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Abstract—In this paper, we develop a flexible and accurate
analytical model of large networks with random base station
(BS) placement, in order to understand the impact of key
network parameters like BS density and load on the network
performance. The main goal is to understand the flow level
dynamics of such a system, assuming non-saturated users and
studying the congestion statistics for BSs and the per flow delay.
To achieve this, we base our analysis on two main tools: (a)
stochastic geometry, to understand the impact of topological
randomness and coverage maps and (b) queueing theory, to
model the competition between concurrent flows within the
same BS. Our model is then applied the populars Radio Access
Technologies (RATs), such as LTE and WIFi. Our results provide
some interesting qualitative and quantitative insights about the
performance of those networks.

Index Terms—Stochastic Geometry; Queueing; LTE; WiFi;
Performance Analysis; Flow-level;

I. INTRODUCTION

The trend of modern networks is to become denser, irregular
placed, and more heterogeneous, due to the often unplanned
and incremental deployment of new (small cell) BSs. As a
result, analyzing such networks, e.g., for protocol comparison
or network planning, becomes increasingly challenging. What
is more, the usually considered metrics in such analyses,
like SINR or capacity, often fail to capture the actual user
experience, because flow-level performance (delay, congestion
probability, e.t.c.) strongly depends on the network’s load and
not only the channel conditions [1], [2]. A better metric is
latency, which is one of the performance indicators of 5G
technologies [3], [4].

To this end, in this paper we present a flexible and accurate
model that analyses the performance of random placed net-
works, in order to understand the impact of important network
parameters (BS density, load) on the network’s performance.
Our model consists of randomly located Base Stations as
well as randomly placed users. Users are assumed to be
non-saturated, randomly generating requests for new file/flow
downloads of varying sizes, and they perceive performance in
terms of the average delay to finish such a download.

Our analysis is based on the combination of two key
theoretical tools that have recently provided many insights on
cellular network performance: (i) We use queueing theory to
model the performance of dynamic flow arrival and service
via the respective scheduler, at the level of a single BS; (ii)
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We utilize stochastic geometry, in order to understand the
impact of topological randomness and interaction/competition
between BSs at the network level, in order to derive statistics
about the number of users associated with a base station, and
the modulation and coding schemes (MCS) offered at each BS.
Both these quantities serve as key inputs to the BS queueing
model: the former to define the total traffic intensity (in terms
of flow arrivals) a given BS has to serve, and the latter to
define the average service rate (in terms of flow departures)
that a BS is able to offer.

There are a number of works that examine the performance
of a network using tools from stochastic geometry: [5] pro-
vides distribution of the coverage areas and [6] that derives the
distribution of the interference assuming that all neighboring
BS are saturated. Additionally, flow-level dynamics of cellular
networks have been studied in [2], [7]–[10], some of those
focus on spectral efficiency and BS instantaneous throughput,
while the rest assume simple cellular topologies (e.g., line
networks, or small hexagonal topologies). Compared to these
related works, to our best knowledge this is the first work
jointly considering the stochastic geometry of the network and
flow-level dynamics. Summarizing, our main contributions,
are:

I) We present a new analytical result deriving the probability
mass function (pmf) of users’ cardinality at an arbitrary BS, if
both, users and BSs distributed as homogeneous Poisson point
process (PPP);

II) We propose an analytical model that captures both
physical and MAC layers performance, providing statistics for
coverage maps and MCS distributions, as well as flow-level
performance as perceived by the user (flow delay) and the
network operator (congestion probability);

III) We derive a semi-analytical model that computes the
coverage probability of a random placed network, considering
the fact that neighboring BSs are not fully loaded (non-
saturated) and thus create dynamic interference proportional
to their load.

The rest of the paper is organized as follows. In Section II
we model performance at the BS level. In Section III, we are
modeling the PHY layer. In Section IV, we derive the users
cardinality distribution for our topology and we compute the
arrival rate. Section V presents the steps in order to specify the
service rate, which includes both pure analytical formulas and
technical details for each one of the chosen RAT. Section VI,
validates our theoretical model and analyses the networks of



interest. Section VII presents the future steps of our work.

II. PERFORMANCE AT THE BS LEVEL

We assume that each BS experiences a dynamic traffic load
and we would like to study the performance at flow-level. We
state here our assumptions regarding a single randomly chosen
BS, and comment where necessary.

A.1: Each connected user to a BS generates new flow
requests randomly, and independently of other users, according
to a Poisson Process with density λf .

A.2: A flow is a sequence of packets corresponding to the
same user or application request (e.g., a file or web page
download). Each flow has a random size, in terms of bits,
drawn from a generic distribution with mean value 〈s〉.

A.3: The number of users n associated with a BS is a
random variable with probability mass function (pmf) fN (n)
that depends on the density of the BSs, the density of users,
and the association criteria. This pmf will be derived in
Section IV.

The following Lemma follows easily, by using a simple
Poisson merging argument [11].

Lemma 2.1: If n users are associated with a given BS, the
aggregate flow arrival process to that BS is Poisson(nλf ).

Remark: While a Poisson arrival model is pretty standard
in related literature, note that if the number of users n at
a BS is relatively large, assumption (A.1) can be relaxed
to more general traffic arrivals, and we can then use the
Palm-Khintchine theorem [11] to support Lemma 2.1 as an
approximation.

A.4: In the absence of other flows, a single flow will be
served at full rate, with the maximum Modulation and Coding
Scheme (MCS) that the BS can offer to that UE, which
in turns depends on the SINR-BLER specifications for that
RAT. The rate of the arbitrary user could be assumed as a
random variable and the corresponding pmf, fR(r), is derived
in Section V.

We will assume a single MIMO layer and a single carrier in
our analysis [12]. Increased rates due to spatial multiplexing
and carrier aggregation can be easily included in the model
with a proper physical abstraction models.

A. Queueing Model for BS Schedulers

When more than one flows are served in parallel by a
BS, the BS operates as a queueing system. The service rate
for a flow is generally smaller than what assumption (A.4)
predicts. It depends on the number of active flows (BS load),
and the centralized scheduler (e.g., in the case of 3G/4G)
or distributed media access control (MAC) protocol (in the
case of WiFi) which decide how the available resources will
be distributed between flows. While a number of different
scheduling algorithms exist, we assume for simplicity only
the resource-fair one.

Resource Fair Scheduler: Assume all flows are allocated
the same amount of resources by the BS, and are served
simultaneously, e.g., in a round-robin, TDMA-like manner. If
the service time slot is small (e.g., of packet size) compared

to the total size of a flow, the flow level performance at that
BS can be approximated by a multi-class M/G/1 Processor
Sharing (PS) system. This model has already been used to
analyzed 3G/3G+ BS performance [2], [9].

LTE schedulers are significantly more complex, allocating
competing flows both time and frequency resources (Resource
Blocks), possibly taking into account the queue backlog of
each flow and flow priority, and also attempting to take advan-
tage of instantaneous SINR variations in time and frequency to
achieve further multi-user diversity [12]. While a large number
of algorithms have been proposed [13], in the lack flow
priority, most implemented schedulers lead to a proportionally
fair throughput allocation between flows [12].

The following is a direct application of the multi-class
M/G/1/PS result [14].

Lemma 2.2: For a BS with n users generating flows of
mean size 〈s〉, with instantaneous transmission rates drawn
from distribution fR(r), and allocated resources by a resource
fair scheduler, the effective service rate of the cell is

〈µ〉 =

(∑
r

fR(r) · 〈s〉
r

)−1

flows/sec, (1)

and the mean flow delay is given by

Delay =
1

〈µ〉 − nλf
, (2)

we define the BS’s load as ρ = input job rate
service job rate =

nλf
〈µ〉 when the

system is stable ρ < 1 .
Performance gains from opportunistic scheduling can be

included in the above equation as a multiplicative factor in
front of 〈µ〉.

Another often studied scheduler (and good approximation
for the 802.11 [15]) is the throughput fair, which equalizes
the per flow throughput for all nodes. We ignore it here and
we assume that 802.11 performs as resource fair scheduler
(which asymptotically the best case, as the load goes to zero),
for the following reasons: i) assuming 802.11n characteristics
the difference between those two schedulers is negligible, for
small average flow size (≈ 1 Mb) and utilization less than
70%, [16], ii) with minor modifications 802.11 is able to
operates almost as a resource fair scheduler [17].

B. Network-wide Performance

Our goal in this paper is to understand the network’s
performance along two main dimensions:

• Congestion Probability: We would like to know the
percentage of BS whose input load n · λf exceeds the
available service capacity 〈µ〉 thus exhibiting per flow
delays that grow to infinity. Using the pmf of users’
cardinality, congestion probability is

Pcong = P (n > Nmax) , (3)

where Nmax = 〈µ〉
λf

is the maximum number of users that
a BS could serve.



• Per flow delay: we would like to know the expected
network-wide delay for a randomly chosen user flow,
when this flow is served by a stable BS.

These metrics depend on the same two key parameters:
1) The cardinality n of the users associated at a BS, which

is a random variable with pmf fN (n) that depends on
the topology of BS and user density.

2) The probability that each of these users is served with a
given rate r, namely the rate distribution fR(r) for this
BS that depends on the topology and mutual interference
between nearby BSs.

We derive fN (n) in Section IV and then derive fR(r) in
Section V.

III. PHY LAYER MODELING

Before we proceed with the derivation of the cardinality and
rate probability distributions, we state here our assumptions
about the network topology and physical layer model.

A.5: Users are distributed according to an independent
Poisson Point Process with density λu.

A.6: The number of BSs inside an area S follows a
homogeneous Poisson Point Process (PPP), ΦBS, with density
λBS. Therefore, the number of BSs in an are S

P (N = n | S) =
(λBSS)ne−λBSS

n!
, n = 0, 1, . . . . (4)

A.7: A standard power loss propagation model is used. We
assume a path loss exponent α > 2 (for α ≤ 2 the denominator
of SINR goes to infinity), Rayleigh fading at the channel with
mean 1 and constant transmit power of Ptx. So, the received
power at distance d from the BS is given by Prx = hd−α

where h follows an exponential distribution, h ∼ exp (Ptx).
Hence, the SINR is given by

SINRi =
Prxi∑

n 6=i
Prxn + σ2

, (5)

where sigma is the thermal noise.
A.8: We assume that all BSs have equal transmit power and

implement the same scheduling policy.
Assuming that on average, the received power is monotonic

in respect to distance, our criterion is simplified to the closest
distance criterion, so, the BSs’s coverage areas could be
represented by Voronoi Regions (Tessellations).

IV. CARDINALITY OF ASSOCIATED USERS

We are now ready to consider the pmf of the users’
cardinality for an arbitrary BS, fN (n), which as explained
earlier decides the total input traffic to each BS. Observe that
the size of an arbitrary cell is a random variable, depending
on the random BS topology, and the number of users given a
specific cell size is also a random variable. The proof for the
following theorem and a useful and accurate approximation
could be found at our technical report [18].

Theorem 4.1: Consider BSs distributed in 2D as a homo-
geneous PPP with density λBS, and offering coverage to a set
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Fig. 1: Pmf of number of users per BS for different values of
ratio ρ = λu
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of users distributed as another PPP with density λu. Assume
further that user association within this tier is done using
the closest-distance rule, as explained in Section III. Then,
the probability of having exactly n users in an arbitrary cell,
fN (n), is given by:

fN (n) =
343

n!15

√
7

2π

ρn

(ρ+ 7
2 )n+ 7

2

Γ(n+
7

2
) , (6)

where ρ = λu
λBS

and Γ is the gamma distribution. Figure 1
depict the user cardinality pmf for different values of ratio ρ.

V. MCS DISTRIBUTION FOR EACH RAT

We are interested in the maximum rate (or equivalently
maximum MCS) a user can receive data from the BS it is
associated with, given a desired BLER. Our goal is to derive
the rate distribution fR(r) in order to calculate the service
rate 〈µ〉 in terms of flows/sec for the average BS. This rate
depends on the SINR for that user. A given SINR is mapped to
an offered MCS [16]. The SINR in turn depends on both the
distance of the user to the serving BS and the interference from
other nearby BS. Furthermore, a nearby BS might not interfere
if it is actually not transmitting at that time, which further
complicates analysis. For this reason, we will first consider
a “saturated” scenario where interfering BS are assumed to
always be ON and interfering. We will then consider the case
of load-based interference, where a BS only interferes if it is
currently active serving at least one user.

A. Rate Distribution for Always ON Interference

We will assume again that BSs and users are distributed
according to independent homogeneous PPPs. In [6], the au-
thors present an approach to derive the “coverage probability”
of a randomly located user, i.e., the probability that the user’s
SINR is above a certain threshold. In doing so, it is assumed
that interfering BSs always transmit with a power Ptx. This
assumption is a good approximation when the load of the
system is high, in which case the utilization of most BS is
close to 1 (i.e., are serving users most of the time). It can also



be a valid assumption if the SINR at the user is measured with
respect to Reference Signals (i.e., “pilots”) that are transmitted
at specific times slots by all BS, regardless of whether a
BS is serving users or not at that time [12]. Nevertheless,
this is not always the case. As a result, in scenarios where
BS utilization is lower, this assumption might lead to fairly
pessimistic results. We consider this in Section V-B.

For the sake of completeness, we mention here again the
results from [6] that are applicable to our problem: Given a BS
density λBS , and path loss constant α, the coverage probability
for an SINR threshold T is

pc (T, λBS , α) , P [SINR > T ]

= πλBS

∫ ∞
0

e−πλBSu(1+β(T,α))− 1
µTσ

2uα/2du ,
(7)

where β (T, α) = T 2/α
∫∞
T−2/α

1
1+uα/2

du.
If we assume that additive noise is negligible w.r.t. interfer-

ence (a reasonable assumption for the dense modern networks)
Eq. (7) can be significantly simplified as pc (T, λBS , α) =
1/ (1 + β (T, α)). Furthermore, if we assume that α = 4, we
obtain an elegant closed form solution

pc (T, λBS , 4) =
1

1 +
√
T
(
π/2− arctan

(
1/
√
T
)) . (8)

Finally, assuming and SINR threshold τi for each MCS
(mcsi), the pmf of the MCS fMCS(mcs) can be obtained
at Eq. (9) through the coverage probability.

fMCS(mcsi) = pc (τi, λ, α)− pc
(
τ(i+1), λ, α

)
. (9)

Given the MCS, the actual rate can be easily calculated based
on the total bandwidth of the system in question. Existence of
multiple antenna ports and resulting MIMO layers can easily
be added in this calculation. Similarly for independent carriers,
by deriving the respective MCS for each.

B. Rate Distribution for Load-based Interference

As mentioned earlier, the previous results assume that all BS
are interfering all the time. In practice, when the load ρ of a BS
A is low, e.g., ρ = 0.5, then BS A would be transmitting and
causing interference only 50% of the time 1. This implies that
another nearby BS B will be actually serving users at higher
rates than the ones predicted in the saturated case. This, in
turn, means that BS B will also have a higher 〈µ〉 and thus
lower utilization ρ = λ

〈µ〉 than the one predicted, which in turn
creates less interference for BS A.

At flow level, this creates a system of dependent PS queues,
which is notoriously hard to analyze at Markov chain level
(see e.g. [8] for an attempt to derive some performance
bounds). We choose to take here a different approach and
use an iterative algorithm in order to calculate 〈µ〉 of those
dependent BSs. Before the algorithm, we have to present the

1Even if the SINR estimate is based on the pilot signals, which are always
transmitted at the designated LTE resource elements, the actual interference
experienced during transmission will be lower in practice, leading to better
effective rates (e.g., due to fewer HARQ retransmissions required).

new coverage probability which takes into account the load
of interfering BSs and will be one of the components of the
algorithm. The following lemma extends the previous analysis
based on stochastic geometry, in order to approximate the
coverage probability of the load-based interference scenario.

Lemma 5.1: The coverage probability of an arbitrary user in
a random cellular network, assuming that BSs are interfering
with each other only for the amount of time that they are
serving a user is

plbc (T, λ, α) =

Nmax−1∑
n=0

(
fN (n)

1

1 +Aρ

)
+ FN (Nmax)

1

1 +Aρ=1
. (10)

Where Aρ = (Tρ)
2/α ∫∞

(Tρ)2/α
1

1+uα/2
du and FN is the ccdf

of users’ cardinality, Section IV.
Assuming α = 4, Eq. (10) could further simplified by

replacing Aρ and Aρ=1 with

Aρ =

√
T

Nmax
n · arccot

 1√
T

Nmax
n


Aρ=1 =

√
T · arccot

(
1√
T

)
.

(11)

The proof of this lemma can be found in Appendix A.

Iterative Algorithm

The calculation of 〈µ〉 in load-based scenario is not trivial,
but could be estimated iteratively. The steps are:

1) Initially, we calculate the average service rate 〈µ〉,
Eq. (1), supposing rate distribution of Always ON In-
terference (worst case).

2) With the given 〈µ〉 the MCS distribution is calculated
using Eq. (10).

3) With the given MCS distribution we re-calculate the 〈µ〉
and go back to step 2.

C. Rate for each RAT

Two parameters are missing in order to derive 〈µ〉. Firstly,
we need SINR thresholds τi for each MCS mode to calculate
fMCS from Eq. (9) and secondly, the corresponding rate of each
MCS.

The supported MCS are RAT dependent and always are
defined at the standard documents [19], [20]. On the other
hand, operation threshold for each MCS is not always defined
in the protocol since it depends on the receiver implementation
characteristics. For example that we demonstrate in this paper
we will need one SINR-rate table for the LTE modes and one
for WiFi, those tables could be found at our technical report
[16].

VI. SIMULATION SECTION

The model parameters, for the rest of the simulation section
are summarized as: (i) 5 Mbits average flow size, (ii) pathloss
α = 4, (iii) thermal noise σ2 = −100dBm (iv) BWLTE =
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BWWiFi = 20MHz, (v) one antenna per eNodeB and one
spatial stream per WiFi AP.

We should mention that if the thermal noise is much smaller
than the interference, the value of Ptx does not affect the
results, as shown in [6].

A. Validation / Performance Analysis

Firstly, we should validate the theoretical models introduced
in previous sections. An LTE network is considered in order
to compare our theoretical predictions with simulation results.
The performance metrics that are used for the comparison are
(i) average BS load and (ii) average users’ delay. The latter is
computed by averaging the users’ delay per BS and then taking
the median; otherwise even a single congested BS explodes the
average delay to infinity.

The simulator generates both BSs and users randomly
placed in a large surface with given densities (λBS , λu).
Users are associated with the closest BS and generate flows
according to Poisson distribution with density λf . The flows
are forwarded to the corresponding BS which is modeled as
a multi-class M/G/1/PS. The service rate of each flow for
every time quantum is calculated via SINR. We are interested
about two interference scenarios: (1) always ON case, all the
neighboring BS are contribute to the interference, (2) load-
based case, at the calculation of the interference we taking
into consideration only the base stations that are ON at this
time quantum. We consider only the users those SINR is at
least higher than the threshold of the lowest MCS at always
ON case.

Fig. 2 (a) and (b), present the average load ρ (see
lemma 2.2) of the system w.r.t. λf and λBS respectively, for
both scenarios λu = 200. Two general comments from those
plots are i) both of theoretical results is quite accurate, ii) the
gap between always ON and load-based interference could be
extremely high.

In Fig. 2 (a), for λf = 0.02 the always ON prediction is that
the network is 70% loaded instead of 30% of the load-based.
That means that the network could be much more robust w.r.t.
data traffic than the studies that assume saturated BSs predict.

In Fig. 2 (b), for high density of BS always ON model pre-
dicts 50% utilized network, while load-based only 15%. The
gap between always ON and load-based prediction increases
w.r.t. density of the network. This happens because saturated
analysis is able to capture only the gain coming from the
fact that an arbitrary BS on average serves less users at a
denser network, but not the gain coming from the fact that
surroundings BSs will be less loaded, and therefore will cause
less interference. Thus, the gain to deploy a denser network is
much higher than predicted by an analysis that does not take
the load-depended interference into account.

Fig. 2 (c), shows the median delay of the simulator as well
as the theoretical predictions for saturated and load-based
cases. Again the theoretical predictions are quite accurate,
on the other hand, always ON interference differs orders of
magnitude from the load based due to delay’s sensitivity at
average service rate.

B. Different RATs

Given that the validation of the theory worked well, in this
section we will use directly the theoretical results, in order to
avoid figures being too cluttered. Fig. 3 and 4 present com-
pactly the performance (congested probability and delay) for
the two networks of interest (LTE, WiFi) for the same density
of connected users (λu = 100). Taking into account that we
have assumed the MAC performance of WiFi equal with LTE
(best case, valid for low load or with small modifications
as discussed at Section II) all differences between the RATs
are due to the PHY characteristics of RATs (different MCS
threshold and different rates).

First, focusing on the saturated case, perhaps is not clear
why LTE network performs worst than WiFi, especially if
we take into account that for same SINR, LTE operates with
higher rate. The reason are the edge users, since LTE is much
more robust to low SINR compared to WiF. Users with low
SINR, are achieving a low bit rate in LTE, as opposed to
WiFi where they would be regarded as ”out of service”, and
therefore are not taken into consideration. We should mention
that on the one hand both networks have the same number of
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connected users, but on the other hand LTE network’s coverage
area is wider than WiFi. For the always ON case, coverage area
is 0.67 and 0.47 of the total area for LTE and WiFi networks
respectively.

The low values of coverage area originated from two
previous-mentioned worst case assumptions 1) the random BS
placement; is possible a BS to ends up asymptotical close to
one else and 2) the interference is calculated assuming that
neighboring BSs are saturated. By examining the load-based
case, we notice how critical the second assumption is, for low
values of load the coverage area is almost 1 for both RATs,
while for a load around ρ = 0.5 coverage areas are 0.9 and
0.7 for LTE and WiFi respectively.

Another interesting remark is that for low or middle-
load scenarios in contradiction to always ON case the LTE
operates better than WiFi. his happened due to LTE’s smaller
granularity between the MCS, so, the LTE attain higher
SINR improvement. As the load increases the two networks
approaching the always ON case which WiFi operates better.

VII. CONCLUSIONS / FUTURE WORK

We presented an analytical framework to model the flow-
level performance of large randomly placed networks as-
suming saturated BS, as well as a semi-analytical model
for the more realistic case of load-based interference. The
gap between those two cases could be huge, leading to an

underestimation of the network performance. If the BSs do
not interfere all the time, the network is much more robust
to the total incoming load and the gain of denser deployment
is much higher than the saturated case predicts. Additionally,
which network’s PHY characteristics are perform better turns
out that is load-dependent.

As future work, we will apply the same framework in multi-
tier HetNet scenarios in order to analyze different inter-tier
association and aggregation criteria.

APPENDIX A
DERIVATION OF LOAD-BASED COVERAGE PROBABILITY

Lemma A.1: Distance of an arbitrary user to the nearest BS
is a random variable r with pdf

fr (r) = e−λπr
2

2πλr . (12)

Positions of BS are described by a 2-D homogenous Poisson
process, so the cdf is given by P [r ≤ R] = Fr (R) = 1 −
e−λπR

2

and the pdf can be found as fr (r) = dFr(r)
dr .

Coverage Probability: is the probability that SINR of an
arbitrary user is greater than a given threshold T

pc (T, λ, α) = Er [P [SINR > T |r]]

=

∫
r>0

P [SINR > T |r] fr (r) dr

=

∫
r>0

P
[
h > Trα

(
σ2 + Ir

)
|r
]
e−λπR

2

2πλrdr . (13)

Where Ir is the mean Interference at distance r (the rest
of parameters have been defined at A.7). Taking into ac-
count the channel model h ∼ exp (Ptx), The probability
P
[
h > Trα

(
σ2 + Ir

)
|r
]

could be re-defined

P
[
h > Trα

(
σ2 + Ir

)
|r
]

= EIr

[
e(−PtxTr

α(σ2+Ir))|r
]

= e−PtxTr
ασ2

EIr

[
e(−PtxTr

αIr)|r
]
. (14)

In the non-saturated case interference is given by I =∑
i∈Φn{b0} ρihiR

−α
i , where ρi is the utility of the i-th BS

which is equal to the probability to be ON. So, setting s =
PtxTr

α, the expectation of Eq.(14), EIr [exp (−PtxTr
αIr) |r],

could be re-written as

EIr [exp (−sIr) |r] = Eρ,Φ,h

exp

−s ∑
i∈Φn{b0}

hiρiR
−α
i


=Eρ,Φ

 ∏
i∈Φn{b0}

Ptx

Ptx + sρiR
−α
i

 , (15)

Lemma A.2: As the cardinality of BSs is raising, the
distribution of ρ becomes independent from Φ’s realizations.
Thus, Eρ,Φ[·] could be treated as two independent expectations
Eρ[EΦ[·]]. This happens because of the law of large numbers
and the ergodicity of the process and can be illustrated at
Fig. 5, where the “variance” of the cdf ρ is decreasing w.r.t.
BS cardinality.
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Additionally, due to the properties of exponential distribu-
tion, EΦ

[∏
x∈Φ f (x)

]
= exp

(
−λ
∫
R2 (1− f (x)) dx

)
, and

after some trivial calculations Eq.(15) is equal to

Eρ

[
exp

(
− 2πλ

∫ ∞
r

(
1− 1

1 + Tρ
(
r
R

)α
)
RdR

)]
.

Finally, by setting u =
(

R
r(ρT )1/α

)2

the initial expectation
of eq. 14 is equal to

EIr [exp (−sIr) |r] = Eρ [exp (−2πλAρ)] . (16)

Where Aρ = (Tρ)
2/α ∫∞

(Tρ)2/α
1

1+uα/2du.
So, by replacing Eq.(14), (16) to Eq.(13) the coverage

probability becomes

pc (T, λ, α) =

∫
r>0

2πλre−λπr
2

e−PtxTr
ασ2

Eρ
[
e−2πλAρ

]
dr

= Eρ

[∫
r>0

2πλre−λπr
2(1+Aρ)e−PtxTr

ασ2

dr

]
.

The above equation can be significantly simplified under the
assumption that σ2 << I so σ2 = 0.

pc (T, λ, α) = Eρ

[
1

1 +Aρ

]
. (17)

Lemma A.3: We assume that cell’s average service rate
〈µ〉 is independent from the users’ cardinality. There is a
dependency between cell size and users’ cardinality as well
as between cell’s size and 〈µ〉. We state that the dependent of
those dependencies is negligible.
A large scale topology is presented in Fig. 6. Each dot repre-
sents a BS of a given number of users and average cell rate.
We can observe that the linear fit is almost constant w.r.t. the
cardinality of users; the linear term is 5 orders of magnitude
less than the constant term. So, our assumption that the 〈µ〉 and
the number of associated users could be treated as independent
variables is confirmed.

Applying lemma A.3 we assume that 〈µ〉 is the equal to
all cells. Thus, we define ρ distribution via users’ cardinality
fN (n) see Eq.(18), where Nmax = 〈µ〉

λf
is the maximum

number of users that a BS could serve. Applying Eq.(18) to
Eq.(17) we end up to Eq.(10)

ρ =

{
n·λf
〈µ〉 , n < Nmax

1 , n ≥ Nmax .
(18)
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