Graduate School and Research Center in Digital Sciences

Dissecting demand response mechanisms: the role of consumption forecasts and personalized offers

Benegiamo, Alberto; Loiseau, Patrick; Neglia, Giovanni

ACC 2016, American Control Conference, July 6-8, 2016, Boston, MA, USA

Demand-Response (DR) programs, whereby users of an electricity network are encouraged by economic incentives to re-arrange their consumption in order to reduce production costs, are envisioned to be a key feature of the smart grid paradigm. Several recent works proposed DR mechanisms and used analytical models to derive optimal incentives. Most of these works, however, rely on a macroscopic description of the population that does not model individual choices of users. In this paper, we conduct a detailed analysis of those models and we argue that the macroscopic descriptions hide important assumptions that can jeopardize the mechanisms' implementation (such as the ability to make personalized offers and to perfectly estimate the demand that is moved from a timeslot to another). Then, we start from a microscopic description that explicitly models each user's decision. We introduce four DR mechanisms with various assumptions on the provider's capabilities. Contrarily to previous studies, we find that the optimization problems that result from our mechanisms are complex and can be solved numerically only through a heuristic. We present numerical simulations that compare the different mechanisms and their sensitivity to forecast errors. At a high level, our results show that the performance of DR mechanisms under reasonable assumptions on the provider's capabilities are significantly lower than those suggested by previous studies, but that the gap reduces when the population's flexibility increases

Document Doi Bibtex

Title:Dissecting demand response mechanisms: the role of consumption forecasts and personalized offers
Department:Data Science
Eurecom ref:4871
Copyright: © 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Bibtex: @inproceedings{EURECOM+4871, doi = {}, year = {2016}, title = {{D}issecting demand response mechanisms: the role of consumption forecasts and personalized offers}, author = {{B}enegiamo, {A}lberto and {L}oiseau, {P}atrick and {N}eglia, {G}iovanni}, booktitle = {{ACC} 2016, {A}merican {C}ontrol {C}onference, {J}uly 6-8, 2016, {B}oston, {MA}, {USA}}, address = {{B}oston, {UNITED} {STATES}}, month = {07}, url = {} }
See also: