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ABSTRACT

Automatic context recognition enables mobile devices apatheir
configuration to different environments and situationsisTraper
investigates the use of acoustic cues as a means of recagoci-
text. The majority of existing approaches exploit Mel-echtep-
stral coefficients (MFCCs) developed for the analysis oéshesig-
nals. The hypothesis in this paper is that new features ardetke
in order to capture complex acoustic structure. The paper-in
duces the use of local binary pattern (LBP) analysis whiclsél to
complement MFCCs with acoustic texture information. Theosel
contribution relates to a bag-of-features extension wicicisters
LBPs into a small number of codewords. Both approaches putpe
form the current state of the art and the latter is partityl@ppeal-
ing for embedded applications in which computational edficly is
paramount.

Index Terms— acoustic context recognition, spectrogram, lo-
cal binary pattern, codebook, textural features

1. INTRODUCTION

Context awareness aims to categorize the environmentuatisin
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through a similarity matrix which reflects the recurrencénsen
consecutive closely located frame sequences. Featuresteaeted
using recurrence quantification analysis (RQA) of the snitiy ma-
trix. Nevertheless, RQA quantifies auto-correlation in BECC
features, rather than capturing the complex acoustictsireiecross
both time and frequency directly from the spectrogram. Mueg,
since it operates on MFCCs, RQA cannot capture non-corigecut
structure at the sub-band level; MFCCs reflect the full-bepettral
envelope, whereas recurrent acoustic structure is génebaerved
at the sub-band level.

With the goal of improving ACR performance, this paper re-
ports our recent work to characterise the distribution ajustic
structure through textural features. The proposed metppties
an image processing technique to the spectrogram in ord=pto
ture ‘acoustic patterns’ which better reflect complex terapstruc-
ture at the sub-band level. To reduce computational and memo
requirements, the new features are optionally used to ledom-
footprint codebook of the most significant patterns. Theetmabk
provides a sparse representation of the acoustic struclure re-
search hypotheses are that: (i) recurrent acoustic pattzm be
captured using local binary pattern (LBP) analysis [3] agapto the
spectrogram; (ii) the new LBP-based features provide cemph-

in which a mobile device is used. User demand for customiza- tary information to traditional MFCC features, and thaf) iiBP

tion and personalization is dependent on contextualimatibich
requires new recognition technology in order to understhadon-
text and automatically adapt to it [1]. In this work the cottelates
to the immediate environment, such as an office, in a bus eetstr
An example application might be to activate bluetooth fiorglity
in order to connect a device to an audio and infotainmeniesyst
when the user is in their car.

can be applied as a ‘bag-of-features’ approach by creatoara-
book of recurrent patterns and by the represention of eanplsaas
combinations of these patterns. The paper validates thgmshe-
ses and reports results which compete with the current sfate
art. The remainder of this paper is organised as followstiGee
describes prior work with a focus on that relating to the aegpt
of temporal recurrence and acoustic patterns. Section Septe

Context awareness can be achieved by interpreting informa-the new contribution. Section 4 describes the implemeortaaind

tion from multiple, heterogeneous sensors which providienases

of motion, position, gravity and acceleration, for exampkrom
this information it may be possible to determine whether er is
moving, and at what speed. This paper concerns acoustig-anal
sis. Acoustic analysis is preferred to alternatives for priocipal
reasons: (i) almost all modern mobile devices are equippddat/
least one microphone; (ii) acoustic analysis can help tingdjgish
between some contexts which might otherwise be indistsigble,
i.e. bus and car contexts in which other sensors (e.g. matigght
provide identical or similar information.

Almost all existing approaches to acoustic context redommi
(ACR) are based on traditional Mel-scaled frequency capst-
efficients (MFCCs) designed predominantly for speech msiog
applications such as speech or speaker recognition. Evereso
cent work [2] shows that MFCC features may not be sufficiently
discriminative for ACR; MFCCs capture only short term véoa
with minimum dynamic information whereas auto-correlatiothe
temporal domain can help to discriminate between diffecemt-
texts. The work in [2] describes the capture of auto-coti@ia

assessment framework whereas Section 5 presents exptimeen
sults. Conclusions and directions for further work are @nésd in
Section 6.

2. PRIOR WORK

Various approaches to ACR have been reported in the cortéhxe o
public DCASE challenge literature [4] which illustrategthse of
different features and classifiers. Though they are gdyetaied
with different auxiliary features, the use of short-ternpsteal co-
efficients is widespread, e.g. [5, 6, 7, 8]. While cepstraltiecs
are popular and even if successful in general, they stem fhem
analysis of speech signals and may thus be sub-optimal f&.AC
A study in [9] shows that humans utilise a priori knowledge

of discrete acoustic events as cues to recognise contextefi-
gine sounds are more likely in car or bus contexts than in an of
fice). Some successful approaches to ACR have accordingly ex
plored the automatic detection of acoustic events, foaimst using
histograms of event-occurrences [10]. In a similar veie, Work
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Figure 1: An illustration of LBP extraction using a spectiag
block. The centre the block is used to obtain the other vahyes
interpolation. Starting from the upper-left, the LBP isaibed upon
the binary comparison (Eqg. 1) of outer values to the centhgeva
The LBP configuration isircular, with 8 neighbours and the radius
equal to 2.

in [11] reports the use of a frame-based classifier which d¢oesh
both short and long term features computed over 45ms and.der
respectively. In another example reported in [12], sourehtvare
learned through an unsupervised algorithm and used to ctieaizze

context.

Alternative approaches which capture recurrent acoustte p
terns have also proven effective. One example involvesoaundi-
tif discovery, which uses bio-informatics techniques whiind re-
current patterns in genetic sequences. The work in [13]rte@m
approach which transforms an audio stream into a sequerdis-of
crete states, each of them representing a specific audierpath
related approach to music genre classification which usesre
features is reported in [14]. Temporal recurrence, mostov-
ery and acoustic events share the notion of acoustic pattelysis
and lend support to the benefit of capturing longer-termrinfdion
than is captured with conventional cepstral features.

3. LOCAL BINARY PATTERN CODEBOOKS

This paper reports the application to ACR of local binarytqrat
(LBP) analysis, a well known approach to feature extractiorau-
tomatic face recognition [15]. LBP is an efficient textureeggtor
which labels the pixels of an image (here an audio spectnogby
comparing their value to those of neighbouring pixels anddpye-
senting the result as a binary number. The general ideairitited
in Fig. 1. The analysis of acoustic signals using LBP analisis
been reported previously [16] and is applied by treatingsibec-
trogram as a visual representation of the acoustic sighafteby
resulting in [17].

The use of LBP for acoustic analysis and feature extracgon i
motivated by its suitability to texture and structure reygrgtation.
LBPs are usually used to create histograms which captuterest
structure. For ACR they provide more discriminative featuwvhich
reflect the acoustic texture. The following describes theaetion
of raw LBP features, henceforth referred to as LBP-Raw featu
and an extension to laag-of-features approach referred to as LBP-
Codebook.

3.1. System overview

The new approaches are composed of four stages, as iladgirat
Fig. 2:
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Figure 2: An illustration of the entire system, as explairied
Section 3.1: (1.) LBP histogram generation for each sub-band;
(2.) Codebook creation, through clusterin@;) Histograms in (1.)
are mapped to the codebook. This is repeated for each hastogr
extracted from each block#.) SVM training and testing by using
the histogram of acoustic patterns.

1. LBP is applied to the spectrogram representation of the fu
acoustic signal by comparing the magnitude of each time-
frequency ‘bin’ to those of its immediate neighbours. The
set of raw LBPs are used to generate an LBP-Raw histogram
which reflects the occurrence of each LBP across the full
signal.

2. Histograms are generated for each signal in a large datase
and then clustered to group together the most similar his-
tograms. Resulting clusters are then used to form a code-
book.

3. The codebook can be used to map a histogram onto the sin-
gle, nearesword as determined according to a cosine simi-
larity metric. This process results in LBP-Codeword feasur
of reduced dimension (and thus better suited to embedded
applications) which are less redundant and less noisy.

4. ACR is performed using a support vector machine (SVM)
classifier, applied either to LBP-Raw (1.) or LBP-Codebook
(3.) features.

3.2. Local binary patterns

Various modifications to the spectrogram are generally sszoy
prior to LBP extraction, e.g. spectrum pre-processing rigghes
reported in [18]. Each bin in the spectrogram reflects thewamo
of energy present in proximity to specific time and frequebirs.
This work shows that analysis of the linear-power spectoggives
better results than the log-power spectrogram. In pagicbin val-
ues are scaled to values in the range 0-255 in order to mireic th
application of LBP analysis in image processing:

Po1
LBPpr = Zf(gi_CﬂP?f(m): { (?fciz @)
=0 ’

where g; is the value of thei-th neighbour,c is the centre of
the block and whereP is the number of values or pixel count.
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Figure 3: An illustration of codebook generation via k-meafus-
tering.

R is the radius of the neighbourhood: the coordinateg;oére
Rcos(2mi/P), Rsin(2mi/P). We choose to usP = 8 andR = 2
in these experiments.

As highlighted in [19], LBP analysis is sensitive to rapidcflu
tuations, namely transitions in the LBP’s code from 1 to 0 eid-
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Context  Total time
Bus 8h56m
Car 3h40m
Office 13h10m
Subway 10h18m
Street 9h45m

Table 1: Duration of recordings for each context in the NXR&e
dataset.

4.1. Datasets

The proposed approach was tested on two different datgbeses
sentially due to the modest size of the first, but standardbdase

versa, which degrade performance. To remove such noisée whi \yhich does not afford sufficient statistical significancesikhaus-

simultaneously reducing the dimension of the histogram vibrk
in [3] considered only LBPs for which the number of trangito

tive evaluations.

between Os and 1s is less than or equal to 2. This subset of LBPs ® DCASE: a public, standard dataset used in the past for compet-

represents the set of 58 so-called uniform patterns. Thairéng
non-uniform patterns are often grouped together and ceresidas
a single, distinct pattern. In our current work the traositalong
the time (on the horizontal axis) and the frequencies (ondnical
axis) are considered in the same way of image processingerNev
theless, we agree that transitions across time and fregpssstoould
be treated differently. As future research, the shapeshmndgace
of LBP patterns will be investigated more in details (see. $&c

Uniform patterns typically represent textual elementghsas
edges, corners or uniform areas. Noisy, non-uniform pastere
not useful for classification and are simply discarded inwloek
reported here, resulting i-transitions uniform histograms. Such
an approach has been shown previously to perform well atshéo
design of a voice activity detector [20].

3.3. Codebook creation

In order to reduce computation and memory requirementsg-cod
books can be used to reduce the dimension of the resultimgréea
vectors (and also context models). The principal idea isctaet
automatically, via unsupervised k-means clustering, tlstmep-
resentative patterns for each context. The cosine distaneell
suited as a distance metric for histogram features [21].

This method is based on the well-knowag-of-features (BoF)
technique popular in image retrieval tasks [22]. The spgcam of
each test sample is represented in terms of the most relevdat
book patterns, as determined according to the same cogiilarsy
metric.

3.4. SVM classification

ACR is performed using a standard SVM classifier which ptsjec
raw data into an higher-dimensional space in which contenxy
be linearly separable. This is achieved according to thetplane
which maximises the margin between classes, thereby nsimgi
classification errors [23].

4. EXPERIMENTS

itive evaluations and nowadays for the comparison of diffier
methods and algorithms [4]. It is composed of 100 stereo files
of 30s duration, each witfi; = 44.1kHz. Only the first chan-
nel was used for all experiments reported here.

e NXP Software: a larger, but non-standard dataset containing
45 hours of recordings (see Table 1) with a sampling frequenc
of 16kHz, collected with multiple mobile devices. Recoghn
are manually annotated (context-labelled) before bottathe
dio and the label are stored in a centralized system in thelclo
The dataset is representative of the real problem: it raflect
context ambiguity at the user-level and is collected in mult
ple locations and with different acquisition configurasdne.
microphones).

4.2. Protocols and metrics

For each dataset, a 5-fold partition was used to separategand
testing data. The codebook is learned on the training segeixor
LBP-Codebook (see later), all features are extracted fremwf &wu-
dio. The classifier is trained with the same 8s sub-clip festand
then a majority voting is used to produce context decisiomsye
30s. Partitioning is performed at the file level, not the slip{evel,

to avoid overlap between sub-clips of the same file. The atiai
metric is context recognition accuracy, namely the peagmtof
trials for which the context is correctly recognised. Alsuits are
averaged across the 5-fold partitions.

4.3. Implementation

Baseline features are extracted from 8s audio sub-clipy égms
using a frame length of 20ms and a bank of 40 Mel-scaled fil-
ters up to 900Hz, thereby resulting in 13 MFCCs for each frame
The mean and variance are then determined so that eachigu®-cl
parametrised with a single feature vector of 26 dimensid®QA
features are extracted according to the method reporté.ifffey
capture recurrence in the baseline MFCC features over agefi
400ms but are averaged over the same 8-second sub-cligdnste
of 30s. Recurrent analysis needs longer time-window, whiteal-
time scenario the prediction has to be done within smallerdips.

This is the reason why the performances on DCASE have a drop

This section describes the two datasets used for evaluatigther 0 7104 t0 629%.

with protocols, implementation specifics and metrics.
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LBP-Raw features are extracted from the acoustic signal af-
ter down-sampling to 16kHz. This is done in order to equalise
the sampling frequencies of the two datasets. LBPs areatatta
from the spectrogram which is first split into 3 sub-band<0{en
2kHz, 8kHz), with the aim of distinguish between similartpats
but coming from different sub-bands of the spectrum.

Histograms are extracted separately for each sub-bandomad ¢
catenated to form a single feature vector. The resultinpgiam is
normalized by dividing each bin value by the total block doun

LBP-Codebook features stem from LBP analysis applied to
smaller 1-second sub-clips. Clustering is applied to ob8i clus-
ters for the DCASE dataset and 100 for the larger NXP Software
dataset. Through other experiments, these were found tptheal
given the two, different dataset sizes. LBP-Codebook featex-
tracted from each sub-clip are aggregated over 30s to ohiigle
BoF histogram per audio sample.

The SVM classifier is implemented with the well known Lib-
SVM tool-kit, more details of which can be found in [24]. Alger-
iments were performed with a radial basis function kernel\aith
C and~ parameters optimised through a grid search. A multi-class
SVM (for multiple contexts) is learned with all pair-wiserbi-
nations. SVM scores are z-score normalised, as derived tihem
training set and applied to the test set.

5. RESULTS

Reported here are experimental results for both databadesati-

ple feature configurations involving MFCC, RQA, LBP-Raw, B
Codebook features and their combinations. MFCC and RQA fea-
tures form two baselines.

5.1. DCASE dataset

Results for the DCASE dataset are illustrated in Fig. 4(a)thwW
recognition accuracies in the order of 60%, they show thaCKIF
and LBP-Raw features are the best performing single feaeie
While RQA features on their own perform less well, they armeo
plementary to MFCCs; performance improves with fusion. t&et
performance is observed when MFCCs are combined with LBP-
Raw features. The combination of MFCCs, RQA and LBP-Raw
features improves performance further to 70%. While as glesin
feature set, LBP-Codebook features give worse performérare
LBP-Raw, they are the most complementary to MFCCs; when com-
bined, recognition accuracy increases to almost 75%.

5.2. NXP Software dataset

Results for the NXP Software dataset are illustrated in &{b).
Similar performance trends are observed; MFCC and LBP-Raw f
tures are the best performing single feature sets while RQd\ a
LBP-Codebook features perform less well. RQA, LBP-Raw and
LBP-Codebook are still complementary to MFCCs: RQA brings
an improvement of 6%, while LBP-Raw and LBP-Codebook de-
liver improvements in the order of 6% and 3% respectivelyitiar
analysis confirms that these improvements are statistisaghif-
icant. With a baseline performance of 80%, performance Her t
NXP Software dataset follows the trend as seen in DCASE:eke b
feature combinations (bars 6 and 8 in Fig. 4(b)) both inval2®
features. Even if LBP-Codebook features give worse reshita
LBP-Raw, the former are computationally more efficient.
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[E3.LBP-Raw
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[l 7.LBP-Raw + RQA
[T18.MFCC + LBP-Raw + RQA |4
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[]11.MFCC + RQA + LBP-Cod.
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NXP Software dataset

1. vMFCC
2.RQA
[3.LBP-Raw
Il 4.LBP-Cod.

Accuracy

5. MFCC + RQA
[J6.MFCC + LBP-Raw

[ 7.LBP-Raw + RQA
[J8.MFCC + LBP-Raw + RQA
9. MFCC + LBP-Cod.

Il 10.RQA + LBP-Cod.
[T]11.MFCC + RQA + LBP Cod.

Figure 4: Recognition accuracy averaged over 5-fold panttfor

(a) DCASE and (b) NXP Software datasets, obtained with diffe
ent configurations of MFCC, RQA and LBP features. Two groups
of results illustrate performance for single featurest)lefid fused
features (right).

6. CONCLUSIONS

This paper proposes new, promising approaches to feattnacex
tion for acoustic context recognition. Local binary pate(LBPs)
aim to capture the distribution of audio structure and amape-
mentary to conventional Mel-scaled cepstra. Their contlmna
completes that with recurrent quantification analysis aettels the
current state of the art, adding further weight to the benéfiap-
turing textural features and complex acoustic structuraddition,
a bag-of-features approach is shown to reduce feature dioren
ality while still improving on baseline performance. Witkduced
computational complexity, the codebook approach is perbater
suited to embedded applications. Further work should tigate
different LBP shapes, in particular rectangular insteadiafular
block configurations, in order to optimise the time-frequereso-
lution. In the second instance, the codebook could be twairse
ing a larger pool of readily available data in order to redsgmlis-
tinct acoustic events rather than abstract time-frequgradterns.
This approach may facilitate the learning of codebooks fstirttt
events, e.g. car horns, or an engine) which may be benefégal,
pecially if these events are learned in a discriminativenaork
tailored to the context recognition task.
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