Efficient Tracking Area Management Framework for 5G Networks

Miloud Bagaa, Tarik Taleb, Senior Member, IEEE and Adlen Ksentini, Senior Member, IEEE

Abstract—One important objective of 5G mobile networks is to accommodate a diverse and ever-increasing number of user equipment (UEs). Coping with the massive signaling overhead expected from UEs is an important hurdle to tackle so as to achieve this objective. In this paper, we devise an efficient tracking area list management (ETAM) framework that aims for finding optimal distributions of tracking areas (TAs) in the form of TA lists (TALs) and assigning them to UEs, with the objective of minimizing two conflicting metrics, namely paging overhead and tracking area update (TAU) overhead. ETAM incorporates two parts (online and offline) to achieve its design goal. In the online part, two strategies are proposed to assign in real time, TALs to different UEs, while in the offline part, three solutions are proposed to optimally organize TAs into TALs. The performance of ETAM is evaluated via analysis and simulations, and the obtained results demonstrate its feasibility and ability in achieving its design goals, improving the network performance by minimizing the cost associated with paging and TAU.

Index Terms-5G, LTE, convex optimization, and game theory.

1 INTRODUCTION

One of the main challenges of the upcoming 5G networks is to accommodate the high demand of data raised from the increasing number of devices. In this vein, deploying small cells should be considered with high interest to overcome this issue. 5G networks would deploy densely self-organizing low-cost and low power small base-stations. However, deploying high number of small cells would increase the signaling overhead caused by the tracking and paging of User Equipment (UE). Combined with the high number of UEs and Machine Type Communication (MTC) devices [1], [2], the use of small cells will introduce a major challenge in term of signaling overhead for 5G networks. In order to tackle the increased data rate expected from the usage of the envisioned 5G network, the signaling overhead should be minimized as much as possible.

Manuscript received May 23, 2015; revised October 3 and December 28, 2015; accepted February 13, 2016. This research work is partially supported by the TAKE 5 project funded by the Finnish Funding Agency for Technology and Innovation (TEKES), a part of the Finnish Ministry of Employment and the Economy.

M. Bagaa is with AALTO University, Espoo 02150, Finland (e-mail: miloud.bagaa@aalto.no).

T. Taleb is with Sejong University and AALTO University, Espoo 02150, Finland (e-mail: taleb- tarik@ieee.org).

A. Ksentini is with EURECOM, Mobile communication department, Sophia- Antipolis, France (e-mail: adlen.ksentini@eurecom.fr).

Usually, the Radio Access Network (RAN) of a mobile operator is organized into a set of cells (including small cells) that covers several geographical areas. UEs in a specific area are attached to a base station (eNodeB), which manages their access to the mobile core network. *UEs* are usually in idle mode and have no call activity for some duration. When a connection request comes for a UE in idle mode, the Mobility Management Entity (MME) sends a signaling message, namely paging, to all eNodeBs to find the UE's location (i.e., cell) in the network. Accordingly, in case a high number of UEs need to be paged, a massive number of downlink signaling messages have to be transmitted, resulting in high signaling overhead and wasting scarce resources of the mobile network. To overcome this issue, the Tracking Area (TA) concept has been introduced in Release 8 of the 3GPP mobile network specifications (i.e., replacing the Routing Area concept in previous releases). The key idea beneath the TA principle consists in grouping several cells or sites into one TA. MME keeps record of the location of UEs in idle mode at the TA granularity. Thus, when a connection setup request comes for a UE in idle mode, the UE in question is paged only within its current TA, which would mitigate the overhead of paging in the network.

Each time a UE moves to a new location and connects to a new cell not belonging to its current TA, the UE sends an uplink message, namely Tracking Area Update (TAU), to MME, which subsequently updates the TA of the UE. In this vein, it is worth noting that a TA is also defined as an area where the UE can move without transmitting TAU messages to MME. Despite the advantages of the TA concept in minimizing the paging overhead, it has the following limitations on the TAU signaling: (i) many TAU signaling messages might be generated due to ping-pong effect, i.e, a UE keeps hopping between two adjacent cells belonging to different TAs, which could be exacerbated in case of densely deployed small cells; (ii) the mobility signaling congestion due to a large number of UEs having a similar behavior, e.g. massive number of UEs simultaneously moving from one TA to another TA (train scenario); (iii) the use of TA strategy has the symmetry limitation: If two cells are in the same TA, then neither of them can be in any other TA. To overcome this limitation, Release 12

introduces the Tracking Area List (TAL) concept in order to simplify the TA configuration. The TAL concept aims for reducing the TAU signaling messages by grouping several TAs in one TAL and allowing the overlapping of TAs. Each time a UE visits a new TA that does not belong to its TAL, a TAU message is sent to the MME. Upon receiving the TAU message, MME assigns a new TAL to the UE. The new TAL should include the visited TA. Furthermore, Release 12 allows network operators to include up to 15 TAs in each TAL and the MME always adds the last visited TA to the list to overcome the problem of frequent updates due to ping-pong situations. Given that TALs are overlapped, the above-mentioned limitations of conventional TAs, defined in Release 8, can be accordingly mitigated. However, the current LTE specifications do not provide any details on how to define TALs and allocate them to UEs.

Each time a UE moves to a new location and connects to a new TA not belonging to its current TAL, the UE sends a TAU message to MME. On the other had, when a connection request comes for a UE, the MME sends a paging message to all TAs (i.e., TAL) where the UE is registered. An increase in TALs size leads to a rise in paging signaling messages and a decrease in TAU signaling messages. Fig. 1 shows the tradeoff between TAU and paging overheads when forming TALs. In the figure, we assume that the network contains four TAs along a railway path, in which each TA has two other neighboring TAs on the left and the right sides. From Fig. 1(a), we observe that the organization of each TA in a separate TAL causes many TAU signaling messages in the network, which are generated and forwarded from the RAN to the evolved packet core (EPC). Whereas Fig. 1(b) and Fig. 1(c) show that increasing TAL size reduces TAU overhead and increases paging overhead. Fig. 1(c)shows that the TAU overhead can be ignored if all TAs are organized in the same TAL.

Several research works have been conducted to solve the TAL problem, whereby the aim is to capture the tradeoff that mitigates the overhead of TAU and paging messages when constructing and assigning TALs to UEs. Most of these solutions formulate the problem using a multi-objectives optimization technique to achieve a fair tradeoff between signaling messages overhead of TAL and paging, i.e. minimize both signaling messages due to TAU and paging. In this paper, we devise an efficient tracking area list management (ETAM) framework for 5G cloud-based mobile networks [3], [4]. The proposed framework consists of two independent parts. The first part is executed offline and is responsible of assigning TAs to TALs, whereas the second one is executed online and is responsible of the distribution of TALs on UEs during their movements across TAs. For the first part, we propose three solutions, which are: (a) F-PAGING favoring the paging overhead over TAU, (b) F-TAU favoring TAU over paging, and (c) FOTA (i.e., Fair and Optimal Assignment of TALs to TAs) for a solution that uses bargaining game to ensure a fair tradeoff between

TAU and paging overhead. For the second part, two solutions are proposed to assign *TALs* to *UEs*. The computation load is kept lightweight in both solutions not to downgrade the network performance. Furthermore, both solutions do not require any additional new messages when assigning *TALs* to *UEs*. The first solution takes into account only the priority between *TALs*. As for the second one, in addition to the priority between *TALs*, it takes into account the *UEs* activities (i.e., in terms of incoming communication frequency and mobility patterns) to enhance further the network performance.

The remainder of this paper is organized as follows. Section 2 introduces some related research work. Section 3 presents the envisioned network model and formulates the target problem. It also presents an overview of the *ETAM* framework. Section 4 presents the online part of the *ETAM* framework for assigning *TALs* to *UEs*. The three solutions proposed for the offline part of the *ETAM* framework are described in Section 5. Section 6 details a Markov-based analytical model for the three offline solutions. Besides the numerical results obtained by solving the Markov model, Section 7 presents the simulation setup to evaluate the performance of *ETAM* and discusses the obtained results. Finally, the paper is concluded in Section 8.

2 RELATED WORK

Mitigating signaling overhead, due to UE mobility in cellular mobile networks, has attracted high attention during the last years. As stated earlier, in the Evolved Packet System (EPS), MMEs keep records of UEs' positions in order to adequately forward their relevant incoming connections. For this purpose, 3GPP introduced two types of signaling messages to support *UE* mobility: (*i*) paging messages from the network, namely *MME*, in order to find the locations of UEs in idle mode; (ii) TAU messages from UEs to MME to update their positions. A TAU message is sent each time a UE enters into a new location (cell) that does not belong to its current TA. Conventional TA assignment procedures whereby the network assigns only one TA for different UEs is not sufficient when UEs are highly mobile. Indeed, high number of TAU messages could be sent by UEs as they frequently cross their corresponding TA borders. An enhancement to the conventional procedure was envisioned to reduce TAU overhead by i) grouping several cells (i.e., eNodeBs) in one TA or *ii*) introducing delays between TAU messages sent by UEs. Another solution to reduce the impact of TAU messages on the network was proposed in [5] whereby queuing models and buffer information at eNodeBs are used to delay the TAU frequency.

To further alleviate the effect of *TAU* messages on the network performance, 3GPP has introduced the concept of *TAL* in Long Term Evolution (LTE), wherein each cell (eNodeB) assigns different *TALs* to *UEs* [6], [7]. Since *TALs* are overlapped, the number of *UEs* performing *TAU* when crossing *TA* border drastically decreases.

Fig. 1: The tradeoff between TAU and paging overhead in 4G and beyond mobile networks.

Besides reducing the number of TAU messages, TAL prevents the ping-pong effect, i.e., frequent TAU messages when a UE keeps hopping between adjacent TAs. Nevertheless, the current LTE specifications do not provide any details on how to define TALs and allocate them to UEs. To address this open issue, several solutions have been proposed. In [8], Chung et. al. proposed a solution that organizes cells into rings, where UEs in each ring use the same TAL. Solutions, proposed in [9] and [10], use the same concept as in [8] by assigning the same TAL to different UEs when visiting a cell in the network. However, all these solutions [8]-[10] have not fully explored the advantage of TAL against the conventional TA approach. In [7] and [11], Razavi et. al. overcome this limitation by allowing UEs residing in the same cell to register with different TALs. Indeed, in [7] they proposed a solution for congestion mitigation along a railway path. On the other hand, in [11] an extension of the former work is proposed with two new aspects: *i*) the solution is generalized for any arbitrary network instead of only train scenario; *ii*) a new solution that handles the extenuation of paging signaling messages via *TAL* management is proposed.

Generally speaking, assigning TALs to UEs shall depend on the mobility patterns of UEs as well as on their geographical distribution and density. MME may group, under the same TAL, a large number of TAs in an area that has low density to reduce the impact of TAU overhead on the network performance. Similarly, *MME* may group under the same *TAL* a small number of TAs serving a highly densed area. Indeed, to alleviate the impact of paging messages on the network performance, it is worth assigning more than one TAL to the same TA. To the best knowledge of the authors, most existing solutions focus only on the offline part for assigning the TAs to TALs. Moreover, they consider only the TAU overhead and ignore the paging overhead. The only research work that addressed both constraints is presented in [11], wherein Razavi et al. proposed two separate solutions, addressing the impact of TAU and paging overhead, respectively. Both solutions are based on multi-objectives optimization techniques for assigning the TAs to TALs. The first one tries to minimize the TAU overhead while setting paging as a constraint, and the second one minimizes the paging overhead

while fixing the TAU overhead as a constraint.

In contrast to the existing works, in this paper, we propose a framework optimizing the management of TALs and consisting in: (i) an offline part that assigns TAs to TALs; (ii) an online part that assigns TALs to UEs. Two solutions are proposed to achieve the aim of the online part. The first one takes into account only the priority between TALs, whereas the second one, in addition to the priority between TALs, takes into account the UE behavior in terms of mobility and connection frequency. Regarding the offline part, we have devised three solutions, which differ from the existing ones on their way to cope with the problem. Indeed, most existing solutions assign the same TAL: *i*) to the same TAs in a static manner [8]–[10]; or ii) with the same probability [7], [11]. In contrast, the devised solutions dynamically assign the same TAL to different TAs with different probabilities. The first one, dubbed *F*-PAGING, is proposed for a network known with a high rate of paging (i.e., for voice call as well as for IP-based web applications) in comparing to the mobility rate. This solution maybe designated for small cities with highdensity populations. The second one, dubbed F-TAU, is proposed for a network which is known with a high mobility rate compared to the paging rate. Such kind of solution maybe useful for a network known with lowdensity populations and/or high mobility. The last one, dubbed FOTA, is proposed to be generic for any kind of networks. It takes advantage of both previous solutions, jointly addressing the overhead due to both TAU and paging messages. FOTA uses Nash bargaining game to ensure a fair tradeoff between both conflicting overhead, i.e., TAU and paging signaling messages.

3 Envisioned Network model and framework overview

3.1 ETAM framework overview

Fig. 2 depicts a general overview of the *ETAM* framework. We assume that the network is subdivided into N *TAs*, named $\mathcal{N} = \{1, 2, \dots N\}$. Each *TA* consists of a set of cells, whereby a cell is managed by an eNodeB (i.e., base station). As depicted in the figure, the geographically close eNodeBs can be grouped in the same *TA*, using any existing algorithm [12], [13], to optimize the network performance in terms of paging overhead.

Fig. 2: The proposed framework for tackling *TAU* and paging overhead in 4*G* and beyond mobile networks.

Initially, the ETAM framework starts by an inefficient solution and then converges, through iterations, to the optimal one. As depicted in Fig. 2, ETAM framework starts by considering each TA as a separated TAL. Then it executes, repetitively, two steps to converge to the optimal solution. The first step is the offline-assignment of TAs-to-TALs, whereas the second one is the onlineassignment of TALs-to-UEs. To efficiently map between TAs and TALs, the information about TAU and paging signaling messages are transferred from the online step to the offline one. The latter enhances the mapping between TALs and TAs and then provides the former with the new mapping to optimize further the network performance. The online step is executed during a specified period D, where all the information about the TAU and paging overhead are gathered from the network to be transferred to the offline step. The duration D may be fixed by the network operator, but it can be changed when there is a noticeable update in the network.

Since there is no exact indication on the trajectory of UEs, during the online-assignment of TALs-to-UEs, we use a probability strategy to assign TALs to UEs. In each visited TA, TALs are assigned to visiting UEs with different probabilities. Indeed, the TAL that reduces more the TAU and paging signaling messages would have more priority to be assigned to a UE. There is a tradeoff between TAU and paging signaling messages. Clearly, the smaller the size of TALs is, the higher the TAU overhead is, but the smaller the paging overhead becomes. For the online-assignment of TALs-to-UEs, we consider two solutions. The first one takes into account only the priority between TALs that was learned from the offline step. Whereas, the second one, in addition to the priority between TALs, takes into account the UEs behavior, in terms of incoming communication frequency and mobility patterns. For the offline-assignment of TAs-to-TALs, we consider three different solutions, which define the core of our ETAM framework. It is worth recalling that (i) the first solution favors the paging overhead when forming TALs; (ii) the second one favors the TAU overhead; and (*iii*) the third solution uses the bargaining game theory to distribute TALs among TAs by capturing a fair tradeoff between TAU and paging overhead. The

Fig. 3: An example illustrating how to construct neighboring graphs *G* from an LTE network.

TAL that exhibits the highest fairness in the *TAU* and paging overhead has the highest probability to be assigned to a *UE*.

3.2 Network model and notations

Let Γ denote the set of all possible *TALs* in a mobile network, and let Γ_A denote the set of possible *TALs* that can be assigned to UEs in TA A. As mentioned earlier, each time a UE visits a new TA that does not belong to its TAL, a TAU message is sent to the MME. Upon receiving the TAU message, MME computes and sends a new TAL to the UE. The new TAL should include the visited TA. From Release 12 of the 3GPP specifications, the operator can specify for each TAL a list of up to 15 TAs and the MME always adds the last visited TA to the list to prevent the risk of ping-pong updates. For this reason, Γ is formed by considering the different possible combinations of TAs, such that the length of each element in Γ should be higher or equal to one and less than 16, i.e. each TAL $i \in \Gamma$ should contain at least 1 TA and at most 15 TAs to allow the MME to add the last visited TA.

Throughout the paper, we will refer to the example depicted in Fig. 3 in order to show how Γ should be constructed. In this example, we assume that the network consists of five *TAs*, named *A*, *B*, *C*, *D* and *E*. The blue arrows between *TAs* denote the movement of different *UEs* in the network. The movement of UEs can be deduced from the handover statistics of different eNodeBs or from the handover command messages sent by *MME*. To form Γ , we begin by forming the neighboring graphs *G* from the network as depicted in Fig. 3(*b*). An edge between two vertices (i.e., *TA*) *A* and *B* exists, if there is a *TAU* possibility between them. In Fig. 3(*b*), an edge is generated between the vertices *A*

and *B*, if there is a blue arrow between *TAs A* and *B* in Fig. 3(a), which means the possibility of *UEs* movement between these TAs. In Fig. 3(b), we do not construct an edge between vertices A and E since a direct blue arrow does not exist between them; UEs cannot move from A to E without passing by another TA (i.e., B or D). Finally, Γ_A is formed from the neighboring graph G. Indeed, the different elements of Γ_A are those having all vertices of all sub-graphs of G that contain the vertex A and their length do not exceed 15. Thus, the vertices of a sub-graph of G that contain the vertex A are considered as one element in Γ_A . From Fig. 3, $\Gamma_A =$ $\{\{A\}, \{A, B\}, \{A, D\}, \{A, B, C\}, \{A, B, D\}, \{A, B, E\}, \{A, A, B, B\}, \{A, B,$ D, E, {A, B, C, D}, {A, B, C, E}, {A, B, D, E}, {A, B, C, D, E}. Finally, Γ is formed from different Γ_i follows: Γ $\bigcup \Gamma_i$. An element of Γ_i is = as $i \in \mathcal{N}$ i.e. $\{A, B\}$ and $\{B, A\}$ are considered set, а the same element in Γ . From Fig. 3, Γ as $\{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{A, B\}, \{A, D\}, \{B, C\}, \{B, D\}, \{B$ $\{B, E\}, \{C, E\}, \{D, E\}, \{A, B, C\}, \{A, B, D\}, \{A, B, E\},\$ $\{A, D, E\}, \{B, C, D\}, \{B, C, E\}, \{C, D, E\}, \{A, B, C, D\}$ $, \{A, B, C, E\}, \{A, B, D, E\}, \{A, B, C, D, E\}\}.$

We assume that each UE has a specific probability to be called/paged (i.e., for voice call as well as for IP-based web applications). Further, each UE follows a different mobility pattern, hence the number of sites (cells) visited by each UE is different. In the online-assignment of TALs-to-UEs step, the network is monitored in order to track the number of signaling messages (i.e., TAU and paging) sent and received by different UEs. We denote by $\alpha = \{\alpha_1, \alpha_2 \cdots\}$ and $\beta = \{\beta_1, \beta_2 \cdots\}$ the probability of paging and TAU of UEs in the network, respectively. In other words, in the offline-assignment step, we have the information about different existing UEs in the network. We denote by Υ the different *UEs*. For each $UE_u \in \Upsilon$, we have its probability α_u to send a *TAU* message and its probability β_u to be called (i.e., cause a paging). We denote by $\gamma = \{\gamma_1, \gamma_2, \dots\}$ the overhead of mobility and paging ratio of different UEs. γ_u denotes the overhead of mobility and paging ratio of UE_u , i.e. the ratio between the paging and the *TAU* of a UE_u . Formally, γ_u is computed as follows: $\gamma_u = \frac{\rho \alpha_u}{\rho \alpha_u + \tau \beta_u}$, where τ and ρ are the amount of overhead of one *TAU* operation and one paging message, respectively. Intuitively, the values of τ and ρ depend on the "radio system" [14]. Knowing that $\gamma_u \in [0,1]$, the higher the value of γ_u is, the higher the number of paging of UE_u becomes in comparison to TAU messages. Accordingly, γ_u represents an important parameter to consider when designing TALs to assign to UEs. Indeed, when a UE has a high value of γ_u , meaning that it generates more paging messages than TAU messages, it is better to assign a TAL with a few number of TAs to reduce the paging overhead. However, if a UE has a low value of γ_u , meaning that it generates more TAU messages than paging, it is more appropriate to assign to it TALs with more TAs to reduce the TAU overhead.

i	1	2	3	4	5	6	7	8	9	10	11	
$F_A(\ell)$	A, B, C, D, E	A, B, C, D	A, B, C, E	A, B, D, E	A, D, E	A, B, E	A, B, D	A, B, C	A, D	A, B	A	
$P_A(\ell)$	0.2	0.1	0.15	0.05	0.12	0.03	0.06	0.04	0.04	0.01	0.2	
$\sum P_A(\ell)$	0.2	0.3	0.45	0.5	0.62	0.65	0.71	0.75	0.79	0.8	1	

Fig. 4: *TALs* F_A and their probabilities P_A at *TA* A: an example.

Moreover, in the online-assignment of TALs-to-UEs step, we can deduce the number of *UEs* $h_{i,j}$ that moved from each TA i to another TA j. We define by \mathcal{H} the matrix that represents the number of UEs that moved from different TAs. Each entry in the matrix \mathcal{H} at row *i* and column *j*, denoted by $h_{i,j}$, indicates the number of UEs that moved from TA i to TA j. The value of $h_{i,j}$ can be deduced from the handover statistics of different eNodeBs or from the handover command messages sent by *MME*. Furthermore, each UE_i spends different times in different TAs. Let M denote the matrix that represents the duration spent by different UEs in different TAs. The rows in M represent the *UEs*, whereas the columns represent the different TAs in the network. The element $\mathcal{M}_{i,j}$ denotes the duration spent by UE_i in TA j. Note that, $\forall i \in \Upsilon$, $\sum_{j=1}^{N} \mathcal{M}_{i,j} = D$.

For the sake of readability, the notations used throughout the paper are summarized in Table 1.

Notation	Decription
Υ	The set of <i>UEs</i> in the network
\mathcal{N}	The set of <i>TAs</i> in the network
η_u	The number of cells (eNodeB) in TA u.
α_u	The probability that <i>UE</i> u gets paged during a period D.
в	The probability that UE u moves from TA
ρ_u	to another i.e., mobility of UE u.
γ_u	The mobility and paging ratio of UE u.
Γ_i	The set of possible <i>TALs</i> that can be assigned to <i>UEs</i> in <i>TA</i>
	i.
F_i	The sorted element of Γ_i .
S	The matrix that ensures the mapping between <i>TAs</i> and <i>TALs</i>
	in the network.
$P_i(j)$	The probability of selecting a $TAL \ j$ in $TA \ i$. Formally,
	$P_i(j) = \mathcal{S}_{ij}.$
Г	The set of all possible <i>TALs</i> in the network.
h_{uv}	The number of handover between TA u and v.
au	Overhead of one <i>TAU</i> operation.
ρ	Overhead of one paging message.
μ_i	The exponential distribution rate of the sojourn time of UEs
	in TA i
λ	The exponential distribution rate of the inter arrival time
	between two consecutive calls for a UE

TABLE 1: Notations used in the paper.

4 ONLINE-ASSIGNMENT OF TALs-to-UEs

The mapping between *TAs* and *TALs* is represented through a matrix S, where the rows are the different *TAs* and the columns are the different *TALs*. An element $S_{i\ell}$, in the matrix S, represents the probability to assign *TAL* ℓ in *TA* i to different *UEs*. Matrix S is first generated during the offline step and is used then in the online step. Indeed, offline step generates Matrix S in a way that the *TAL* that optimizes more the network performance

has a higher probability to be assigned to different *UEs*. From above, Γ_i , for $\forall i \in \mathcal{N}$, can be also defined as follows:

$$\Gamma_i = \{\ell, \ S_{i,\ell} \neq 0 \ for \ \forall \ell \in \Gamma \land i \in \ell\}$$

accordingly, when a *UE* visits a *TA i*, *MME* will assign to this *UE* a *TAL* from Γ_i . We denote by Γ_i the sorted element of Γ_i . *TALs* in Γ_i are sorted according to the number of *TAs* in each *TAL*, such that *TALs* having the smallest number of *TAs* are placed in the tail. $\Gamma_i(\ell)$ represents the ℓ^{th} *TAL* of Γ_i . We denote by $P_i(\ell)$ the probability to assign *TAL* $\Gamma_i(\ell)$ by *TA i* to different *UEs*. $P_i(\ell)$ can be deduced from the matrix *S*. Fig. 4 shows an example of Γ_A and P_A . In this example, $\Gamma_A(1) = \{A, B, C, D, E\}$ and $\Gamma_A(2) = \{A, B, C, D\}$.

The assignment of TALs to UEs should be lightweight in terms of computational cost and communication overhead. In this vein, the proposed solutions for this part are designed to be simple and easy to deploy. When a UE u visits a new TA A, the MME selects a new TAL $F_A(\ell)$ from F_A according to the set of probability P_A . The TAL that has the highest probability would have more chance to be elected than the others. Then, the MME adds the last visited TA to $F_A(\ell)$, to prevent the risk of ping-pong updates, before assigning it to UE u. It is worth noting that $F_A(\ell)$ should be also assigned to each UE according to its mobility and paging features. Indeed, some UEs exhibit high mobility, while others are called more often. For this reason, unlike all existing works, in this paper we consider both the probability of each TAL $P_A(\ell)$ and the features of UEs when assigning TALs to different UEs. In this paper, two strategies are considered as explained

4.1 Assigning *TALs* to *UEs* without prioritization

In this strategy, we use only the probability of each *TAL* $P_A(\ell)$; i.e. no prioritization among *UEs* is considered. All *UEs* have the same priority to obtain any *TAL* from the visited *TAs*. This strategy could be used to reduce the involvement of *UEs* (and hence associated overhead and battery consumption) in the *TAL* assignment process. In this case, when a *UE* u visits a new *TA* A, the *MME* generates a random variable $\mathbf{V}_1 \in [0, 1]$ using a uniform distribution. Then, *TAL* ℓ is assigned to *UE* u as the one that satisfies the following condition:

$$\sum_{k=1}^{\ell-1} P_A(k) < \mathbf{V}_1 \le \sum_{k=1}^{\ell} P_A(k)$$

Using the example depicted in Fig. 4, if $V_1 = 0.38$, then *TAL* 3 would be assigned to *UE u*. By using this strategy, we ensure that *TALs* having higher probabilities will be more likely assigned to *UEs*. From above, we observe that the assignment of *TALs* to *UEs* without prioritization is light weighted. In fact, it is in the order of the generation of a random value V_1 that follows a uniform distribution.

4.2 Assigning TALs to UEs with prioritization

In this strategy, *UEs* exhibiting higher mobility rate than paging rate, should get *TALs* that have large number of

Fig. 5: The impact of ν values on the cumulative distribution function of Poisson.

TAs to mitigate the effect of *TAU* signaling. Employing the example depicted in Fig.3, *TAL* {A, B, C, D, E} is assigned to *UEs* that exhibit higher mobility features than paging, and that is to reduce the overhead of *TAUs*. Whereas, *TAL* {A} is assigned to *UEs* having more paging than being highly mobile, and that is to reduce the impact of paging on the network performance. As discussed earlier, when a *UE* u visits a new *TA* TA_u , the *MME* in charge of TA_u , has the following information: (i) the matrix S and (ii) the overhead of mobility and paging ratio γ_u . We recall that the higher the value of γ_u is, the higher the number of paging is, i.e., in comparison to *TAU* (mobility).

To prioritize among *UEs* without impacting the probabilities of *TALs*, we define $F(\nu = x, k)$ as the cumulative distribution function of Poisson distribution until k, where ν is the mean value. Fig. 5 depicts $F(\nu = x, k)$ according to ν and k. When *UE* u visits *TA* A, *MME* computes for this *UE* its ν_u as $\nu_u = \lfloor \frac{1}{\gamma_u} \rfloor$. Since $\gamma_u \in [0, 1]$, then $\nu_u \ge 1$. Afterwards, a random variable $\mathbf{V}_2 \in [0, 100]$ is generated using a uniform distribution. Now, *TAL* ℓ is assigned to *UE* u as the one that satisfies the following condition:

$$\sum_{k=1}^{\ell-1} P_A(k) < F(\nu = \nu_u, \mathbf{V}_2) \le \sum_{k=1}^{\ell} P_A(k)$$

From above, high values of γ_u mean that UE_u receives more paging messages than it issues *TAU* messages (due to mobility). For this *UE*, it is preferable to assign a *TAL* with small number of *TAs*. Note that large values of γ_u means small values of ν_u . From Fig. 5, *UE* u will have high probability to get a value in the vicinity of 1 and will be hence assigned *TALs* from the tail of F_A (i.e., *TAL* ℓ with small size). Whereas, when γ_u is small (i.e., *UE* u has high mobility features than paging), its ν_u will be large. Then, *UE* u has high probability to be assigned a *TAL* ℓ from the head of F_A (i.e., *TAL* ℓ with large size). The assignment of *TALs* to *UEs* with prioritization is also in the order of the generation of a random value \mathbf{V}_2 that follows a uniform distribution.

Theorem 1. TAL ℓ having the highest value of $P_A(\ell)$, has higher probability to be selected for different UEs.

Proof. Let TAL_{ℓ} denote the TAL that has the highest

value of $P_A(\ell)$ at *TA A*. Formally, $P_A(\ell) = \sum_{k=1}^{\ell} P_A(k) - \sum_{k=1}^{\ell} P_A(k)$

 $\sum_{k=1}^{\ell-1} P_A(k)$. We have two cases: (*i*) Assigning *TALs* from TAL_A to *UEs* without prioritization and (*ii*) Assigning *TALs* from TAL_A to *UEs* with prioritization. In the first case, a random probability $\mathbf{V}_1 \in [0, 1]$ is generated to select *TALs*. Whereas, in the second case, a random number $\mathbf{V}_2 \in [0, 100]$ is generated and then $F(\nu = \nu_u, \mathbf{V}_2)$ is computed. As *TAL* ℓ has the highest value of $P_A(\ell)$, for both cases it is more likely that \mathbf{V}_1 (resp., $F(\nu = \nu_u, \mathbf{V}_2)$) is in $[\sum_{k=1}^{\ell-1} P_A(k), \sum_{k=1}^{\ell} P_A(k)]$. Therefore, in both cases *TAL* ℓ that has the highest value of $P_A(\ell)$ is more likely to be selected by *UEs*.

Theorem 2. When assigning TALs to UEs via prioritization strategy, a UE u having higher speed (i.e., highly mobile) than paging ratio γ_u , is more likely to be assigned a TAL with large size to mitigate the effect of TAU.

Proof. Based on the above, the *UE* which has higher speed than paging ratio, has the smallest value of γ_u , and then, the highest value of ν_u . From Fig. 5, it is more likely to get $F(\nu = \nu_u, \mathbf{V}_2)$ in the vicinity of zero, and consequently select a *TAL* from the head of *F*_A that has a large size.

5 OFFLINE-ASSIGNMENT OF TAs-to-TALs

As discussed in Section 3, this step is executed offline to allow the mapping between different TAs and TALs. At the end of this step, a matrix S is generated, whereby the rows represent the different *TAs* N and the columns represent the TALs Γ . An element S_{ij} in the matrix S refers to the probability that TA i assigns TAL j to different UEs. The sites (cells) belonging to the same TA *i* use the same row *i* in the matrix S to assign *TALs* to different UEs. As mentioned in Section 3, the result of this step is used by the online step of our framework to assign different TALs to different UEs. In what follows, we present three problem formulations for optimizing TALs distribution in LTE and beyond networks. The two first optimizations are linear programs, whereas the last one is a convex optimization. As it is well known in the literature [15], the linear program and convex optimization have polynomial time complexity. It shall be noted that the result of the three solutions is the same matrix S, however, with different elements S_{ij} . The latter are considered as the variables for the problem optimizations. In the first optimization problem, we assume that the TAU overhead is dominator and we then propose a solution to optimize the network performance that favors TAU on paging. In the second solution, we propose an optimization problem whereby the paging overhead is dominator. Finally, we introduce FOTA, which aims at capturing the tradeoff between the TAU and paging overhead when assigning TALs to TAs (Fair and Optimal Assignment of TALs to TAs - FOTA), and ultimately to *UEs*. In *FOTA*, a bargaining game is used to capture the tradeoff between *TAU* and paging.

5.1 Optimizing the network performance via the reduction of TAU overhead

In this subsection, we propose the solution, named F-TAU, that favors TAU when assigning TAs to TALs. In F-TAU, we seek the optimal distribution of TALs by applying the min-max approach. The aim is to minimize the maximum number of TAU messages. Formally, we aim to minimize the maximum aggregate number of TAU messages sent by UEs between any two TAs in the network. In this solution, we denote by $PAGING_{max}$ the maximum number of paging messages tolerated by the network. Its value could be fixed according to the capacity of MMEs in the network. Otherwise, $PAGING_{max}$ can be fixed to ∞ . In this case, the optimal solution would converge to putting all TAs into the same TAL in order to reduce the TAU overhead. At this point, the optimization model which aims at reducing the TAU overhead can be formulated according to the following linear program $((1) \cdots (6))$:

$$\min \max_{\forall i, j \in \mathcal{N} \land i \neq j} \tau(\sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_j} h_{ij} S_{i\ell} + \sum_{\ell \in \Gamma_j \land \ell \notin \Gamma_i} h_{ji} S_{j\ell}) \tag{1}$$

S.t,

$$\forall \ell \in \Gamma, \forall i \in \mathcal{N} \cap \ell, \ \mathcal{S}_{i\ell} \ge 0 \tag{2}$$

$$\forall \ell \in \Gamma, \forall i \in \mathcal{N} \cap \ell, \ \mathcal{S}_{i\ell} \le 1 \tag{3}$$

$$\forall i \in \mathcal{N}, \sum_{\ell \in \Gamma} \mathcal{S}_{i\ell} = 1 \tag{4}$$

$$\forall \ell \in \Gamma, \forall i \notin \mathcal{N} \cap \ell, \ \mathcal{S}_{i\ell} = 0 \tag{5}$$

$$\rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} S_{i\ell} (\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) (\sum_{j \in \ell \land j \neq i} \eta_j) \le PAGING_{max}$$
(6)

In the objective function (1), the number of UEs that transited from TA i (resp., j) is scaled by the variable $S_{i\ell}$ (resp., $S_{j\ell}$), which represents the proportional use of TAL ℓ by TA i (resp, j). It shall be also noted that the condition, " $\ell \in \Gamma_i \land \ell \notin \Gamma_j \Leftrightarrow \forall i, j \in \mathcal{N}, i \neq j, \forall \ell \in$ $\Gamma: i \in \ell \land j \notin \ell''$, aims at reducing the number of *UEs* moving between different TAs that do not belong to the same TALs. The first three constraints ((2), (3) and (4))are used to ensure that each TA $i \in \mathcal{N}$ can select its TAL from S_i with a fixed probability. The fourth constraint (5) ensures that a TA delivers TALs to UEs only if it belongs to this TALs. The last constraint (6) ensures that the sum of all paging overhead in the network should not exceed a predefined threshold $PAGING_{max}$. For any TAL ℓ , the overhead caused by paging *UEs* residing in *TA* $i \in \ell$ (by sending paging messages to all *TAs* $j \in l \land j \neq i$) is the number of sites η_j in these *TAs*, scaled by $\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}$ and a variable $S_{i\ell}$. Note that $\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}$ is a constant that represents the paging overhead at *TA i* and $S_{i\ell}$ represents the paging overhead at *TA i* and $S_{i\ell}$ represents the proportional use of *i*. Formally, $\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}$ is defined as the sum of the probabilities of paging of each UE kscaled by its residence time in TA i.

5.2 Optimizing the network performance via the reduction of paging overhead

In this subsection, we introduce *F-PAGING*, which favors the paging overhead when assigning *TAs* to *TALs*. As in *F-TAU*, we use the min-max approach as depicted in the linear program ((7)...(8)). In this linear program, the goal (7) is to optimize the network performance seeking the optimal distribution of *TALs* that minimizes the paging overhead. In this solution, we set the maximum amount of *TAU* overhead tolerated by the network to *TAU_{max}*. Its value could be defined according to the capacity of *MMEs* in the network. Otherwise, *TAU_{max}* can be fixed to ∞ . In this case, the optimal solution would converge to putting each *TA* in a separate *TAL* in order to reduce the paging overhead. The linear program is formulated as follows:

$$\min \rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} (S_{i\ell}(\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) \sum_{j \in \ell \land j \neq i} \eta_j)$$
(7)
S.t,
$$(2), (3), (4), (5) and$$
$$\forall i, j \in \mathcal{N} \land i \neq j:$$

$$\tau(\sum_{\ell\in\Gamma_i\wedge\ell\notin\Gamma_j}h_{ij}S_{i\ell} + \sum_{\ell\in\Gamma_j\wedge\ell\notin\Gamma_i}h_{ji}S_{j\ell}) \le TAU_{max}$$
(8)

The first fourth constraints $((2)\cdots(5))$ are similar to the first linear program presented in the precedent section. The last constraint ensures that the total number of *TAU* messages sent by *UEs* when transiting between any two adjacent *TAs* $i \in \mathcal{N}$ and $j \in \mathcal{N}$ should not exceed the threshold TAU_{max} .

5.3 Trading off TAU against paging using Nash bargaining

In contrast to the conventional techniques (eg., weightedsum method) used to solve the multi-objectives problems, which may not ensure a fair tradeoff between the conflicting objectives, FOTA uses a Nash bargaining game to achieve this tradeoff. As we have mentioned in Fig. 1, an increase in the size of TALs reduces the TAU signaling messages, however it has a negative impact on the paging signaling messages. Meanwhile, reducing TALs size has a negative impact on TAU signaling messages and positive impact on the paging signaling messages. The UE's mobility and call ratio have a great impact on the total number (i.e., TAU and paging) of signaling messages in the network. For a network characterized by a high mobility, we have to favor the reduction of TAU overheads in order to reduce the number of total signaling messages in the network. Whereas, for a network characterized by a high call ratio, the reduction of paging signaling messages significantly reduces the total signaling messages. In FOTA, TAU and paging overhead represent the conflicting objectives and are considered as two players in the bargaining game. The two players (i.e., TAU and paging signaling messages) would like to barter goods (i.e., total signaling messages). It was theoretically proven in [16] that the use of Nash bargaining game ensures a fair tradeoff between the players according to the network characteristics in

Fig. 6: The geometric interpretation of the Nash bargaining game.

terms of UE's mobility and call ratio. *FOTA* will favor the reduction of TAU overhead for a network characterized by a high mobility, whereas it will favor the reduction of paging overhead for a network characterized by a high call ratio. In what follows, some background on the Nash bargaining game is introduced and then *FOTA* solution is presented.

5.3.1 Nash bargaining model and threat value game

Nash bargaining model can be viewed as a game between two players who would like to barter goods. This model is a cooperative game with non-transferable utility. This means that the utility scales of the players are measured in non-comparable units. This model is adopted in our proposed FOTA scheme to find a Pareto efficiency between the paging and TAU overhead. In our case, the players are the paging and TAU overhead which do not use the same unit. This model is based on two elements, assumed to be given and known to the players. First, the set of vector payoffs \mathcal{P} achieved by the players if they agree to cooperate. \mathcal{P} should be a convex and compact set. Formally, \mathcal{P} can be defined as $\mathcal{P} = \{(u(x), v(x)), x = (x_1, x_2) \in X\}$, whereby X is the set of strategies of two players, and u() and v()are the utility functions of the first and second users, respectively. Second, the threat point, $d = (u^*, v^*) =$ $(u((t_1,t_2)),v(t_1,t_2)) \in \mathcal{P}$, which represents the pair of utility whereby the two players fail to achieve an agreement. In Nash bargaining game, we aim to find a fair and reasonable point, $(\overline{u},\overline{v}) = f(\mathcal{P},u^*,v^*) \in \mathcal{P}$ for an arbitrary compact convex set \mathcal{P} and point $(u^*, v^*) \in \mathcal{P}$. Based on Nash theory, a set of axioms are defined that lead to $f(\mathcal{P}, u^*, v^*)$ in order to achieve a unique optimal solution $(\overline{u}, \overline{v})$:

- 1) Feasibility: $(\overline{u}, \overline{v}) \in \mathcal{P}$.
- 2) **Pareto Optimality:** There is no point $(u(x), v(x)) \in \mathcal{P}$ such that $u(x) \geq \overline{u}$ and $v(x) \geq \overline{v}$ except $(\overline{u}, \overline{v})$. In other words, if \mathcal{P} is symmetric about the line u(x) = v(x), and $u^* = v^*$, then $\overline{u} = \overline{v}$.
- 3) Independence of irrelevant alternatives: If *T* is a closed convex subset of \mathcal{P} , and if $(u^*, v^*) \in T$ and $(\overline{u}, \overline{v}) \in T$, then $f(\mathcal{P}, u^*, v^*) = (\overline{u}, \overline{v})$.
- 4) Invariance under change of location and scale: If $T = \{(u'(x), v'(x)), u'(x) = \alpha_1 u(x) + \beta_1, v'(x) = \alpha_2 v(x) + \beta_2 \text{ for } (u(x), v(x)) \in \mathcal{P}\}$, where $\alpha_1 > 0, \alpha_2 > 0$, and B_1 and B_2 are given numbers, then

 $f(T, \alpha_1 u^* + \beta_1, \alpha_2 v^* + \beta_2) = (\alpha_1 \overline{u} + \beta_1, \alpha_2 \overline{v} + \beta_2).$

Moreover, the unique solution $(\overline{u}, \overline{v})$, satisfying the above axioms, is proven to be the solution of the following optimization problem:

 $\begin{cases} \max \ (u(x) - u^*)(v(x) - v^*) \\ \text{s. t.} \\ (u(x), v(x)) \in S \\ (u(x), v(x)) \ge (u^*, v^*) \end{cases}$

A general geometric interpretation of the Nash bargaining game is shown in Fig. 6.

5.3.2 Fair and Optimal TALs Assignment

We denote by $d = (TAU_{worst}, PAGING_{worst})$ the threat point of our bargaining game that solves *FOTA*. In contrast to conventional bargaining game, the utility function of each player, (i.e., *TAU* and paging overhead) in our model, is the opposite of its cost. In other words, $(TAU_{worst}, PAGING_{worst}) \ge (f(S), g(S)), \forall S \in$ X, where f() and g() are the utility functions of *TAU* and paging overhead players, respectively. The tradeoff problem between *TAU* and paging overhead can be modeled as a convex optimization problem ((9)...(13)).

$$\max (TAU_{worst} - f(\mathcal{S}))(PAGING_{worst} - g(\mathcal{S}))$$

:

S.t,

$$(2), (3), (4), (5)$$
 and

$$\forall i, j \in \mathcal{N} \land i \neq j$$

$$\tau(\sum_{\ell\in\Gamma_i\wedge\ell\notin\Gamma_j}h_{ij}S_{i\ell} + \sum_{\ell\in\Gamma_j\wedge\ell\notin\Gamma_i}h_{ji}S_{j\ell}) \le f(\mathcal{S})$$
(10)

$$\rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} S_{i\ell} (\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) (\sum_{j \in \ell \land j \neq i} \eta_j) \le g(\mathcal{S})$$
(11)

$$f(\mathcal{S}) \le TAU_{worst} \tag{12}$$

$$g(\mathcal{S}) \le PAGING_{worst} \tag{13}$$

In the optimization problem, in addition to matrix S, we added two variables f(S) and g(S) that represent the maximum values of TAU and paging overheads in the network, respectively. The use of Nash bargaining game in *FOTA* ensures fairness among the players (*TAU* and paging overheads) and produces a Pareto optimal solution. From the second and the third axioms of the bargaining game, we can deduce that *FOTA* yields a fair Pareto optimal solution according to the threat point (TAU_{worst} , $PAGING_{worst}$), which represents the performance thresholds of *TAU* and *paging* overheads, respectively.

Let S^{TAU} and S^{PAGING} be the optimal solutions of the linear programs ((1)...(6)) and ((7)...(8)), respectively. Then, we can define $PAGING_{worst}$, $PAGING_{best}$, TAU_{worst} and TAU_{best} as follows:

1)
$$PAGING_{worst} = \rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} ((\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) \sum_{\substack{j \in \ell \land j \neq i \\ j \in \ell \land j \neq \ell}} \eta_j S_{i\ell}^{TAU})$$

2) $PAGING_{best} = \rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} ((\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) \sum_{\substack{j \in \ell \land j \neq i \\ \gamma_i, j \in \mathcal{N}, i \neq j}} \eta_j S_{i\ell}^{PAGING})$
3) $TAU_{worst} = \max_{\forall i, j \in \mathcal{N}, i \neq j} (\tau(\sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_j} h_{ij} S_{i\ell} + \sum_{\ell \in \Gamma_j \land \ell \notin \Gamma_i} h_{ji} S_{j\ell}^{PAGING}))$
4) $TAU_{best} = \max_{\forall i, j \in \mathcal{N}, i \neq j} (\tau(\sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_j} h_{ij} S_{i\ell} + \sum_{\ell \in \Gamma_j \land \ell \notin \Gamma_i} h_{ji} S_{j\ell}^{TAU}))$

Fig. 7: The geometric interpretation of the tradeoff between *TAU* and paging overhead using Nash bargaining game.

It is easily noticeable that $PAGING_{best} \leq PAGING_{worst}$ and $TAU_{best} \leq TAU_{worst}$. Fig. 7 illustrates the physical interpretation of the trade-off between TAU and paging overheads. From this figure, we can observe that a reduction in TAU signaling messages increases the number of paging signaling messages, and vise versa. *FOTA* aims at finding the Pareto optimal point $(f(\overline{S}), g(\overline{S}))$ between TAU and paging overhead. The slope of \mathcal{P} would vary according to the network characteristics, in terms of UE's mobility and paging ratio, which have an impact on the Pareto optimal point $(f(\overline{S}), g(\overline{S}))$.

The values of $PAGING_{best}$, $PAGING_{worst}$, TAU_{best} and TAU_{worst} are obtained by updating the linear programs ((1)...(6)) and ((7)...(8)) as follows:

 $\min f(\mathcal{S}) \tag{14}$

S.t,
(2), (3), (4), (5) and
$$\forall i, j \in \mathcal{N} \land i \neq j$$
:

(9)

$$\tau(\sum_{\ell\in\Gamma_i\wedge\ell\notin\Gamma_j}h_{ij}S_{i\ell} + \sum_{\ell\in\Gamma_j\wedge\ell\notin\Gamma_i}h_{ji}S_{j\ell}) \le TAU_{best}$$
(15)

$$\rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} S_{i\ell} (\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) (\sum_{j \in \ell \land j \neq i} \eta_j) \le PAGING_{worst}$$
(16)

$$PAGING_{worst} \le PAGING_{max} \tag{17}$$

$$TAU_{best} \le f(\mathcal{S}) \tag{18}$$

 $\min g(\mathcal{S}) \tag{19}$

S.t,(2), (3), (4), (5) and

$$\forall i, j \in \mathcal{N} \land i \neq j : \\ \tau(\sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_j} h_{ij} S_{i\ell} + \sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_i} h_{ji} S_{j\ell}) \leq TAU_{worst}$$
(20)

$$\rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} \mathcal{S}_{i\ell} (\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) (\sum_{j \in \ell \land j \neq i} \eta_j) \leq PAGING_{best}$$
(21)

$$PAGING_{best} \le g(\mathcal{S}) \tag{22}$$

$$TAU_{worst} \le TAU_{max} \tag{23}$$

The optimization problem shown in the linear program ((9)...(13)) is non-convex. Using the approach proposed in [17], the problem can be transformed to convexoptimization problem without changing the solution. The key idea is to introduce the log function which is an increasing function. Therefore, the optimization problem is reformulated as follows: $\max \log((TAU_{worst} - f(\mathcal{S}))) + \log((PAGING_{worst} - g(\mathcal{S})))$ (24)

S.t,

$$(2), (3), (4), (5)$$
 and

$$\forall i, j \in \mathcal{N} \land i \neq j:$$

$$\tau(\sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_i} h_{ij} S_{i\ell} + \sum_{\ell \in \Gamma_i \land \ell \notin \Gamma_i} h_{ji} S_{j\ell}) \leq f(\mathcal{S})$$
(25)

$$\rho \sum_{\ell \in \Gamma} \sum_{i \in \ell} S_{i\ell} (\sum_{k \in \Upsilon} \alpha_k \mathcal{M}_{ki}) (\sum_{j \in \ell \land j \neq i} \eta_j) \le g(\mathcal{S})$$
(26)

$$f(\mathcal{S})) \le TAU_{worst} \tag{27}$$

$$g(\mathcal{S})) \le PAGING_{worst} \tag{28}$$

Theorem 3. The optimization problem $((24)\cdots(28))$ is convex and admits a unique solution.

Proof. To prove the unicity of the solution, we have to show that the optimization problem in $((24)\cdots(28))$ is convex. It shall be stated that for an optimization problem to be convex, the objective function should be convex, the equality constraints should be linear, and the inequality constraints should be convex [15]. For our optimization problem $((24)\cdots(28))$, the equality and the inequality constraints are linear. This also means that the inequality constraints are convex. Thus, to show that the optimization problem in $((24)\cdots(28))$ is convex, it is sufficient to prove that the objective function is convex. In the optimization problem $((24)\cdots(28))$, we have *TAU*_{worst} and *PAGING*_{worst} as constant values, whereas f(S) and g(S) are variables. For the sake of simplicity, we denote TAU_{worst} , $PAGING_{worst}$, f(S)and g(S) by A, B, x and y, respectively. Thus, the objective function becomes max $\log(A - x) + \log(B - y)$. Based on [15], the convex optimization problem should be minimized. For this reason, the objective function is transformed, without changing the solution as follows: min $P = -(\log(A - x) + \log(B - y))$. To prove that the optimization problem $((24)\cdots(28))$ is convex, it is sufficient to show that the Hessian matrix \mathbf{H} of P is positive definite.

$$\begin{pmatrix} \frac{\partial^2 P}{\partial^2 x} & \frac{\partial^2 P}{\partial x \partial y} \\ \frac{\partial^2 P}{\partial y \partial x} & \frac{\partial^2 P}{\partial^2 y} \end{pmatrix}$$

Computing the different components of the Hessian matrix, we obtain

$$\frac{\partial^2 P}{\partial x \partial y} = \frac{\partial^2 P}{\partial y \partial x} = 0$$
$$\frac{\partial^2 P}{\partial^2 x} = \frac{1}{(A-x)^2} > 0$$
$$\frac{\partial^2 P}{\partial^2 y} = \frac{1}{(B-y)^2} > 0$$

It follows that the Hessian matrix is diagonal with positive eigenvalues. Therefore, the Hessian matrix is positive definite, the optimization problem is thus convex and admits a unique solution. \Box

Fig. 8: An illustrative example network used in the analysis.

6 ANALYTICAL MODEL

In this section, we introduce a Markov-based model for analyzing the three offline solutions, *F*-*TAU*, *F*-*PAGING* and *FOTA*. We use the same intuition to model the three solutions, since the main difference between these solutions is the output matrix *S*. To ease the explanation of the proposed analytical model, let us consider the network topology depicted in Fig. 8. The possible *TALs* for Fig. 8 is $\Gamma =$ $\{\{\eta_1\}, \{\eta_2\}, \{\eta_3\}, \{\eta_1, \eta_2\}, \{\eta_1, \eta_3\}, \{\eta_2, \eta_3\}, \{\eta_1, \eta_2, \eta_3\}\}$. We numerate the elements in Γ from 1 to 7, respectively. Now, we consider the following matrix *S*, which can be produced via *F*-*TAU*, *F*-*PAGING* or *FOTA*:

$$\mathcal{S} = \begin{bmatrix} 0.3 & 0 & 0.2 & 0.5 & 0 & 0 \\ 0 & 0.3 & 0 & 0.3 & 0 & 0 & 0.4 \\ 0 & 0 & 0 & 0 & 0.1 & 0.4 & 0.5 \end{bmatrix}$$

We denote by *H* the expected probability of movement of a *UE* in the network. *H* can be deduced from \mathcal{H} . Each element $\hbar_{i,j}$ in *H* can be computed as follows:

$$\forall i \in \mathcal{N}, h_{i,j} = \frac{h_{i,j}}{\sum\limits_{\forall j \in \mathcal{N}} h_{i,j}}$$

Considering the example of Fig. 8, *H* is:

$$H = \begin{bmatrix} 0 & 0.1 & 0.9 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{bmatrix}$$

Let M denote the expected duration of a UE in each TA. Formally, M is a vector with a size L. Each element M_i in M represents the time that the UE can spend in TA *i*. M_i can be computed as follow:

$$\forall i \in \mathcal{N}, \ M_i = \frac{\sum\limits_{\forall j \in \Upsilon} \mathcal{M}_{i,j}}{|\Upsilon|}$$

In our analysis, we assume that M_i , for $\forall i \in \Upsilon$, are independent and each M_i follows an exponential distribution of rate μ_i . $\frac{1}{|\mathcal{N}|} \sum_{i \in \mathcal{N}} \alpha_i$ denotes the average arrival traffic of *UEs* in the network. Assuming that this traffic follows a Poisson process of rate λ , the inter arrival time between two consecutive calls is a random variable \mathcal{T} that follows an exponential distribution of rate λ .

These assumptions lead us to model the system using a Markov Chain $X = \{X_t, t \ge 0\}$ on the state space Θ defined by $\Theta = \{(i,k), \forall k \in \Gamma \land \forall i \in k \land S_{ik} \neq 0\}$. In this model, $X_t = (i,k)$ indicates that at instant t,

Fig. 9: The way to construct the embedded Markov chain used in the analysis

Fig. 10: An illustrative example of Embedded Markov Chain

TAL k is assigned to *UEs* when visiting *TA i*. According to this description, it is obvious that we are dealing with a Continuous-Time Markov Chain (CTMC). In what follows, rather than the CTMC, we will use the corresponding Embedded Markov Chain (EMC), which is depicted in Fig. 9(*a*). From this figure, we notice two events that lead to leave a state (*i*, *k*) in EMC. The first one is when an incoming call arrives for a *UE* before it leaves its current *TA i*, whereas the second event is when the *UE* moves from its *TA* to another one before the incoming call arrives. As $M_i \sim Exp(\mu_i)$ and $\mathcal{T} \sim Exp(\lambda)$, the probability for the first and the second events to be occurred can be defined as follows:

- For an incoming call to arrive before the *UE* leaves its state *i*, the probability is $C_i = P(T < M_i) = \frac{\lambda}{\lambda + \mu_i}$.
- For the *UE* to leave its *TA i* before the incoming call arrives, the probability is $1 C_i = P(M_i \leq T) = \frac{\mu_i}{\lambda + \mu_i}$.

Let j_1, \dots, j_N be the neighboring TAs of TA *i*. As depicted in Fig 9(a), when a UE exists its TA i, it has to move to its neighboring TA j according to the matrix *H*. Furthermore, when it moves to TA j, it has to select its TAL k according to the matrix S. The EMC depicted in Fig. 9(a) can be reduced by grouping its states to a new EMC as shown in Fig. 9(b). Indeed, when a UE, assigned TAL l, moves from TA i to another TA j, two types of events can happen: (i) the first one corresponds to the case where TA j belongs to TAL k; (ii) the second one is when TA j does not belong to TAL k, in this case a TA update process should be accomplished to assign a new TAL k to the UE. Let denote by $A_{i,i,k}$ and $B_{i,j,k}$ the probability of the first and the second events, respectively. In fact, $A_{i,j,k}$ and $B_{i,j,k}$ represent the probabilities of moving from TA i to another TA jand then selecting TAL k.

$$\begin{cases} A_{i,j,k} = Pr(\mathcal{T} > M_i)\hbar_{i,j}\mathcal{S}_{jk}. \quad \forall i, j \in \mathcal{N}, \forall k \in \Gamma, i \neq j \text{ and } i, j \in k \\ B_{i,j,k} = Pr(\mathcal{T} > M_i)\hbar_{i,j}\mathcal{S}_{jk}. \\ \forall i, j \in \mathcal{N}, \forall k \in \Gamma, i \neq j, j \in k \text{ and } i \notin k \\ C_i = Pr(\mathcal{T} < M_i). \quad \forall i \in \mathcal{N} \end{cases}$$

Hence,

$$\begin{cases} A_{i,j,k} = \frac{\mu_i}{\lambda + \mu_i} \hbar_{i,j} \mathcal{S}_{jk}. & \forall i, j \in \mathcal{N}, \forall k \in \Gamma, i \neq j \text{ and } i, j \in k \\ B_{i,j,k} = \frac{\mu_i}{\mu_i} \hbar_{i,j} \mathcal{S}_{jk}. & \forall i, j \in \mathcal{N}, \forall k \in \Gamma, i \neq j, j \in k \text{ and } i \notin k \\ C_i = \frac{\lambda}{\lambda + \mu_i}. & \forall i \in \mathcal{N} \end{cases}$$

Fig. 10 shows the corresponding Embedded Markov Chain of the network topology depicted in Fig. 8. The balance equations of EMC can be written according to the following formulas:

$$\forall \quad (j,k) \in \Theta : \quad \pi_{j,k} = C_j \pi_{j,k} + \sum_{\substack{i \in \mathcal{N} \land i \neq j \land S_{ik} = 0 \land h_{i,j} \neq 0 \\ \sum_{\substack{i \in N \land i \neq j \land S_{ik} \neq 0 \land h_{i,j} \neq 0}} A_{i,j,k} \pi_{i,k} = C_j \pi_{j,k} + E_j \pi_{j,k} + E_j \pi_{j,k} \pi_{j,k} + E_j \pi_{j,k} \pi_{j,k} + E_j \pi_{j,k} + E_j$$

Where $\pi_{j,k}$ denotes the probability at steady state to assigning *TAL* k to *UEs* in *TA* i.

The following equations show the balance equations of the illustrative example shown in Fig 10:

$$\begin{split} & \left(\pi_{1,1} = C_1 \pi_{1,1} + B_{2,1,1}(\pi_{2,2} + \pi_{2,4} + \pi_{2,7}) \\ & \pi_{1,4} = C_1 \pi_{1,4} + B_{2,1,4}(\pi_{2,2} + \pi_{2,7}) + A_{2,1,4}\pi_{2,4} \\ & \pi_{1,5} = C_1 \pi_{1,5} + B_{2,1,1}(\pi_{2,2} + \pi_{2,4} + \pi_{2,7}) \\ & \pi_{2,2} = C_2 \pi_{2,2} + B_{1,2,2}(\pi_{1,1} + \pi_{1,4} + \pi_{1,5}) + \\ & B_{3,2,2}(\pi_{3,5} + \pi_{3,6} + \pi_{3,7}) \\ & \pi_{2,4} = C_2 \pi_{2,4} + B_{1,2,4}(\pi_{1,1} + \pi_{1,5}) + A_{1,2,4}\pi_{1,4} \\ & B_{3,2,4}(\pi_{3,5} + \pi_{3,6} + \pi_{3,7}) \\ & \pi_{2,7} = C_2 \pi_{2,7} + B_{1,2,7}(\pi_{1,1} + \pi_{1,4} + \pi_{1,5}) \\ & \pi_{3,5} = C_3 \pi_{3,5} + B_{1,3,5}(\pi_{1,1} + \pi_{1,4}) + A_{1,3,5}\pi_{1,5} + \\ & B_{2,3,5}(\pi_{2,2} + \pi_{2,4} + \pi_{2,7}) \\ & \pi_{3,6} = C_3 \pi_{3,6} + B_{1,3,6}(\pi_{1,1} + \pi_{1,4} + \pi_{1,5}) + \\ & B_{2,3,7}(\pi_{2,2} + \pi_{2,4}) + A_{2,3,7}\pi_{2,7} \\ & \pi_{3,7} = C_3 \pi_{3,7} + B_{1,3,7}(\pi_{1,1} + \pi_{1,4} + \pi_{1,5}) + \\ & B_{2,3,7}(\pi_{2,2} + \pi_{2,4}) + A_{2,3,7}\pi_{2,7} \\ \end{split}$$

Let N_{TAU} and N_{paging} denote the expected numbers of *TAU* and *paging* generated in the network, respectively. Their values are obtained as follows:

$$\begin{cases} N_{TAU} = \sum_{i:k\in\Theta} (\pi_{i,k} \sum_{j:\ell\in\Theta \land l \neq k \land i \neq j} B_{i,j,\ell}) \\ N_{paging} = \sum_{i:k\in\Theta} \pi_{i,k} C_i \sum_{j\in k \land i \neq j} \eta_j \end{cases}$$

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the three offline solutions *FOTA*, *F-TAU* and *F-PAGING*, by solving the analytical model. Then, we evaluate *ETAM* framework through simulation. Throughout this section, we fix the overhead of a single *TAU*, τ , to be ten times the value of ρ [14]. All solutions (i.e. *FOTA*, *F-TAU* and *F-PAGING*) are evaluated in terms of the following metrics:

- 1) *TAU overhead:* the overhead of *TAU* messages (UP-Link) generated by *UEs* when visiting new *TALs*.
- 2) *Paging overhead:* the overhead of paging packets sent from *MME* to locate *UEs* during the call establishment.
- 3) *Total overhead:* the generated overhead due to both paging and *TAU*. The aim of this metric is to show the Pareto-efficiency between the *TAU* and paging overhead.

To evaluate *ETAM*, we divided the deployed area into a set of TAs, where each TA has a rectangular shape with a specific length and width. Note that TAs may have different surfaces according to their length and width. The mobility of UEs is modeled according to the Random Waypoint Mobility Model [18] with the pause-time sets to zero. Initially, we start the evaluation by placing each UE in a given TA. During the evaluation, each UE chooses a random destination (TA) in the deployed area and a speed that is uniformly distributed between $[avgSpeed - \Delta, avgSpeed + \Delta]$, where avgSpeed is the average speed of different UEs and Δ is the variation in the speed between UEs. In the evaluation, we set Δ to 5km/h. The UE then travels toward the newly chosen at the selected speed. This process is repeated until the evaluation time finishes. In the evaluation, we executed the online and the offline steps 10 times. The numerical results were obtained by solving the Markov model corresponding to network model of Fig. 10, while the simulation were obtained through Matlab. Indeed, the simulator tool was implemented on top of Matlab and CVX (a package for disciplined convex optimization and geometric programming) [19]. In our evaluation, the sites (i.e., eNodeBs) are randomly deployed over the network. Without any loss of generality, we assume that the sites are already organized into *TAs* through any solution in the literature. The grouping of different sites into *TAs* is outside the scope of this paper.

7.1 Numerical results

In this subsection, we present the numerical results, focusing on the impact of TAU and paging overhead on each solution by varying μ_i and λ . μ_i is the exponential distribution rate of the sojourn times of UEs in TA i, whereas λ is the average ratio of calls for a UE in the network. λ can be also defined as the exponential distribution rate of the inter arrival time between two consecutive calls for a UE. The latter refers to the percentage of time that a UE is called. Here, the term "call" refers not only to the classical voice call but also to data connection, such as VoIP and web applications. This parameter allows us to model the user activity in terms of active connections. Whereas, $\frac{1}{\mu_i}$ refers to the average time spent by a UE (i.e., sojourn time) in each TA. Increasing the values of μ_i corresponds to an increase in UEs' speeds and/or a decrease in the size of cells (micro-cell for 5G network) in the real world. Two scenarios are considered: (i) we vary λ from 1 to 10 while μ_i is fixed to 5; (*ii*) we vary μ_i from 1 to 10 while we fix λ to 5.

The *TAU*, *paging* and total overhead for each solution are evaluated using the following formulas:

 $\begin{cases} Overhead_{TAU} = \tau N_{TAU} \\ Overhead_{paging} = \rho N_{paging} \\ TotalOverhead = \tau N_{TAU} + \rho N_{paging} \end{cases}$

Fig. 11 and Fig. 12 show the performance of the proposed solutions against increasing values of λ and 1 , respectively. As shown in Eq. 6, the increase of transitions probability of type "B" in EMC, reduces the sojourn time at each state in EMC. This results in a negative impact on TAU overhead and a positive impact on paging overhead, respectively. Whereas, the increase of transitions probability of type "C" in EMC, increases the sojourn time at each state in EMC. The latter has a positive impact on TAU overhead and a negative impact on paging overhead, respectively. The rise on λ values increases (resp., decreases) the transition probability of type "C" (resp., "B"), whereas the rise on μ values increases the transition probability of type "B" and decreases the transition probability of type "C".

For this reason, as depicted in Fig. 11(a) and Fig. 11(b), the increase of average arrival traffics (λ) has a negative impact on the paging overhead and a positive impact on the *TAU* overhead. Fig. 12(a) and Fig. 12(b) show that

Fig. 11: Performance of the proposed solutions as a function of λ

Fig. 12: Performance of the proposed solutions as a function of μ

the increase of the sojourn time $(\frac{1}{\mu})$ in each *TA* has also a negative impact on the paging overhead and a positive impact on *TAU* overhead. Fig. 11(*a*) and Fig. 12(*a*) show that *F-PAGING* exhibits better performance than *FOTA* and *F-TAU* in terms of *TAU* overhead regardless the values of λ and $\frac{1}{\mu}$. This is attributable to the fact that the key objective of *F-PAGING* is to minimize paging overhead without tacking into account the *TAU* overhead. Whereas, Fig. 11(*b*) and Fig. reffig:AN:MU(*b*) show that *F-TAU* exhibits better performance than *FOTA* and *F-PAGING* in terms of *TAU* overhead regardless the values of λ and $\frac{1}{\mu}$. This is obvious as *F-TAU* is designed to optimize the *TAU* overhead without tacking into account the ratio account the paging overhead.

Fig. 11(*c*) and Fig. 12(*c*) show the total overhead due to both paging and *TAU* for different values of λ and $\frac{1}{\mu}$, respectively. *FOTA* achieves a tradeoff between the two conflicting objectives, i.e; reduction of both *TAU* and paging overhead. We observe from these figures that: (*i*) *F-TAU* has better performance in terms of total (i.e., paging and *TAU*) overhead when the values of λ and μ are below 5; (*ii*) *F-PAGING* has better performance when the values of λ and μ exceed 5. Indeed, the performance of *FOTA* is always between *F-TAU* and *F-PAGING*, whatever the values of λ and $\frac{1}{\mu}$. *FOTA* has performance similar to that of *F-TAU* when values of λ and μ are below 5 and similar to that of *F-PAGING* when values of λ and μ exceed 5. Thus, *FOTA* always finds an

optimal tradeoff between *TAU* and paging overhead by maintaing the total overhead near to the optimal value regardless the *UEs'* behavior. This demonstrates that it successfully achieves the key objective of its design.

7.2 Simulation results

In this subsection, the proposed schemes are evaluated through simulations. We used the proposed framework (ETAM) to evaluate through simulation the three solutions (F-PAGING, F-TAU and FOTA) of offline step and the two solutions of online step. Formally, we have six possible combinations of protocols. The same trajectory logs of UEs are used to evaluate the different combinations of protocols. The information of handover between different TAs is forwarded from the online to the offline step. During the movement of a UE, a TAU message is generated and sent to MME every-time a UE crosses a TA that does not belong to its TAL in the online step. The optimization problems are solved considering different values of the average speed avgSpeed of UEs and the average ratio of calls of each UE in the network. The average speed of UEs shows the impact of TAUs signaling on the different optimization problems. In the simulation evaluation, we evaluate two scenarios: (i)we vary the average speed avgSpeed of UEs and fix the average call ratio to 50 calls/h for each UE in the network; (ii) we vary the average call ratio of UEs and fix the average speed avgSpeed of UEs to 50km/h. In contrast to the analysis part, the two solutions of online part are considered in the simulation evaluation: (i) UEs pick their TAL without any prioritization; (ii) each UE

Fig. 13: Performance of the proposed solutions as a function of speed of UEs

picks a *TAL* with prioritization, according to its behavior, to reduce the overhead of *TAU* and paging signaling.

Fig. 13 and Fig. 14 show the resilience of FOTA, F-TAU and F-PAGING against increase in UEs' speed and call ratio, respectively. We clearly observe that assigning TALs to UEs with prioritization (e.g., per UE's activities - mobility and call ratio) has a positive impact on the performance of the three solutions. From Fig. 13(c), for the speed of *UEs* equals to 70km/h, we observe that the selection of TALs with prioritization reduces the total overhead from 13060 to 12340 (an enhancement with more than 5.51%) for *F-TAU*, and for *FOTA* the total overhead is reduced from 14460 to 13321, which means an enhancement exceeding 7.87%. Meanwhile from Fig. 14(c), we observe that when the call ratio equals to 90 call/h, the selection of TALs with prioritization reduces the total overhead of FOTA from 18556 to 16336, which means an enhancement exceeding 11.96%.

Fig. 13(b) and Fig. 13(c) show that the speed of UEs has a negative impact on TAU and total overhead, respectively. This behavior is expected as highly mobile users perform frequently handoff between TAs and ultimately generate high TAU messages. Thus, the higher the speed of *UEs* is, the higher the *TAU* overhead becomes. Further, we remark from Fig. 13(b) that F-TAU exhibits better performance than FOTA and F-PAGING in terms of TAU overhead regardless the speed of UEs. This is attributable to the fact that the key objective of *F*-TAU is to minimize TAU overhead without tacking into account the paging overhead. Whereas, Fig. 14(a) and Fig. 14(c) demonstrate that the call ratio has a negative impact on paging and total overhead, respectively. This is also predictable as highly active UEs (i.e., with high call ratios) cause high number of paging messages when they go in the idle mode and their locations are searched the network. Moreover, from Fig. 14(a), we observe that *F-PAGING* exhibits better performance than *FOTA* and *F*-*TAU* in terms of paging overhead regardless the call ratio. This is intuitively due to the fact that F-PAGING is designed to optimize the paging overhead without tacking into account the TAU overhead.

Fig. 13(c) and Fig. 14(c) illustrate the tradeoff achieved by *FOTA* between the two conflicting objectives, i.e; reduction of both *TAU* and paging overhead. They show

the total overhead incurred in the three solutions and that is for different values of the UE speed and call ratio, respectively. We observe from these figures that: (i) F-PAGING exhibits better performance in terms of total (i.e., paging and TAU) overhead when the speed of UEs is below 50km/h or when the call ratio exceeds 50 calls/h; (ii) F-TAU exhibits better performance when the average speed of UEs exceeds 50 km/h or when the call ratio does not exceed 50calls/h; and (iii) FOTA has performance similar to that of *F-PAGING* when the speed of UEs is below 50km/h or when the call ratio exceeds 50 calls/h. It is also observed that FOTA performs similarly to F-TAU when the call ratio does not exceed 50 calls/h or the speed of UEs exceeds 50 km/h. Indeed, the performance of FOTA is always between F-TAU and F-PAGING, depending on the UEs' speed and their activity levels (i.e., call rate). For highly mobile UEs, FOTA performs similar to F-TAU (optimal) and better than F-PAGING, whilst for highly active UEs, FOTA performs similar to *F*-PAGING (optimal) and better than *F*-TAU. FOTA always finds an optimal tradeoff between TAU and paging overhead by maintaing the total overhead near to the optimal value regardless the UEs' behavior. This demonstrates that it successfully achieves the key objective of its design.

It is worth noting that we observe some differences between the simulation and the numerical results. In contrast to the simulations, varying the average of traffic arrival rate λ has an impact on *TAU* overhead and varying the average sojourn time $(\frac{1}{\mu})$ in each *TA* has an impact on the paging overhead. This is because in the analysis, the behavior of the network is shown as a ratio between λ and μ . Any increase in any of one of them has a negative impact on the other.

8 CONCLUSION

One key vision of the upcoming 5G is to support potential numbers of users connecting to the mobile networks. An important challenge is to cope with the amount of signaling to be generated by these mobile users, particularly signaling messages due to mobility (i.e., *TAU*) and for connection setup (i.e., paging). Particularly, the mentioned overhead could be exacerbated if small cells are deployed (as envisioned in the upcoming 5G). To

Fig. 14: Performance of the proposed solutions as a function of the call ratio.

overcome this issue, we have devised the *ETAM* framework, which aims at mitigating the effect of *TAU* and paging signaling messages on the network. *ETAM* has two parts, one is executed online and another is executed offline. In the online part, we proposed two strategies to assign *TALs* to *UEs*, whereas in the offline part three solutions are proposed. Analysis and simulation results have proven the efficiency of each solution in achieving its key design objectives.

REFERENCES

- T. Taleb and A. Kunz, "Machine type communications in 3gpp networks: potential, challenges, and solutions," *IEEE Communications Magazine*, vol. 50, no. 3, pp. 178–184, March 2012.
- [2] M. Bagaa, A. Ksentini, T. Taleb, R. Jantti, A. Chelli, and I. Balasingham, "An efficient d2d-based strategies for machine type communications in 5g mobile systems," in *IEEE WCNC'16*, April 2016.
- [3] T. Taleb, "Towards carrier cloud: Potential, challenges, & solutions," *IEEE Wireless Communications Magazine*, vol. 21, no. 3, pp. 80–91, Jun 2014.
- [4] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis, and T. Magedanz, "Ease: Epc as a service to ease mobile core network," *IEEE Network Magazine*, vol. 29, no. 2, pp. 78–88, Mar 2015.
- [5] Y. Zhang and M. Fujise, "Location management congestion problem in wireless networks," *IEEE Transactions on Vehicular Technol*ogy, vol. 56, no. 2, March 2007.
- [6] Mitsubishi Electric, "Tracking areas size tracking area list optimization technical report 3GPP TSG RAN WG3 meeting, , r3-071931, 2007." Tech. Rep.
- [7] S. Modarres Razavi and D. Yuan, "Mitigating mobility signaling congestion in LTE by overlapping tracking area lists," in ACM MSWIM'11, 2011.
- [8] Y. W. Chung, "Adaptive design of tracking area list in lte," in IEEE WOCN'11, May 2011, pp. 1–5.
- [9] S. Razavi, D. Yuan, F. Gunnarsson, and J. Moe, "Exploiting tracking area list for improving signaling overhead in LTE," in *IEEE VTC'10*, May 2010, pp. 1–5.
- [10] S. Razavi, Y. Di, F. Gunnarsson, and J. Moe, "Dynamic tracking area list configuration and performance evaluation in LTE," in *IEEE GLOBECOM Workshops (GC Wkshps)*, December 2010, pp. 49–53.
- [11] S. M. Razavi and D. Yuan, "Mitigating signaling congestion in LTE location management by overlapping tracking area lists," *Elsevier Computer Communications*, vol. 35, no. 18, pp. 2227 – 2235, 2012.
- [12] H.-W. Kang, W.-J. Kim, S.-J. Koh, H.-G. Kang, and J.-B. Moon, *Ubiquitous Information Technologies and Applications.* Springer Berlin Heidelberg, 2014, ch. Configuration of Tracking Area Code (TAC) for Paging Optimization in Mobile Communication Systems, pp. 59–66.
- [13] H.-W. Kang, H.-G. Kang, and S.-J. Koh, "Optimization of tac configuration in mobile communication systems: A tabu search approach," in *IEEE ICACT'14*, 2014.

- [14] K. Kyamakya and K. Jobmann, "Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis," *IEEE Transactions on Vehicular Technology*, vol. 54, no. 2, 2005.
- [15] S. Boyd and L. Vandenberghe, *Convex Optimization*. New York, NY, USA: Cambridge University Press, 2004.
- [16] J. Nash, "The Bargaining Problem," *Econometrica*, vol. 18, no. 2, pp. 155–162, April 1950.
 [17] Y. Zhao, S. Wang, S. Xu, X. Wang, X. Gao, and C. Qiao, "Load bal-
- [17] Y. Zhao, S. Wang, S. Xu, X. Wang, X. Gao, and C. Qiao, "Load balance vs energy efficiency in traffic engineering: A game theoretical perspective," in *IEEE INFOCOM'13*, April 2013, pp. 530–534.
- [18] T. Camp, J. Boleng, and V. Davies, "A survey of mobility models for ad hoc network research," Wireless Communications and Mobile Computing, vol. 2, no. 5, pp. 483–502, 2002. [Online]. Available: http://dx.doi.org/10.1002/wcm.72
- [19] M. Grant and S. Boyd, "Graph implementations for nonsmooth convex programs," in *Recent Advances in Learning and Control*, ser. Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited, 2008, pp. 95–110.