . In the second

round, MRCube splits these large groups into N sub-groups using value partitioning:

two keys belong to the same sub-groups if and only if their values of the aggregated at-

tribute are congruent modulo N . Each sub-group is computed as a partial aggregate by

some reducer using the BUC algorithm [66]. The third round merges partial aggregates

to produce �nal results. As a consequence, reducers do not handle excessive amounts

of data, but the execution plan requires multi-rounds of MapReduce jobs. The authors

also note that the value partitioning may be problematic when data is skewed on the ag-

gregated attribute, as it can create sub-groups that exceed the reducer capacity and slow

down the job. Also, as the number of large-groups may be high, the �rst step of MRCube

can create a signi�cant overhead and make MRCube slower than the MapReduce Two

Phase algorithm [69].

4.2.2.3 Other Related Works

It is well known that MapReduce algorithms may su�er from poor performance if data

is skewed. SkewReduce [53] is a framework that manages data and computation skew

by using user domain knowledge to break the map and reduce tasks into smaller tasks;

then it �nds the optimal partition plan to achieve load balancing. SkewTune [54] is a

dynamic skew mitigation system: by modifying the MapReduce architecture, it detects

stragglers in reducers and pro-actively repartitions the unprocessed data to other idle

reducers. Another approach is to design skew-resistant operators: data skew is handled

at the algorithmic level. This approach does not require additional components, user

interventions or modi�cations to the Hadoop framework. For instance, [56] proposes

an algorithmic approach to handle set-similarity join. Apache Pig also supports a skew-

resistant equi-join operator. For the MapReduce data aggregation, to the best of our

knowledge, our work is the �rst to tackle a skew-resistant Rollup operator.

Finally, we consider related works that use a cost model to �nd optimal execution plans.

SkewReduce [53] uses a cost model that requires two user-supplied cost functions. MR-
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Share [57] proposes work-sharing optimizations based on a cost model to predict merged

job’s runtime. This model requires users to provide a set of constant, static parameters,

that represent the underlying cluster performance. Both practices are not transparent to

users. The latter is problematic in practice because cluster performance changes over-

time, and in many cases, clusters are dynamically allocated (e.g. Amazon EC2, Google

App Engine) which means unpredictable performance.

Instead, as we show in the next Section, our approach automatically measures cluster

performance. These measurements are fed to a regression model that predicts the Rollup

runtime. This is completely transparent to users, and adaptable to any cluster con�gu-

ration.

4.2.3 A New Rollup Operator

In this Section, we describe our design of an e�cient and skew-resistant Rollup operator.

Our approach can be integrated directly in current MapReduce high-level languages

such as Apache Pig and Hive, and it is completely transparent to users. Our design

avoids any modi�cations to the Hadoop framework or the MapReduce programming

model, thus making our work directly applicable to any MapReduce-like systems. Our

approach can also handle a stateless design (i.e. no historical execution statistics), which

is the current standard practice for systems that provide high-level languages on top of

MapReduce.

4.2.3.1 Rollup Operator Design

Our Rollup operator has two main components: the tuning job and the Rollup query.

The Rollup query can implement one of several Rollup algorithms, such as MRTP, HII,

ChainedIRG, MRCube as described in Section 4.2.2.2. We discuss the choice of an appro-

priate algorithm in Section 4.2.3.2.

The heart of our work is the tuning job, a primary component with two main goals.

The �rst is to determine how to achieve load-balancing taking into account skewed data

when executing the Rollup query, which is clearly bene�cial to any Rollup algorithm.

The second goal is to determine the most suitable operating point of the Rollup query,

provided that the underlying Rollup algorithm requires tuning. For example, Rollup

algorithms like HII and ChainedIRG both rely on an essential parameter that, if not

properly tuned, can lead to ine�cient executions and bad performance. In this case, the

tuning job automatically sets the parameter of such algorithms to the proper value, such

that performance is maximized.
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In addition, to obtain an e�cient Rollup operator, our goal is to minimize the over-

head caused by the tuning job. Consequently, we propose a single, light-weight tuning

job that simultaneously carries out all the following tasks to produce e�cient Rollup

queries:

1. It produces representative samples of the input data;

2. It balances reducer loads using information on key distribution estimated from

sample data;

3. If required, it determines appropriate parameters of a Rollup algorithms using a

cost-based optimizer.

Figure 4.10: Overview of the Rollup operator design.

Figure 4.10 shows a sketch of our Rollup operator. The tuning job runs before the execu-

tion of the Rollup query. It produces a balanced partitioning table, and tunes parameters

appropriately, when needed. The Rollup query uses these outcomes to optimize its per-

formance.

In the rest of this Section, we describe in detail how our tuning job can ful�ll its goals

using a top-down presentation. First, we discuss our choice for the Rollup algorithm that

implements the Rollup query in Section 4.2.3.2. Then, we present the internals of our

tuning job in Section 4.2.3.3. We examine load balancing on reducers in Section 4.2.3.3.1,

which uses statistics collected through sampling (Section 4.2.3.3.2). Finally, we present

our cost model (Section 4.2.3.3.3) that steers the Rollup query toward an optimized op-

erating point.
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4.2.3.2 The Rollup Query: Algorithmic Choice

The design of our Rollup operator is generic enough to employ any Rollup algorithm.

However, in this work, we focus on the two algorithms that proved to o�er, consis-

tently, superior performance when compared to alternative approaches, namely the Hy-

brid IRG+IRG (HII) and ChainedIRG [28]. Indeed, unlike MRTP, MRCube and IRG, such

algorithms have the �exibility to adjust the level of parallelism to exploit, which trans-

lates into a much lower communication cost compared to MRTP and MRCube. Previous

results in the literature [28] corroborate our choice, which we con�rm in our extensive

performance evaluation in Section 4.2.5.

Now, both ChainedIRG and HII require a fundamental parameter P called pivot posi-
tion. Let us consider the Rollup dimension with n levels: {d1, d2, . . . , dn} in which

d1 is the top-level of the hierarchy. P divides the Rollup dimensions in two subsets:

S1 = {d1, . . . , dP−1} and S2 = {dP , . . . , dn}. Each subset now represents a sub-Rollup

query. The di�erence between ChainedIRG and HII is that, while HII computes each

sub-Rollup query independently and has only one job, ChainedIRG exploits the aggre-

gates on S2 to compute aggregates on S1 (hence, it requires two jobs). Nonetheless, both

algorithms use the IRG design pattern to compute each sub-Rollup query.

Although the experimental results in [28] indicate that ChainedIRG has the best runtime

in an isolated system, in this section we cast our Rollup operator on the HII algorithm

because it is less prone to delays due to scheduling when the cluster is loaded. Instead,

the runtime of multi-phase algorithms (such as ChainedIRG) could be in�ated since the

job scheduler can dedicate resources to other jobs in between the phases. Nonetheless,

we note that our tuning job can easily accommodate alternative algorithms, and we show

this in our experimental evaluation, where we present results of our Rollup operator

with instances of the Rollup query implementing all the algorithms we discussed in

Section 4.2.2.

Continuing our example in Section 4.2.2, if P = 3 the two subsets are {total,year}
and {month,day}. For each input record, the map phase of HII generates 2

〈key, value〉 pairs of the bottom level of each subset (i.e. year and day).

Then for each subset, the mappers partition their 〈key, value〉 pairs by the top level of this

subset (i.e. total and month). Taking advantage of this partitioning scheme and the

sorting done by the MapReduce framework, day-to-month and year-to-total aggregates

can be processed independently in the reduce phase. In fact, HII applies a top-down

approach: we compute aggregates for each day in a month; then combine results to

obtain month aggregates. Similarly, we compute results for each year and construct the

total aggregate.

Choosing an appropriate pivot position P is crucial in HII and ChainedIRG, because it

determines the parallelism as well as the communication cost of such algorithms. Values
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of P that are too high can impose an excessive load on the reducer that is responsible for

the total aggregates, and lessen the bene�t of combiners (i.e. higher communication

cost). Instead, low values of P could result in insu�cient parallelism causing poor load

balancing. Finding the proper value for P is a non-trivial problem.

4.2.3.3 The Tuning Job

We now discuss our main contribution, the tuning job, that balances the reducer load and

�nds the optimal value of P . We propose a novel mechanism that enables a single-round

MapReduce job to collect statistical information about the input data and the underly-

ing cluster performance, determine and impose a load balancing scheme and optimize

the selection of the pivot position for the HII algorithm. The tuning job operates as

follows:

• For each possible pivot position P , we estimate a key distribution: a mapping be-

tween each partitioning key and the number of records that correspond to that

key (i.e. its cardinality).

• For each pivot position, we devise a greedy key partitioning scheme that balances

as much as possible the load between reducers;

• For each pivot position, using performance measurements gathered throughout

the tuning job execution, we use a cost model to predict the runtime associated to

each pivot position. We then select the pivot position that yields the shortest job

runtime.

Because the search space for an optimal pivot position is small and capped by n – the

number of grouping sets – our mechanism can a�ord to evaluate all values of P . We

minimize the overhead of the tuning job by executing it as a single MapReduce job, where

the input data is read only once and all candidate values for P are evaluated in parallel.

The rest of this section presents how each step of our tuning job is accomplished. Key

partitioning described in Section 4.2.3.3.1, uses the estimation of key distribution using

sampling (Section 4.2.3.3.2). From partitioning outputs, we extract the reducer loads to

feed into our cost model, as shown in Section 4.2.3.3.3. The cost model uses a regression-

based approach that predicts the runtime of both mappers and reducers for each value

of P ; this model uses performance measurements that we collect in the tuning job as a

training set.

4.2.3.3.1 Balancing Reducer Load Skewed data motivates the need for reducer

load-balancing. In this step, we balance reducer load using cardinalities of partitioning

keys obtained from the key distribution estimation discussed in Section 4.2.3.3.2. The

input of this step is a set of keys K and an estimation of their respective cardinalities
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C = {Ck|k ∈ K}. We then perform load balancing by partitioning the keys in K on r

reducers to minimize the input keys on the most loaded reducer. This problem can be

reduced to the multi-way number partitioning problem, which is NP-complete [70]. We

thus opt for a greedy solution: sort all reduce input keys by descending cardinalities, and

assign at each step a key to the least loaded reducer. Our algorithm uses smaller cardi-

nalities to counter the imbalance created by large cardinalities that are allocated �rst. Its

runtime is linear with respect to the number of keys. Thanks to the role of combiners,

the number of input records sent to each reducer is quite small; for this reason, as we

shall see in Section 4.2.5.2, our load balancing strategy is very e�ective in practice.

The output of this greedy algorithm is a reducer partitioning table, which we broadcast to

all mappers to determine the key-reducer mapping. When the Rollup query is running,

such a partitioning is kept in a hash table and used to “route” keys to reducers. If, due

to sampling, a key does not appear in the hash table, it is “routed” to a pseudo-random

reducer using hashing. We note that the impact of such missing keys is minimal on load

balancing, as they correspond to infrequent input data.

4.2.3.3.2 Sampling and Computing Key Distribution The load balancing step

we just discussed requires the number of reducer input records per grouping key, i.e.
its cardinality. Without modifying the MapReduce architecture, we cannot count these

cardinalities on the �y when processing data. Instead, we resort to sampling: we only

read data from a small subset of the input data, and we gather key distributions and

cardinalities that are the input of the load balancing step. These steps are counted as an

overhead in our total job runtime.

In MapReduce, uniform record random sampling from the whole input would be inef-

�cient, as it requires the whole data to be read and parsed. Instead, we employ chunk
random sampling. Chunk sampling allows low overhead, as it reads a very small por-

tion of input data. The dataset is split in chunks of data that have di�erent sizes: this is

also useful for the linear regression model we describe in Section 4.2.3.3.5. Each chunk is

chosen with probability σ, a parameter we explore in our experimental evaluation.

However, chunk sampling introduces sampling bias. To reduce this bias, for each chunk,

we output each record only once, regardless of its multiple appearances in that chunk.

Such a technique can be easily achieved by using combiners. In the reducers, we collect

records from di�erent chunks and treat them like records gathered from uniform random

sampling. This method, albeit in a di�erent context, is described in the literature as the

COLLAPSE approach in [42]. For large input data, the COLLAPSE approach is proved

to be approximately as good as uniform random sampling.

For each value ofP , we gather statistics from the sample data. The statistics are collected

from both mappers and reducers in the tuning job, which are used for two goals: (i) to

construct the key distribution by examining the histogram of partitioning key; (ii) to
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gather input of performance measurements in each phase for our cost model. In this way,

the work done in this step is also used to benchmark system performance and provide

input for cost model. This is an improvement to other standard sampling methods.

4.2.3.3.3 Cost-Based Pivot Selection In Section 4.2.3.2 we have discussed qualita-

tively the impact of the pivot position over the runtime of map and reduce phases. We

now describe our pivot selection technique in detail. Here, we present a cost model to

predict the runtime of a Rollup query implementing the HII algorithm, and use it as a

reference to optimize the value of P .

4.2.3.3.4 The Model The Rollup query runtime TJ is de�ned as a function of

P :

TJ(P ) = TM(P ) ∗ α + TRmax
(P ), (4.3)

where TM represents the average runtime of a map task, α is the number of map waves
and TRmax

is the runtime of the slowest reduce task.

Waves are due to the fact that the number of map slots can be smaller than the number

of input splits to read. The number of waves is computed as

α =

⌈
input size

input split size · number of map slots

⌉
. (4.4)

We assume here that the number of reduce tasks will not be larger than the num-

ber of available reduce slots (indeed, such a setting is generally not recommended in

MapReduce), therefore for simplicity, we consider the reduce phase to have one wave

only.

We decompose the map and reduce phases into several steps. The mappers read the in-

put, replicate the data, write map output records to memory, sort output records, combine
and spill output to local disk. For some steps such as read, parse and replicate, their run-

time does not depend on the pivot position. Since we are interested in �nding the value

of P that minimizes the running time rather than predicting the running time itself, we

focus on minimizing the variable parts of TM :

T ′M(P ) = cwrite,P (2β) + csort,P (2β)

+ ccombine,P (2β) + cspill,P (β
′
P ). (4.5)

Here, β is the number of input tuples of a mapper; β′ is the number of output tuples of

its combiner; cλ,P (x) is a cost function that returns the runtime of step λ (write, sort,

combine, spill) and depends on a particular value of P . Since HII generates 2 outputs for

each input tuple, we have 2β as the input of cλ,P (x).
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Similarly to the map phase, the reducers shu�e and merge their input records, process
the Rollup operator and write outputs to a distributed �le system (DFS). We therefore

estimate the reduce phase as:

TR(P ) = cshu�e,P (γP ) + cprocess,P (γP ) + cDFS,P (γ
′
P ), (4.6)

where γP is the number of reducer input records and γ′P is the number of reducer output

records.

4.2.3.3.5 Regression-Based Runtime Prediction We propose a novel approach to

predict the runtime of each step. This approach is not only completely transparent to

users but also �exible enough to deal with any cluster con�guration. We achieve such

�exibility and transparency by using the tuning job we introduced in Section 4.2.3.3.2 to

obtain performance measurements. We apply regression on these measurements using

the least squares method to predict the runtime of the Rollup query.

Performance Measurements The tuning job can be thought of as a preliminary

Rollup job, i.e. it is composed by the same steps of the Rollup query. For each step,

we measure the number of its input records and its runtime as a data point (x, Tx). To

gain more accurate runtime prediction, we generate several data points. In the map

phase, the tuning job runs multiple mappers on small, di�erent chunk sizes; each chunk

size is a data point
6
. It also measures the runtime of the process phase and DFS I/O at

several di�erent points in time during the reduce phase.

Linear Regression Let us consider a step λ: we model its cost as a linear function

cλ,P (x) = a + bx. The sort step is an exception because of its O(n log n) complexity:

csort,P (x) = a+ bx+ cx log x. In the tuning phase, we obtain for each step a list of data

points [(x1, Tx1), (x2, Tx2), . . . , (xµ, Txµ)]; we use least square �tting to �nd the coe�-

cients a and b such that our function c(x) minimizes the error S =
∑µ

i=1(Txi − c(xi))2.
This approach necessitates the chunk sizes xi we use for sampling to be of variable size.

Once a and b are known, we calculate the runtime Tλ on the original dataset.

Runtime Prediction and Pivot Selection Now that all cλ,P functions are known, we

need to evaluate β, β′, γ and γ′ in order to obtain runtime predictions from Equations 4.5

and 4.6. Again, using regression we can estimate β, β′, γ and γ′. We have now all the

required values; we can therefore evaluate Equations 4.5 and 4.6 for all possible values

of P . The value P ∗ that minimizes T ′M(P ∗) + TR(P
∗) is our chosen value as pivot

position.

6
In our experiments, the chunk sizes are 256KB, 512KB, 1MB, 2MB.
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4.2.4 Implementation Details

We now discuss our implementation of the Rollup operator described in Section 4.2.3,

for the Apache Pig system. Our implementation is at the base of a patch which has been

integrated to the Apache Software Foundation for integration.
7

Apache Pig is a client-facing system that exposes a high-level language called Pig Latin,

which resembles standard SQL. End-users express their data analysis tasks in Pig Latin,

which Pig transforms into native MapReduce jobs to be executed on an Apache Hadoop

cluster. Figure 4.11 illustrates the steps executed by Pig to compile a Pig Latin script

into one or more MapReduce jobs [62]. After reading and parsing the script, Pig builds

a logical plan – an abstract directed-acyclic-graph (DAG) representation of the various

operators involved in the script – and proceeds with its optimization. The optimization

of the logical plan follows a rule-based approach: the original plan can be rewritten to

achieve better performance, e.g., by applying early projections to reduce I/O require-

ments. Then, Pig transforms the logical plan into a physical plan – a di�erent represen-

tation of the script, with physical operators replacing logical ones. Finally, Pig generates

and optimizes the MapReduce plan, which contains a set of MapReduce operators that

are injected into a Java representation of the original script.

The Rollup Compiler Currently, a data transformation involving a Rollup operator

written in Pig Latin has the “Cube alias by Rollup expression” syntax. To accom-

modate our new Rollup operator, we modify the original syntax to expose the sampling

rate used in the tuning phase.

In addition, we also enrich the logical plan optimization engine with our optimizer: by

traversing the DAG representation of the logical plan, our optimizer detects the presence

of a Cube operator, and checks whether the aggregate function to be applied by the

operator is algebraic or not. Then, the optimizer replaces the original Rollup logical

operator with our new logical operator: this takes into account how, internally, tuples of

data are generated according to the pivot position. As a consequence, also the physical

plan now includes a new partitioner and a new Rollup physical operator, that implements

the HII algorithm.

The Tuning Job The tuning job, described in Section 4.2.3, computes an optimal pivot

position and a partitioning table to achieve load balancing. Recall that the tuning job

materializes as a preliminary, short, MapReduce job that needs to be executed before the

MapReduce job in charge of executing the Rollup operator.

7h�ps://issues.apache.org/jira/browse/PIG-4066

https://issues.apache.org/jira/browse/PIG-4066
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Figure 4.11: Pig script compilation process

As described in Section 4.2.3, we run the sampling of our tuning job on variable-sized

chunks. We modify PigInputFormat – which speci�es how Pig should read input

data – to allow such a requirement; the default sizes we use are 256 KB, 512 KB, 1 MB

and 2 MB and they are con�gurable via the pig.hii.rollup.variablesplit
con�guration parameter. We select blocks so that a fraction σ (0.0005 by default) of the

whole dataset is sampled, splitting it equally between chunk sizes and ensuring that at

least one chunk per con�gured split size is read.

We also modify the MapReduce plan compiler: we insert a new MapReduce operator

representing the tuning job right before the MapReduce HII operator. Hence, our tuning

job is executed before the HII Rollup job. In the tuning job, we introduce “markers”,

that are used to measure the map task runtime, which we also use in the cost-model.

Finally, the reduce task of the tuning job, once the pivot position has been set according

to the cost-model, outputs a partitioning table that is instrumental for the execution of

the Rollup job.

At the end of the tuning job, the Rollup job begins with an initialization phase: the parti-

tioning table is pushed to the Hadoop Distributed Cache, a mechanism which allows to

distribute read-only �les to Hadoop workers; as such, the partitioning table is replicated

across all machines involved in the Rollup job execution. In practice, upon instantiation
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of the partitioner class of the Rollup job, the partitioning table is loaded into memory

and it is used to “route” map output tuples to the right reducer.

Additional System-level Optimizations In the map phase of Hadoop MapReduce,

map tasks collect intermediate output into a memory-bu�er, which is divided into two

parts: one stores the meta-data of a processed record, the other stores the record itself.

If either one of these two parts grows above a threshold, the map task spills both bu�ers

to disk, which is a costly operation involving disk I/O. In the optimal case, we want both

bu�ers to reach the thresholds at the same time to utilize the memory-bu�er to its full

extent and avoid spilling as much as possible.

In Pig, meta-data always takes up 16 bytes, while the size of map output records varies.

Fortunately, we sample the average size of output records q during the tuning job: we

therefore con�gure the value of the io.sort.record.percent parameter to its

optimal value 16/(16 + q).

4.2.5 Experimental Evaluation

We now proceed with an experimental evaluation of our Rollup operator, implemented

for Apache Pig. Our experimental evaluation is done on a Hadoop cluster of 20 machines

with 2 map and 1 reduce slot each. The HDFS block size is set to 128MB. We execute

Rollup aggregates over date-time dimensions using synthetic and real-life datasets; our

reference performance metric is job runtime, with jobs being executed in an isolated

cluster. We note that all results in the following are the average value of at least 10 runs:

the standard error of results is smaller than 3%, so for the sake of readability, we omit

error bars from our �gures.

4.2.5.1 Datasets and Rollup Queries

In our experiments, we use 4 illustrative datasets. Each dataset has tuples with schema

year, month, day, hour, minute, second and a value v. The Rollup operator computes the

total value V =
∑
v per each date-time dimension and as a whole (i.e., the total

level). Speci�cally, we used the following datasets:

• Synthetic Telco Logs (STL): 1 billion records ranged in 30- years with uniform

distribution.

• Skewed Synthetic Telco Logs (SSTL): 1 billion records. The tuples are in a 3-year

time-frame, according to a power-law distribution with coe�cient α = 2.5.
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Figure 4.12: Rollup operator with our tuning job

• Simpli�ed Integrated Surface Database(ISD):8 nearly 2.5 billion records in 114

years. This dataset is heavily skewed towards recent years, as the last 10 years

contain 45% of the total records.

• Reverse DNS (RDNS): a sub-set of the Internet Census2012
9
. It has 3.5 billion

records spanning 5 months.

4.2.5.2 Experimental Results

We now present our experimental evaluation that uses a prototype implementation of

our Rollup operator for the Apache Pig system. Figure 4.12 illustrates the di�erent �avors

of our operator that we used in our experimental campaign.

First, we provide a comparative analysis of our operator using 4 Rollup algorithms: the

standard MRTP, and our implementation of MRCube, HII and ChainedIRG. This series

of experiments are an illustration of the versatility of our approach, that yields a Rollup

operator that can achieve substantial performance gains over current standards.

Next, we focus on the tuning job, customized for the HII Rollup algorithm: we show that

our cost-based optimizer can indeed �nd the most suitable operating point to achieve

minimum job runtime. In addition, we measure the overhead imposed by the tuning job,

and relate it to its optimization accuracy.

Finally, to validate the e�ciency of our design, we compare the overhead of the tuning

job customized for MRCube against the original 3-phase MRCube design, and show that

even such an algorithm could bene�t from our approach.

4.2.5.2.1 Comparative Performance Analysis In this series of experiments, we

execute a simple Rollup query, as shown below, on the four datasets described above, and

measure the runtime required to complete the job using di�erent �avors of the Rollup

operator.

8
http:// www.ncdc.noaa.gov/oa/climate/isd/

9
http://internetcensus2012.bitbucket.org/
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A = LOAD path/file AS (y, M, d, h, m, s, v);
B = CUBE A BY ROLLUP(y, M, d, h, m, s) RATE samplingRateValue;
C = FOREACH B GENERATE group, SUM(cube.v);

Figure 4.13 compares the runtime of di�erent Rollup operators using MRTP, MRCube,

HII and ChainedIRG algorithms for all datasets. On top of the bars of MRCube, HII,

and ChainedIRG, we indicate the the gain of each algorithm with respect to MRTP: for

example, -26.83% on top of MRCube means that the corresponding jobs terminate 26.83%

quicker than with the current Apache Pig implementation.

For all datasets, our operator for the HII algorithm outperforms the MRTP implemen-

tation by at least 50%. Indeed, the map phase of MRTP generates 7 output tuples for

each input one, while HII only generates at most 2 tuples. When customized for the

ChainedIRG algorithm, our operator runs faster than HII, as its map phase generates

only 1 tuple. For RDNS dataset, both HII and ChainedIRG degenerate to P = 1 which is

the IRG algorithm, which explains the identical runtime.

When compared to MRCube, both the HII and ChainedIRG variants perform better.

The �rst reason is that the mappers in MRCube generate more tuples than HII and

ChainedIRG: 3 for ISD and STL, 4 for SSTL and even 5 for RDNS datasets. The sec-

ond reason is that the reduce phase of MRCube incurs redundant computation. The

third reason is that our tuning job runs faster than the �rst job of MRCube (that would

correspond only to a fraction of our tuning job’s mission: data sampling and cardinality

estimation).

4.2.5.2.2 Cost-based Parameter Selection Validation In this series of experi-

ments, we override the automatic selection of the pivot position, but allow the load

balancing at reducers, to proceed with a “brute- force”, experimental approach to vali-

date the cost-based optimizer of our tuning job.

For all datasets, we run with the full-�edged tuning job and compare the pivot posi-

tion output by the cost-based optimizer to that yielding the smallest job runtime, for all

possible (manually set) positions. Due to the lack of space, we only present results for

the SSTL and ISD datasets, but we obtain similar results for all other datasets. Also our

ChainedIRG operator exhibits the same pattern we present here for the HII algorithm. In

the following Figures, we report (on top of each histogram ) the increment (in seconds)

in query runtime for sub-optimal pivot positions.

Query runtime as a function of P for the SSTL and ISD dataset are reported in Fig-

ures 4.14 and Figure 4.15, respectively. First, we note that P = 1 is essentially IRG. It has

the fastest map phase, but the worst performance. This is due to the lack of parallelism

which results in longer shu�e and reduce runtime. At the other extreme, P = 6 also
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results in performance loss for several reasons, including low combiner e�ciency (and

hence longer shu�e runtime) and longer reducer runtime. The SSTL dataset presents

a peculiar case: since the data covers only 3 years, the query runtime corresponding to

P = 2 can only utilize 3 of the 20 available reducers in our cluster. As a result, both

shu�e and reduce phases take a long time to process, due to the lack of parallelism.

Instead, in the ISD dataset, the data covers 114 years. It means that P = 2 can fully

utilize parallelism. Finally, we veri�ed that the pivot chosen in our tuning job correctly

speci�ed P = 4 and P = 2 as the optimal pivot positions for the SSTL and ISD datasets

respectively.

4.2.5.2.3 Overhead and Accuracy trade o� of the Tuning Job We de�ne the

overhead as the runtime of the tuning job divided by the total runtime of the Rollup

operator. We examine this overhead as a function of sampling rate. We also study the

trade-o� between the overhead and the accuracy of the pivot position determined by

our cost model. We plot the overhead of the tuning job, along with the pivot position

that the cost model selects with sampling rate from 0.0001 to 0.002. Again due to lack of

space, we only show the plot for the ISD dataset as a representative result.

In Figure 4.16, due to data skew, a low sampling rate does not produce su�ciently ac-

curate cardinalities, and as a consequence, the cost model and the load-balancing phase

under-perform: they cannot determine the optimal pivot position. Nevertheless, the

pivot position chosen by our tuning job quickly stabilizes to the optimal value (P = 2).

As a consequence, the sampling phase only imposes less than 3% overhead of the whole

operator runtime.

4.2.5.2.4 E�ciency of Tuning Job Finally, to conclude our experimental evalua-

tion, we verify our tuning job e�ciency in comparison to that of MRCube. We integrate

load balancing into MRCube and call it MRCube-LB. In MRCube-LB, we replace the

�rst round of the MRCube algorithm by our tuning job: the cost-based optimizer is dis-

abled, while data sampling, cardinality estimation and load balancing are active. Next,

we present a notable improvement of the MRCube-LB with respect to the originial MR-

Cube. Figure 4.17 shows, for all datasets, the overhead of our operator in three versions:

MRCube, MRCube-LB and HII algorithms. Both the overhead of the HII and MRCube-LB

versions are always smaller than that of the original MRCube by at least 60%. Compar-

ing the HII and MRCube-LB versions, the marginally higher overhead of the former is

due to the execution of the cost-based optimizer.

In conclusion, this series of experiments indicate that our tuning job is versatile,

lightweight, and accurate.
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Figure 4.17: Overhead comparison of MRCube, MRCube-LB and HII.

4.3 Rollup as the Building Block for Data Aggrega-
tion

We conclude this Chapter by noting that the physical optimization for MapReduce

Rollup constitutes as a building block to provide physical optimization for the multi-

ple data aggregation problem as well. Figure 4.18 shows an example of an optimized

logical plan obtained from our logical multiple Group By optimization in Chapter 3. Let

us consider the following computing order: T −→ ABCD → AB → A which T is

the input �le, one can see that it is a variant of MapReduce Rollup, without computing

ABC and ∗. We note that, actually our de�nition of Rollup operator in Section 4.1.3

already covers this situation. Therefore, our algorithms as well as our Rollup design can

be directly used for the multiple Group By optimization problem.

4.4 Summary

In this Section, we have studied the problem of logical optimization of computing Rollup

aggregates in MapReduce. This problem requires:

1. E�cient algorithm(s) for MapReduce Rollup.

2. A physical Rollup operator that is executable using MapReduce.
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Figure 4.18: An example of optimized logical plan.

To design e�cient algorithms, from the theoretical view, we proposed a modeling ap-

proach to untangle the available design space of the MapReduce Rollup problem (Sec-

tion 4.1). We focus on the trade-o� that exists between the achievable parallelism and

communication costs that characterize the MapReduce programming model. This was

helpful in identifying the limitations of current Rollup implementations, that only cover

a small portion of the design space as they concentrate solely on parallelism. We pre-

sented an algorithm to meet the lower bounds of the communication costs we derived

in our model, and showed that minimum replication can be achieved at the expenses

of parallelism. Furthermore, we presented several variants of Rollup implementation

algorithms that share a common trait: a single parameter (the pivot) allows tuning the

parallelism vs. communication trade-o�.

Our experimental evaluates several Rollup algorithms (including ours and state of the art

ones) using Hadoop MapReduce. The experimental approach revealed the importance

of optimizations currently available in systems such as Hadoop, which could not be

taken into account with a modeling approach alone. Our experiments show that the

e�ciency of the new algorithms, which we design, is superior to what is available in

the current state of the art algorithms. A version of this theoretical work is published in

BeyondMapReduce 2014 [28].
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Having designed such e�cient algorithms, we move on to Section 4.2 to discuss how to

employ our algorithms in practice. The main contribution of Section 4.2 was the design

of an e�cient, skew-resilient Rollup operator for MapReduce high-level languages. Its

principal component, the tuning job, is a lightweight mechanism that materializes in a

small job executed prior to the Rollup query. The tuning job performs data and perfor-

mance sampling to achieve, at the same time, cost-based optimization and load balancing

of a range of Rollup algorithms (including ours and even state of the art ones).

Our extensive experimental validation illustrated the �exibility of our approach, and

showed that – when appropriately tuned – our Rollup algorithms dramatically outper-

form the one used in current implementations of the Rollup operator for the Apache Pig

system. In addition, we showed that the tuning job is lightweight yet accurate: cost-

based optimization determines the best parameter settings with small overheads, which

are mainly dictated by the data sampling scheme. Our work is available as an open-

source project
10

and published in BigDataCongress 2015 [29]. We conclude this Chapter

by noting that the physical optimization for MapReduce Rollup constitutes as a build-

ing block to provide physical optimization for the general data aggregation optimization

problem as well.

The last two Chapters have presented the work done in both phase of query optimiza-

tion: logical and physical for large-scale data aggregation. Still there is a missing piece to

glue these two phases together: an optimization engine. In the next Chapter, Chapter 5,

we present our design of a multi-query optimization engine.

Relevant Publications

• D. H. Phan, M. Dell’Amico, and P. Michiardi, “On the design space of MapReduce

ROLLUP aggregates,” in Algorithms and Systems for MapReduce and Beyond, 2014.

• D. H. Phan, Q. N. Hoang-Xuan, M. Dell’Amico,and P. Michiardi, “E�cient and self-

balanced Rollup aggregates for large-scale data summarization”, in 4th IEEE Inter-
national Congress on Big Data, 2015.

10
https://github.com/bigfootproject/AutoRollup



Chapter 5

Multi-Query Optimization Engine for
SparkSQL

In this Chapter, we describe our multi-query optimization engine, called SparkSQL

Server. Though our work is based on the Apache Spark system, we reckon that the idea

behind our work can be applied comfortably to other MapReduce-like systems.

5.1 Introduction

There are two types of query optimization: single-query optimization and multi-query

optimization. As its name suggest, single-query optimization optimizes a single query by

deciding, for example, which algorithm to run, con�guration to use and optimized values

for parameters. An example is the work in Chapter 4: when users issue a Rollup query

to compute aggregates over day, month and year, the optimization engine automatically

picks the most suitable state of the art algorithms and set the appropriate parameter to

obtain the lowest query response time.

On the other hand, multi-query optimization optimizes the execution of a set of multiple

queries. Typically, in large organizations, many users share the same data management

platform, resulting in a high probability of systems having concurrent queries to be pro-

cessed. A cross industry study [71] shows that not all data is equal: in fact, some input

data is “hotter” (i.e. get accessed more frequently) than others. Thus, there are high

chances of users accessing these “hot” �les concurrently. This is also veri�ed by in in-

dustrial benchmarks (TPC-H and TPC-DS) in which their queries frequently access the

same data. The combined outcome is that optimizing multiple queries over the same in-
put data can be signi�cantly bene�cial: multi-query optimization is able to cut down the

global execution time remarkably compared to executing each query separately.

101
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In traditional databases or data warehouses, a query is engaged in both types of query

optimization. There have been hundreds of researches that study this long, well-known

subject. Arguably, query optimization is one of the main reasons to which traditional

databases (or data warehouses) owes for their tremendous success.

As a consequence, for large-scale systems like Hadoop and Spark, there have been a

lot of on-going attempts and e�ort to �ll in this gap. There are independent systems

such as Apache Hive for Hadoop, or built-in systems like SparkSQL for Spark let users

write their queries in their SQL-alike languages (e.g. HiveQL for Hive, standard SQL for

SparkSQL). Then, these queries are compiled, optimized and executed using the underly-

ing execution engine (e.g. Hadoop, Spark). We note that the query optimization engine

provided in these systems only deals with a single query from a single user. Thus, a

lot of bene�cial multi-query optimization techniques for MapReduce and its extensions

cannot be implemented inside these systems.

From all above perspectives, we see that a multi-query optimization is the last stone

to completely �ll the mentioned gap to provide users with the utmost level of perfor-

mance. In this Section, we propose a multi-query optimization engine for SparkSQL.

Our engine accepts multiple SparkSQL queries, and use many plugged in techniques to

optimize them. Because of its generality and extensibility, our engine provides a frame-

work upon which new multi-query optimization techniques can be easily implemented

and executed. Even though we choose SparkSQL as our main target, we reckon that the

main idea of our design can also be applied to other high-level language systems. To

summarize, our main contributions in this Section are:

• We design a multi-query optimization engine for SparkSQL. Certainly there are

many di�erent techniques for multi-query optimization, therefore our engine is

designed to be able to plug in many di�erent techniques. The engine also provide

a general framework upon which users can easily implement other techniques.

Such an engine, to the best of our knowledge, is the �rst one for MapReduce-like

systems.

• We implement a prototype of our engine for Apache Spark 1.6
1
, which is fully

functional and available as an open source software
2
. We call our prototype Spark-

SQLServer.

• Using our SparkSQLServer prototype, we present a cost model for the multiple

data aggregation query optimization in Spark and use it to implement three al-

gorithms, including ours and two other state of the arts. This demonstrates the

generality and extensibility of our design to easily facilitate di�erent techniques.

1
Spark latest stable release version

2
https://github.com/DistributedSystemsGroup/sparksql-server
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• We conduct experiments to evaluate in an end-to-end manner to validate the actual

bene�t of our logical optimization algorithm, and also to demonstrate the merit of

our engine.

The rest of the Section is constructed as follows. In Section 5.2, we brie�y introduce

Spark and SparkSQL. We then describe the design of our multi-query optimization en-

gine for SparkSQL in Section 5.3. In Section 5.4, we discuss our cost model for the mul-

tiple data aggregation query optimization problem in Spark. We also discuss the imple-

mentation of our technique as well as others in SparkSQLServer. Section 5.5 is dedicated

to our experimental evaluation to compare di�erent techniques. Finally we summarize

our future work in Section 5.6.

5.2 Apache Spark and SparkSQL

Nowadays, the complexity of data processing systems has grown fast. As �rst, Google’s

MapReduce provided a simple and general model for batch processing with fault-

tolerance. But MapReduce is not suitable for many other kinds of workloads, such as ma-

chine learning, graph processing and data streaming. Each kind of workloads requires a

specialized system and model that can be signi�cantly di�erent from MapReduce. Some

examples of such systems are Apache Storm [11], Impala [12], and GraphLab [13]. In this

context, Apache Spark was created. Its main goal is to provide a uni�ed programming ab-

straction that can capture di�erent processing models. In this Section, we present:

• An overview of Apache Spark, which covers the Spark Job Submission process.

• A brief introduction of SparkSQL and its main components.

5.2.1 Apache Spark

Apache Spark is an open source project and an implementation of Resilient Distributed

Datasets (RDDs) [17] which is, in its turn, a simple extension of MapReduce. More details

about RDDs can be found in Chapter 2. Spark reportedly can run programs up to 100

times faster in comparison to the open source implementation of MapReduce: Apache

Hadoop [1]. Also, Spark provides a convenient language-integrated programming in-

terface in the Scala programming language but users can also write applications using

Java, Python or R from the APIs it supports. Apache Spark has grown rapidly as it is the

most active project of Apache.



104 CHAPTER 5. MULTI-QUERY OPTIMIZATION ENGINE FOR SPARKSQL

Figure 5.1: The lifetime of a Spark job

5.2.1.1 Spark Job Lifetime

Exploring the Spark job lifetime helps us understanding how a Spark creates and submits

a job. This is important since our engine would intercept the Spark job submit procedure:

instead of sending Spark jobs directly to the cluster to execute, Spark jobs would be sent

to our engines to undergo the multi-query optimization before getting executed.

There are four steps in the lifetime of a Spark Job. Figure 5.1 illustrates those four steps

clearly:

1. RDD objects creation.

2. DAG scheduling.

3. Task scheduling.

4. Task execution.

The �rst three steps happen at the driver, which is our main program. The last step

happens at the Executors, where our program is distributed to multiple worker nodes to

run in parallel. We go deeper into each step to understand a Spark Job Lifetime.

RDD objects creation: users create RDDs through a set of transformations, at the mo-

ment, the RDD is created at the driver.

DAG Scheduling: when an action is called, the DAG which has been built so far is

transfered to the next step: DAG Scheduling. It is the process of splitting the DAG into

stages, then submitting each stage one after one. All transformations within a stage
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are narrow dependencies. Two consecutive stages are connected through a wide de-

pendency transformation. At the boundaries of two stages, a shu�e phase across the

whole cluster occurs, and then a module called DAGScheduler, which is in charge of

DAG Scheduling, runs these stages in topological order. A stage is a set of independent

tasks, which computes the same function as part of a Spark job.

Task Scheduling TaskScheduler is the component which receives the stages from

DAGScheduler and submits them to the cluster.

Task Execution Spark calls workers as Executors. It retrieves the worker list from the

Cluster Manager, then it launches sets of tasks at the Executor. A BlockManager at each

Executor will help it to deal with shu�e data and cached RDDs. New TaskRunner is

created at the Executor and it starts the thread pool to process task sets, each task runs

on one thread. After �nishing the tasks, results are sent back to the driver or saved to

disks.

Some information that worth to notice are:

• Thanks to the DAGSchedulerEventProcessLoop, DAGScheduler can keep track of

stages’ statuses and resubmit failed stages.

• TaskScheduler only deals with task sets after being formed from Stages at

DAGScheduler. That is why it knows no stage information.

• A Spark program can contain multiple DAGs, each DAG will have one action. So,

inside a driver, they are submitted as jobs one by one.

• Spark has a nice feature: dynamic resource allocation. Spark will base on the

workload to request for extra resources when it needs or give the resources back

to the cluster if they are no longer used.

5.2.2 Apache SparkSQL

SparkSQL is a Spark module for structured data processing. The interfaces provided by

SparkSQL helps Spark know more information about the structure of both the data and

the computation being performed. This also gives the �exibility for users to execute

relational SQL queries on top of a Spark program. Internally, SparkSQL has a module

to use the extra structural information to perform (single) query optimization called

Catalyst. Below is a simple example of SparkSQL to demonstrate the combination of

relational programming and functional programming of SparkSQL.

case class Person(name: String, age: Integer)
val input =

sc.textFile("examples/src/main/resources/people.txt")
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val people = input.map(_.split(",")).map(p => Person(p(0),
p(1).trim.toInt))

val peopleDF = people.toDF()
peopleDF.registerTempTable("people")
val teenagers = sqlContext.sql("SELECT name FROM people

WHERE age >= 13 AND age <= 19")
val result = teenagers.map(t => "Name: " +

t(0)).collect.foreach(println)

First, we declare our data structure, then read the input �le with that schema and store

into an RDD. We create a DataFrame, a data structure in SparkSQL, from that RDD and

create a table from it. We are using the method of re�ection to inter-operate between

DataFrame and RDD. An SQL query is passed to SparkSQL. After the optimization and

translation happened, a normal Spark Job is created with a Directed-Acyclic Graph in-

side. An action would trigger the job to execute.

5.3 SparkSQL Multi-Query Optimization Engine

In this Section, we present our design of a multi-query optimization engine for SparkSQL

that allows many di�erent techniques to be easily implemented and executed.

5.3.1 Multi-query Optimization Techniques

Multi-query optimization techniques can be divided into two categories: sharing data
and sharing computation. Both cases are illustrations of the more generalized work shar-
ing: discovering pieces of work in queries that are repetitive and eliminating redundant

work. Traditional databases call these pieces of repetitive work Common Subexpres-
sion.

Sharing data, or scan sharing, means that the common data which are accessible to mul-

tiple queries should be scanned and processed only once instead of multiple times. For

queries whose signi�cant amount of cost is data scanning, sharing data is crucially ben-

e�cial. Most of current MapReduce-like (e.g. Hadoop, Spark) multi-query optimization

techniques [33, 35, 57] can be casted into this category.

Nevertheless, for many queries (e.g. Join, Group By, Cube, Grouping Sets), the major cost

are not data scanning but the cost of computation including data shu�ing, data sorting,

data computing. As a consequence, such techniques that enable sharing computation in
queries forMapReduce-like systems would be hugely bene�cial. As a consequence, our en-

gine should allow both categories of multi-query optimization techniques for SparkSQL.



5.3. SPARKSQL MULTI-QUERY OPTIMIZATION ENGINE 107

Figure 5.2: The design of SparkSQL Server

Later in Section 5, we present our new technique for sharing computation of multiple

Group By queries.

5.3.2 SparkSQL Server

Multi-query optimization works for MapReduce-like systems (hence Spark) currently

provide no systematic but rather ad-hoc implementation. Each technique would modify

the executing engine (e.g. Hadoop, Spark) in their own way, making it hard for users

to extend new sharing techniques. To the best of our knowledge, currently there is no

uni�ed and systematic framework for multi-query optimization on Spark (and to some

extent, other MapReduce-like systems). In this Section, we propose an engine called

SparkSQL Server, which serves as a framework upon which other multi-query optimiza-

tion techniques for SparkSQL can be easily implemented, plugged in and executed. Even

though we choose SparkSQL as our main target, we reckon that the main idea of our de-

sign can also be applied to other high-level language systems

5.3.2.1 System Design

Our engine aims for the generalization and extensibility so that users can easily imple-

ment and plug in other techniques. Figure 5.2 shows our design for such purposes.

Our systems follows the client-server model. Client side: clients submit the query and

necessary information about data structure, DAG of transformation to SparkSQL Server

so that SparkSQL Server can reconstruct the query in the server side

Server side: the SparkSQL Server contains three main components:

• The Listener listens for client connections and communicate with them. It re-

trieves queries and put them in the DAG queue
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• The DAG Optimizer is the heart of our system. All the detections, optimizations,

and transformations happen here. The DAG Optimizer consists of:

– WorkSharing Detector: this module detects the sharing opportunities among

a batch of jobs which has just received from clients. The detector uses rule-

based mechanism to detect the sharable queries and put them into the same

bag. Users can easily write their own rules to detect sharable jobs with many

types of sharing.

– CostModel: it calculates the cost of a plan or a part of a plan. Each technique

may have di�erent cost models, and users can provide their own cost model

through the User-de�ned Cost Model interface.

– Optimizer: it receives the output of WorkSharing Detector, which are a bag

of queries that can be optimized. Using the corresponding cost model, the

optimizer then optimize this set to return an optimized execution plan.

– Rewriter: the Rewriter transforms the original execution plan into the opti-

mized execution plan output by the Optimizer and then submits them to the

Scheduler. The transformation is also based on the rule-based mechanism. It

is very easy to de�ne a new rule to support other techniques.

Again, all of these four modules are extensible interfaces so users can plug their

own implementations into these modules.

• The Scheduler is used when there is a requirement of a speci�c execution order

for queries. This depends on the particular techniques. The Scheduler is also ex-

tensible so users can plug their own scheduling strategies.

5.3.2.2 Implementations

Similar to the above subsection, we present the implementation of our system on both

client side and server side. The order of the explanation is the same as the �ow in �gure

5.2.

Client side: we modify the spark-submit command so that it sends the ap-

plication to the SparkSQL Server instead of the cluster manager using this option:

--sparksql-server

Each client starts its own driver with its own SparkContext. Then, the client generates its

DAG from the SQL queries, the DataFrame creation and send those information: DAG,

DataFrame generation, SQL Query to the SparkSQL Server.

The client also sends the jar �le, because it contains all user de�ned functions, classes

which are very important to reassemble the DAG at the server side. It sends other nec-
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essary information so the SparkSQL Server can reconstruct the DAG and the query. We

note that the query has already been optimized by SparkSQL at the client side.

Server side: this is the core of our engine

• DAG Listener and DAG Queue DAG Listener accepts the client connections

and receives DAGs, queries and other information. Then, it puts them to the DAG

Queue. The DAG Queue accepts the information the clients send at the FIFO order.

In this component, the full DAG of each user will be built based on the initial DAG,

the DataFrame creation information and the query. The DAG Queue has a window

ω, after reaching the size of the windows, DAG Queue will send a batch of DAGs

(and queries also) into the next components.

• DAGSelectorThis component is something called a pre-scheduler, which is based

on the constraint attached with each query to ful�ll user requirements. For exam-

ple: a job with the highest priority gets executed right away without further delay

of optimization. The default uses the simple FIFO strategy.

• WorkSharingDetector This component will detect which DAGs have the oppor-

tunity for multi-query optimization. It works as rule-based mechanism to detect

the sharing opportunities among queries. The WorkSharing Detector bases on the

associated rule to �nd which DAGs have the Common Subexpression that can be

shared. For example, for scan sharing optimization, in which all queries read the

same input �le, we can build a scan sharing rule. When a RDD reads a �le from

the disk, it always contains the HadoopRDD with the attached input �le path. So

our rule tries to �nd each input �le path of each DAG and puts into an array, then

it intersects all the arrays to �nd out which DAG is sharable.

• Cost Model It provides an interface so that users can plug their own cost model,

which is called User de�ned cost model, into the engine. We can have many types

of Cost Model. The cost model can give score, which is calculated from cost func-

tions, on each DAG or a part of DAG.

• Optimizer With a bag from the output of the WorkSharing detector and a cost

model associated with its optimization technique, the Optimizer component does

the job: build the optimized execution plan. The Optimizer and the CostModel

work closely to �nd out the best result. For example, the Optimizer can generate

many combinations of shareable DAGs and give them to the CostModel, the Cost-

Model evaluates them with scores and gives back to the Optimizer. The Optimizer

then choose the combination with the best score.

• Rewriter This component has many families. Each family will have many rewrit-

ing rules. It will generate a rewritten DAG which can be optimized, and use the

rule that Optimizer picked to transform the original DAGs into the new ones. Each
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sharing technique can have one or more than one rewriter rules. For example, with

sharing scan, we can have the rewrite technique using MRShare or caching.

There are some special data structures to wrap a DAG after going through a compo-

nent:

• DAGContainer : use to wrap a DAG when it is received at DAGListener. It contains

a DAG, its query and its meta-data that it brings together.

• AnalysedBag: use to wrap an array of DAGContainers after it went through the

WorkSharing Detector. It contains an Array of sharable DAGContainer. It also

contains a label to indicate which type of sharing it is since there are many types

of sharing.

• OptimizedBag: use to wrap a set of DAGContainers after it goes through the Op-

timizer, which is the best combination of DAG after going through the Optimizer.

It also contains a label to indicate its sharing type and the Rewritten Rule to indi-

cate which rule it will use to rewrite. A no-sharable DAG is also wrapped into an

OptimizedBag with the Rewritten Rule equals to Null.

• RewrittenBag: use to wrap a rewritten OptimizedBag after the optimized bag went

through the Rewriter.

5.3.2.3 An Example on SparkSQL Server

This section introduces an example of SparkSQL Server in action so one can understand

how SparkSQL Server works clearly. Three example queries below belong to the scan

sharing optimization, where di�erent queries may access the same input �le (table). In

this example, we employ the MRShare technique [57] to solve such a problem. The de-

tailed implementation of MRShare inside SparkSQL Server is described in our technical

report [5].

User1

case class Teacher(name: String, age: Integer)
val input = sc.textFile("hdfs://A.txt")
val people = input.map(_.split(",")).map(p => Teacher(p(0),

p(1).trim.toInt))
val peopleDF = people.toDF()
peopleDF.registerTempTable("people")
val teacher = sqlContext.sql("SELECT name FROM people WHERE

age <= 50")
val result = teacher.map(t => "Name: " +

t(0)).collect.foreach(println)
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User2

case class Student(fullname: String, age: Integer)
val input = sc.textFile("hdfs://A.txt")
val people = input.map(_.split(",")).map(p => Student(p(0),

p(1).trim.toInt))
val peopleDF = people.toDF()
peopleDF.registerTempTable("people")
val student = sqlContext.sql("SELECT name FROM people WHERE

age >= 19")
val result = student.map(t => "Name: " +

t(0)).collect.foreach(println)

User3

case class Person(name: String, age: Integer)
val input = sc.textFile("hdfs://B.txt")
val people = input.map(_.split(",")).map(p => Persion(p(0),

p(1).trim.toInt))
val peopleDF = people.toDF()
peopleDF.registerTempTable("people")
val adults = sqlContext.sql("SELECT name FROM people WHERE

age >= 25")
val result = adults.map(t => "Name: " +

t(0)).collect.foreach(println)

Now we analyze the �ow of our engine in both client and server sides:

Client Side

• Input: User applications (jar �les)

• Output: the information belonged to SparkSQL: JarFile, DAGs, DataFrame creation

information and SQL queries are sent to SparkSQL Server. In this examples, we

have DAG1, DAG2, DAG3.

Server Side
DAG Listener and DAG Queue

• Input: DAGs and queries from clients

• Output: Array of DAGContainers.

• In the example, let us assume the window size of DAG Queue is 3, so the output

will be an array of DAG1, DAG2, DAG3.

DAG Selector
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• Input: Array of DAGContainers

• Output: Array of DAGContainers based on scheduling strategies (FIFO at the mo-

ment).

• In this simple example, the input and the output is the same as we use FIFO strat-

egy.

WorkSharing Detector

• Input: Array of DAGContainers

• Output: Array of AnalysedBags

• In the example, we got two Bags:

– DAGBag1: (DAG1, DAG2) with the label: SCAN-SHARING.

– DAGBag2: DAG3 with the label: NO-SHARING.

Cost Model

• Input: a combination of DAGContainer which is grouped from MRShare Optimizer

• Output: cost belong to each group. In MRShare, it is a number which is computed

through the MRShare’s GS function.

• In the example, we use the MRShare Cost Model so it returns a score for each

combination. Let us assume the score of group DAG1, DAG2 is the best.

Optimizer

• Input: Array of AnalysedBags

• Output: Array of OptimizedBags after choosing the best score generated by the

Cost Model.

• In the example, we got OptimizedBag1: (DAG1, DAG2), OptimizedBag2: (DAG3)

Rewriter

• Input: Array of OptimizedBags

• Output: Array of RewrittenBags

• In the example, since MRShare uses the simultaneous pipeline technique to merge

jobs, we got RewrittenBag1: (DAG12), RewrittenBag2: (DAG3)

PostScheduler

• Input: Rewritten Bags of DAGs
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• In the example, we got 2 Bags of DAGs. Since the execution order does not a�ect

these jobs or in other way, they are independent on each other, so we just use FIFO

strategy to submit to the cluster.

The example is only for scan sharing and just to show the data �ow of SparkSQL

Server but the system is generalized and extensible so other sharing techniques can

be implemented into the system. In the next Section, we introduce another problem

of multi-query optimization with many di�erent techniques including ours that are im-

plemented in our SparkSQL Server and are compared to each other in and end-to-end

manner.

5.4 MultipleGroupByOptimization for SparkSQL

In this Section, we discuss the implementation of three di�erent techniques for Multiple

Group By query optimization: the Lattice-Partial Cube (LPC), the Bottom-Up Merge

(BUM) and our algorithm, the Top-Down Splitting (TDS) inside the SparkSQL Server

engine. By doing so, we are able to:

• Compare the bene�t of our algorithm for the multiple Group By query problem in

an end-to-end comparison to state of the art algorithms.

• Prove the extensibility and generality of SparkSQL Server that actually allows

users to easily incorporate a new multi-query optimization technique.

5.4.1 Cost Model for Spark Systems

We would like to implement our logical algorithm, Top-Down Splitting, using the Spark-

SQL Server engine to:

• Validate the bene�t of our algorithm for the multiple Group By query problem.

• Demonstrate the extensibility and generality of SparkSQL Server to incorporate a

new multi-query optimization technique

Thus, we present the cost model for the multiple Group By query problem in Spark as

follows:

• Let m be the number of worker nodes.

• Respectively, let Cr(x), Cw(x) be the cost function of reading and writing x data

locally: C∗(x) = ax+ b,

• Let Cs(x) = axlog2(x) + bx+ c be the cost of sorting x data locally



114 CHAPTER 5. MULTI-QUERY OPTIMIZATION ENGINE FOR SPARKSQL

• LetCt(x) = ax+b be the cost function of transferring x data through the network.

• Let Cmem(x) = ax+ b be the cost of residing x in memory.

• Let |u| be the cardinality of node u

• Let Mmax be the maximum amount of data can be resided in Spark’s memory.

Typically, for large-scale data intensive applications, Mmax << |T |, the input �le

size.

• Then we have the following cost model:

– cscan(u, v) =

{
Cw(|v|/m) : |v| > Mmax | v is mandatory,

Cmem(|v|/m) : otherwise

Here, a scan cost would occur only when the data is read into memory, thus

it incurs no reading cost. If v is a mandatory node, or its size exceeds the

memory limit, we have to write it to disks. Otherwise, we store v in memory

for future usage.

– csort(u, v) =


Cs(|u|/m) + Ct(|v| ∗m) : |u| ≤Mmax

Cr(|u|/m) + Cs(|u|/m)+

Ct(|v| ∗m) : (|u| > Mmax) | (u = T )

For node u > Mmax, we have to store u on local disks. For u = T , u is already

on local disks. So in both cases, it incurs a reading cost.

We note that, before SparkSQL Server is up and running, it runs a series of tests to ob-

tain all the cost functions Cr, Cw, Cs, Ct with their appropriate coe�cients using linear

regression. We note that in MapReduce-like systems, there is a feature called combiner
to locally aggregate data in the same worker node before sending them through the net-

work. So the size of data going through the network in the shu�e phase will be in the

order of node v, not node u.

5.4.2 Implementation of LPC

Below are the following steps that we used to implement LPC inside the SparkSQL Server

engine. We note that all these steps can be done even when the SparkSQLServer is up

and running.

• Class MGBDetectorRule extends the DetectionRule class and is registered to Work-
SharingDetector through the addDetector method. The detector, when plugged in

with this rule, is able to �nd and gather all Group By queries from the same input

data.
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• Class SparkScanSortGBCost extends the CostModel class and provides all three al-

gorithm the necessary cost functions to operate.

• Class MGBOptimizerLPC extends the Optimizer class and overrides the execute
method. The implementation of the execute method is the logic of the LPC algo-

rithm. At any step, the LPC algorithm can call SparkScanSortGBCost’s method to

evaluate its plan.

• Class MGBRewriteRule extends the RewriteRule class and is registered to Rewrite-
Executor through the addRewriteRule method. This rule is essentially states that

for any node u that at least 2 out-edges, please cache u before processing its edges.

• Class MGBScheduler extends the PostSchedulingStrategy class and is registered to

PostSchedulers through addScheduler method. This class instructs the execution of

the solution tree in a depth-�rst order to minimize memory footprint.

5.4.3 Implementation of BUM and TDS

The implementation of BUM and TDS techniques are very similar to LPC. Typically, dif-

ferent algorithms to solve the same problem can share the detector rule, the cost model,

the rewrite rule and the scheduler. In fact, both BUM and TDS implementations reuse

MGBDetectorRule, SparkScanSortGBCost, MGBRewriteRule and MGBScheduler. They

need to replace only MGBOptimizerLPC with an implementation of their own optimiza-

tion logic. The two classes we implemented are: MGBOptimizerBUM and MGBOptimiz-

erTDS for BUM and TDS techniques respectively.

5.5 Experimental Evaluation

We now proceed with an experimental evaluation of three di�erent logical optimization

algorithms for the multiple Group By query problem. We �rst implement our multi-

query optimization engine, SparkSQL Server. using Spark version 1.6. We then imple-

ment these algorithms using the framework provided by our engine. Our experiments

are run on a cluster of 16 nodes, with the HDFS block size set to 256MB.

5.5.1 End-to-End Comparison of Logical Optimization Algo-
rithms

The dataset we use in this experiment is the lineitem table from the industrial benchmark

TPC-H [23]. It contains 100 million records with 16 attributes. Our query consists of
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Figure 5.3: The optimization latency and query execution time.

all two-attribute Group Bys from lineitem. In our cost model, we use the exact cardinali-

ties obtained from a pre-processing step. For each algorithm, we report, in Figure 5.3, its

optimization latency as well as its query runtime. In this �gure, we have also the Scan-

Sharing algorithm which is the default implementation of SparkSQL. This algorithm is

similar to the Vanilla algorithm described in Section 4.1.4.2. It turns out to be the slowest

algorithm, even slower than the Naïve algorithm because it produces so much interme-

diate data and slowdown considerably the sorting and shu�e phase.

PPPPPPPPP

Algorithm

BUM TDS LPC SS Naïve

Optimization Latency (min) 1.2 0 0.15 0 0

Query Runtime (min) 17.8 14.1 16.9 33.4 29.3

Total Runtime (min) 19 14.1 18.4 33.4 29.3

Improvement (%) 35.15 51.88 37.2 -13.99 0

Table 5.1: The optimization latency and query runtime.

Detail numbers found in Table 5.1 (with SS being ScanSharing) con�rm that, in large-

scale systems, multiple Group By query optimization techniques actually reduce the

query runtime over a naïve solution. Again, our algorithm has almost zero optimiza-

tion latency. Its query runtime is also the lowest among all. This further validates the

evaluation that we make in Section 3.5.
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Figure 5.4: Predicted cost vs. actual execution time on our Spark cost model.

5.5.2 The Quality of our Spark Cost Model

The query runtime of the optimized execution plan produced by the logical optimization

algorithms depends greatly on the quality of our Spark cost model: they rely heavily on

our cost model to guide their optimizing strategy. Ideally, an execution plan of lower

total cost should run faster than the one with higher total cost. However, if the quality

of our cost model is bad, it may happen that even that our algorithm returns the best

execution plan (i.e. the lowest total cost), its query runtime is not actually the small-

est.

"Essentially, all models are wrong, but some are useful" - George E. P. Box. In this exper-

iment, we would like to evaluate the quality of our cost model by generating random

execution plans, computing their cost, and then executing them to obtain their query

runtime. We plot these plan costs and query runtimes in Figure 5.4. The black line is a

linear regression model we built from the plots. It represents an idea of the ideal cost

model: any more expensive computation should have higher cost (monotonicity prop-

erty). As one can see, our model is not "correct": there are some higher execution costs

with smaller execution times. Still, in general, our cost model pattern still follows the

black line, and the di�erences are within 19%. When compared our cost model to many

databases [15], we believe our cost model is performing acceptably well.

5.5.3 Sensitivity Analysis with Cardinality Estimation Error

Our Spark cost model for multiple data aggregation queries depends heavily on the car-

dinality estimation of grouping nodes. The topic of cardinality estimation is huge, and



118 CHAPTER 5. MULTI-QUERY OPTIMIZATION ENGINE FOR SPARKSQL

[0, 0.3) [0.3, 0.9) [0.9, 1.1) [1.1, 10) [10, 100)
0

10

20

30

40

50

60

70

80

90

100

Cardinality Error Range

E
x
e
c
u
ti
o
n
 S

lo
w

 D
o
w

n
 (

%
)

 

 

TDS

BUM

LPC

Figure 5.5: The query execution slow down in the presence of cardinality estimation

errors.

there has been great e�ort to improve its correctness and fastness. However, in practice,

it is not guaranteed that we can acquire the exact cardinalities all the times. Therefore,

in this experiment, we would like to evaluate the sensitivity of these logical optimiza-

tion algorithms: we would like to see how they behave under the presence of cardinality

estimation error.

Using the exact cardinalities of the lineitem table obtained from a pre-processing step,

we modify these cardinalities by some random factor and calculate their error by the

following formula:

error(u) =

∣∣∣∣new_u− old_u

old_u

∣∣∣∣
Figure 5.5 shows the job execution slow down in the presence of di�erent estimation

error. The x axis shows the range of estimation error in form of [u, v), which means

that the estimation error of all nodes falls in this range. We see that all algorithms are

a�ected by these errors. LPC seems be the most sensitive to such errors by as much as

90.3%. BUM is less a�ected and �nally, our algorithm TDS is the least a�ected. We

believe that the reason is because when forming an additional node, LPC only considers

this node in isolation. Then if the cardinality of this node is estimated greatly o�, LPC

su�ers extensively. On the other hand, BUM merges two nodes and TDS splits multiple

nodes at a time, making the e�ect of a single wrong estimation less in�uent. The mantra

here is that, if two or more cardinalities are o�, their correlation to each other may still

be right.
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5.6 Summary

Multi-query optimization is crucial to provide the maximum performance boost to query

processing. There are various types of multi-query optimization, but all should be en-

compassed in a uni�ed multi-query optimization engine. Such an engine is also the last

stepping stone to bridge the gap between traditional databases and modern large-scale

systems. This prompts us to design a general and �exible multi-query optimization en-

gine for Apache Spark and SparkSQL.

In this Chapter, we present in details our multi-query engine design that can incorpo-

rate di�erent kinds of multi-query optimization. Our engine achieves great �exibility

and generality: it can be used as a framework upon which users easily implement their

own optimization techniques. We demonstrate these points by implementing several

algorithms for the multiple Group By query optimization problem. In addition, scan

sharing optimization is also reported in our group work [5]. We then proceed to use our

engine to further validate the e�ectiveness and sensitivity of our algorithm (presented

in Chapter 3).

We conclude this Chapter by noting that the idea behind our engine can be comfortably

applied to other MapReduce-like systems. We hope that many users will �nd this engine

useful and implement their own techniques to utilize them in production. For researcher

on multi-query optimization, our engine should facilitate the design, implementation

and evaluation of their work.

Relevant Publications

• This work is currently in preparation to submit to the IEEE Transactions on

Knowledge and Data Engineering.





Chapter 6

Conclusion

This dissertation focused on optimizing one of the most predominant operations in data

processing: data aggregation for large-scale data-intensive applications. The topic of

data aggregation is not new to the database community and there are plenty of works

in this domain. Nevertheless, in the context of the current big-data era and large-scale

systems like Apache Hadoop or Apache Spark, we have found that current state of the

art works are inadequate. They all face the same problem: they run ine�ciently and

cannot scale to the size that modern data processing tasks require, dealing with data of

thousands of attributes and executing thousands of queries.

This dissertation showed that such a problem can only be completely conquered by a

thorough combination of optimization algorithm and techniques. While the disserta-

tion provided various contributions in many domains, our main contributions were the

logical and physical optimization algorithms and techniques. These optimizations are

so intimately related that without one or the other, the data aggregation optimization

problem would not be wholly solved. Furthermore, they were integrated as essential

components in our multi-query optimization engine that is totally transparent to users.

The engine, the logical and the physical optimizations make our works a complete pack-

age that was runnable and ready to answer data aggregation queries from users. To

the best of our knowledge, this dissertation is the �rst work to provide comprehensive,

e�cient and scalable data aggregation for large-scale data-intensive applications using

MapReduce-like systems.

Our algorithms and techniques were assessed using both theoretical and experimental

approaches. Our theoretical analyses were able to attain the performance and com-

plexity bounds on the worst case and best case scenario, giving our algorithms strong

properties on their e�ciency. Our experiments were conducted in a real cluster with

both synthetic and real-life datasets to further evaluate and enhance our works. Last but
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not least, all our works are also available as open source softwares, so that users or other

researchers can utilize them for many other purposes.

To conclude, we believe that our works in this dissertation have solved the thesis state-

ment elegantly by a complete solution for e�cient and scalable aggregation for large-

scale systems from both system and algorithm aspects.

6.1 Future Work

In this Section, using our works as starting points, we present some of the most promis-

ing ideas:

Trade-o� between multi-query performance and query latency

Multi-query optimization is bene�cial when there is redundant work among di�erent

queries. The more redundant work queries have, the more performance multi-query

optimizations gain. And the more queries we receive in our engine, the more chances

of redundant work. This is an incentive for our multi-query optimization engine to wait

for as many jobs as possible before performing various optimizations. However, from a

user’s perspective, this waiting may cause the query to be returned to him/her much later

than he/she requires. On the other hand, if our engine executes his/her query right away,

it might miss the the chances to �nd redundant work and drastically improve the query

performance. In our engine, this balance is controlled through the DAG queue size ω.

Finding the right balance among the queue size, the query latency and the performance

gain is a profound but very promising task.

Sharing partially common input

In this dissertation, the condition for multi-query optimizations to happen is when

queries access the same common input. This is a correct condition, and has been used

in many other works. However, let us consider an extended condition that queries may

access the partially common input. For instance, two Group By queries read the same

input table, but �lter on overlapping predicates (e.g. age < 40 and age > 20). In this

case, multi-query optimizations may also spot redundant work, thus reduce the total

runtimes. A major future work, which is already going on, is to extend our data ag-

gregation algorithms to consider this case. Moreover, we are developing a more general

work sharing technique for multiple queries in Apache Spark that uses its caching mech-

anism as a primitive.

Uni�ed cost model across di�erent multi-query optimization techniques A

query may be subjected to many di�erent types of multi-query optimizations, which

leads to an optimization con�ict. For example, a Group By query may be optimized

using multiple Group By optimization, or scan sharing optimization. The question is:
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which optimization applies better to this query. Our engine resolves this con�ict using a

rule-based approach: when we register the optimization technique, we have to assign a

priority level to it as well. If there is a con�ict, we choose the highest priority technique.

However, sometimes it turns out to be an incorrect decision. A cost-based approach

to solve the con�ict can be achieved if we have a uni�ed cost model for di�erent tech-

niques. There are some precedents in traditional databases [15], but currently none for

large-scale MapReduce-like systems.
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Abstract

Bases de données traditionnelles sont confrontés aux problèmes

de scalabilité et d’e�cacité avec grandes données. Ainsi, les sys-

tèmes de gestion de données modernes qui sont des milliers de

machines, comme Apache Hadoop et Spark, ont émergé et sont

devenus les principaux outils pour traiter grandes données à

grande échelle. Dans ces systèmes, nombreuses d’optimisations

de traitement des données qui ont été bien étudiés dans les bases

de données sont devenues inutiles en raison des nouvelles archi-

tectures et modèles de programmation. Dans ce contexte, cette

thèse engagés d’optimiser l’une des opérations les plus prédom-

inants dans le traitement des données: l’agrégation de données

pour ces systèmes à grande échelle.

Nos principales contributions étaient les optimisations logiques

et physiques pour l’agrégation de données à grande échelle. Ces

optimisations sont proches connectés: sans un ou l’autre, le

problème d’optimisation d’agrégation de données ne serait pas

résolu entièrement. Par ailleurs, nous avons intégré les opti-

misations dans le moteur d’optimisation multi-requête, ce qui

est transparentes pour les usagers. Le moteur, les optimisations

logiques et physiques proposées dans cette thèse a formé un

package complet qui est exécutable et prêt à répondre aux re-

quêtes d’agrégation des données à grande échelle.

Nous avons évalué nos optimisations théoriquement et expéri-

mentalement. Les analyses théoriques ont démontré que nos



algorithmes et techniques sont beaucoup plus évolutive et ef-

�cace que les œuvres antérieures. Les résultats expérimentaux

avec un réelle cluster avec des données synthétiques et réelles

ont con�rmé nos analyses, ont démontré une amélioration sig-

ni�cative et ont révélé diverses angles au sujet de nos travaux.

En �n, nos œuvres sont publiées comme logiciels libres pour les

usages publics.



A.1 Introduction

Les données sont l’atout le plus important pour une entreprise,

car ils contiennent des informations précieux. Dans les grandes

organisations, les utilisateurs partagent la même plate-forme

de gestion de données pour gérer et traiter leurs données, que

ce soit une base de données relationnelle, un entrepôt de don-

nées traditionnel ou d’un système de grands données moderne.

Quelle que soit la technologie sous-jacente, les utilisateurs ou

les applications d’analyse de données aimeraient traiter leurs

données aussi vite que possible, de sorte qu’ils puissent obtenir

rapidement des résultats et prendre des décisions critiques. En-

core plus important, l’ère actuelle des grandes données, dans

lequel des données a considérablement augmenté en termes de

volume et de valeur, a vu des tailles des données de pétaoctets

ou même zetaoctets devenir la norme. L’énorme quantité de

données met une pression immense sur les systèmes de gestion

des données pour traiter e�cacement des données de la grande

échelle.

Pour répondre à cette demande di�cile mais réaliste, les deux

critères suivantes doivent être remplies pour permettre traiter

e�cacement des données à grande échelle:

• Un système de gestion de données qui est capable de pas-

sage d’échelle d’un grand cluster (des centaines, des mil-

liers ou plusieurs machines).



• Algorithmes évolutifs et e�caces et des techniques

d’optimisation qui sont capables de fonctionner en paral-

lèle sur tous les nœuds du cluster.

Heureusement, le critère premièr a plusieurs réponses

adéquates. Actuellement, les systèmes de gestion de don-

nées à grande échelle modernes tels que Apache Hadoop [1]

ou Spark Apache [2] ont prouvé qu’ils sont capables d’évoluer

vers des grappes de mille nœuds [5]. Les entreprises utilisent

déjà ces systèmes, ou similaires, pour alimenter leur traitement

quotidien des données comme pour calculer tra�c web, de vi-

sualiser les modèles d’utilisateur, etc.. Pour le deuxièm critère,

la réponse est de trouver des algorithmes évolutifs et e�caces

pour exploiter des puissances de calcul des les systèmes. Ceci

est une mission profonde que diverses tâches de traitement de

données requiert leurs propres algorithmes et des techniques

d’optimisation.

Dans cette thèse, nous nous concentrons de l’une des opéra-

tions les plus prédominants dans le traitement des données:

l’agrégation de données, ou parfois appelé récapitulation des

données. Les utilisateurs qui interagissent avec les grands-

données se sentent constamment les besoins du calcul des agré-

gats pour extraire des idées et obtenir la valeur de leurs données.

Bien sûr, les humains ne peuvent pas être attendus pour anal-

yser par téraoctets ou pétaoctets de données. En fait, en général,

les utilisateurs interagissent avec les données par des résumés

de données. Un résumé des données est obtenu en regroupant

des données sur diverses combinaisons de dimensions (par ex-



emple, par emplacement et/ou le temps), et en calculant les agré-

gats des données (par exemple, compter, somme, moyenne, etc.)

sur ces combinaisons. Ces résumés, ou des agrégats de don-

nées, sont ensuite utilisées comme données d’entrée pour tous

les types de besoins, telles que se joindre à d’autres données, la

visualisation des données sur les tableaux de bord, les a�aires

de prise intelligence décision, l’analyse des données, la détec-

tion d’anomalies, etc. Dans cette perspective, nous considérons

les données agrégation comme une tâche cruciale qui est e�ec-

tuée très fréquemment. La charge de travail et d’interrogation

des modèles de repères industriels pour les bases de données

justi�ent ce point. Par exemple, 20 sur 22 requêtes dans TPC-

H [23] et 80 sur 99 requêtes dans TPC-DS [22] sont des requêtes

d’agrégation de données. Cela donne une grande chance pour

l’optimisation de l’agrégation des données pour obtenir des per-

formances supérieures.

Cependant, des algorithmes et des techniques d’optimisation

disponibles pour l’agrégation des données sur les systèmes à

grande échelle modernes sont encore à leurs débuts: ils sont

ine�caces et ne pas évolutifs. En outre, en dépit de l’énorme

quantité de travail de la communauté de base de données à venir

avec e caces façons de calculer les agrégats de données, les ar-

chitectures parallèles et modèles de programmation distincts de

ces systèmes rendent ces travaux incompatibles. En d’autres

termes, le problème de l’agrégation e�cace des données des sys-

tèmes à grande échelle n’a pas les instruments pour répondre à

la deuxième critère mentionnée ci-dessus. Ceci est notre moti-



vation complète, et cette thèse est un e�ort pour pour se remplir

le dé�cit actuel.

Déclaration de la thèse: Nous proposons et réalisons des nou-
veaux algorithmes, des techniques d’optimisation et le moteur
d’optimisation qui, tous ensemble, fournissent l’agrégation de don-
nées évolutive et e�cace automatiquement dans les systèmes à
grande échelle pour les applications de données intensifs.

Dans le reste de ce chapitre, nous mettons en évidence nos prin-

cipales contributions et exposons ce plan de thèse.

A.1.1 Des Contributions et Plan de Thèse

La contribution centrale de cette thèse était une optimisation

automatique qui permet l’agrégation de données e�cace et évo-

lutive pour les applications gourmandes en données à grande

échelle. Ceci est réalisé par deux phases: l’optimisation logique

et l’optimisation physique. Toute l’optimisation a été contenu

dans un moteur d’optimisation, qui est un élément fondamen-

tal de tout système de gestion des données dont l’objet est

de trouver le plan de requêtes de la plus haute performance

d’exécution.

Les utilisateurs traitent leurs données en émettant des requêtes

en utilisant un langage spéci�que (par exemple Structured

Query Language - SQL) à la plate-forme de gestion des don-

nées. Après l’analyse et la validation des requêtes des utilisa-

teurs a�n d’assurer qu’ils sont syntaxiquement correct, le sys-

tème de gestion de données envoie ces requêtes à son moteur



d’optimisation. Ici, pour les requêtes d’agrégation de données,

notre moteur d’optimisation e�ectue d’abord l’optimisation

logique en utilisant un de nos algorithmes d’optimisation basés

sur les coûts. Puis, il procède à la phase d’optimisation physique,

dans lequel on introduit le module d’optimisation poids léger

basée sur les coûts. Ce module est capable de: i) sélectionner

le plus e�cace de nos familles de techniques physiques pour

se matérialiser des agrégats de données; ii) l’équilibrage de la

charge de travail entre les di�érents nœuds d’un cluster pour ac-

célérer les performances. Le résultat de la phase d’optimisation

physique est un plan d’exécution optimisé. En�n, la gestion des

données prend ce plan et l’exécute sur le cluster, en utilisant la

technique physique sélectionnée de la nôtre. Toutes ces étapes

sont e�ectuées automatiquement et sont totalement transpar-

entes pour les utilisateurs.

Le reste de la présente section est consacrée à un résumé de nos

contributions.

A.1.1.1 Optimisation Logique pour l’Agrégation des Données

Notre optimisation commence par la phase d’optimisation

logique. Dans cette phase, les données requêtes d’agrégation

sont logiquement modélisés à l’aide d’un graphe acyclique ori-

enté (DAG). Parce qu’un DAG est juste un représentant logique

du problème, nous pouvons en e�et réutiliser de nombreux algo-

rithmes d’optimisation disponibles logiques à partir du domaine

de base de données. Cependant, aucun des travaux antérieurs

peut évoluer ainsi à un grand nombre de requêtes, ce qui arrive



fréquemment (par exemple dans l’exploration de données ad-

hoc), et/ou un grand nombre d’attributs qui sont fréquemment

révélées dans des ensembles de données modernes.

Notre principale contribution est de proposer un nouvel al-

gorithme, Top-Down Splitting, qui échelles nettement mieux

que l’état des algorithmes d’art. Nous montrons, à la fois

théoriquement et expérimentalement, que notre algorithme en-

court en très petite l’optimisation des frais généraux, par rap-

port à d’autres algorithmes, lors de la production des solutions

optimisées. Cela signi�e que, dans la pratique, l’algorithme peut

être appliquée à l’échelle que les tâches modernes de traite-

ment des données nécessaires, traiter les données de centaines

ou de milliers d’attributs et l’exécution de plusieurs des mil-

liers de requêtes. Plus encore, cela vient sans aucun sacri�ce:

en général, notre algorithme est capable de trouver comparable,

sinon mieux, que d’autres solutions comme illustré dans notre

évaluation expérimentale.

A.1.1.2 Optimisation Physique pour l’Agrégation des Données

La phase d’optimisation physique est en charge de prendre la so-

lution à partir de l’optimisation logique et de décider quelle est

la meilleure façon pour la gestion des données système pour le

réaliser. La production de cette phase est la stratégie d’exécution

dé�nitive qui est plus tard exécuté physiquement sur le clus-

ter. Ainsi, l’optimisation physique dépend fortement du modèle

d’architecture et de programmation sous-jacente. Pour le cal-

cul des agrégats de données sur un cluster à grande échelle (par



exemple un cluster Hadoop ou Spark), l’optimisation physique

se compose de: i) choisir l’algorithme le plus e�cace avec les

paramètres appropriés; ii) d’équilibrage de la charge de travail

entre les di�érents nœuds d’un cluster pour accélérer les per-

formances.

Notre première contribution principale dans cette phase est

que nous explorons systématiquement l’espace de conception

d’algorithmes pour calculer physiquement agrégats à travers les

lentilles d’un modèle de compromis général [49]. Nous utilisons

le modèle pour calculer les limites supérieures et inférieures du

degré parallèle et le coût de la communication qui sont intrin-

sèquement présents dans ces grappes à grande échelle. En con-

séquence, nous concevons et réalisons de nouveaux algorithmes

d’agrégation de données qui correspondent à ces limites et le

glissement de l’espace de conception, nous avons pu dé�nir. Ces

algorithmes se révèlent être remarquablement plus rapide que

les œuvres antérieures lorsqu’il est correctement réglé.

Notre deuxième contribution principale est que, nous con-

cevons et réalisons un poids léger, le module d’optimisation

basée sur les coûts, ce qui est le cœur de l’optimisation physique.

Le module recueille des statistiques de données et les utilise

pour choisir correctement l’algorithme et les paramètres les plus

e�caces. Ce processus de sélection se fait d’une manière fondée

sur les coûts: le module prédit le runtime indicatif de chaque al-

gorithme et les paramètres, puis choisit le meilleur. Last but

not least, il e�ectue également l’équilibrage de charge entre les

nœuds du cluster pour accélérer encore la performance.



A.1.1.3 Moteur d’Optimisation de Multi-Requêtes

Aucun des optimisations ci-dessus pourrait fonctionner sans un

moteur d’optimisation. Le but de ce moteur est de rassem-

bler et d’orchestrer plusieurs types d’optimisation des re-

quêtes utilisant une requête et de données uni�ées représen-

tations. Chaque système de gestion des données a leur moteur

d’optimisation propre. Il existe deux types d’optimisation de la

requête: une seule requête et multi-requête. L’optimisation sim-

ple requête traite chaque requête séparément et indépendam-

ment, tandis que le multi-requête optimise plusieurs requêtes

ensemble. Les deux types d’optimisation sont importants, et

manque un d’entre eux aurait des résultats dans une perfor-

mance optimale. En fait, le problème de l’optimisation des agré-

gations de données comprend à la fois une seule requête et op-

timisations multi-requêtes.

Nos algorithmes d’optimisation peuvent être mises en œuvre

à l’intérieur du moteur d’optimisation des systèmes à grande

échelle actuels comme Hadoop et Spark. Cependant, ces sys-

tèmes o�rent actuellement seuls les moteurs d’optimisation

simple requête. Ainsi, notre principale contribution ici est de

combler l’écart par la conception et la mise en œuvre d’un mo-

teur d’optimisation multi-requête pour de tels systèmes. Notre

conception est �exible et générale qu’il est réellement facile

à mettre en œuvre de nombreux types d’optimisation multi-

requêtes, y compris la nôtre.



A.1.1.4 Plan de Dissertation

Cette thèse est organisé comme suit. Chapitre 2 présente la fond

fondamentale nécessaire pour apprécier pleinement le contexte

de cette thèse.

Chapitre 3 est dédié à présenter notre algorithme d’optimisation

logique. Nous introduisons notre dé�nition formelle du prob-

lème, ainsi que discuter de manière approfondie thestate des

algorithmes d’art et leurs limites. Ensuite, nous décrivons en

détail notre algorithme et de donner une analyse théorique sur

le meilleur des cas et les pires scénarios. Une évaluation expéri-

mentale est menée pour évaluer l’e�cacité de l’algorithme par

rapport à d’autres travaux.

Chapitre 4 présente nos contributions dans l’optimisation

physique pour l’agrégation des données. La première partie de

ce chapitre décrit le modèle mathématique que nous utilisons

pour calculer les limites des algorithmes d’agrégation de don-

nées et de tirer son espace de conception pour correspondre à

ces limites. Cette partie se termine par une évaluation expéri-

mentale pour démontrer la compétence de nos algorithmes. La

deuxième produ de cette Chapitre est alloué pour le cœur de

l’optimisation physique: la conception et la mise en œuvre du

module d’optimisation basée sur les coûts. Grâce à nos algo-

rithmes d’agrégation de données, nous montrons sur des en-

sembles de données synthétiques et réelles que notre design est

très léger et a une faible latence d’optimisation.



Chapitre 5 décrit la conception et la mise en œuvre de

notre moteur d’optimisation multi-requête. Nous montrons

aussi comment mettre en œuvre l’optimisation de l’agrégation

des données dans notre moteur, y compris nos techniques

ainsi que d’autres œuvres. Les expériences montrent non

seulement la �exibilité et de la généralité de notre moteur,

mais aussi l’évaluation de bout en bout de di�érents algo-

rithmes d’optimisation logique pour valider notre travail au

chapitre 3.

Le dernier chapitre, le chapitre 6 de cette thèse résume les prin-

cipaux résultats que nous avons obtenus. Dans la dernière par-

tie de ce chapitre, nous fournissons un ensemble d’orientations

futures possibles et discutons notre idée intuitive.



A.2 Optimisation Logique pour l’Agrégation
des Données

L’agrégation des données est une tâche cruciale pour compren-

dre et interagir avec les données. Cette situation est aggravée

par la plus grande quantité de données qui sont collectées de

nos jours. Ces données sont souvent multi-dimensionnelle, car-

actérisé par un très grand nombre d’attributs. Cela appelle à la

conception de nouveaux algorithmes pour optimiser l’exécution

de requêtes d’agrégation de données.

Dans ce chapitre, nous avons présenté notre méthode pour ré-

soudre le problème général de l’optimisation de Groupe mul-

tiple par requêtes, comblant ainsi le vide laissé par les propo-

sitions actuelles qui ne peuvent pas l’échelle du nombre de

requêtes simultanées ou le nombre d’attributs de chaque re-

quête peut gérer. Nous avons montré, théoriquement et expéri-

mentalement, que notre algorithme encourt en très petites la-

tences, par rapport à d’autres algorithmes, lors de la produc-

tion optimisée des plans de requête. Cela signi�e que, dans la

pratique, notre algorithme peut être appliqué à l’échelle que

les tâches de traitement de données modernes exigent, traiter

les données de centaines d’attributs et d’exécuter des milliers

de requêtes. En outre, notre évaluation expérimentale illustre

l’e�cacité de notre algorithme pour trouver des arbres de so-

lutions optimisées. En fait, dans de nombreux cas, notre algo-

rithme a surperformé les autres en termes de production des so-

lutions optimisées, tout en étant remarquablement rapide. En-

�n, nous avons discuté à propos de l’intuition derrière notre al-



gorithme et les approches possibles pour l’étendre à la poignée

générale, les requêtes hétérogènes en termes de diversité des

fonctions d’agrégation. Une version de ce chapitre est publié à

International Conference on Data Engineering 2016 [30].

Nous concluons ce chapitre en notant que notre algorithme

peut être facilement intégré aux moteurs d’optimisation actuels

de bases de données relationnelles, aux entrepôts de don-

nées traditionnels ou à des systèmes big-données modernes

comme Apache Hadoop [1], Spark Apache [2]. Au lieu de

cela, en utilisant notre algorithme pour optimiser l’exécution

des requêtes sur des systèmes récents comme Hadoop, Spark

et leur haut niveau respectif, interfaces déclaratives, nécessite

le développement d’un modèle de coût approprié ainsi qu’un

moteur d’optimisation pour transformer les plans de requête

d’origine dans les optimisés. Nous couvrons ce chapitre 5.

Dans le chapitre suivant, chapitre 4, nous continuons le �ux de

notre optimisation des requêtes et passer à la phase suivante:

l’optimisation physique.



A.3 Optimisation Physique pour l’Agrégation
des Données

Dans cette section, nous avons étudié le problème de

l’optimisation logique de calcul des agrégats de Rollup dans

MapReduce. Ce problème nécessite:

1. Algorithme(s) e�cace pour MapReduce Rollup.

2. Un opérateur Rollup physique qui est exécutable en util-

isant MapReduce.

Pour concevoir des algorithmes e�caces, du point de vue

théorique, nous avons proposé une approche de modélisation

pour démêler l’espace de conception disponibles du problème

MapReduce Rollup (section 4.1). Nous nous concentrons sur le

compromis qui existe entre les coûts de parallélisme et de com-

munication réalisables qui caractérisent le modèle de program-

mation MapReduce. Cela a été utile pour identi�er les limites

des implémentations Rollup actuelles, qui ne couvrent qu’une

petite partie de l’espace de conception car ils se concentrent

uniquement sur le parallélisme. Nous avons présenté un algo-

rithme pour répondre aux limites inférieures des coûts de com-

munication que nous avons tirés de notre modèle, et montré

que la réplication minimum peut être réalisé au détriment du

parallélisme. En outre, nous avons présenté plusieurs variantes

d’algorithmes de mise en œuvre Rollup qui partagent un trait

commun: un seul paramètre (le pivot) permet de régler le com-

promis entre de parallélisme et communication.



Notre expérimentale évalue plusieurs algorithmes de Rollup (y

compris la nôtre et de l’état de ceux de l’art) en utilisant Hadoop

MapReduce. L’approche expérimentale a révélé l’importance

des optimisations actuellement disponibles dans des systèmes

tels que Hadoop, qui ne pouvait pas être pris en compte avec

une approche de modélisation seul. Nos expériences montrent

que l’e�cacité des nouveaux algorithmes, que nous concevons,

est supérieure à ce qui est disponible dans l’état actuel des al-

gorithmes d’art. Une version de ce travail théorique est publiée

dans BeyondMapReduce 2014 [28].

Avoir ces algorithmes e�caces conçus, nous passons à la sec-

tion 4.2 pour discuter de la façon d’employer nos algorithmes

dans la pratique. La principale contribution de la section 4.2

était la conception d’un, biaiser élastique opérateur Rollup e�-

cace pour MapReduce langages de haut niveau. Son composant

principal, le travail de mise au point, est un mécanisme léger

qui se matérialise dans un petit travail exécuté avant la requête

Rollup. Le travail de réglage e�ectue des données et les per-

formances d’échantillonnage pour atteindre, en même temps,

l’optimisation et l’équilibrage de charge basé sur les coûts d’une

gamme d’algorithmes de Rollup (y compris la nôtre et même état

de ceux de l’art).

Notre vaste validation expérimentale illustré la �exibilité de

notre approche, et a montré que - lorsque vous écoutez de

manière appropriée - nos algorithmes de Rollup surpassent con-

sidérablement celui utilisé dans les implémentations actuelles

de l’opérateur Rollup pour le système Apache Pig. En outre,



nous avons montré que le travail de réglage est léger et pré-

cis: l’optimisation basée sur les coûts détermine les meilleurs

réglages de paramètres avec de petits frais généraux, qui sont

principalement dictées par le plan d’échantillonnage des don-

nées. Notre travail est disponible en tant que projet open-

source
1

et publiée dans BigDataCongress 2015 [29]. Nous con-

cluons ce chapitre en notant que l’optimisation physique pour

MapReduce Rollup constitue comme un bloc de construction

pour fournir l’optimisation physique pour le problème général

d’optimisation de l’agrégation des données aussi bien.

Les deux derniers chapitres ont présenté le travail e�ectué

dans les deux phases de l’optimisation des requêtes: logique et

physique pour l’agrégation de données à grande échelle. Pour-

tant il y a une pièce manquante pour coller ces deux phases

ensemble: un moteur d’optimisation. Dans le chapitre suivant,

chapitre 5, nous vous présentons notre conception d’un moteur

d’optimisation multi-requête.

1
https://github.com/bigfootproject/AutoRollup



A.4 Moteur d’Optimisation de Multi-
Requêtes

Optimisation des multi-requête est cruciale pour fournir le gain

de performance maximale pour interroger le traitement. Il ex-

iste di�érents types d’optimisation multi-requêtes, mais tous

devraient être englobées dans un moteur d’optimisation multi-

requête uni�ée. Un tel moteur est aussi le dernier tremplin pour

combler le fossé entre les bases de données traditionnelles et les

systèmes à grande échelle modernes. Cela nous invite à con-

cevoir un moteur d’optimisation multi-requête générale et �ex-

ible pour Apache Spark et SparkSQL.

Dans ce chapitre, nous présentons en détail notre conception

du moteur multi-requête qui peut incorporer di�érents types

d’optimisation multi-requête. Notre moteur atteint une grande

�exibilité et de généralité: il peut être utilisé comme un cadre

sur lequel les utilisateurs facilement mettre en œuvre leurs pro-

pres techniques d’optimisation. Nous démontrons ces points en

mettant en œuvre plusieurs algorithmes pour le Groupe mul-

tiple par problème de l’optimisation des requêtes. En outre,

l’optimisation de partage de balayage est également signalé dans

notre travail de groupe [5]. Nous procédons ensuite à utiliser

notre moteur pour valider davantage l’e�cacité et de la sensi-

bilité de notre algorithme (présenté dans le chapitre 3).

Nous concluons ce chapitre en notant que l’idée derrière notre

moteur peut être confortablement appliquée à d’autres systèmes

de MapReduce-like. Nous espérons que de nombreux utilisa-



teurs trouveront ce moteur utile et mettre en œuvre leurs pro-

pres techniques pour les utiliser dans la production. Pour le

chercheur sur l’optimisation multi-requête, notre moteur de-

vrait faciliter la conception, la mise en œuvre et l’évaluation de

leur travail.



A.5 Conclusion

Cette thèse a concentré sur l’optimisation de l’une des opéra-

tions les plus prédominants dans le traitement des données:

l’agrégation de données pour les applications de données in-

tensives à grande échelle. Le sujet de l’agrégation des données

ne sont pas nouveaux pour la communauté de base de données

et il y a beaucoup de travaux dans ce domaine. Néanmoins,

dans le contexte des systèmes de l’époque big-données et de

grande envergure en cours comme Apache Hadoop ou Apache

Spark, nous avons constaté que l’état actuel des travaux d’art

sont insu�santes. Ils sont tous confrontés au même problème:

ils courent ine�cacement et ne peuvent pas l’échelle à la taille

que les tâches modernes de traitement des données nécessaires,

traiter les données de milliers d’attributs et d’exécution des mil-

liers de requêtes.

Cette thèse a montré qu’un tel problème ne peut être complète-

ment conquis par une combinaison complète de l’algorithme

et des techniques d’optimisation. Alors que la thèse a fourni

diverses contributions dans de nombreux domaines, nos prin-

cipales contributions ont été les algorithmes et les tech-

niques d’optimisation logiques et physiques. Ces optimisa-

tions sont si intimement liés que sans un ou l’autre, le prob-

lème d’optimisation d’agrégation de données ne serait pas en-

tièrement résolu. En outre, ils ont été intégrés en tant que

composants essentiels dans notre moteur d’optimisation multi-

requête qui est totalement transparent pour les utilisateurs. Le

moteur, le logique et les optimisations physiques font nos œu-



vres un paquet complet qui était runnable et prêt à répon-

dre aux questions d’agrégation des données des utilisateurs.

Au meilleur de notre connaissance, cette thèse est la première

œuvre pour fournir une agrégation complète, e�cace et évo-

lutive des données pour les applications de données inten-

sives à grande échelle en utilisant des systèmes comme MapRe-

duce.

Nos algorithmes et techniques ont été évaluées en utilisant

des approches théoriques et expérimentales. Nos analyses

théoriques ont été en mesure d’atteindre les performances et

la complexité des bornes sur le pire des cas et le meilleur des

cas, en donnant à nos algorithmes de fortes propriétés sur leur

e�cacité. Nos expériences ont été menées dans un véritable

cluster avec les deux ensembles de données synthétiques et

réelles pour évaluer et renforcer davantage nos œuvres. Last but

not least, tous nos travaux sont également disponibles comme

des logiciels open source, a�n que les utilisateurs ou d’autres

chercheurs peuvent les utiliser à d’autres �ns.

Pour conclure, nous croyons que nos travaux dans cette thèse

ont résolu le rapport de thèse avec élégance par une solu-

tion complète pour l’agrégation e�cace et évolutive pour les

systèmes à grande échelle des deux aspects du système et de

l’algorithme.



A.5.1 Travaux Futurs

Dans cette section, en utilisant nos œuvres comme points de dé-

part, nous présentons quelques-unes des idées les plus promet-

teuses:

Compromis entre Performance Multi-requêtes et la La-
tence des Requêtes

Optimisation des multi-requête est béné�que quand il y a travail

redondant entre les di�érentes requêtes. Les requêtes de tra-

vail plus redondants ont, plus la performance des optimisations

multi-requêtes peuvent gagner. Et plus les requêtes que nous

recevons dans notre moteur, plus les chances de travail redon-

dant. Ceci est une incitation pour notre moteur d’optimisation

multi-requête d’attendre autant d’emplois que possible avant

d’e�ectuer diverses optimisations. Cependant, du point de vue

d’un utilisateur, cette attente peut provoquer la requête à re-

tourner à lui/elle beaucoup plus tard que il / elle a besoin.

D’autre part, si notre moteur exécute son/sa requête tout de

suite, il pourrait manquer les chances de trouver un travail re-

dondant et d’améliorer considérablement les performances des

requêtes. Dans notre moteur, cet équilibre est contrôlé par la �le

d’attente de DAG taille ω. Trouver le bon équilibre entre la taille

de la �le d’attente, le temps de latence de la requête et le gain de

performance est une tâche profonde mais très prometteur.

Partage d’entrée partiellement commune

Dans cette thèse, la condition d’optimisation multi-requêtes se

produire est lorsque les requêtes accèdent à la même entrée



commune. Ceci est une condition correcte et a été utilisé dans de

nombreux autres ouvrages. Cependant, considérons une condi-

tion étendue que les requêtes peuvent accéder à l’entrée par-

tiellement commune. Par exemple, deux Group By requêtes

lire la même table d’entrée, mais le �ltre sur le chevauchement

des prédicats ( par exemple age < 40 et age > 20). Dans ce

cas, les optimisations multi-requêtes peuvent également repérer

les tâches redondantes, réduire ainsi le total des runtimes. Un

travail futur majeur, qui est déjà en cours, est d’étendre nos

algorithmes d’agrégation de données à examiner ce cas. De

plus, nous développons une technique de partage du travail plus

général pour plusieurs requêtes dans Spark Apache qui utilise

son mécanisme de mise en cache comme une primitive.

Modèle de coût uni�é à travers di�érentes techniques
d’optimisation multi-requêtes

Une requête peut être soumise à de nombreux types

d’optimisations multi-requêtes, ce qui conduit à un con�it

d’optimisation. Par exemple, un Group By requête peut être

optimisée en utilisant plusiers de Group By optimisation, ou

scannez le partage de l’optimisation. La question est: qui

applique l’optimisation mieux à cette requête. Notre moteur

résout ce con�it en utilisant une approche basée sur des règles:

quand nous enregistrons la technique d’optimisation, nous de-

vons attribuer un niveau de priorité à lui aussi bien. S’il y a un

con�it, nous choisissons la technique de la plus haute priorité.

Cependant, parfois, il se révèle être une mauvaise décision.

Une approche basée sur les coûts pour résoudre le con�it peut



être atteint que si nous avons un modèle de coût uni�é pour

di�érentes techniques. Il y a des précédents dans les bases de

données traditionnelles [15], mais actuellement aucune pour

les systèmes à grande échelle comme MapReduce.
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