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Chao Zhu8, Yuxing Tang8, Emmanuel Dellandrea8, Charles-Edmond Bichot8, Liming Chen8,
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Abstract

The IRIM group is a consortium of French teams sup-
ported by the GDR ISIS and working on Multime-
dia Indexing and Retrieval. This paper describes its
participation to the TRECVID 2015 semantic index-
ing (SIN). Our approach uses a six-stages processing
pipelines for computing scores for the likelihood of a
video shot to contain a target concept. These scores
are then used for producing a ranked list of images or
shots that are the most likely to contain the target con-
cept. The pipeline is composed of the following steps:
descriptor extraction, descriptor optimization, classifi-
cation, fusion of descriptor variants, higher-level fusion,
and re-ranking. We evaluated a number of different de-
scriptors and tried different fusion strategies. The best
IRIM run has a Mean Inferred Average Precision of
0.2947, which ranked it 4th out of 15 participants.

1 Introduction

The TRECVID 2015 semantic indexing task is de-
scribed in the TRECVID 2015 overview paper [1, 2].
Automatic assignment of semantic tags representing
high-level features or concepts to video segments can
be fundamental technology for filtering, categoriza-
tion, browsing, search, and other video exploitation.
New technical issues to be addressed include meth-
ods needed/possible as collection size and diversity in-
crease, when the number of features increases, and
when features are related by an ontology. The task

is defined as follows: “Given the test collection, master
shot reference, and concept/feature definitions, return
for each feature a list of at most 2000 shot IDs from the
test collection ranked according to the possibility of de-
tecting the feature.” 60 concepts have been selected for
the TRECVID 2015 semantic indexing task. Annota-
tions on the development part of the collection were
provided for 346 concepts including the 60 target ones
in the context of a collaborative annotation effort [13].
Eight French groups (CEA-LIST, ETIS, EURECOM,
LABRI, LIF, LIG, LIRIS, LISTIC) collaborated to par-
ticipate to the TRECVID 2015 semantic indexing task.
Xerox (XRCE), though not being member of IRIM, also
contributed descriptors.
The IRIM approach uses a six-stages processing
pipeline that computes scores reflecting the likelihood
of a video shot to contain a target concept. These
scores are then used for producing a ranked list of im-
ages or shots that are the most likely to contain the
target concept. The pipeline is composed of the follow-
ing steps:

1. Descriptor extraction. A variety of audio, image
and motion descriptors have been produced by the
participants (section 2).

2. Descriptor optimization. A post-processing of the
descriptors allows to simultaneously improve their
performance and to reduce their size (section 3).

3. Classification. Two types of classifiers are used as
well as their fusion (section 4).



4. Fusion of descriptor variants. We fuse here vari-
ations of the same descriptor, e.g. bag of word
histograms with different sizes or associated to dif-
ferent image decompositions (section 6).

5. Higher-level fusion. We fuse here descriptors of
different types, e.g. color, texture, interest points,
motion (section 7).

6. Re-ranking. We post-process here the scores using
the fact that videos statistically have an homoge-
neous content, at least locally (section 8).

This approach is quite similar to the one used by the
IRIM group last years [14, 17]. The main novelties are
the inclusion of more deep learning based descriptors
and the use of multiple key frames (section 5).

2 Descriptors

Eight IRIM participants (CEA-LIST, ETIS, EURE-
COM, LABRI, LIF, LIG, LIRIS and LISTIC) provided
a total of 74 descriptors, including variants of a same
descriptors and early fusions of them. Xerox (XRCE)
also provided two descriptors with us. These descrip-
tors do not cover all types and variants but they include
a significant number of different approaches including
state of the art ones and more exploratory ones. They
can be split into “hand crafted” or “engineered” (de-
signed by human experts) descriptors and learnt (ob-
tained using deep neural networks) descriptors. The
relative performance of all the IRIM and XEROX de-
scriptors has been separately evaluated using a combi-
nation of LIG classifiers (see LIG paper [18]).

2.1 Engineered descriptors

CEALIST/tlep: texture local edge pattern [3] +
color histogram  576 dimensions.

CEALIST/bov dsiftSC 8192: : bag of visterm[28].
Dense SIFT are extracted every 6 pixels. The
codebook of size 1024 is built with K-means. Bags
are generated with soft coding and max pooling.
The final signature result from a three levels spa-
tial pyramid  1024× (1 + 2× 2 + 3× 1) = 8192
dimensions: see [15] for details.

CEALIST/bov dsiftSC 21504: : bag of
visterm[28]. Same as CEALIST/bov dsiftSC 8192
with a different spatial pyramid  1024 × (1 +
2× 2 + 4× 4) = 21504 dimensions.

ETIS/global <feature>[<type>]x<size>:
(concatenated) histogram features[4], where:

<feature> is chosen among lab and qw:
lab: CIE L*a*b* colors

qw: quaternionic wavelets (3 scales, 3 orien-
tations)

<type> can be:

m1x1: histogram computed on the whole
image

m1x3: histogram for 3 vertical parts
m2x2: histogram on 4 image parts

<size> is the dictionary size, sometimes different
from the final feature vector dimension.

For instance, with<type>=m1x3 and<size>=32,
the final feature vector has 3× 32 = 96 dimensions.

ETIS/vlat <desc type> dict<dict size> <size>:
compact Vectors of Locally Aggregated Tensors
(VLAT [6]). <desc type> = low-level descriptors,
for instance hog6s8 = dense histograms of gradient
every 6 pixels, 88 pixels cells. <dict size> = size
of the low-level descriptors dictionary. <size>
= size of feature for one frame. Note: these
features can be truncated. These features must
be normalized to be efficient (e.g. L2 unit length).

EUR/sm462: The Saliency Moments (SM) feature
[5] is a holistic descriptor that embeds some
locally-parsed information, namely the shape of
the salient region, in a holistic representation of
the scene, structurally similar to [8].

LABRI/faceTracks: OpenCV+median temporal fil-
tering, assembled in tracks, projected on key frame
with temporal and spatial weighting and quantized
on image divided in 16 × 16 blocks  256 dimen-
sions.

LIF/percepts <x> <y> 1 15: 15 mid-level con-
cepts detection scores computed on x × y grid
blocks in each key frames with (x,y) = (20,13),
(16,6), (5,3), (2,2) and (1,1),  15 × x × y di-
mensions.

LIG/raw32x24: (baseline) RGB image resized to
32 × 24  2304 dimensions.

LIG/h3d64: normalized RGB Histogram 4 × 4 × 4
 64 dimensions.

LIG/gab40: normalized Gabor transform, 8 orienta-
tions × 5 scales,  40 dimensions.

LIG/hg104: early fusion (concatenation) of h3d64
and gab40  104 dimensions.

LIG/opp sift <method>[ unc] 1000: bag of
word, opponent sift, generated using Koen Van
de Sande’s software[9]  1000 dimensions (384
dimensions per detected point before clustering;
clustering on 535117 points coming from 1000



randomly chosen images). <method> method
is related to the way by which SIFT points are
selected: har corresponds to a filtering via a
Harris-Laplace detector and dense corresponds
to a dense sampling; the versions with unc
correspond to the same with fuzziness introduced
in the histogram computation.

LIG/concepts: detection scores on the 346
TRECVID 2011 SIN concepts using the best
available fusion with the other descriptors,  346
dimensions.

LIRIS/OCLPB DS 4096 : Dense sampling
OCLBP [29] bag-of-words descriptor with 4096
k-means clusters. We extract orthogonal com-
bination of local binary pattern (OCLBP) to
reduce original LBP histogram size and at the
same time preserve information on all neighboring
pixels. Instead of encoding local patterns on 8
neighbors, we perform encoding on two sets of 4
orthogonal neighbors, resulting two independent
codes. Concatenating and accumulating two codes
leads to a final 32 dimensional LBP histogram,
compared with original 256 dimensions. The 4096
bag-of-words descriptors are finally generated by
the pre-trained dictionary.

LIRIS/MFCC 4096: MFCC bag-of-words descrip-
tor with 4096 k-means clusters. To reserves video’s
sequential information, we keep 2 seconds audio
wave around the key frame, 1 second before and af-
ter. 39 dimensional MFCC descriptors with delta
and delta delta are extracted with 20ms window
length and 10ms window shift. The 4096 bag-of-
words descriptors are finally generated by the pre-
trained dictionary.

LISTIC/SIFT *: Bio-inspired retinal preprocessing
strategies applied before extracting Bag of Words
of Opponent SIFT features (details in [23]) us-
ing the retinal model from [10]). Features ex-
tracted on dense grids on 8 scales (initial sam-
pling=6 pixels, initial patch=16x16pixels, using a
linear scale factor 1.2). K-means clusters of 1024
or 2048 visual words. The proposed descriptors
are similar to those from [23] except the fact that
multiscale dense grids are used. Despite showing
equivalent mean average performance, the various
prefiltering strategies present different complemen-
tary behaviors that boost performances at the fu-
sion stage [36].

LISTIC/trajectories *: Bag of Words of trajecto-
ries of tracked points. Various ways of describing a
trajectory are used, such as the spatial appearance
along a trajectory, the motion along a trajectory
or a combination of both. Each type of trajectory

description generates its own Bag of Words repre-
sentation. K-means clustering of 256-1024 visual
words, depending on the type of description [37].

XEROX/ilsvrc2010: Attribute type descriptor con-
stituted as vector of classification score obtained
with classifiers trains on external data with one
vector component per trained concept classi-
fier. For XEROX/ilsvrc2010, 1000 classifiers were
trained using annotated data from the Pascal VOC
/ ImageNet ILSVRC 2010 challenge. Classification
was done using Fisher Vectors [11].

XEROX/imagenet10174: Attribute type descrip-
tor similar to XEROX/ilsvrc2010 but with 10174
concepts trained using ImageNet annotated data.

2.2 Learnt descriptors

The learnt descriptors have been produced by LIG and
Eurecom using the caffe tool [30] developed by the Vi-
sion group of the University of Berkeley, for which both
the source code and the trained parameter values (mod-
els) have been made available. All of the following de-
scriptors are obtained using models that were trained
only on data different from TRECVid data and no re-
training or tuning was performed on TRECVid data.

EUR/caffe1000: The AlexNet model trained on the
ImageNet data only [31] has been applied un-
changed on the TRECVID key frames, both on
training and test data, providing detection scores
for 1000 concepts. These are accumulated into
a 1000 dimension semantic feature vector for the
shot.

EUR/b4096: descriptor of dimension 4096 obtained
by early fusion of several other descriptors, includ-
ing various local and global features, and the out-
put of several pre-trained Deep Networks (Caffe
[31], VGG16 and VGG19 [32][33]). The fusion is
done by selecting the components for which the
average conditional entropy of concepts given the
component is the lowest. The selection is done in-
dependently for each component.

LIG/caffeb1000: This descriptor is equivalent to the
EUR/caffe1000 one and was also computed using
a variant of the AlexNet model [31] but with a
different (later) version  1000 dimensions.

LIG/caffe fc[6|7] 4096 : This descriptor correspond
to the LIG/caffeb1000 one and was also computed
using a variant of the AlexNet model [31] but is
made of the 4096 values of the last two hidden
layers, see [18] for more details 4096 dimensions.

LIG/googlenet pool5b 1024 : This descriptor is
obtained by extracting the output of the last but



one layer (pool5) of the GoogLeNet model [34]  
1024 dimensions.

LIG/vgg all fc8 : This descriptor is obtained by ex-
tracting the output of the last layer of the VGG19
model [32][33] before the last normalization stage
 1000 dimensions.

LIG/alex goog vgg early : Early fusion of
LIG/caffe fc6 4096, LIG/googlenet pool5b 1024
and LIG/vgg all fc8 after descriptor optimization
as described in section 3  1931 dimensions.

IRIM/all dcnn early : Early fusion of EUR/b4096
and LIG/alex goog vgg early after descriptor op-
timization as described in section 3  604 dimen-
sions.

3 Descriptor optimization

The descriptor optimization consists of a principal com-
ponent analysis (PCA) based dimensionality reduction
with pre and post power transformations [22]. A L1 or
L2 unit length normalization can optionally by applied
after the first power transformation.

4 Classification

The LIG participant ran two types of classifiers on the
contributed descriptors as well as their combination,
see [16] for details.

LIG/KNNB: The first classifier is kNN-based.

LIG/MSVM: The second one is based on a multiple
learner approach with SVMs.

LIG/FUSEB: Fusion between classifiers. The fusion
is simply done by a MAP weighted average of the
scores produced by the two classifiers.

All the descriptors contributed by the IRIM partici-
pants have been evaluated for the indexing of the 346
TRECVID 2012 concepts. This has been done by the
LIG participant and is reported in the TRECVid 2014
LIG paper [16].

5 Use of multiple key frames

All descriptors (except audio and motion ones) have
been computed on the reference key frame provided
in the master shot segmentation. Additionally, some
of them have been computed on all the I-frames ex-
tracted from the video shots (typically one every 12
video frames and about 13 per shot in average). Clas-
sification scores are computed in the same way both for

the regular key frames and all the additional I-frames
and a max pooling operation is performed over all the
scored frames within a shot [27]. This max pooling op-
eration is performed right after the classification step
and before any fusion operation (though it would prob-
ably have been better to postpone it after).

6 Performance improvement by
fusion of descriptor variants
and classifier variants

As in previous years, we started by fusing classification
scores from different variants of a same descriptor and
from different classifiers of a same variant of a same
descriptor. This is done as first levels of hierarchical
late fusion, the last ones being done using dedicated
methods as described in section 7. Three levels are
considered when applicable: fusions of different clas-
sifiers of a same variant of a same descriptor, fusion
of different variants of a same descriptor according to
a dictionary size, and fusion of different variants of a
same descriptor according to a pyramidal decomposi-
tion. While the last levels of fusion attempt to improve
the overall performance by fusing information of differ-
ent types (e.g. color, texture, percepts or SIFT), the
first fusion levels attempt to improve the robustness of
the classification from a given type. More details on
this approach can be found in the previous TRECVid
IRIM papers [20, 14].

7 Final fusion

The IRIM participant LISTIC worked on the auto-
matic fusion of the classification results (experts) while
LIG used manual (human expert guided) fusion. The
fusion started with the original classification scores
and/or with the results of previous fusions of descrip-
tor variants and/or classifier variants as described in
the previous section. A comparison of the LIG, LIS-
TIC and LIMSI automatic fusion methods, along with
an arithmetic mean and the best attribute per con-
cept, is given in [25]. With the idea that a number of
weak experts can be combined for producing a strong
expert [26], all of the FUSEB experts (sections 2, 4
and 5) as well as some KNNB experts (correspond-
ing to retina-enhanced SIFT/SURF/FREAK Bags of
Words [36]) were included in the fusion process what-
ever their cross-validation estimated performance was,
though some of them may be eventually filtered out by
the automatic fusion process.



7.1 Automatic fusion (LISTIC)

LISTIC experimented with various automatic late fu-
sion strategies, covered in detail in [25], ranging from
simple arithmetic weighted fusions to more elabo-
rate fusions such as AdaBoost or correlation-based
methods. All these fusions work in a concept-per-
concept manner, and for each concept, they fuse a
subset of sufficiently-good experts. Two strategies ap-
pear to be the most effective, which constitute runs
M D IRIM.15 2 and M D IRIM.15 3:

M D IRIM.15 2: combines a large set of 139 ex-
perts of varying input data and semantic level.
More specifically, some experts are extracted from
keyframes only and others come from I-frame of
the video shot as described in section 5. The se-
mantic level varies from low-level engineered fea-
tures such as SIFT Bag of Words, Fisher vectors or
high semantic level deep features etc. However, we
do not include high level experts generated from
the manual fusion detailed in next section. In this
configuration, the AdaBoost fusion [26] is the most
effective and manages well the high diversity of in-
puts.

M D IRIM.15 3: involves the same initial set of ex-
perts, but they are combined in two stages. The
first stage fuses the set of keyframe experts and
the set of I-frame experts independently. For each
subset, the AdaBoost fusion performs the best for
most concepts, but we keep flexibility by selecting
the best fusion algorithm on a concept-per-concept
basis. The second stage combines the two results of
the first stage with a concept-per-concept weighted
average.

7.2 Manual fusion (LIG)

LIG implemented the first fusion level grouping de-
scriptor and classifier variants as described in section 6.
These can be used in conjunction with the previous lev-
els in automatic fusion runs or as the basis for further
steps of supervised (manual) hierarchical fusion. The
same hierarchical fusion as last year was done for en-
gineered descriptors as no new ones were available this
year. A new hierarchical fusion of DCNN-based de-
scriptors was performed including early and late fusion
schemes. Additionally, as the use of I-frames was intro-
duced this year, fusions were performed separately us-
ing only key-frame based descriptors and I-frame based
descriptors and a final level fusing both was added.
More information on how this was performed and on
the corresponding results can be found in the LIG pa-
per [18]. The following runs were submitted by LIG for
the IRIM group:

M D IRIM.15 1: late fusion of the two best LIG
manual fusion results, key frames and I-frames;

M D IRIM.15 4: manual fusion of only DCNN (LIG
and Eurecom) features, key frames only.

The last was only submitted for a contrast experiment.

8 Temporal re-scoring and con-
ceptual feedback

At the end, temporal re-scoring (re-ranking) and con-
ceptual feedback are performed. Temporal re-scoring
consists in modifying the detection score of a given
video shot for a given concept according to the detec-
tion scores of adjacent video shots for the same con-
cept [21]. Conceptual feedback consists in modifying
the detection score of a given video shot for a given
concept according to the detection scores of other con-
cepts for the same video shot [24].

9 Evaluation of descriptors

We evaluated a number of image descriptors for the in-
dexing of the 346 TRECVID 2012 concepts. This has
been done with two-fold cross-validation within the de-
velopment set. We used the annotations provided by
the TRECVID 2013 collaborative annotation organized
by LIG and LIF [19]. The performance is measured by
the inferred Mean Average Precision (MAP) computed
on the 346 concepts. Results are presented for the two
classifiers used, as well as for their fusion. Results are
presented only for the best combinations of the descrip-
tor optimization hyper-parameters.
Tables 1 and 2 show respectively for the engineered and
learnt descriptors the two-fold cross-validation perfor-
mance (trec eval MAP) within the development set and
the performance (sample eval MAP) on the 2015 test
set with the LIG FUSEB classifier combination; dim is
the original number of dimensions of the descriptor vec-
tor, Pdim is the number of dimensions of the descrip-
tor vector kept after PCA reduction, and α1 and α2

are the optimal values of the pre- and post-PCA power
transformation coefficients. Additionally, the last col-
umn (iacc.2) displays the average of the MAP score on
the 2013, 2014 and 2015 test sets. All these values are
for descriptors computed only using one key frame (the
reference one) per shot.
Table 3 shows for both the engineered and learnt de-
scriptors the same values for the descriptors that were
computed using the I-frames (as well as the reference
key frame). For time and cost reasons, only a small
fraction of the descriptors have been re-computed on
the I-frames. These include the best DCNN-based de-
scriptors computed by LIG, a number of SIFT-based
descriptors computed by LISTIC and a SIFT-based
pyramidal bag of word descriptor from CEA-LIST. The
MAP values can be directly compared with those from



Table 1: Performance of engineered descriptors (key frames only)

Descriptor dim α1 Unit Pdim α2 MAP MAP MAP
length dev 2015 iacc.2

CEALIST/tlep 576 576 0.424 - 120 0.719 0.1237 0.0797 0.0832
CEALIST/bov dsiftSC 8192 8192 0.700 - 292 0.575 0.1486 0.0826 0.0979
CEALIST/bov dsiftSC 21504 21504 0.600 - 364 0.714 0.1557 0.1102 0.1297
ETIS/labm1x1x256 256 0.334 - 132 0.641 0.1096 0.0678 0.0663
ETIS/labm1x1x512 512 0.340 - 178 0.712 0.1115 0.0685 0.0670
ETIS/labm1x1x1024 1024 0.345 - 208 0.742 0.1122 0.0679 0.0669
ETIS/labm1x3x256 768 0.338 - 208 0.633 0.1213 0.0816 0.0849
ETIS/labm1x3x512 1536 0.351 - 310 0.651 0.1215 0.0813 0.0844
ETIS/labm1x3x1024 3072 0.380 - 333 0.720 0.1211 0.0789 0.0835
ETIS/labm2x2x256 1024 0.324 - 240 0.577 0.1173 0.0752 0.0793
ETIS/labm2x2x512 2048 0.353 - 308 0.621 0.1175 0.0742 0.0782
ETIS/labm2x2x1024 4096 0.378 - 324 0.739 0.1184 0.0738 0.0785
ETIS/qwm1x1x256 256 0.450 - 144 0.742 0.0982 0.0555 0.0580
ETIS/qwm1x1x512 512 0.437 - 166 0.718 0.1044 0.0612 0.0654
ETIS/qwm1x1x1024 1024 0.449 - 182 0.724 0.1088 0.0668 0.0713
ETIS/qwm1x3x256 768 0.421 - 205 0.696 0.1134 0.0717 0.0783
ETIS/qwm1x3x512 1536 0.413 - 230 0.725 0.1193 0.0757 0.0856
ETIS/qwm1x3x1024 3072 0.410 - 253 0.666 0.1225 0.0795 0.0902
ETIS/qwm2x2x256 1024 0.431 - 203 0.720 0.1098 0.0711 0.0736
ETIS/qwm2x2x512 2048 0.427 - 229 0.771 0.1150 0.0743 0.0799
ETIS/qwm2x2x1024 4096 0.423 - 277 0.788 0.1184 0.0772 0.0843
ETIS/vlat hog3s4-6-8-10 dict64 4096 4096 0.875 L1 4096 1.000 0.1624 0.1201 0.1457
EUR/sm462 462 0.167 - 215 0.380 0.1269 0.0791 0.0842
LIF/percepts 1 1 1 15 15 0.495 - 15 0.735 0.0860 0.0238 0.0307
LIF/percepts 2 2 1 15 60 0.470 - 60 0.669 0.1056 0.0436 0.0538
LIF/percepts 5 3 1 15 225 0.623 - 148 0.575 0.1092 0.0464 0.0561
LIF/percepts 10 6 1 15 900 0.619 - 169 0.381 0.1092 0.0466 0.0544
LIF/percepts 20 13 1 15 3900 0.550 - 193 0.420 0.1093 0.0520 0.0594
LABRI/faceTracks16x16 256 0.240 - 210 0.480 0.0180 0.0068 0.0069
LIG/raw32x24 2304 1.100 - 91 0.700 0.0991 0.0482 0.0487
LIG/gab40 40 0.629 - 40 0.629 0.0809 0.0206 0.0249
LIG/h3d64 64 0.286 - 52 0.813 0.0916 0.0425 0.0442
LIG/hg104 104 0.348 - 89 0.700 0.1148 0.0653 0.0666
LIG/opp sift har 1000 1000 0.513 - 103 0.782 0.1194 0.0635 0.0773
LIG/opp sift dense 1000 1000 0.489 - 206 0.466 0.1276 0.0764 0.0890
LIG/opp sift har unc 1000 1000 0.331 - 116 0.592 0.1262 0.0746 0.0876
LIG/opp sift dense unc 1000 1000 0.415 - 303 0.384 0.1354 0.0847 0.0975
LIG/opp sift har 1024 fu8 1024 0.409 - 170 0.324 0.1264 0.0697 0.0826
LIRIS/MFCC 4096 4096 0.426 L2 200 1.000 0.0584 0.0157 0.0173
LIRIS/OCLBP 4096 4096 0.374 L2 167 0.681 0.1122 0.0773 0.0915
LISTIC/SIFT 1024 1024 0.444 - 272 0.436 0.1274 0.0841 0.0983
LISTIC/SIFT 2048 2048 0.912 - 175 0.420 0.1115 0.0679 0.0774
LISTIC/SIFT retina 1024 1024 0.504 - 204 0.515 0.1288 0.0781 0.0906
LISTIC/SIFT retina 2048 2048 0.768 - 134 0.455 0.1208 0.0665 0.0798
LISTIC/SIFT retinaMasking 1024 1024 0.400 - 136 0.399 0.1274 0.0797 0.0911
LISTIC/SIFT retinaMasking 2048 2048 0.434 - 171 0.187 0.1013 0.0525 0.0572
LISTIC/SIFT multiChannels. . . 1024 1024 0.398 - 123 0.369 0.1287 0.0802 0.0949
LISTIC/SIFT multiCh. . . Dual1024 2048 2048 0.438 - 160 0.258 0.1291 0.0861 0.1015
LISTIC/SIFTbased 1024 1024 0.450 - 277 0.432 0.1291 0.0839 0.0989
LISTIC/SIFTbased retina 1024 1024 0.479 - 218 0.285 0.1333 0.0800 0.0925
LISTIC/SIFTbased Retina. . . parvo 1024 1024 0.450 - 181 0.492 0.1308 0.0826 0.0939
LISTIC/SIFTbased multiCh. . . L2norm 3072 3072 0.500 - 135 0.460 0.1390 0.0922 0.1041
LISTIC/expe6 trajectories 13 1024 1024 0.542 - 64 0.849 0.0726 0.0601 0.0705
LISTIC/expe6 trajectories 14 1024 1024 0.547 - 64 0.849 0.0724 0.0595 0.0703
XEROX/ilsvrc2010 1000 0.575 - 592 0.650 0.1710 0.1539 0.1824
XEROX/imagenet10174 10174 0.200 - 1024 0.650 0.1721 0.1570 0.1886



Table 2: Performance of learnt descriptors (key frames only)

Descriptor dim α1 Unit Pdim α2 MAP MAP MAP
length dev 2015 iacc.2

EUR/caffe1000 1000 0.297 - 670 0.547 0.2025 0.1627 0.1847
EUR/b4096 4096 1.900 - 800 0.700 0.2521 0.2398 0.2641
LIG/caffe fc6 4096 4096 0.449 - 662 0.558 0.2157 0.1776 0.2043
LIG/caffe fc7 4096 4096 0.766 - 738 0.558 0.2133 0.1717 0.1985
LIG/caffeb1000 1000 0.210 - 754 0.558 0.1982 0.1572 0.1796
LIG/googlenet pool5b 1024 1024 0.650 - 660 0.670 0.2291 0.2087 0.2323
LIG/vgg all fc8 1000 0.650 - 609 0.400 0.2301 0.2042 0.2291
LIG/alex goog vgg early 1931 1.000 - 294 0.610 0.2536 0.2322 0.2621
IRIM/all dcnn early 604 0.970 - 275 0.710 0.2615 0.2453 0.2728

tables 1 and 2 for measuring the benefit of using I-
frames in addition to the reference key frames.
We can observe that the performance actually decreases
in cross-validation within the development set. This is
due to the fact that within the development set the
annotation for a shot is generally done on the basis of
only the reference key frame while within the test sets
the assessment is done on the basis of the whole shot
(including all the I-frames). On the test sets, a sig-
nificant improvement is observed as reported in [27].
On the 2015 test set, the relative improvement is of
25% (respectively 30%) for the engineered (respectively
learnt) features. On the whole iacc.2 (2013, 2014 and
2015) test set, the relative improvement is of 25% (re-
spectively 22%). The average gain is thus very impor-
tant. Unfortunately, this gain does not cumulate well
with the gain brought by the re-scoring post processing.
This is likely because both use similar or redundant in-
formation from adjacent frames or shot.

10 Evaluation of the submitted
runs

We submitted 4 runs, each using the same input ex-
perts:

M D IRIM.15 1: late fusion of the two best LIG
manual fusion results, key frames and I-frames;

M D IRIM.15 2: automatic fusion based on Ad-
aboost, key frames and I-frames;

M D IRIM.15 3: automatic two-stage fusion of key
frames and I-frames;

M D IRIM.15 4: manual fusion of only DCNN (LIG
and Eurecom) features, key frames only.

All include re-ranking and manual fusion runs include
conceptual feedback.
Table 4 presents the result obtained by the four runs
submitted as well as the best and median runs for com-
parison. The best IRIM run corresponds to a rank of 4

within the 15 participants to the TRECVID 2014 main
SIN task.

Table 4: InfMAP result and rank on the test set for all
the 30 TRECVID 2015 evaluated concepts (main task,
over 56 submissions (2015 only, excluding the progress
ones).

System/run MAP rank
Best run (*) 0.3624 1
M D IRIM.15 1 0.2953 12
M D IRIM.15 2 0.2907 15
M D IRIM.15 3 0.2893 16
M D IRIM.15 4 0.2648 23
Median run 0.2398 28
Random run 0.0009 -

(*) This run uses extra annotations.

These results show that, regarding automatic fusion,
directly fusing all the experts works slightly better.
The use of I-frame descriptors improves results com-
pared to relying on a keyframe-only description, how-
ever there is no need to treat the two sets separately.
Our resulting fused experts outperform the best deep
network based expert, nevertheless the margin remains
about 15%. This confirms the superiority of deep ar-
chitectures versus classical shallow architectures.

11 Additional contrast experi-
ments

We conducted several contrast experiments for isolat-
ing and measuring the effect of various methods and/or
parameters. We have not been able to consider all the
possible combinations because, for instance, not all de-
scriptors were computed for all descriptors.

11.1 Learnt versus engineered features

We first compare the best fusion of engineered features
and the best fusion of learnt features, without the use



Table 3: Performance of descriptors using I-frames

Descriptor dim α1 Unit Pdim α2 MAP MAP MAP
length dev 2015 iacc.2

CEALIST/bov dsiftSC 21504 21504 0.600 - 364 0.714 0.1519 0.1392 0.1577
LIG/caffe fc6 4096 4096 0.449 - 662 0.558 0.2039 0.2233 0.2472
LIG/googlenet pool5b 1024 1024 0.650 - 660 0.670 0.2172 0.2770 0.2906
LIG/vgg all fc8 1000 0.650 - 609 0.400 0.2177 0.2657 0.2814
LIG/alex goog vgg early 1931 1.000 - 294 0.610 0.2380 0.3001 0.3152
LISTIC/SIFTbased 1024 1024 0.450 - 277 0.432 0.1256 0.1024 0.1223
LISTIC/SIFTbased retina 1024 1024 0.479 - 218 0.285 0.1292 0.0960 0.1157
LISTIC/SIFTbased Retina. . . parvo 1024 1024 0.450 - 181 0.492 0.1313 0.1061 0.1201
LISTIC/SIFTbased multiCh. . . L2norm 3072 3072 0.500 - 135 0.460 0.1385 0.1155 0.1326

of I-frames, without re-scoring and without conceptual
feedback.

Table 5: Learnt versus engineered features

Fusion MAP MAP MAP MAP
2013 2014 2015 iacc.2

IRIM/engineered 0.2546 0.2056 0.1774 0.2125
IRIM/learnt 0.3091 0.2752 0.2477 0.2773
IRIM/all 0.3190 0.2849 0.2553 0.2863

As can be seen in table 5 and as this was observed
last year, learnt features significantly outperform engi-
neered features but the combination of both still per-
form even better.

11.2 Use of adjacent frames and shots
and use of conceptual feedback

We consider the two “basic” manual hierarchical fu-
sions: “LIG/dcnn” that contains all DCNN-based
(learnt) descriptors computed by LIG and “IRIM/all”
that contains all (engineered and learnt) descriptors
computed by the IRIM participants. All the descrip-
tors included in the LIG/dcnn descriptors have also
been computed on the I-frames but this has been the
case only for part of those included in the IRIM/all
fusion (only those mentioned in table 3). Therefore,
“LIG/dcnn+if” (including I-frames) is directly compa-
rable with “LIG/dcnn” while “IRIM/all+if” is not di-
rectly comparable with “IRIM/all” (the “IRIM/all+if”
is under-evaluated).
Table 6 (respectively table 7) show the effect of using I-
frames (+if), Temporal Re-Scoring (+trs) and concep-
tual feedback (+cf) on the 2015 test set (respectively
on the iacc.2 test set). Results in table 7 average the
performance on the 2013, 2014 and 2015 test sets and is
therefore expected to be more stable than results in ta-
ble 6 that correspond to the 2015 test set only. Results
between both tables are not always consistent, indicat-
ing that the small differences observed are not always
statistically significant.

Table 6: Effect if I-frames (+if), Temporal Re-Scoring
(+trs) and conceptual feedback (+cf), MAP on the
2015 test set

processing base +trs +trs+cf
LIG/dcnn 0.2350 0.2491 0.2533
LIG/dcnn+if 0.3004 0.2974 0.2935
IRIM/all 0.2553 0.2625 0.2670
IRIM/all+if 0.2917 0.2938 0.2933

Table 7: Effect of I-frames (+if), Temporal Re-Scoring
(+trs) and conceptual feedback (+cf), average of MAP
on the iacc.2 (2013, 2014 and 2015) test set

processing base +trs +trs+cf
LIG/dcnn 0.2660 0.2869 0.2947
LIG/dcnn+if 0.3170 0.3204 0.3257
IRIM/all 0.2863 0.3002 0.3075
IRIM/all+if 0.3196 0.3258 0.3310

Considering only the results in table 6 (2015 test set),
the best performance is obtained with only the DCNN
features computed using the I-frames. Neither engi-
neered features, temporal re-scoring or conceptual feed
back can help. Without I-frames, all of engineered fea-
tures, temporal re-scoring and conceptual feed back do
help.
Considering only the results in table 7 (2013, 2014 and
2015 test sets), with and without I-frames, all of en-
gineered features, temporal re-scoring and conceptual
feed back do help and the best performance is obtained
by combining them all with I-frames.

12 Data sharing

As in previous years, we propose to reuse and extend
the organization that has been developed over six years
within the members of the IRIM project of the French
ISIS national Research Group (see [12] and section 1 of
this paper). It is based on a limited number of simple
data formats and on a (quite) simple directory organi-



zation. It also comes with a few scripts and procedures
as well as with some sections for reporting intermedi-
ate results. The supporting structure is composed of
a wiki (http://mrim.imag.fr/trecvid/wiki) and a data
repository (http://mrim.imag.fr/trecvid/sin15). The
wiki can be accessed using the TRECVid 2013 active
participant username and password and the data repos-
itory can be accessed using the TRECVid 2013 IACC
collection username and password.

A general rule about the sharing of elements is that:

• any group can share any element he think could
be useful to others with possibly an associated ci-
tation of a paper describing how it was produced;

• any group can use any element shared by any other
group provided that this other group is properly
cited in any paper presenting results obtained us-
ing the considered element,

exactly as this was the case in the previous years for the
shared elements like shot segmentation, ASR transcript
or collaborative annotation. Groups sharing elements
get “rewarded” via citations when their elements are
used.

Shared elements can be for instance: shot or key frame
descriptors, classification results, fusion results. For
initiating the process, most IRIM participants agreed
to share their descriptors. Most classification and fu-
sion results obtained are also shared. These are avail-
able on the whole 2010-2015 TRECVID SIN collection.
Descriptors, classification scores or fusion results from
other TRECVid participants are most welcome. See
the wiki for how to proceed.
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