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Abstract—In this work we propose a novel handover (HO)
algorithm, that considers system performance from both user and
network perspective, in the context of heterogeneous networks
(HetNets), i.e., networks composed of BSs with asymmetrical
transmission power. In such an environment, conventional HO
algorithms that consider only the user perspective, e.g., received
signal strength (RSS)-based, might offer suboptimal performance,
since they mainly push users to cells with high transmission
powers. Thus, new algorithms that take into account also the
network perspective, e.g., cell load, are needed. In this work, a
load-aware algorithm is proposed considering the service delay
that a user experiences from the network. In addition, an im-
plementable framework based on Software Defined Networking
(SDN) architecture is sketched to support the algorithm. The
proposed algorithm is compared with the traditional one we
meet in long-term evolution (LTE) systems and a distance-
based one. Extracted cell assignment probability and user service
delay performance results show that the load-aware approach
outperforms both of them.

I. INTRODUCTION

Handover (HO) decision algorithms in heterogeneous net-
works (HetNets) are emerging with the extreme densification
and offloading of cellular systems as the key technologies
to get 1000x data rate [1]. Many works have been done
in HO decision algorithms considering the overall system
performance from the user and network perspective, in the
context of long-term evolution (LTE)/LTE–Advanced (LTE–
A) networks [2]. Specifically, from the network perspective, a
HO algorithm that adapts the hysteresis and the time-to-trigger
(TTT) based on certain network key-metrics (e.g., HO failure
or ping-pong ratios) is studied in [3], along with the self-
organising networks (SONs). Advanced self-organizing map
(SOM) is examined to suppress handovers in regions that
coincide with many unnecessary HOs [4]; also the HO offset
tuning is performed via network load-balancing for assuring
handover to possible target cells and no return to their serving
cell [5]. The main focus so far has been to enhance the system
performance from the user-perspective. The most common
used are based on: (i) received signal strength (RSS), (ii) user
speed and (iii) interference-management [6], [7].

However, denser deployments in HetNets experience high
spatio-temporal load variations and thus require more advanced
HO algorithms that consider both perspectives, jointly. In addi-
tion, power based algorithms (e.g., RSS-based) proposed in the
literature cannot be applied, due to asymmetrical transmission
powers among macrocells and picocells (also called small cells
(SCs) in the literature). Especially, in such environments, a user
equipment (UE) usually remains connected to a macrocell that

offers high transmission power (and is potentially overloaded
due to its high number of concurrent users), while is placed
close to one or more underloaded SCs. According to the latter,
authors in [8] propose to scale down macrocell RSS with an
appropriate factor to force connection to a SC. This factor
is selected optimally based on the maximization of the SC
assignment probability. Therefore, it was left as future work
to examine policies that consider user throughput, delay or
other user service requirements. To this end, we revisit the
problem of HO, in the context of future HetNets deployments.
Our contributions can be summarized as follows:

1) We construct a framework considering both user (i.e., RSS)
and network (i.e., cell load) perspectives. Specifically, the
service delay of a random flow is analytically derived, as a key
QoS criterion for the HO decision algorithm under the assump-
tion of uneven transmission power regimes. This approach
overcomes the shortcomings created by only considering RSS
criteria in HO decision for HetNets (Section II and III).

2) We propose a HO decision algorithm (Section III) and
sketch an implementable framework based on Software De-
fined Networking (SDN) architecture, as suggested to be a key
enabler for the realization of 5G networks [9] (Section IV).

3) We investigate the related trade-offs involved, in different
load variation scenarios. Further, the proposed algorithm is
compared with the (i) one used in traditional LTE systems and
(ii) a distance-based algorithm proposed in [8] and significantly
outperforms them (Section V).

II. SYSTEM MODEL

A. Signal model

This work considers a network consisting of a macrocell
and a group of picocells located at given distances Dj from
it, where j ∈ {1, . . . ,P} and P is the total number of the
picocells. The cells, i.e., macrocell/picocells, are denoted by
m, pj , respectively. In addition, the picocells are assumed
circular on average, regardless of the fading effects presence.
Each base station (BS) is considered to be located in the
center of each circular cell i ∈ {m, pj} of a given radius
Ri corresponding to the (xi, yi) coordinates. Let rdBm

m [k] and
rdBm
pj [k] denote the reference signal received power (RSRP)

from the macrocell BS and the picocell BS at time k 1 in
dBm scale, respectively:

rdBm
i [k] , P dBm

Tx,i + P dB
L,i(d

k
i ) + ψdB

i [k], i ∈ {m, pj}, (1)

1 k corresponds to the discretization of the continuous time t sampling at kTs

intervals, where Ts stands for the measurement sampling period.



where P dBm
Tx,i

denotes the BS transmission power, P dB
L,i(d

k
i )

denotes the path loss in dB, dki represents the distance from
the BS to the user that is greater than a reference distance dr
and ψdB

i [k] stands for the shadowing fading in dB for each cell

i. The pathloss P dB
L,i(d

k
i ) , 10 log10 (K)− 10η log10

(
dki /dr

)
,

where K is the path loss measured at reference distance dr
and η is the pathloss exponent. The K parameter is given by

K , [c0/ (4πfcdr)]
2
, where c0 is the universal speed of light

in vacuum and fc is the carrier frequency. The shadow fading
ψdB
i [k] ∼ N

(
0, σ2

dB,i/ξ
2
)

2 and is assumed to be independent

across i and k, where ξ , 10/ ln(10). Averaging is performed
by an exponential moving average (EMA) filter, i.e., low-
pass filter, for smoothing any RSRP abrupt variations. High
frequency fluctuations (i.e., Rayleigh fading) are filtered out
and can be neglected. Consequently, the output filtered signal
is:

r̄dBm
i [k] , (1− α)r̄dBm

i [k − 1] + αrdBm
i [k], (2)

where α , 2−q/2 and q ∈ N.

B. Mobility and Network users

The users are distinguished in two different categories
depending on their mobility status: a) Static users (SU): Users
that are not moving on average and they don’t intend to
handover. The static users are divided in two subcategories
based on their on-going traffic: i) Active users (AU): Users
that have already associated with a BS and generate new flows.
ii) Disconnected users (DU): Users that are considered to
be switched-off. This implies no association with a specific
BS. b) Mobile users (MU): Users that are moving and intend
to handover. The users mobility can be described with any
mobility model.

The SUs are getting active with probability pri in each cell
i at each time k. On that account, the number of the AUs in
each cell i at time k, Nk

AU,i, is distributed according to the
binomial distribution with parameters NSU,i and pri , where
NSU,i stands for the total number of the static users in each

cell i. The exact value of Nk
AU,i is considered to be known to

the BS at each time k. The MUs are always active and NMU

stands for their total number.

C. Traffic model

New flows (all considered as best-effort) by active users
are assumed to arrive according to a Poisson process with the
total arrival rate in each cell i at time k [10]:

λki = λ
(

Ñk
MU,i +Nk

AU,i

)

, (3)

where λ denotes the flow arrival rate per user. The flow size
follows a general distribution with mean Y . We assume the
Processor Sharing (PS) scheduling discipline and adopt the

stationary M/G/1/PS system [10]. Ñk
MU,i , 1 (u 6∈ i)+Nk

MU,i,

where 1(·) stands for the indicator function and becomes one
when a mobile user u that intends to handover is not associated
with the cell i (i.e., u 6∈ i) at time k; Nk

MU,i denotes the total
number of mobile user that are associated with the cell i at time
k (i.e., a subset of NMU). Nk

MU,i is also acquainted by each cell

2 The x ∼ N
(

µ, σ2
)

denotes that random variable x is Gaussian with mean

µ and variance σ2.

Algorithm 1 Handover algorithm

Input: D̄k
m: predicted average delay of the macrocell m

D̄k
p
j
: predicted average delay of the picocell p

j

rp,th: picocell RSRP threshold
Output: user cell association

j∗ = argmax
j
r̄pj

if
(
r̄pj∗ [k] > rp,th

)
then

if (r̃j∗ [k] > r̄m[k]) then
connect to picocell

else
connect to macrocell

end if
end if

i BS. If the mobile user u is already associated with the cell
i, then 1(·) is zero and u is already included in Nk

MU,i. Thus,

after computing Ñk
MU,i and plug-inning it to Eq. (3), we get

an estimation of the total arrival rate after the HO procedure.
This is also used for the prediction of the service delay, as it
will be discussed later in Section III.

III. HANDOVER DECISION ALGORITHM

A well-known criterion, commonly used in conventional
HO decision algorithms for mobile communication systems
(e.g., 3GPP LTE), is based on RSRPs comparison method in
which hysteresis and threshold are included [11]. Specifically,
the criterion for the handover scenario is expressed as:

r̄dBm
pj [k] > r̄dBm

m [k] + ∆ ∧ r̄dBm
m [k] < rdBm

m,th, (4)

where ∆ denotes the hysteresis and rm,th is the minimum
RSRP macrocell threshold value.

There are scenarios where a macrocell is overloaded and
it becomes crucial for the user to connect to a picocell that
is probably underloaded. Due to significant differences in
transmission power among a macrocell and picocells, there
is a huge gap between their received powers at the UEs (i.e.,
r̄dBm
m [k] ≫ r̄dBm

pj [k]). Hence, the above criterion does not often
hold and the conventional HO algorithm cannot be triggered
to maintain the required QoS (e.g., in terms of rate, delay
and throughput). Thus, load-aware algorithms development are
crucial for uneven received powers regimes found in HetNet
scenarios.

The proposed load-aware (LA) policy is described in
Algorithm 1. The algorithm is applied only to the mobile
users by taking into account also the static active ones. The
disconnected users are not taken into account, since they
are assumed to be switched-off. r̄i[k] stands for the RSRP
from each cell i at time k in linear scale. The picocell
that the user intends to handover is the one with the maxi-
mum received power, denoted as pj∗ . After the selection of
the pj∗ picocell, the condition r̄pj∗ [k] > rp,th, with rp,th
standing for the picocell RSRP threshold, ensures that the
user stays within the picocell coverage area and the received
signal is retained adequately strong. Thus, the algorithm is
running only inside the picocell. Subsequently, we define

r̃j∗ [k] , r̄pj∗ [k] +
[

1− f
(

D̄k
m, D̄

k
pj∗

)]

r̄m[k]. D̄k
i denotes
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Fig. 1. Upper and lower bounds of the average capacity for the macrocell
and the picocell, as a function of the distance.

the prediction of the average (service) delay of a new flow
of a cell i at time k that the user experiences when staying
in the picocell. An analytical expression for D̄k

i is given later
in Eq. (7). It is noted that the prediction of the average delay
D̄k
i is performed at time k, but it represents an estimation

for the entire time period that the user is staying within
the picocell (i.e., user’s delay assumed to be D̄k

i during this
time period). As it is mentioned later, the computations for
D̄k
i remain consistent with this assumption. f(·) stands for a

continuous function and is constructed properly to force the
user to connect in the picocell pj∗ , iff D̄k

pj∗
≪ D̄k

m, despite

the fact that r̄m[k] ≫ r̄pj∗ [k]. This approach meets the user
needs that cannot be supported by the congested macrocell and
its association with a picocell is critical in terms of QoS. The
condition that must hold to connect to the picocell is given
analytically by the following inequality that applies the above
policy:

r̃j∗ [k] > r̄m[k] ⇔ r̄pj∗ [k] > f
(

D̄k
m, D̄

k
pj∗

)

r̄m[k], (5)

otherwise the user is connected to the macrocell. Finally, the

function f
(

D̄k
m, D̄

k
p
j

)

, exp
[

−cD̄k
m/D̄

k
pj

]

, c ≥ 1 with

a codomain in [0, 1] provides such a property as intended.
Specifically, the exponential nature of the function provides
quick convergence to zero when D̄k

pj∗
≪ D̄k

m. This manages

to scale down the received powers asymmetry in order to hold
Eq. (5) and associate the user with the underloaded picocell.
Finally, the constant c stands for a tuning parameter. Next, we
describe the computations needed for the prediction of D̄k

i :

The C̃(dl,i) ,
[
C̄L(dl,i) + C̄U (dl,i)

]
/2 is defined as

the arithmetic mean of C̄L(dl,i), C̄U (dl,i) that represents the
analytical lower and upper bounds of the averaged capacity as
a function of the lth static active user distance, dl,i, for each
cell i (see Fig. 1). A detailed description of their analytical
expression is given in Appendix A (see Eq. (9), (10)). The
latter computations are consistent with the prediction of D̄k

i for
the entire user’s sojourn within the picocell, since dl,i remains
invariant for the static users across time k. For the mobile
users, there is no prior knowledge of their future positions, thus
their corresponding lower and upper bounds of the averaged
capacity for each cell i, C̄iL, C̄

i
U , are averaged over all the

possible distances, assuming that the user passes uniformly
through all the points within the picocell after multiple visits
during its staying within it. The uniform distribution of the
points as well as the corresponding capacity analysis are en-
closed in Appendix B. Thus, the aforementioned computations

Fig. 2. Network setup and SDN controller.

are consistent also with the prediction of D̄k
i for the total user’s

sojourn within the picocell. Finally, their respective arithmetic

mean is given by C̃i =
(
C̄iL + C̄iU

)
/2.

According to the above computations, the expected average
rate 3 at time k for each cell i is determined by [12]:

Rk
i =

Ñk
MU,iC̃i +

Nk
AU,i∑

l=1

C̃ (dl,i)

Ñk
MU,i +Nk

AU,i

. (6)

Consequently, based on the system assumptions (i.e., sta-
tionary M/G/1/PS), the prediction of D̄k

i is given by [10]:

D̄k
i =

1

µki − λki
, (7)

where µki = Rk
i /Y stands for the service rate at time k for

each cell i.

IV. SDN-BASED IMPLEMENTATION

The proposed handover algorithm decides whether a mobile
user should handover from its (currently) associated BS, to
another nearby BS that might promise enhanced QoS. To make
such a decision, the user should be aware of the cell load or
the offered user QoS for both BSs. To this end, a centralized
entity determines the service delay of each individual cell
based on the received measurements and communicates this
with the underlying network. SDN architecture facilitates this
procedure, since it offers a centralized programmable control
for the underlying network [9]. Following the SDN outline,
we consider three planes as illustrated in Fig. 2:

Controller tier: Each time k, the controller: a) receives the
respective λki and µki from all cells, b) computes and sends
the corresponding delays D̄k

i to all BSs needed (e.g., a certain
BS should know not only his corresponding service delay, but
also the one from its neighboring BSs).

Network tier: Each time k, BSs: a) send the respective λki
and µki , b) receive the corresponding delays D̄k

i , c) send the
D̄k
i to the UE.

User tier: Each time k, the UE: a) receives the delays D̄k
i , b)

triggers the association procedure based on Algorithm 1.

V. SIMULATION RESULTS

This section investigates the proposed LA HO policy
performance compared to other HO policies. The entire frame-
work for the simulation is built in MATLAB. The simulation
parameters are provided in Table I [13].

3 The rate considers a priori the user association, as it is used for the predicted

delay. Thus, Ñk
MU,i is plug-inned.



TABLE I. SIMULATION SETUP PARAMETERS

parameter value parameter value parameter value

Rm 1000 m fc 700 MHz prm 0.8

Rpj
200 m B 10 MHz prpj

0.8

P dBm
Tx,m 43 dBm dr 1 m ∆ 3 dB

P dBm
Tx,pj

21 dBm q 4 Y 10 MBytes

N dBm
0

-104.5 dBm η 2 s 50

rdBm
m,th -90 dBm σdB,m 8 dB δ 10

rdBm
p,th -55 dBm σdB,pj

6 dB c 1

The MUs mobility model is based on a two-dimensional
random walk (2D RW) limited in a finite space (i.e., circular
macrocell) with step s or s/δ depending on where the user
is moving inside (i.e., macrocell/picocell) and δ > 0 denotes
a degrading step factor 4. This variable step simulates the
scenario that the users are staying inside the picocell area
for a sufficient amount of time compared to the macrocell
one (e.g., in airports, malls, etc). As next, Fig. 3–4 present
a scenario with three picocells placed in different distances
from the macrocell (D1 = 250 m, D2 = 350 m, D3 = 450
m) and one mobile user (i.e., NMU = 1) 5, as shown in Fig. 2.

Fig. 3 demonstrates the mobile user cell assignment prob-
abilities, Pr(u ∈ m), Pr(u ∈ p) for the macrocell and the
picocell, respectively. These mobile user cell assignment prob-
abilities are presented as a function of the flow arrival rate λ for
different number of static users 6 NSU,m = 200, 400, 600 and
NSU,pj = 10. Their computation is performed via Monte-Carlo
simulations within the picocells pj . Especially, Pr(u ∈ p)
is also averaged out for all picocells pj . Specifically, with
the increment of λ, the total load in the macrocell augments,
since the number of the macrocell static users is greater than
the picocell ones, causing macrocell overload. Consequently,
the difference in the corresponding delays increases (i.e.,
macrocell delay is greater than that of the picocells). Thus,
the LA algorithm associates the user with the underloaded
cell (i.e., picocell) or equivalently Pr(u ∈ p) increases
with the augmentation of λ. Also, as NSU,m increases the
macrocell becomes overloaded with smaller values of λ, so
Pr(u ∈ p) tends to 1 in different λ = 0.04, 0.06, 0.12 for
NSU,m = 200, 400, 600, respectively. What is more, we include
the conventional (CONV) algorithm, described in Eq. (4) and
compare it with the proposed LA one. In sharp contrast with
the LA algorithm, the CONV algorithm always suggests the
user to be associated with the macrocell. In case of congestion,
this is suboptimal, since the user is placed close to one or
more underloaded cells. Pr(u ∈ m), is also plotted, showing
the complementary behavior of the algorithm.

Fig. 4 shows the predicted delays, D̄m, D̄p for the macro-
cell and the picocell, as a function of the flow arrival rate
λ. Specifically, these are the D̄k

m, D̄
k
p that are also aver-

aged out across time k. Their computation is performed via
Monte-Carlo simulations for different number of static users

4 The user coordinates (xk
i , y

k
i ) , (xk−1

i
+ si cos(φ), y

k−1

i
+ si sin(φ)) in

each cell i at each time k, where si =

{

s , i = m,
s/δ , i = pj ,

and φ is uniformly

distributed in [0, 2π).
5 The proposed algorithm as well as the performed analysis hold for the

general type of cells (i.e., either overlapping or non-overlapping cells) with any
radius Ri. Without loss of generality, we relax this assumption considering
non-overlapping cells and the same radius for the picocells. The consideration
of one mobile user is sufficient enough for studying the behavior of the
algorithm without affecting its validity for the general case. 6 At each time

k, Nk
AU,i is changing. On average, we have E[Nk

AU,i] = priNSU,i.
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Fig. 4. Average delay in the macrocell/picocell for different number of static
macrocell users NSU,m and number of static picocell users NSU,pj = 10.

NSU,m = 200, 400, 600 and NSU,pj = 10 within the picocells

pj . Especially, D̄p is also averaged out for all picocells pj . It is
noticed that the average delay, D̄m, increases sharper for larger
values of NSU,m and smaller values of λ, according to Eq. (7).
NSU,m and λ affect D̄m increment and consequently enlarge
the difference between D̄m, D̄p. Hence, when their ratio
becomes large (D̄m ≫ D̄p), f(·) tends to zero and vanishes the
gap between the received powers. Thus, the impact of NSU,m,
λ on D̄m, D̄p ratio exceeds the impact of received powers
asymmetry. This validates the LA algorithm functionality that
associates the user with the underloaded picocells in the case of
an overloaded macrocell (Pr(u ∈ p) goes to one), regardless
the gap in received powers. On the other hand, HO is not
triggered if there is not much difference in D̄m, D̄p, i.e., the
user QoS is satisfied (Pr(u ∈ p) goes to zero). Consequently,
RSS-based HO that maximizes the instantaneous rate of a user
(i.e., the best modulation and coding scheme (MCS) is used),
reflects user QoS only when the BS is lightly loaded. However,
user performance, in terms of per flow delay, may be severely
affected if the BS offering the best RSS is congested.

In Fig. 5, the picocell assignment probability, Pr(u ∈ p), is
depicted as a function of the user’s distance from the macrocell
for fixed number of NSU,m = 200 and NSU,pj = 10 in the
picocell. Our algorithm is compared with the CONV and a
distance-based (DIST) one provided in [8], for different λ.
The latter is applied in hierarchical macrocell/SCs network
that is also our case. The DIST approach associates the user
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Fig. 5. Picocell assignment probability (CONV vs DIST vs LA) for number
of static macrocell users NSU,m = 200 and number of static picocell users
NSU,pj = 10 for different λ.

TABLE II. DELAY GAIN FOR NSU,m = 200, NSU,pj = 10 AND

DIFFERENT λ

λ 0.05 0.08 0.1 0.11 0.12

D̄LA (sec) 0.0701 0.0992 0.1261 0.1125 0.0621

D̄DIST (sec) 0.0621 0.0807 0.1109 0.1470 0.2808

D̄CONV (sec) 0.0743 0.1160 0.1864 0.2708 0.5496

D̄DIST/D̄LA 0.8861 0.8141 0.8798 1.3066 4.5235

D̄CONV/D̄LA 1.0596 1.1701 1.4790 2.4073 8.8547

with its closest SC regardless the asymmetry in BSs powers.
This is achieved using a scale down factor α based on the
maximization of the SC assignment probability. Further, some
of the system parameters are changed to adapt the simulated
scenario in [8] 7. For the DIST algorithm, Pr(u ∈ p) is close to
1 after a specific user’s distance from the picocell despite the
fact that the macrocell is overloaded or not. However, with the
LA approach, Pr(u ∈ p) increases, depending on the macrocell
load for different λ, no matter the user’s proximity to the
picocell. Thus, if the user is close to a picocell, its association
with it may be unnecessary, since its QoS requirements may
be already met. Finally, the CONV algorithm does not trigger
the HO, due to BSs power assymetry.

The overall delay that the user experiences (i.e., D̄m from
the macrocell and D̄p from the picocell depending on where it
is associated) is presented in Table II. The setup is considered
the same as in Fig. 5. Using the CONV algorithm, it is noted
that the overall delay, D̄CONV, is identical to the delay of the
macrocell (see Fig. 4 for NSU,m = 200 and NSU,pj = 10),
since the user is always connected to the macrocell. The
DIST algorithm retains the user connected to the macrocell
up to a specific distance threshold and after that it attaches
it to the picocell (see Fig. 5) with Pr(u ∈ p) close to
1. Thus, the augmentation of the macrocell delay, when it
becomes overloaded, compared to the picocell ones, increases
the overall delay, D̄Dist. The LA algorithm keeps a conservative
policy when the load is low in the macrocell, i.e., the user
remains associated with the macrocell. Hence, Pr(u ∈ p)
is low even if the user is close to the picocell. This policy
gives slightly higher overall delays when λ ≤ 0.1 compared

7 Specifically, one macrocell and one picocell are considered in distance
D1 = 200 m, a∗ = 0.96 as the optimal a for the specific D1, ∆ = 0,
Rp = 150 m and rp,th = −51 dBm. In addition, the mobility model is
changed, since the authors in [8] assume that one mobile user moving across
a line from the macrocell to the picocell coverage area.

to the DIST one, since the latter connects the user to the
cell with the lower delay (i.e., picocell) earlier. Consequently,
unnecessary handovers to the picocell and related signaling
overhead are avoided with the LA approach. On the other
hand, if the load is high in the macrocell, the LA algorithm
associates the user with the underloaded picocell earlier than
the DIST algorithm that is load-unaware giving significant
performance to the overall delay, D̄LA. The respective ratios
of the CONV/DIST algorithms over the LA algorithm (i.e.,
D̄CONV/D̄LA, D̄DIST/D̄LA) overall delays are demonstrated to
show the corresponding gains in Table II. The same trend holds
for higher values of NSU,m, but with different values of λ, as
explained in Fig. 4. Finally, significant gains are provided in
high load scenarios (i.e., ≃ 4 and ≃ 8 compared to the CONV
and DIST approach).

VI. CONCLUSION & FUTURE WORK

This work focuses on user-centric HO decision algorithms
for HetNets. It was shown that the proposed load-aware
algorithm can significantly enhance the system performance
by considering both user and network perspective in order to
improve user QoS. To this end, it was compared with a con-
ventional and a distance-based LTE-handover algorithm and
we showed that it can outperform both of them according to
the extracted cell assignment probability and user service delay
performance results. As future work, we plan to investigate
more complex scenarios with more mobile users and study
the impact of our load-aware algorithm on user-distribution
and further on load-balancing. Finally, although we treated all
flows as best-effort, we plan to consider also dedicated flows
based on different QoS metrics (e.g., blocking probabilities).
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A. Maeder, D. Sabella, and D. Wübben, “Cloud technologies for flexible
5g radio access networks,” IEEE Communications Magazine, 2014.

[10] M. Harchol-Balter, Performance Modeling and Design of Computer

Systems. Cambridge University Press, 2010.

[11] G. Pollini, “Trends in handover design,” IEEE Communications Maga-

zine, 1996.

[12] N. Sapountzis, S. Sarantidis, T. Spyropoulos, N. Nikaein, and U. Salim,
“Reducing the energy consumption of small cell networks subject
to QoE constraints,” in Proceedings of the Global Communications

Conference, GLOBECOM 2014, Texas, USA, 2014.

[13] 3GPP. TR 36.931 version 9.0.0 Release 9.

APPENDIX A
CAPACITY ANALYSIS-I

The average capacity, assuming shadowing and Rayleigh
flat fading 8, is expressed as:

C̄ (di) = Eψi,|h|
2

[

B log2

(

1 + ρiK (di/dr)
−η ψi |h|

2
)]

, (8)

where ρi , PTx,i/N0 denotes the transmit signal-to-noise
ratio (SNR) 9, PTx,i is the transmission power in linear scale,
di represents the distance from the BS cell i to the user that is
greater than a reference distance dr, B stands for the available
bandwidth, N0 represents the aggregated noise power over B
in linear scale 10, ψi ∼ Log-N

(
0, σ2

dB,i/ξ
2
)

11 represents the

shadowing fading in linear scale and h ∼ CN (0, 1) 12 defines
the Rayleigh flat fading channel coefficient. To the best of our
knowledge, an analytical expression for the averaged capacity
does not exist. Therefore, its lower and upper bound, C̄b (di),
b ∈ {L,U}, can be easily computed, as follows.

A. Lower bound

Exploiting the concavity of the logarithmic function, an
analytical lower bound is given by:

C̄ (di) = Eψi,|h|
2

[

B log2

(

1 + ρiK (di/dr)
−η ψi |h|

2
)]

⇔

C̄ (di) = Eψi

[

E|h|2

[

B log2

(

1 + ρiK (di/dr)
−η ψi |h|

2
)]]

⇔

C̄ (di) ≥ Eψi

[

E|h|2

[

B log2

(

ρiK (di/dr)
−η ψi |h|

2
)]]

⇔

C̄ (di) ≥ B
{

log2

(

ρiK (di/dr)
−η

)

− γ/ ln (2)
}

︸ ︷︷ ︸

C̄L(di)

, (9)

where γ denotes the Euler-Mascheroni constant.

B. Upper bound

Using Jensen’s inequality for concave functions, the upper
bound is computed analytically as follows:

C̄ (di) = Eψi,|h|
2

[

B log2

(

1 + ρiK (di/dr)
−η ψi |h|

2
)]

⇔

C̄ (di) = Eψi

[

E|h|2

[

B log2

(

1 + ρiK (di/dr)
−η ψi |h|

2
)]]

⇔

8 It is noted that the capacity is based on the received signal before the
filtering process, thus Rayleigh fading effect is taken into account. 9 SINR

could also be introduced, but would make the analysis complex. 10 NdBm
0

in Table I stands for the N0 in dBm scale. 11 x ∼ Log-N
(

µ, σ2
)

denotes
that random variable x is distributed according to the log-normal distribution
with parameters µ and σ. 12 x ∼ CN

(

µ, σ2
)

denotes that random variable

x is complex Gaussian with mean µ and variance σ2.

C̄ (di) ≤ B log2

(

1 + ρiK (di/dr)
−η µψi

)

︸ ︷︷ ︸

C̄U (di)

, (10)

where µψi
= E [ψi] = exp

[
σ2

dB,i/2ξ
2
]
.

APPENDIX B
CAPACITY ANALYSIS-II

The picocell points x, y are distributed uniformly over a
circle according to the following distribution:

fX,Y (x, y) =

{ 1

π
(

R2
pj

−d2r

) , dr ≤ r ≤ Rpj ,

0 , o/w,
(11)

where r =
√
(x− xpj )

2 + (y − ypj )
2. Average capacity

bounds are obtained by averaging over all the possible dis-
tances (i.e., over all the possible points) within the picocell on
the respective lower and upper capacity bound for each cell i.
This can be analytically described as:

C̄ib =

∫∫

XY

C̄b (di (x, y)) fX,Y (x, y) dxdy, b ∈ {L,U}. (12)

A. Lower bound

The average lower bound of the average capacity by apply-
ing cartesian to polar coordinates transformation in Eq. (12) is
computed as:

C̄iL =
1

π
(
R2
pj − d2r

)

∫ 2π

0

∫ Rpj

dr

rC̄L
(
d̃i (r, θ)

)
drdθ =

= B [log2 (ρi)+

+
1

π
(
R2
pj − d2r

)

∫ 2π

0

∫ Rpj

dr

r log2

(

K
[
d̃i (r, θ) /dr

]−η
)

drdθ

︸ ︷︷ ︸

J1

−γ/ ln (2)] . (13)

B. Upper bound

Applying the same methodology used for the lower bound,
the corresponding average upper bound is given by:

C̄iU =
1

π
(
R2
pj − d2r

)

∫ 2π

0

∫ Rpj

dr

rC̄U
(
d̃i (r, θ)

)
drdθ

=
B

π
(
R2
pj − d2r

)×

×

∫ 2π

0

∫ Rpj

dr

r log2

(

1 + ρiK
[
d̃i (r, θ) /dr

]−η
µψi

)

drdθ

︸ ︷︷ ︸

J2

.

(14)

The function d̃i (r, θ) is given by:

d̃i (r, θ) =

{√

[r cos (θ)− x∗]
2
+ [r sin (θ)− y∗]

2
, i = m,

r , i = pj ,
(15)

where x∗ = xm − xpj and y∗ = ym − ypj .

This function represents the user distance from the macro-
cell and the picocell BS in polar coordinates, when the user
is located within the picocell. Finally, the J1 and J2 integrals
are numerically computed.


