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Abstract—We present a novel 2D-MUSIC algorithm that can jointly
estimate the angles and times of arrival of multiple signals in the presence
of local scattering. We focus on a scenario where the received signal is
a sum of ”clusters”, and each cluster is composed of multi-incident rays
that show similar angles and times of arrival. The setting is composed
of a Single-Input-Multiple-Output (SIMO) link where the transmitted
signal is an OFDM symbol. Simulation results show the potential of the
proposed algorithm compared to the traditional 2D-MUSIC algorithm
that doesn’t take into account local scattering.

I. INTRODUCTION

Recently, indoor localisation has attracted considerable interest
from both research and industry communities. Moreover, indoor
localisation could be divided into two broad categories: Radio-based
[1]–[3] and Fingerprinting [4], [5]. In Radio-based localisation,
several reference access points, or ”anchors”, are used to position
a node by first estimating signal parameters, such as Angle-of-
Arrival (AoA) or Time-of-Arrival (ToA) of the received signal,
then performing triangulation or trilateration techniques to obtain
an estimate of the node’s location. When ”anchors” or nodes
cooperate together to provide location estimates, this is referred to
as Cooperative localisation [6]. However, Fingerprinting techniques
solely rely on offline training to form a database, which could be
readily used online for positioning.

In this paper, we focus on Radio-based localisation, and in
particular on Joint Angle and Delay Estimation, also known as
JADE [7]. Many algorithms have been proposed to perform JADE,
such as Maximum Likelihood (ML) estimators found in [8], [9],
2D-subspace techniques derived in [7], [10], 2D-Matrix Pencil
algorithms that could jointly estimate ToAs and AoAs using a single
snapshot, such as [11], [12]. The problem with subspace algorithms
is that they couldn’t estimate signal parameters (ToA/AoA) if the
signals were coherent, which is the case of multipath propagation.
A known remedy for this issue is spatial smoothing [13], or
2D-smoothing for the JADE problem [14].

The difficulty of Radio-based techniques arises due to the
presence of modelling errors, which can massively deteriorate
the performance of signal parameter estimation if these errors
were not taken into account [15]. Examples of these errors
are antenna calibration [16], [17] and timing synchronisation [18].
In this paper, we focus on an important aspect called local scattering.

In an indoor environment, local scattering is a result of diffuse
reflection from rough surfaces. Therefore, the received signal
could not be modelled as a sum of discrete paths, or incident
”rays”. Instead, the received signal is a sum of ”clusters” [19]–
[21], where each cluster is formed of incident rays that arrive

with similar AoAs and ToAs. Hence, each cluster is characterised
by a nominal AoA, a nominal ToA, an angular and a temporal spread.

Many work has been done on estimating the nominal AoA in the
presence of local scattering, such as those in [22], [23]. In [24],
a Capon-based algorithm is proposed to estimation the directions
of arrival in the presence of local scattering. In [25], the authors
derived AoA estimation algorithms based on covariance matching. In
addition, a subspace based algorithm was derived in [26] to estimate
the AoAs in the presence of scattering. However, we are interested
in JADE; therefore, we extend the model proposed in [22] to the
spatio-temporal case and, as a result, a novel 2D-MUSIC algorithm
is derived herein to cope with the problem of local scattering in
order to jointly estimate the angles and times of arrival.

The rest of this paper is organised as follows: Section II presents
the system model, assumptions, and problem statement. A MUSIC-
Type algorithm to cope with the local scattering problem is proposed
in Section III with its identifiability conditions given is Section IV.
Section V demonstrates the potential of our proposed algorithm
compared with the conventional MUSIC algorithm that doesn’t take
local scattering into account. We conclude the paper in Section VI.

Notations: Upper-case and lower-case boldface letters denote ma-
trices and vectors, respectively. (.)T and (.)H represent the transpose
and the transpose-conjugate operators. E{.} is the statistical expec-
tation. ⊗ and � represent the Kronecker and pointwise Hadamard
products, respectively. For any N × M matrix X, vec(X) is the
vector operator which returns an NM × 1 vector by stacking the
columns of X, starting from the first to the last column, and X〈i,j〉

is the (i, j)th entry of X. The vector e1 is a vector of all-zeros except
the first entry set to 1.

II. SYSTEM MODEL

A. Analytic Formulation

Consider an OFDM symbol s(t) composed of M subcarriers and
centered at a carrier frequency fc, impinging an array of N antennas
via q multipath components. We model each multipath component as
a cluster, or ”beam”, of incident rays. Therefore, the ith component
contains Ki rays, where the kth ray arrives at angle θi + θ̃ik and
delay τi + τ̃ik. Note that θ̃ik and τ̃ik are negligible compared to
θi and τi, respectively. In other words, θ̃ik and τ̃ik take values in
small intervals, say 4θi and 4τi, respectively. Therefore, one could
model the ith ”beam” as a superposition of Ki rays arriving at AoAs
in the interval [θi ± 4θi2

] and ToAs in the interval [τi ± 4τi2
]. The

two quantities 4θi and 4τi are referred to as the ”angular” and
”temporal” spread, respectively. Also, note that θi and τi represent



the nominal AoA and ToA of the ith cluster. In baseband, we could
write the lth received OFDM symbol at the nth antenna as:

r(l)
n (t) =

q∑
i=1

Ki∑
k=1

αikγ
(l)
i an(θi + θ̃ik)s(t− τi − τ̃ik) + n(l)

n (t)
(1)

where

s(t) =


M−1∑
m=0

bme
j2πmMf t if t ∈ [0, T ]

0 elsewhere
(2)

where T = 1
4f

is the OFDM symbol duration, 4f is the subcarrier
spacing, bm is the modulated symbol onto the mth subcarrier, an(θ)
is the nth antenna response to an incoming signal at angle θ. The
form of an(θ) depends on the array geometry. γ(l)

i is the complex
coefficient of the ith cluster and αik is the complex gain of the
kth ray in the ith cluster. The term n

(l)
n (t) is background noise.

Plugging (2) in (1) and sampling r(l)
n (t) at regular intervals of k ,

k T
M

, then applying an M -point DFT, we observe that the data at the
mth subcarrier and nth antenna is given by

R(l)
n,m =

bm

q∑
i=1

Ki∑
k=1

αikγ
(l)
i an(θi + θ̃ik)cm(τi + τ̃ik) +N (l)

n,m

(3)

where cm(τ) = e−j2πmMf τ .
Now, since θ̃ik � θi, we expand the term an(θi + θ̃ik) using Taylor
series in the neighborhood of θi, viz.

an(θi + θ̃ik) ' an(θi) + θ̃ik
∂an(θi)

∂θi
+O(θ̃2

ik) (4)

Similarly, we can approximate the term cm(τi + τ̃ik) in the neigh-
borhood of τi, since τ̃ik � τi i.e.

cm(τi + τ̃ik) ' cm(τi) + τ̃ik
∂cm(τi)

∂τi
+O(τ̃2

ik) (5)

Compensating the term bm in R(l)
n,m (equation (3)) by multiplying

with b∗m
|bm|2

, we re-write equation (3) in a compact matrix form taking
into account the approximations in equations (4) and (5)

x(l) ' Hγ(l) + n(l), l = 1 . . . L (6)

where x(l) and n(l) are MN × 1 vectors

x(l) = vec{R}, R〈m,n〉 = R(l)
n,m (7)

n(l) = vec{N}, N〈m,n〉 = N (l)
n,m (8)

The q × 1 vector γ(l) is composed of the multipath coefficients

γ(l) = [γ
(l)
1 . . . γ(l)

q ]T (9)

H is an MN × q matrix given as

H = [h(θ1, τ1) . . .h(θq, τq)] (10)

where

h(θi, τi) =
( Ki∑
k=1

αik
)(

a(θi)⊗ c(τi)
)

+
( Ki∑
k=1

αikθ̃ik
)(∂a(θi)

∂θi
⊗ c(τi)

)
+
( Ki∑
k=1

αik τ̃ik
)(

a(θi)⊗
∂c(τi)

∂τi

)
(11)

and a(θ) and c(τ) are vectors of size N×1 and M×1, respectively.
The nth entry of a(θ) is an(θ). Also, the mth entry of c(τ) is cm(τ).
We refer the reader to Appendix A for a general form of a(θ) and
∂a(θ)
∂θ

and Appendix B for the form of c(τ) and ∂c(τ)
∂τ

.

B. Assumptions and Problem Statement

Throughout the paper, we assume the following:

• A1: H is full column rank.

• A2: The complex coefficients γ(l) are fixed within a snapshot,
and are uncorrelated over OFDM symbols.

• A3: The number of clusters q is known. However, the number
of rays per cluster (Ki) is unknown.

• A4: The vector n(l) is additive Gaussian noise of zero mean
and variance σ2I, assumed to be white over space, frequencies,
and symbols; we also assume that the noise is independent
from the multipath coefficients.

Even though algorithms exist for estimating the number of sources,
such as Minimum Description Length (MDL) [27], [28], Modified
MDL (MMDL) [29], bootstrap [30], etc, these methods couldn’t be
directly used when the model includes local scattering. The reason
behind this is that all these algorithms assume that the environment
is modeled as a discrete number of rays. The problem of estimating
the number of clusters q is beyond the scope of this paper.
Any further assumptions will be mentioned. Now, we address our
problem:
”Given {x(l)}Ll=1 and q, estimate the nominal signal parameters
{(θi, τi)}qi=1 in the presence of local scattering.”

III. A MUSIC-TYPE ALGORITHM IN THE PRESENCE OF LOCAL

SCATTERING

We start by defining the covariance matrix of the received vector
x(l), i.e.

Rxx = E{x(l)xH(l)} (12)

In practical scenarios, this matrix is computed using a sample average
as follows

R̂xx =
1

L

L∑
l=1

x(l)xH(l) (13)

Let λ̂1 > λ̂2 > . . . > λ̂MN and û1, û2 . . . ûMN denote the eigenvalues
and their corresponding eigenvectors of R̂xx. Under assumptions A1,
A2 and A4, one could jointly estimate {(θi, τi)}qi=1 by evaluating the
peaks of the following 2D-MUSIC cost function

(θ̂i, τ̂i) = arg max
θ,τ

1

hH(θ, τ)ÛnÛH
nh(θ, τ)

(14)

where Ûn = [ûq+1 . . . ûMN] is called the ”noise” subspace. The
MUSIC cost function exploits the orthogonality between vectors in
the signal and noise subspaces [31]. Using equation (11), we re-write
h(θ, τ) in a more compact form as follows

h(θi, τi) = B(θi, τi)wi (15)

where B(θi, τi) is MN × 3 given as

B(θi, τi) = [a(θi)⊗ c(τi)|
∂a(θi)

∂θi
⊗ c(τi)|a(θi)⊗

∂c(τi)

∂τi
] (16)



and wi = [1, wi1, wi2]T where

wi1 =

Ki∑
k=1

αikθ̃ik

Ki∑
k=1

αik

(17a)

and

wi2 =

Ki∑
k=1

αik τ̃ik

Ki∑
k=1

αik

(17b)

Without loss of generality, we have factored out the term
Ki∑
k=1

αik

from h(θ, τ). Note that if wi1 is zero, then there is no angular spread.
Similarly, if wi2 is zero, then temporal spread is not present. Plugging
equation (15) in (14), we have the following 2D-MUSIC cost function

(θ̂i, τ̂i) = arg max
θ,τ,w

1

wHBH(θ, τ)ÛnÛH
nB(θ, τ)w

(18)

Now, for each pair (θ, τ), the cost function in (18) is maximised with
respect to w, i.e.

min
w

wHBH(θ, τ)ÛnÛ
H
nB(θ, τ)w

subject to wHe1 = 1
(19)

The Lagrangian function corresponding to the problem stated in (19)
is the following

L(w, λ) = wHBH(θ, τ)ÛnÛ
H
nB(θ, τ)w − λ

(
wHe1 − 1

)
(20)

Setting the derivative of L(w, λ) with respect to w to 0, we get

∂

∂w
L(w, λ) = 2BH(θ, τ)ÛnÛ

H
nB(θ, τ)w − λe1 = 0 (21)

Equation (21) yields in

w =
λ

2

(
BH(θ, τ)ÛnÛ

H
nB(θ, τ)

)−1

e1 (22)

Substituting (22) in the constraint of (19), we get

λ =
2

eH
1

(
BH(θ, τ)ÛnÛH

nB(θ, τ)
)−1

e1

(23)

Therefore

w =

(
BH(θ, τ)ÛnÛ

H
nB(θ, τ)

)−1

e1

eH
1

(
BH(θ, τ)ÛnÛH

nB(θ, τ)
)−1

e1

(24)

Plugging the expression of w in the cost function in (19), one has
the following 2D-MUSIC function

(θ̂i, τ̂i) = arg max
θ,τ

eH
1

(
BH(θ, τ)ÛnÛ

H
nB(θ, τ)

)−1

e1 (25)

Therefore, one could search for the q highest peaks of the cost
function given in equation (25). A summary of this algorithm is
provided in Table 1.

IV. IDENTIFIABILITY CONDITIONS OF THE PROPOSED

MUSIC-TYPE ALGORITHM

At each point (θi, τj), a matrix inversion of
BH(θi, τj)ÛnÛ

H
nB(θi, τj) ∈ C3×3 is required. This matrix is

invertible under two conditions:

1) The matrix B(θi, τj) is full column rank.
2) The rank of the projector matrix onto the ”noise” subspace,

i.e. ÛnÛ
H
n, should be greater than 3.

The first condition occurs when none of the columns of B(θi, τj)
are all zeros. The 1st and 3rd columns of B(θi, τj) are never
all-zeros, but the 2nd column might be all-zeros in some cases.
For example, consider a Uniform Linear Array (ULA) where all
ȳ1 = . . . = ȳN = 0 and x̄k = (k− 1)d where d is the inter-element
spacing and the quantities x̄i and ȳi are defined in Appendix A.
Then, the 2nd column of B(θi, τj) is all-zeros when θi = ±90◦.
So, in this particular case, the cost function in (25) should not be
evaluated at θi = ±90◦.

As for the second condition, the rank of ÛnÛ
H
n could be easily

verified to be MN − q. Therefore, one must have MN ≥ q + 3.

Table 1: Summary of the proposed MUSIC-Type Algorithm

INITIALISATION:
Step 1. Given the data {x(l)}Ll=1, compute:

R̂xx = 1
L

L∑
l=1

x(l)xH(l)

Step 2. Perform an Eigenvalue Decomposition of R̂xx and
extract the noise subspace as:

Ûn = [ûq+1 . . . ûMN]
MAIN LOOP:
Step 3. On a 2D discretized grid, find the q highest peaks of
the following cost function:

(θ̂i, τ̂i) = arg maxθ,τ e
H
1

(
BH(θ, τ)ÛnÛ

H
nB(θ, τ)

)−1

e1

V. SIMULATION RESULTS

In both experiments, the array was linear and uniform with N = 3
antennas spaced half a wavelength apart. The transmitted signal
was an OFDM symbol where we use only M = 5 subcarriers. The
subcarrier spacing was chosen to be 4f = 3.125 MHz. We would
like to note here that in a real system, a Wi-Fi OFDM comprises
of at least 64 subcarriers, but we have chosen to use only 5 out of
these 64 subcarriers.

In the first experiment (Figures 1 and 2), the number of clusters
is q = 1. The source impinges the antenna at θ1 = 30◦ and τ1 = 0
nsec. The number of incident rays is K1 = 200 with angular
spread 4θ1 = 5◦, whereas the temporal spread is 4τ1 = 10 nsec.
Note that the K1 = 200 rays are chosen randomly with AoAs
[θ1 ± 4θ12

] and ToAs [τ1 ± 4τ12
]. We observe a clear improvement

when the local scattering is taken into account using our proposed
method. In this case and when SNR exceeds 10 dB, the gain in
Mean Squared Error (MSE) in angular domain was about 6 dB
(see Figure 1) and almost 8 dB in the temporal domain (see Figure 2).

In the second experiment, i.e. Figures 3 and 4, the above parameters
are the same except for the following: The number of arriving clusters
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Fig. 1: MSE of the AoAs as a function of SNR of the Traditional
MUSIC vs. the Proposed one. (1st Experiment)
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Fig. 2: MSE of the ToAs as a function of SNR of the Traditional
MUSIC vs. the Proposed one. (1st Experiment)
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Fig. 3: MSE of the AoAs as a function of SNR of the Traditional
MUSIC vs. the Proposed one. (2nd Experiment)
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Fig. 4: MSE of the ToAs as a function of SNR of the Traditional
MUSIC vs. the Proposed one. (2nd Experiment)

is now q = 2. Their corresponding nominal AoAs and ToAs are fixed
to θ1 = 30◦, τ1 = 0 nsec and θ2 = 0◦, τ2 = 50 nsec. The number of
rays per cluster are set to K1 = 200 rays and K2 = 300 rays. As for
the angular and temporal spread, we fix 4θ1 = 5◦ and 4τ1 = 12
nsec and 4θ2 = 7◦ and 4τ1 = 15 nsec. We observe a larger gain in
MSE. By referring to Figure 3, one could observe an improvement
of around 10 dB, when SNR > 10dB. Similarly, Figure 4 shows a
13 dB gain in MSE.

VI. CONCLUSION

In this contribution, we have presented a spatio-temporal model
that takes into account both angular and temporal spread of different
”clusters”. Furthermore, a 2D-MUSIC algorithm has been derived
based on that model in order to jointly estimate the nominal angles
and times of arrival of the different clusters. Simulation results
show the potential of our proposed algorithm when compared to the
traditional 2D-MUSIC when the scattering is not taken into account.
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APPENDIX A

For an arbitrary array of N antennas, the form of a(θ) is given
as:

a(θ) =


e−j

wc
c

(x̄1sin(θ)+ȳ1cos(θ))

...
e−j

wc
c

(x̄N sin(θ)+ȳN cos(θ))

 (26)

where (x̄i, ȳi) is the position of the ith antenna. The term wc = 2πfc
is the angular frequency, and c is the speed of light in vacuum. The
derivative of a(θ) with respect to θ is

∂a(θ)

∂θ
=

 −j
wc
c

(x̄1cos(θ)− ȳ1sin(θ))
...

−j wc
c

(x̄Ncos(θ)− ȳN sin(θ))

� a(θ) (27)

APPENDIX B

The vector c(τ) ∈ CM×1 is given as follows:

c(τ) =


1

e−j2πMf τ

...
e−j2π(M−1)Mf τ

 (28)



The derivative of c(τ) with respect to τ is

∂c(τ)

∂τ
=


0

−j2π Mf
...

−j2π(M − 1) Mf

� c(τ) (29)
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