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Optimal Sum-DoF of the K-user MISO BC with
Current and Delayed Feedback

Paul de Kerret, David Gesbert, Jingjing Zhang, and Petros Elia

Abstract

This work identifies the optimal sum degrees-of-freedom (DoF) of the K-user MISO Broadcast Channel (BC),
in the presence of delayed channel-state information at the transmitter (CSIT) and additional current CSIT of
imperfect precision. In a setting where the current channel estimation error scales — in the high SNR regime — as
SNR−α for α ∈ [0, 1], the optimal sum-DoF takes the simple form (1 − α)K/(

∑K
k=1

1
k ) + αK, and is the result

of a novel scheme which deviates from existing efforts as it i) digitally combines interference, ii) uses MAT-type
alignment where all symbols are decoded irrespective of order, and iii) utilizes a hierarchical quantizer whose output
is distributed across rounds in a way that minimizes unwanted interference. These jointly deliver, for the first time,
the elusive simultaneous scaling of both MAT-type delayed-CSI gains as well as ZF-type imperfect-CSI gains.

I. INTRODUCTION

In the wireless BC, feedback accuracy and timeliness can crucially affect performance, but are also notoriously
difficult to obtain. In terms of accuracy, it is well known that increasing feedback quality can elevate performance,
from that of TDMA (sum DoF of 1), to the maximum possible interference-free performance of K sum DoF. As
the recent result in [1] tells us, having imperfect instantaneous CSIT with an estimation error that scales (in the
high-power P setting) as P−α (α ∈ [0, 1]), can allow, using basic ZF precoding techniques, for an optimal sum-DoF
of 1 + (K − 1)α.

On the other hand, when perfect-accuracy CSIT is obtained in a delayed manner — in the sense that the CSI is
fed back with a delay that can exceed the channel coherence period — then, using more involved, retrospective,
MAT-type space-time alignment [2], one can surprisingly get substantial DoF gains, reaching a sum-DoF of K

HK
,

which nicely scales with K, approximately as K
ln(K) .

This interplay between performance and feedback timeliness-and-quality, has sparked a plethora of works that
considered a variety of feedback mechanisms with delayed and imperfect CSIT. Such works can be found in [3]–[5],
and in [6] which — for the two-user MISO BC setting — studied the case where the CSIT can alternate between
perfect, delayed (completely outdated), and non-existent (see also [7]).

An interesting approach came with the work in [8] which considered a feedback mechanism that offered
a combination of imperfect-quality current (instantaneously available) CSIT, together with additional (perfect-
accuracy) delayed CSIT. In this same setting — which reflected different scenarios, including that of using
predictions to get an estimate of the current state of a time-correlated channel — the channel estimation error
of the current channel state was assumed to scale in power as P−α, for some CSIT quality exponent α ≥ 0.
Additional work — within the context of the BC — came in [9], [10] which established the maximal DoF in a
two-user MISO BC scenario, as well as in [11], [12] which considered the case of imperfect-quality delayed CSIT.
Additionally work can be found in [13], [14] which considered the broad setting of any-time any-quality feedback,
and in [15], [16] which studied the two-user MIMO BC (and IC); all for the two-user case. This general challenge
of dealing with imperfect feedback has also sparked very recent interest, with different publications that include
[17]–[22].
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A. Simultaneous scaling of MAT and ZF gains

For the more general case of the K-user BC, again with joint delayed and imperfect-current CSIT, very little is
known. For the particular case considered here, a general outer bound was provided in [23], and efforts to reach
this bound can be found in [24]. The main goal has remained to secure simultaneous scaling of MAT-type gains
(that exploit delayed CSIT), and ZF gains (that exploit imperfect-quality current CSI). To date, this has remained
an elusive open problem, and any instance of providing such simultaneous gains was either limited to the 2-user
case, or — as in the case of the scheme in [23] — resulted in MAT-type DoF gains that saturated at 2. This elusive
open problem is resolved here, by inventing a new scheme, referred to as the Q-MAT scheme, that combines
different new ingredients that jointly allow for MAT and ZF components to optimally coexist. Combined with
the outer bound in [23], the achieved DoF establishes the optimal sum-DoF, which is here shown to be equal to
αK + (1− α)K/(

∑K
k=1

1
k ).

B. Notation

For C(P ) denoting the sum capacity [25] of the MISO BC considered, we will place emphasis on the high-SNR
degree of freedom approximation

DoF? , lim
P→∞

C(P )

log2(P )
. (1)

We will use the notation HK ,
∑K

i=1
1
i to represent the K-th harmonic number. Z will represent the integers,

Z+ the positive integers, R+ the positive real numbers, C the complex numbers,
(
n
k

)
the n-choose-k operator,

and ⊕ the bitwise XOR operation. We will use K , {1, 2, · · · ,K}. If S ⊂ K is a set, then S̄ will denote K\S ,
and |S| will denote its cardinality. Complex vectors will be denoted by lower-case bold font. For any vector x,
we will use {x}i, ‖x‖2 and xH to respectively denote the ith element of the vector, its magnitude-squared, and
its conjugate transpose. We will also use .

= to denote exponential equality, i.e., we write f(P )
.
= PB to denote

lim
P→∞

log(f(P ))

log(P )
= B. We write NC(0, σ2) to denote the complex Gaussian distribution of zero mean and variance

σ2.

C. System Model

1) K-User MISO Broadcast Channel: This work considers the K-User MISO BC with fading, where the
transmitter (TX) — which is equipped with M antennas (M ≥ K) — serves K single-antenna receivers (RX). At
any time t, the signal received at RX k ∈ K, can be written as

yk[t] = hH
k [t]x[t] + nk[t] (2)

where hH
k [t] ∈ C1×M represents the channel to user k at time t, where x[t] ∈ CM represents the transmitted signal,

and where nk[t] ∈ C represents the additive noise at RX k, where this noise is distributed as NC(0, 1), independently
of the channel and of the transmitted signal. Furthermore, the transmitted signal x[t] fulfills the average asymptotic
power constraint E[‖x[t]‖2]

.
= P . The channel is assumed to be drawn from a continuous ergodic distribution such

that all the channel matrices and all their sub-matrices are almost surely full rank.
2) Perfect delayed CSIT and imperfect current CSIT: Our CSIT model builds on the delayed CSIT model

introduced in [2] and generalized in [8] to account for the availability of an imperfect estimate of the current
channel state. For ease of exposition, we will here adopt the fast-fading channel model, and will assume that at
any time t, the TX has access to the delayed CSI (with perfect accuracy) of all previous channel realizations up to
time t− 1, as well as has imperfect knowledge of the current channel state. Each current estimate ĥH

k [t] for each
channel hH

k [t], comes with an estimation error

h̃H
k [t] = hH

k [t]− ĥH
k [t] (3)

whose entries are i.i.d. NC(0, P−α) with power P−α for some parameter α ∈ [0, 1], which we refer to as the
CSIT quality exponent, and which is used to parameterize the accuracy of the current CSIT1. We also adhere to

1Note that from a DoF perspective, we can restrict ourselves to α ∈ [0, 1], since an estimation/quantization error with power scaling
as P−1 (α = 1), is essentially perfect. Similarly an estimation error with power scaling as P 0 (α = 0), offers no DoF gains over the case
of having no CSIT (cf. [1], see also [23]).
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Fig. 1: Sum DoF achieved as a function of the CSIT scaling exponent α for K = 5 users.

the common convention (see [2], [8], [10]) of assuming perfect and global knowledge of channel state information
at the receivers (perfect global CSIR), where the receivers know all channel states and all estimates. Finally we
make the common assumption that the channel hH

k [t] is independent of all previous channel estimates and channel
estimation errors, when conditioned on ĥH

k [t].

II. MAIN RESULTS

We proceed directly with the main result.

Theorem 1. In the K-user MISO BC (M ≥ K) with perfect delayed CSIT and α-quality current CSIT, the optimal
sum DoF is

DoF?(α) = (1− α)
K∑K
k=1

1
k

+ αK. (4)

Proof. The scheme that achieves this performance, is described in the next sections. The optimality follows from
the fact that this scheme’s performance matches the DoF outer bound in [23].

Figure 1 shows the optimal DoF for the K = 5 case, and compares this performance to the MAT-only and
ZF-only DoF performance. We proceed to describe the scheme, following the exposition in [2], describing first the
simpler case of K = 2, and then proceeding with the general K case.

III. SCHEME FOR THE K = 2 USER CASE

As stated above, we begin with the scheme description for the two-user case, which offers intuition on all aspects
of the construction2.

2While a bit premature at this stage, we hasten to note that this exposition of the two-user case, nicely accentuates the difference between
our scheme and previous efforts [9], [10] which — albeit optimal for the two user case — had to deviate from the MAT-type canonical
structure in order to accommodate for the ZF component, thus making it difficult to extend to higher dimensions.
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A. Encoding and Transmission

The transmission follows a structure that incorporates the MAT multi-destination multi-layer scheme [2] and is
also divided into two phases (for the 2-user case), where phase 1 corresponds to the transmission of order-1 data
symbols (meant for one user at a time) and spans 2 time slots (TS), while phase 2 corresponds to the transmission
of order-2 data symbols (meant for both users simultaneously) and spans 1 TS.

A first deviation from existing schemes can be found in the fact that the scheme requires several rounds. Each
round consists of two phases. The decoding of each round requires input from the next round, and the large number
of rounds guarantees that the termination step does not have a notable effect on the overall DoF performance.

We describe the transmission for an arbitrary round N , and we will use the shorthand notation •(RN ) to denote
the fact that the index of the round is equal to N . The particularities of the first and last rounds will be clarified
later on.

1) Phase 1: Phase 1 spans two time slots, t(RN )
1 and t(RN )

2 . For t = t
(RN )
1 , the transmitted signal is given by

x[t]=V[t]m[t]+ vZF
2 [t]a2[t]+

2∑
k=1

vZF
k [t]sk[t] (5)

where
• m[t] ∈ C2 is a vector containing two Q-MAT data symbols meant for user 1, each carrying (1−α) log2(P ) bits,

where the first symbol is allocated full power E
[
|{m[t]}1|2

] .
= P , while the second symbol is allocated lesser

power E
[
|{m[t]}2|2

] .
= P 1−α. Furthermore V[t] ∈ C2×2 is defined as

V[t] ,
[
vZF

1 [t] u1

]
(6)

where vZF
1 [t] ∈ C2 is the unit-norm ZF beamformer aimed at user 1 (i.e., which is orthogonal to the current

estimate of the channel to user 2), while u1 ∈ C2 is a unit-norm vector that is randomly drawn and isotropically
distributed.

• a2[t] ∈ C is a so-called auxiliary symbol meant for user 2, carrying min(1 − α, α) log2(P ) bits (generally
from previous interfering terms), and allocated full power E

[
|a2[t]|2

] .
= P .

• sk[t] ∈ C, k ∈ {1, 2} are ZF data symbols meant for user k, each carrying α log2(P ) bits and each having
power E

[
|sk[t]|2

] .
= Pα.

Upon omitting the noise realizations for simplicity, the received symbols during the same t = t
(RN )
1 , can be

written as
y1[t]=hH

1 [t]V[t]m[t]︸ ︷︷ ︸
.
=P

+hH
1 [t]vZF

2 [t]a2[t]︸ ︷︷ ︸
.
=P 1−α

+z1[t]︸︷︷︸
.
=Pα

y2[t] = hH
2 [t]vZF

2 [t]a2[t]︸ ︷︷ ︸
.
=P

+ i2[t]︸︷︷︸
.
=P 1−α

+ z2[t]︸︷︷︸
.
=Pα

(7)

where
i2[t] , hH

2 [t]V[t]m[t]︸ ︷︷ ︸
.
=P 1−α

(8)

and where for any t ∈ Z+,

zk[t],hH
k [t]vZF

k [t]sk[t]︸ ︷︷ ︸
.
=Pα

+hH
k [t]vZF

k̄ [t]sk̄[t]︸ ︷︷ ︸
.
=P 0

, k ∈ {1, 2}.
(9)

In the above equations, underneath each summand, we describe the asymptotic approximation of the power of the
corresponding term.

For t = t
(RN )
2 , the transmission is described by the above equations, after exchanging the indices of the two

users (1↔ 2), and thus the received signal during t = t
(RN )
2 , takes the form

y1[t]= hH
1 [t]vZF

1 [t]a1[t]︸ ︷︷ ︸
.
=P 1−α

+ i1[t]︸︷︷︸
.
=P 1−α

+z1[t]︸︷︷︸
.
=Pα

y2[t] = hH
2 [t]V[t]m[t]︸ ︷︷ ︸

.
=P

+hH
2 [t]vZF

1 [t]a1[t]︸ ︷︷ ︸
.
=P 1−α

+ z2[t]︸︷︷︸
.
=Pα

(10)
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where now
i1[t

(RN )
2 ] , hH

1 [t
(RN )
2 ]V[t

(RN )
2 ]m[t

(RN )
2 ]︸ ︷︷ ︸

.
=P 1−α

.
(11)

a) Interference quantization: At the end of phase 1, the TX can use its delayed CSIT to compute i2[t
(RN )
1 ]

and i1[t
(RN )
2 ], on the basis of which it generates an order-2 data symbol carrying (1− α) log2(P ) bits. Let us first

consider the more involved case of α ≤ 1
2 , and let us consider a specifically designed quantization process which

relies on the following lemma.

Lemma 1. Let y be a random variable with a density, and with variance P β1 , β1 ≥ 0, and let Qβ1,β2
(y) be the

quantized output of a properly-scaled integer quantizer of rate (β1 − β2) log2(P ) bits for any positive β2 ≤ β1.
Then, for any random variable n (with density) and a variance that does not scale above P β2 , there exists such

a quantizer such that
lim
P→∞

Pr{Qβ1,β2
(y + n) = Qβ1,β2

(y)} = 1. (12)

Proof. The detailed proof is given in the appendix.

Our aim is to quantize the interference term i2[t
(RN )
1 ] (which has power that scales as P 1−α). Considering the

above quantizer Qβ1,β2
, and setting β1 = 1−α, β2 = α, offers us a quantized version Q1−α,α(i2[t

(RN )
1 ]) that carries

(1 − 2α) log2(P ) bits, and which guarantees (by construction; see the Appendix) that the resulting quantization
noise n2[t

(RN )
1 ] has power that scales as Pα. The idea is to then follow this with a second quantization step, where

now the aforementioned quantization noise n2[t
(RN )
1 ] is itself re-quantized using any standard optimal quantizer

with α log2(P ) bits, which is known [25] to guarantee quantization noise (from the second quantization) that scales
as P 0. For n̂2[t

(RN )
1 ] denoting the quantized version of n2[t

(RN )
1 ], we get the final combined estimate in the form

î2[t
(RN )
1 ] , Q1−α,α(i2[t

(RN )
1 ]) + n̂2[t

(RN )
1 ] (13)

where in the above the addition is over the complex numbers, and where we ommited signals at the level of the
noise floor.

For the easier case where α ≥ 1
2 , the interference term is quantized using (1− α) log2(P ) bits using a standard

quantizer, which gives again î2[t
(RN )
1 ], which is again guaranteed (cf. [25]) to have quantization noise that scales

in P 0.
The same quantization process is applied to i1[t

(RN )
2 ] to obtain î1[t

(RN )
2 ] with the same rate and quantization-

noise properties. All these quantized bits will be placed in the auxiliary data symbols of the next round, as we now
describe.

b) Generation of auxiliary data symbols for phase 1 of round N + 1: The auxiliary data symbol a2[t
(RN+1)
1 ]

will carry {
a2[t

(RN+1)
1 ]←− n̂2[t

(RN )
1 ] , α ≤ 1

2

a2[t
(RN+1)
1 ]←− î2[t

(RN )
1 ] , α ≥ 1

2

(14)

and similarly a1[t
(RN+1)
2 ] will carry the following quantization bits{

a1[t
(RN+1)
2 ]←− n̂1[t

(RN )
2 ] , α ≤ 1

2

a1[t
(RN+1)
2 ]←− î1[t

(RN )
2 ] , α ≥ 1

2 .
(15)

During the first round, all these auxiliary symbols are initialized to zero.
c) Generation of Q-MAT data symbols for phase 2 of round N : During the second phase of round N , using

delayed CSIT, the TX generates the following order-2 Q-MAT data symbol

m[t
(RN )
12 ]←− (̂i2[t

(RN )
1 ]⊕ î1[t

(RN )
2 ]) (16)

that carries a XOR combination î2[t
(RN )
1 ]⊕ î1[t

(RN )
2 ] of the interference experienced at the two users.
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2) Phase 2: Phase 2 consists of one TS t = t
(RN )
12 , during which

x[t]= v[t]m[t] +

2∑
k=1

vZF
k [t]sk[t] (17)

where

• m[t] ∈ C is an order-2 Q-MAT data symbol which carries (1 − α) log2(P ) bits that originate from the
previous phase (of the same round), and which is meant for both users. The symbol is allocated full power
E
[
|m[t]|2

] .
= P .

• sk[t], k ∈ {1, 2} is a ZF data symbol meant for user k, carrying α log2(P ) bits, and having power E
[
|sk[t]|2

] .
=

Pα.

Upon omitting the noise realizations, the received symbols during TS t = t
(RN )
12 take the form

y1[t]=hH
1 [t]v[t]m[t]︸ ︷︷ ︸

.
=P

+z1[t]︸︷︷︸
.
=Pα

y2[t] = hH
2 [t]v[t]m[t]︸ ︷︷ ︸

.
=P

+ z2[t]︸︷︷︸
.
=Pα

.
(18)

B. Decoding (achievability proof by induction)

We now turn to the decoding part, which here — for purposes of clarify of exposition — will be assumed to
commence after the end of transmission in all rounds and all phases. We will show that each user can decode all
its desired data symbols. The proof has to be done by induction due to the fact that the auxiliary data symbols
contain information coming from the previous round.

Let us consider without loss of generality the decoding at user 1. Our induction statement is that if a2[t
(RN+1)
1 ]

is decoded at user 1, user 1 can decode all its corresponding Q-MAT data symbols (m[t
(RN )
1 ] and m[t

(RN )
12 ]) and

ZF data symbols (s1[t
(RN )
1 ], s1[t

(RN )
2 ], s1[t

(RN )
12 ]) of round N , as well as a2[t

(RN )
1 ].

After initializing (by setting to zero) all auxiliary data symbols of the first round, we directly proceed to consider
an arbitrary round N . As part of the induction and the initialization, we consider a2[t

(RN )
1 ] to be already decoded

at user 1.
a) Decoding of phase 2: Before decoding phase 1 of round N , we directly apply successive decoding on (19),

to retrieve the Q-MAT and ZF data symbols of phase 2 of round N . This is indeed achieved because, as we see
from (19), the SINR of the Q-MAT data symbol is in the order of P 1−α, which matches the scaling of the symbol’s
rate. We then can also follow with the decoding of the ZF data symbols.

b) Decoding the interference in phase 1 (round N ): As a first step, receiver 1 uses the signals received during
round N + 1 to decode a1[t

(RN+1)
2 ]. This is possible because, as we see from (10), the scaling of the SINR matches

the scaling of the rate. The contents of a1[t
(RN+1)
2 ] depend on whether α ≥ 1

2 or α ≤ 1
2 .

• If α ≥ 1
2 , user 1 has obtained î1[t

(RN )
2 ] from a1[t

(RN+1)
2 ].

• If α ≤ 1
2 , user 1 has obtained n̂1[t

(RN )
2 ] from a1[t

(RN+1)
2 ]. To recover the quantized interference î1[t

(RN )
2 ], it is

necessary for user 1 to also decode Q1−α,α

(
i1[t

(RN )
2 ]

)
.

This quantized interference can be obtained by quantization of the received signal y1[t
(RN )
2 ] using the quan-

tizer Q1−α,α that we used for encoding. Indeed, following Lemma 1, we see that

Q1−α,α

(
y1[t

(RN )
2 ]

)
= Q1−α,α

(
i1[t

(RN )
2 ]

)
(19)

will be satisfied with probability that approaches 1. Thus, user 1 can decode Q1−α,α

(
y1[t

(RN )
2 ]

)
, and then

use n̂1[t
(RN )
2 ] to obtain î1[t

(RN )
2 ].

Thus in both cases, user 1 can obtain î1[t
(RN )
2 ].
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c) Decoding of the Q-MAT data symbols of phase 1: We see that from phase 2, using (16), user 1 has
decoded

m[t
(RN )
12 ] = (̂i1[t

(RN )
2 ]⊕ î2[t

(RN )
1 ]). (20)

Using î1[t
(RN )
2 ], user 1 obtains î2[t

(RN )
1 ], and thus now user 1 has knowledge (up to the noise level) of the following

two components

hH
1 [t

(RN )
1 ]V[t

(RN )
1 ]m[t

(RN )
1 ] + hH

1 [t
(RN )
1 ]vZF

2 [t
(RN )
1 ]a2[t

(RN )
1 ]︸ ︷︷ ︸

.
=P

+ z1[t
(RN )
1 ]︸ ︷︷ ︸
.
=Pα

hH
2 [t

(RN )
1 ]V[t

(RN )
1 ]m[t

(RN )
1 ]︸ ︷︷ ︸

.
=P 1−α

.
(21)

By induction, a2[t
(RN )
1 ] is assumed to be already decoded at user 1, such that its contribution to the received

signal in (21) can be removed. Consequently, user 1 has obtained two signals with a SINR scaling in P 1−α, and
can decode its two corresponding data symbols in m[t

(RN )
1 ].

d) Decoding of the ZF data symbols at user 1: We have shown that, during t = t
(RN )
1 and t = t

(RN )
12 , user 1

could decode its corresponding Q-MAT data symbols, and thus that it is possible for user 1 to use successive
decoding to decode the ZF data symbols. However, the Q-MAT data symbols sent during t(RN )

2 are only decoded
at user 2, and thus successive decoding can not be used directly here. For this we use the fact that user 1 has
reconstructed i1[t

(RN )
2 ] (up to bounded noise). Therefore user 1 can remove the interference generated by the

Q-MAT data symbols that were meant for user 2, and can thus decode its own ZF data symbols (eq. (10)).
e) Decoding of the auxiliary data symbols of round N + 1: In order to conclude the inductive step, it remains

to prove that it is possible for user 1 to decode a2[t
(RN+1)
1 ]. This result follows directly from the definition of the

auxiliary data symbol in (14). Indeed, the auxiliary data symbol of t = t
(RN+1)
1 depends only on the Q-MAT data

symbols in m[t
(RN )
1 ]. These data symbols have already been decoded at user 1, who can thus decode a2[t

(RN+1)
1 ].

This concludes the inductive step.

C. Calculation of the DoF

In this particular K = 2 setting, one round spans 3 TS during which 2 Q-MAT data symbols of rate (1 −
α) log2(P ) bits are transmitted to each user. Furthermore, one ZF data symbol of rate α log2(P ) bits is transmitted
to each user during each TS. In the last round, termination is achieved by sending only auxiliary symbols, which
induces a small loss in DoF performance, which though becomes negligible as the number of rounds increases.
The resulting DoF is thus

DoFQ-MAT =
4(1− α) + 6α

3
(22)

as in Theorem 1.

IV. SCHEME FOR THE K-USER CASE: ENCODING AND TRANSMISSION

We now describe the Q-MAT scheme for an arbitrary number of users. The transmission follows the multi-phase
structure in MAT [2], with K phases (per round), where phase j aims to communicate order-j data symbols, and
where each such symbol is meant for j users. For clarity, our description will trace the description in Section III.C
of [2]. In contrast to the original MAT scheme, the order-j data symbols are now expected to be decoded at all the
j corresponding receivers, the nature of the transmitted signals is different, the decoding process is different, and
the scheme spreads over many rounds. We proceed to describe the transmission during round N , and assume that
the transmissions up to round N − 1 have already been concluded.

A. Phase j = 1, 2, . . . ,K − 1

Phase j transmits (K − j + 1)
(
K
j

)
order-j data symbols (each carrying (1−α) log2(P ) bits), and in the process

it generates j
(
K
j+1

)
order-(j + 1) data symbols of rate (1−α) log2(P ) bits, as well as generates auxiliary symbols

to be sent during phase j of round N + 1.
This phase j, during any round N , has

(
K
j

)
time-slots t(RN )

S , each dedicated to a subset S of users, for all S ⊂ K
of size |S| = j.
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1) Transmission at phase j: During t = t
(RN )
S , the transmit signal is given by

x[t
(RN )
S ]=V[t

(RN )
S ]m[t

(RN )
S ]+

∑
`∈S̄

vZF
` [t

(RN )
S ]a`[t

(RN )
S ] +

K∑
k=1

vZF
k [t

(RN )
S ]sk[t

(RN )
S ] (23)

where

• m[t
(RN )
S ] ∈ CK−j+1 is a vector containing (K−j+1) Q-MAT order-j data symbols meant for the users in S.

Each symbol carries (1−α) log2(P ) bits. The first symbol has full power E
[
|{m[t

(RN )
S ]}1|2

]
.
= P , while the

rest have power E
[
|{m[t

(RN )
S ]}i|2

]
.
= P 1−α,∀i ∈ {2, . . . ,K − j + 1}. Furthermore, V[t

(RN )
S ] ∈ CK×(K−j+1)

is defined as

V[t
(RN )
S ] ,

[
vZF
S [t

(RN )
S ] Uj

]
(24)

where vZF
S [t

(RN )
S ] ∈ CK is a unit-norm ZF precoder that is orthogonal to all current-CSI estimates of the

channels of the users in S̄, and where Uj ∈ CK×(K−j) is a randomly chosen, isotropically distributed unitary
matrix.

• ak[t
(RN )
S ] ∈ C, k ∈ S̄ is an auxiliary data symbol meant for user k, having rate min(1 − α, α) log2(P ) bits

and power E
[
|ak[t

(RN )
S ]|2

]
.
= P .

• sk[t
(RN )
S ], k ∈ K is a ZF data symbol meant for user k, having rate α log2(P ) bits and power E

[
|sk[t

(RN )
S ]|2

]
.
=

Pα.

Again for t = t
(RN )
S , for user k ∈ S, the received signal takes the form

yk[t
(RN )
S ] = hH

k [t
(RN )
S ]V[t

(RN )
S ]m[t

(RN )
S ]︸ ︷︷ ︸

.
=P

+hH
k [t

(RN )
S ]

∑
`∈S̄

vZF
` [t

(RN )
S ]a`[t

(RN )
S ]︸ ︷︷ ︸

.
=P 1−α

+ zk[t
(RN )
S ]︸ ︷︷ ︸
.
=Pα

(25)

where for k ∈ K, we have

zk[t] , hH
k [t]vZF

k [t]sk[t]︸ ︷︷ ︸
.
=Pα

+hH
k [t]

K∑
`=1,`6=k

vZF
` [t]s`[t]︸ ︷︷ ︸

.
=P 0

. (26)

For user k ∈ S̄, the received signal is written as

yk[t
(RN )
S ] = hH

k [t
(RN )
S ]vZF

k [t
(RN )
S ]ak[t

(RN )
S ]︸ ︷︷ ︸

.
=P

+ ik[t
(RN )
S ]︸ ︷︷ ︸

.
=P 1−α

+ zk[t
(RN )
S ]︸ ︷︷ ︸
.
=Pα

(27)

where we have introduced the short-hand notation ik[t
(RN )
S ] for k ∈ S̄ as

ik[t
(RN )
S ] , hH

k [t
(RN )
S ]V[t

(RN )
S ]m[t

(RN )
S ]︸ ︷︷ ︸

.
=P 1−α

+hH
k [t

(RN )
S ]

∑
`∈S̄,` 6=k

vZF
` [t

(RN )
S ]a`[t

(RN )
S ]

︸ ︷︷ ︸
.
=P 1−α

. (28)

For the above, it is easy to see (cf. [26]) that ZF beamforming which uses α-quality current CSIT, reduces the
scaling of the interference power by a multiplicative factor of P−α.

2) Generation of new data symbols carrying information on the interference: The generation of the data symbols
that are transmitted in phase j + 1 of round N and in phase j of round N + 1 from the interference generated
during phase j of round N is one of the key ingredients of our scheme. We now consider that the transmissions
of phase j have ended for every possible set S ⊂ K for which |S| = j.
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a) Interference quantization: At the end of phase j, using delayed CSIT, the transmitter reconstructs ik[t
(RN )
S ], k ∈

S̄, which have power that scales as P 1−α. The next step depends on the value of α.
• If α ≤ 1

2 , the transmitter uses the quantizer of Lemma 1 to obtain

îk[t
(RN )
S ] = Q1−α,α(ik[t

(RN )
S ]) (29)

that comes with a residual quantization noise nk[t
(RN )
S ], which — by design, and directly from the proof of

Lemma 1 — has power scaling in Pα. Then the transmitter quantizes the quantization noise nk[t
(RN )
S ], to get

n̂k[t
(RN )
S ], with α log2(P ) bits, leaving a residual quantization noise that only scales in P 0 (cf. [25]). Finally

the transmitter combines (over the complex numbers) the two quantized estimates, to get a total estimate

îk[t
(RN )
S ] , Q1−α,α(ik[t

(RN )
S ]) + n̂k[t

(RN )
S ]. (30)

• If α ≥ 1
2 , the interference term ik[t

(RN )
S ], k ∈ S̄ is quantized using any (1 − α) log2(P ) bit quantizer, to

directly give îk[t
(RN )
S ] with quantization noise that scales in P 0 (cf. [25]).

b) Generation of auxiliary data symbols for phase j of round N + 1: The above quantized estimates of the
interference will be placed in auxiliary data symbols to be transmitted during round N +1. Depending on the value
of α, the auxiliary symbol ak[t

(RN+1)
S ] is loaded as follows{

ak[t
(RN+1)
S ]←− n̂k[t

(RN )
S ] , α ≤ 1

2

ak[t
(RN+1)
S ]←− îk[t

(RN )
S ] , α ≥ 1

2

(31)

where the differentiation into two cases reflects that the rate of the auxiliary data symbol ak[t
(RN )
S ] will be set equal

to min(1− α, α) log2(P ) bits. We note that for the first round, all auxiliary data symbols are set to zero.
c) Generation of Q-MAT data symbols for phase j + 1 of round N : Let us consider an arbitrary set P ⊂ K

with |P| = j + 1, and let us denote its elements as

P , {p1, . . . , pj+1}. (32)

The j order-(j + 1) data symbols3 m`[t
(RN )
P ], ` ∈ {1, . . . , j} for phase j + 1 of round N are then defined as

m`[t
(RN )
P ] ,

(
îp` [t

(RN )
P\p` ]⊕ îp`+1

[t
(RN )
P\p`+1

]
)
, ∀` ∈ {1, . . . , j}. (33)

Each of the above 2j components {̂ip` [t
(RN )
P\p` ], îp`+1

[t
(RN )
P\p`+1

]}`∈{1,...,j} has already been received at the different
receivers, as some form of interference. In the next phase, the transmitter will recreate the j different linear
combinations m`, ` ∈ {1, . . . , j} and transmit them.

B. Phase K

Phase K is a broadcasting phase where a fully common message (meant for all users) is transmitted. During the
single time-slot t = t

(RN )
K of this phase, the transmitted signal takes the form

x[t]= v[t]m[t] +

K∑
k=1

vZF
k [t]sk[t] (34)

where
• m[t] ∈ C is a Q-MAT order-K data symbol, having rate (1 − α) log2(P ) and power E

[
|m[t]|2

] .
= P , and

where v[t] ∈ CK is a random unit-norm vector.
• sk[t], k ∈ K is a ZF data symbol meant for user k, having rate α log2(P ) and power E

[
|sk[t]|2

] .
= Pα.

For the same t = t
(RN )
K , each user k ∈ K receives

yk[t] = hH
k [t]v[t]m[t]︸ ︷︷ ︸

.
=P

+ zk[t]︸︷︷︸
.
=Pα

. (35)

In this phase, there is no auxiliary data symbol.

3See further down for a clarification on having to repeat phases to accumulate enough symbols. This is done exactly as in MAT, and it is
transparent to the scheme and the performance here.
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C. Remark: repetition of the phases

It is important to note that vector m[t
(RN )
S ] ∈ CK−j (|S| = j + 1) contains K − j data symbols. To cover the

gap from the fact that we have only generated j order-(j + 1) data symbols m`[t
(RN )
P ], ` = 1, . . . , j (|P| = j), one

must simply repeat phase j K!
j times, exactly as in the original MAT scheme [2]. This is automatically accounted

for in the DoF calculation, as we will note later.

V. SCHEME FOR THE K-USER CASE: DECODING AND DOF

A. Decoding: Proof by Induction

We now consider decoding, and for simplicity assume that all transmissions of all phases and all rounds, have
been completed4. The proof is done by induction. Before making the inductive statement, we introduce the following
set of decoded symbols

A(RN )
j,k ,

{
a`[t

(RN )
S ] : ∀S ⊂ K,∀` ∈ S̄, |S| = j, k ∈ S

}
. (36)

For any round N and phase j < K, our induction statement is as follows:
If

• (i) Phase j + 1 up to phase K of round N have been successfully decoded
• (ii) Any user k has decoded the set A(RN )

j,k

then

• (i) Each user can decode all the Q-MAT order-j data symbols and its corresponding ZF data symbols
transmitted during phase j of round N

• (ii) User k can decode the set A(RN+1)
j,k .

After initializing the auxiliary data symbols of the first round to zero, each user k can decode A(R1)
j,k (in (32)). Thus

we proceed with the inductive step for an arbitrary round N and phase j < K, where by induction, it holds that
all Q-MAT order-(j + 1) data symbols have been successfully decoded at the corresponding users, which means
that user k has received the data symbols m`[t

(RN )
T ], ` = 1, . . . , j, for any set T for which |T | = j + 1 and for

which k ∈ T .
In addition, still by induction, each user k has decoded the set A(RN )

j,k .
d) Decoding of the desired auxiliary data symbols: As a first step, user k uses the signal received during

round N + 1 to decode ak[t
(RN+1)
W ],∀W ⊂ K, |W| = j, k ∈ W̄ . Indeed, it can be seen from (27) that the scaling

of the SINR matches the scaling of the rate. Again we differentiate between the cases α ≥ 1
2 and α ≤ 1

2 , in terms
of what we place inside the auxiliary data symbols.

• If α ≤ 1
2 , user k has decoded n̂k[t

(RN )
W ] for every set W ⊂ K for which k ∈ W̄ and for which |W| = j. To

recover the quantized interference îk[t
(RN )
W ], it is necessary for user k to obtain Q1−α,α(ik[t

(RN )
W ]) (see (30)),

and this is achieved by quantizing the received signal yk[t
(RN )
W ] using the quantizer Q1−α,α. The idea is, as

we see from Lemma 1, that this quantizer is invariant to addition of an independent noise scaling in Pα, and
thus, in our case — with probability that approaches 1 — we get

Q1−α,α

(
yk[t

(RN )
W ]

)
= Q1−α,α

(
ik[t

(RN )
W ]

)
. (37)

• If α ≥ 1
2 , user k has decoded directly from the auxiliary data symbols the quantized interference îk[t

(RN )
W ] for

every set W with |A| = j such that k ∈ W̄ .

In both cases, user k obtains ˆ̂ik[t
(RN )
W ],∀W ⊂ K, |W| = j, k ∈ W̄ .

4It will become clear that the data symbols of round N can be decoded as soon as round N+1 has ended. Thus, the delay in the decoding
of one data symbol does not increase with the number of rounds.
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e) Information at user k at the end of phase j + 1: We now describe what are the data symbols available at
user k after successfully decoding phase j + 1.

Note that for any set T , |T | = j + 1 for which k ∈ T , we can write T = {k,WT ,k} with |WT ,k| = j and
k ∈ W̄T ,k. Thus from the previous paragraph, user k then knows îk[t

(RN )
WT ,k ]. Using the order-(j + 1) data symbols

m`[t
(RN )
T ], ` = 1, . . . , j, user k is able to obtain all the quantized interference terms forming the order-(j + 1) data

symbols, i.e., î`[t
(RN )
WT ,` ],∀` ∈ T with ` 6= k and T = {`,WT ,`}, where again we note that k ∈ WT ,`.

Considering all the decoded order-(j + 1) data symbols, user k has then decoded the set Ojk defined as

Ojk ,
{{

î`[t
(RN )
W\` ]

}
`∈W

: ∀W ⊂ K, |W| = j + 1, k ∈ W
}
. (38)

f) Decoding of the Q-MAT data symbols at user k: Let us now consider an arbitrary user k and an arbitrary
set S ⊂ K, |S| = j, k ∈ S. We will show that user k is able to decode its corresponding Q-MAT order-j data
symbols in m[t

(RN )
S ]. For that purpose, the user needs K− j+ 1 observations with a SINR scaling in P 1−α. These

observations will be:

yk[t
(RN )
S ] (39)

i`[t
(RN )
S ] , ∀` ∈ S̄. (40)

Indeed, we can rewrite the above quantized interference terms as î`[t
(RN )
T \` ] with T = {S, `} and k ∈ W . Thus, all the

quantized interference terms î`[t
(RN )
S ],∀` ∈ S̄ are part of Ojk. Hence, user k is able to obtain all the observations in

(40), up to a quantization noise that has power that scales as P 0. However, the Q-MAT data symbols are interfered
by the auxiliary data symbols a`[t

(RN )
S ] (see (25) and (28)), but by induction, these data symbols are known at

user k, and thus their interference can be removed. Consequently, user k is able to decode its corresponding Q-MAT

data symbols in m[t
(RN )
S ].

g) Decoding of the ZF data symbols at user k: With the Q-MAT order-j data symbols decoded, it is possible
for user k to decode the ZF data symbols sk[t

(RN )
S ] for all the time slots t(RN )

S for which k ∈ S (|S| = j).
When k ∈ S̄, user k cannot decode the Q-MAT data symbols transmitted, as it does not have sufficiently many
observations. However, the user has decoded î`[t

(RN )
S ] for all sets S ⊂ K with |S| = j and k ∈ S̄. Therefore it can

remove the interference created by the Q-MAT data symbols up to the noise floor also for these TS, and decode
its corresponding ZF data symbol sk[t

(RN )
S ].

h) Decoding of the auxiliary data symbols of round N + 1: In order to conclude the inductive step, it remains
to prove that it is possible for user k to decode the auxiliary data symbols a`[t

(RN+1)
S ], ∀` ∈ S̄, |S| = j, k ∈ S. This

follows directly from the definition of the auxiliary data symbols in (31). Indeed, these auxiliary data symbols at
round N +1 are a function of the auxiliary data symbols at round N (a`[t

(RN )
S ] for ` ∈ S̄, which are assumed to be

known by induction), and the Q-MAT data symbols in m[t
(RN )
S ] which have been decoded at user k. Therefore,

user k is able to decode these auxiliary data symbols. This concludes the inductive step.

B. Calculation of the DoF

We first note that the last round is dedicated to transmitting only auxiliary data symbols, and that — if the
number of rounds is sufficiently large — this DoF loss is negligible. Thus focusing on just one round, we note
that we have followed closely the structure in different phases of the MAT scheme, so to calculate our DoF we
first scale the MAT DoF by a factor of (1− α) to account for our reduced rate of the Q-MAT data symbols, and
then note that during each TS, we additionally send α log2(P ) bits to each user. Adding these two parts together,
provides immediately the sum-DoF expression in Theorem 1, and concludes the proof.

VI. CONCLUSION

The work has provided the first ever communication scheme which, for the general K-user MISO BC, manages to
simultaneously and optimally exploit both delayed and imperfect-quality current CSIT. This is achieved by providing
a new way of jointly incorporating MAT-type alignment (based on delayed CSIT), and ZF-type separation (using
imperfect-quality current CSIT). In addition to resolving a theoretical open problem, the Q-MAT scheme is designed
to adapt to CSI considerations that span both timeliness and precision.
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APPENDIX

Recall that y is a random variable with a density, and with variance P β1 , β1 ≥ 0, and that n is a random
variable with density and with variance that does not scale above P β2 . To design the properly-scaled integer
quantizer Qβ1,β2

(y) which will have rate (β1 − β2) log2(P ) bits for any positive β2 ≤ β1, let η ,
√
P 1−α and let

Zn[ı] , {a+ bi : a, b ∈ [−η, η]∩Z}, with cardinality |Zn[i]| = bP 1−αc. Now let θ ,
√
L1Pα, for some L1 ∈ R+,

where limP→∞
L1

P ε = 0, ∀ε > 0. θ is chosen to be arbitrarily large such that

lim
P→∞

Pr(|q + n|2 ≥ L1P )

P ε
= 0, ∀q ∈ θ ·Zn[i]

and it is used to regulate the spacing (and the minimum distance) of the grid θ ·Zn[i]

Let A , {x ∈ C : min
q∈θ·Zn[ı]

|x− q| ≥ (
√
L1−
√
L2)P

α
2

2 } for some L2 � 1, L2 � L1, where L2 is sufficiently large
such that

lim
P→∞

Pr(|n| >
√
L2Pα)

P ε
= 0,∀ε > 0.

In the above,
√
L2Pα represents the width of region A, which represents the y region that stands to be substantially

affected by the addition of n (in terms of the quantization outcome).
Let ŷ = Q1,α(y) and ŷn = Q1,α(y + n), where ŷ, ŷn ∈ θ ·Zn[ı]. Then we have

Pr(ŷ 6= ŷn) ≤ Pr(err|y ∈ A) · Pr(y ∈ A) + Pr(err|y /∈ A) · Pr(y /∈ A) + Pr(|y + n|2 ≥ L1P )

≤ Pr(y ∈ A) + Pr(|n|2 > L2P
α + Pr(|y + n|2 > L1P ) (41)

≤ Pr(y ∈ A) + ε2 (42)

≤ ε3 (43)

where ε2, ε3(ε2 ≤ ε3) can be made arbitrarily small. The last step is due to the fact that the volume of A can be
made vanishingly small compared to P , and from the assumption of having well-behaved random variables y and
n, that for the general case, guarantees that the measure concentration is not infinitely higher in some regions than
in others. This concludes the proof of the lemma.
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