Feedback-boosted coded caching

Jingjing Zhang and Petros Elia

EURECOM

Sophia Antipolis - France
Coded caching (Maddah-Ali and Niesen)

- by pre-filling the caches Z_1, Z_2, \ldots, Z_K
- then encoding over content from different users
- thus increasing multicast opportunities (one tx useful to many)

- Substantial increase in throughput (network load during peak hours)
Coding caching in BC with random fading and CSIT

- We explore coded-caching in multi-antenna BC with random fading
 - brings to the fore the element of CSIT-type feedback
 - CSIT is crucial in handling interference
 - CSIT is hard to get (consider variable quality)
 - CSIT has ‘intuitive’ connections to coded caching

- Interesting questions arise:
 - How to alleviate the real-time feedback bottlenecks?
 - How does coded-caching break the linear barrier jointly with feedback?
Cache-aided K-user MISO BC

- At the transmitter: N distinct files W_1, \ldots, W_N, each of size f bits;
- At the receiver, each user $k = 1, \ldots, K$ has a cache Z_k of size Mf bits.
- Placement phase (caching) and delivery phase (commun. after statement of requests)

- Received signal at receiver k:
 \[y_k = \mathbf{h}_k^T \mathbf{x} + z_k, \quad k = 1, \ldots, K \]
Measure of performance

- Measure of performance: the duration T of the delivery phase
 - per file, per user
 - T is a worst-case measure (guarantee any combination of file requests)
 - high SNR setting, with $f = \log SNR$ (now T as in Maddah-Ali and Niesen)

- Equivalent measure: Throughput — cache-aided degrees of freedom

\[
R = \frac{1}{T}
\]

- R is the throughput of each user
- capture the synergistic effect of feedback and coded caching
Theorem 1 In the cache-aided K-user MISO BC, with non-real time CSIT, with $N \geq K$ files of size f, and with caches of size $M \in \left\{ \frac{N}{K}, \frac{2N}{K}, \cdots, N \right\}$, an achievable T is characterized as

$$T = H_K - H_\Gamma,$$

where $H_K = \sum_{i=1}^{K} \frac{1}{i}$, and $\Gamma = \frac{KM}{N} = K \gamma$.

Under the logarithmic approximation, or in the large K regime, the above T takes the form

$$T \approx \log\left(\frac{1}{\gamma}\right)$$

(1)

Thus, the corresponding throughput R for large K takes the form

$$R \approx \frac{1}{\log\left(\frac{1}{\gamma}\right)}$$

(2)
In real systems, the operational value of γ will be relatively small

- e.g., when $\gamma = 10^{-6}$, $T \approx \log(1/\gamma) \approx 14$
- For the large K and reduced γ regime,

$$T \approx \log\left(\frac{1}{\gamma}\right) \quad \text{v.s.} \quad T_{MN} = \frac{K(1 - \gamma)}{1 + K\gamma} \approx \frac{1 - \gamma}{\gamma} \approx \frac{1}{\gamma} \quad (3)$$
• For the large K and reduced γ regime,

$$R \approx \frac{1}{\log(\frac{1}{\gamma})} \quad \text{v.s} \quad R_{MN} \approx \gamma$$

(4)

• The linear barrier is broken by joint treatment of coded caching and retrospective communications.
• Without caching for BC, the optimal achievable throughput1

\[
R = \frac{1}{\log K} \to 0
\]

(5)

• A microscopic $\gamma = e^{-G}$ could yield a very satisfactory

\[
R(\gamma = e^{-G}) \approx \frac{1}{G}
\]

(6)

\ast only a factor G from the interference free optimal $R = 1$.

\ast e.g., $G = 7, \gamma \approx e^{-7} \approx 10^{-3}$, each cache can be one thousand times smaller than the library size.

$\ast T = G$: any linear decrease in the required performance allows for an exponential reduction in the required cache sizes.

1Optimality by Maddah-Ali and Tse 2012
EXAMPLE: \(N = K = 3, M = 1 \) (i.e., \(\gamma = \frac{M}{N} = \frac{1}{3} \))

- Placement: files A, B and C are equally split into 3 subfiles respectively, e.g.,

\[
A = (A_1, A_2, A_3)
\]

\(\frac{f}{3} \) bits

- set caches \(Z_1 = (A_1, B_1, C_1), Z_2 = (A_2, B_2, C_2), Z_3 = (A_3, B_3, C_3) \)

- Delivery. Now you know the requests: \(W_1 = A, W_2 = B, W_3 = C \).

- Wish to deliver

\[
\begin{align*}
A_2 \oplus B_1, & \ A_3 \oplus C_1, \ B_3 \oplus C_2
\end{align*}
\]

\(\frac{f}{3} \) bits

- For simplification, we use \(AB \) to denote \(A_2 \oplus B_1 \), it is the same with others.
• Retrospective transmission: two phases.

 ★ Phase one: XORs are sent sequentially by vectors, e.g., $AB = (AB_1, AB_2)$

 $x_1 = \begin{bmatrix} AB_1 \\ AB_2 \\ 0 \end{bmatrix}, \quad x_2 = \begin{bmatrix} AC_1 \\ AC_2 \\ 0 \end{bmatrix}, \quad x_3 = \begin{bmatrix} BC_1 \\ BC_2 \\ 0 \end{bmatrix}$

 ★ received signals

 User 1: $f_1(AB_1, AB_2), f_2(AC_1, AC_2), f_3(BC_1, BC_2)$
 User 2: $f_4(AB_1, AB_2), f_5(AC_1, AC_2), f_6(BC_1, BC_2)$
 User 3: $f_7(AB_1, AB_2), f_8(AC_1, AC_2), f_9(BC_1, BC_2)$

 ★ Phase two: common messages are sent

 $x_4 = \alpha_1 f_3(BC_1, BC_2) + \alpha_2 f_5(AC_1, AC_2) + \alpha_3 f_7(AB_1, AB_2)$ (8)
 $x_5 = \beta_1 f_3(BC_1, BC_2) + \beta_2 f_5(AC_1, AC_2) + \beta_3 f_7(AB_1, AB_2)$ (9)

 ★ $\alpha_i, \beta_i, i = 1, 2, 3$ are shared with the receivers.
• Decoding
 • Backwards from the received signals:
 • User 1 can decode AB_1, AB_2 and AC_1, AC_2;
 • User 2 can decode AB_1, AB_2 and BC_1, BC_2;
 • User 3 can decode AC_1, AC_2 and AC_1, AC_2;
 • Recover $A_2 \oplus B_1, A_3 \oplus C_1, B_3 \oplus C_2$;
 • With Z_k, user k reconstruct $W_{F_k}, k = 1, 2, 3$
Example
Fundamental interplay with caching and feedback

Theorem 2 The optimal T^* for the (K, M, N) cache-aided K-user MISO BC with delayed CSIT, is lower bounded as

$$T^* \geq \max_{s \in \{1, \ldots, \min\{\lfloor \frac{N}{M}\}, K\}} \frac{s}{d_s^*(\gamma = 0)} \left(1 - \frac{M}{\lfloor \frac{N}{s}\rfloor}\right)$$

$$= \max_{s \in \{1, \ldots, \min\{\lfloor \frac{N}{M}\}, K\}} H_s \left(1 - \frac{M}{\lfloor \frac{N}{s}\rfloor}\right)$$

(10)

where $d_s^*(\gamma = 0) = \frac{s}{H_s}$ is the optimal sum-DoF for the corresponding s-user MISO BC.
Fundamental interplay with caching and feedback

Theorem 3 The achievable $T = H_K - H_\Gamma$ has a gap from the optimal

$$\frac{T}{T^*} < 2$$

that is less than 2 for all K.
Conclusions

• A exploration of the fundamental limits of cache-aided BC with non-real time CSIT
 * the optimal cache-aided DoF within a multiplicative factor of 2.
• Offer insight on the largely unexplored interplay between coded-caching and CSIT

• Our scheme exploited the interesting connections between
 * retrospective transmission schemes;
 * coded caching schemes.

Thanks