
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS
These d’Habilitation a Diriger des Recherches

presented by
Davide BALZAROTTI

Web Applications Security

Submitted in total fulfillment of the requirements
of the degree of Habilitation a Diriger des Recherches

Committee:

Reviewers: Evangelos Markatos - University of Crete
Frank Piessens - Katholieke Universiteit Leuven
Frank Kargl - University of Ulm

Examinators: Marc Dacier - Qatar Computing Research Institute
Roberto Di Pietro - University of Padova

Acknowledgments

Even though this document is mostly written in first person, every single “I”
should be replaced by a very large “We” to pay the due respect to everyone who
made this hundred-or-so pages possible.

Let me start with my two mentors, who toke me fresh after my Ph.D. and taught
me how to do research and how to supervise students. The work of a professor
requires good ideas, but also strong management skills, and a good number of
tricks of the trade. Giovanni Vigna, at UCSB, was the first to introduce me to
web security and to teach me how to do things right. Engin Kirda, at Eurecom,
filled up the missing part – teaching me how to find and manage money and how
to supervise other Ph.D. students. A big thank to both of them.

The second group of people that made this possible are the students I was lucky
to work with and supervise in the past five years. Giancarlo Pellegrino, Jelena
Isacenkova, Davide Canali, Jonas Zaddach, Mariano Graziano, Andrei Costin, and
Onur Catakoglu. They are not all represented in this document, but it is their hard
work that transformed some of the papers that are part of this dissertation from an
idea to a real scientific study.

Third, I would like to thank everyone else I met on this journey - from the office
mates in California (Wil, Vika, Marco, Fredrik, Greg, Chris, . . .) to all the other
colleagues I collaborated with in the past ten years (Aurelien, Andrea, Theodoor,
. . .). It was an honor to work with you all.

Finally, I big thank to my wife - who supported me and encouraged me to go
through all of this.

Contents

1 Introduction 1

Part I: Input Validation Vulnerabilities 9

2 The Evergreens 9

3 ARTICLE Saner: Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications 10

4 ARTICLE Quo Vadis? A Study of the Evolution of Input Validation
Vulnerabilities in Web Applications 26

5 ARTICLE Automated discovery of parameter pollution vulnerabilities
in web applications 41

Part II: Logic Vulnerabilities 59

6 From Traditional Flaws to Logic Flows 59

7 ARTICLE Multi-Module Vulnerability Analysis of Web-based Appli-
cations 60

8 ARTICLE Toward Black-Box Detection of Logic Flaws in Web Appli-
cations 72

v

Part III: A Play with Many Actors 89

9 A Change of Perspective 89

10 ARTICLE The Role of Web Hosting Providers in Detecting Compro-
mised Websites 90

11 ARTICLE Behind the Scenes of Online Attacks: an Analysis of Ex-
ploitation Behaviors on the Web 102

12 Conclusion and Future Directions 121
12.1 The Past . 121
12.2 The Future . 122

vi

1
Introduction

I obtained my Ph.D. from Politecnico di Milano in 2006, working in the area of
network intrusion detection. As a postdoc researcher first, and as Assistant Pro-
fessor later, I then expanded my interests and my research activities to the broader
area of system security. After my graduation, I co-authored over 50 scientific ar-
ticles in international journals and conferences, on binary and malware analysis,
web security, reverse engineering, host-based protection mechanisms, botnet de-
tection, embedded system security, and computer forensics. This broad range of
topics reflects the fact that security is a cross-cutting aspect that applies to multi-
ple, if not all, areas of computer science. On the one hand, this is what makes this
field so challenging and interesting to work on. On the other hand, this variety of
topics also makes it difficult to distill my contribution to the system security area
in a single coherent document.

Therefore, I decided to focus this dissertation on a single area – which repre-
sents, in terms of publications, only a small part of my entire work. Selecting a
single topic was very hard, and therefore I decided to base my decision on a purely
temporal aspect: the first research project I worked on after I completed my Ph.D.
was on web security, and my last paper submitted before completing this disser-
tation was again on web security. For the nine years between these two events, I
always continued to work on this topic both on my own and by supervising other
master and Ph.D. students in this area. Therefore, I believe web security, and the
security of web applications in particular, successfully captures a line of research
that characterized my past activity in system security.

For space reasons, I am not able to present in this document my entire contribu-
tion to the web security domain. Instead, I decided to include seven representative
papers - grouped in three distinct areas - that summarize some of the problems I
faced (and partially solved) after my Ph.D. graduation.

1

World Wide Web

The World Wide Web (or simply the Web) was initially proposed in 1990 by Tim
Berners-Lee and Robert Cailliau as a distributed “web” of interconnected hyper-
text documents. These static documents were written using a markup language
(HTML) and transferred over the network using a dedicated protocol (HTTP). The
initial system also required two new pieces of software, one to serve the pages (a
web server) and one to retrieve them and render their content on the screen (a web
browser).

In few years, this initially simple architecture evolved far beyond imagination.
In particular, the majority of web sites are nowadays complex distributed applica-
tions, with part of their code running on the server (to dynamically construct the
pages content, typically based on information stored in a backend database) and
part running in the user browser (to implement the user interface and fetch content
on demand from the server). As a result, according to the HttpArchive[1], today
almost 50% of the web pages require more than 30 separate connections to fetch
all the required elements.

However, since the focus of this document is on the security of web applica-
tions, I will limit the historical discussion of the Web to three important aspects
that, in my opinion, characterized the evolution of this technology from a security
perspective.

A Platform for the Masses

In few years from its introduction, the Web rapidly evolved from a client-server
system to deliver hypertext documents into a platform to run stateful, asynchronous,
distributed applications. On the one hand, this transformation required more so-
phisticated software components (modern browsers are now comparable to an op-
erating system kernel in terms of lines of code) and a more complex architecture,
involving the interaction of dozens of languages and protocols (such as WebDav,
XML, Soap, JSON, SSL, OAuth, just to name a few).

On the other hand, the Web was designed since the beginning to be simple
for users to use and to deploy new content. In other words, on one side we have
a very complex architecture, whose details are difficult to grasp also for experts
in the field. On the other side, the same architecture is advertised as a platform
for the masses – that even people with little to no experience in software design
can use to quickly develop new web sites and applications, with advanced and
customizable user interfaces. To make things worse, the extremely fast evolution
of Web technologies - often driven by a market pushing for new features - was
often affected by design flaws and poor security planning.

This combination had catastrophic security consequences. Hundred of thou-
sands of web sites were created by web designers, experts in customizing the vi-
sual look-and-feel of an application, but completely unaware of the complexity and

[1]http://httparchive.org

2

http://httparchive.org

Chapter 1. Introduction

risks of the technology they were using. Unfortunately, these web sites have of-
ten access to databases and to a large spectrum of sensitive client information. As
a result, even simple vulnerabilities such as SQL injections became a plague that
gave curios people first, and criminals later, an easy way to steal data and access
company networks.

To close the loop, search engines provided a simple way for attackers to find
vulnerable targets, so that the entire exploitation process could be easily automated.
The combination of all these factors made the Web the target of choice not only for
criminals and knowledgeable attackers, but also for a multitude of wanna-be hack-
ers (the so called script-kiddies) with little technical background - that by simply
using automated tools were able to wreak havoc with many Internet services.

Reachable by Design

If the Web revolution was bad from a software development point of view, it was
not much better from a network administrator perspective. Internet was designed
to connect networks together, so that every network would be reachable from ev-
erywhere else. However, networks were also designed with strict monitoring and
access control in mind. For instance, firewalls limited the access to sensitive parts
of a company’s network, and allowed only a limited number of selected services to
be open to the entire world. At the same time, intrusion detection systems carefully
monitored those services for signs of attacks or suspicious behaviors.

The web broke this isolation. Usability had priority over security, and devel-
opers were fast to port many existing services to the new platform, allowing all
sort of traffic to be tunneled through the web server on port 80 (open by default
on most of the networks). Technology were re-invented, sometimes intentionally
to avoid those security mechanism that made them harder to use otherwise. For
instance, web services introduced remote procedure calls (RPCs) over the HTTP
protocol, way before the security community had time to catch up and develop
corresponding security tools to monitor and filter HTTP traffic.

Untrusted Mobile Code

A third aspect of the Web evolution that is important for security is the introduc-
tion of client-side code in web pages. When, in 1995, Netscape introduced in its
browser the support for Java Applets and for the new Javascript language, it also
introduced a method to run arbitrary and untrusted code on user machines.

This gave attackers the opportunity to run arbitrary code in their victims com-
puters, by simply tricking users into visiting a link or by compromising an already
existing web page. Naturally, the risk of running unknown code was understood
since the beginning and therefore many layers of protection and sandboxing were
put in place over the years to avoid this code from performing dangerous oper-
ations. Another aspect that was immediately clear was the need to isolate each
website and strictly control their interaction with other pages loaded in the same

3

browser instance. The foundation of this security mechanism lies in the Same-
Origin Policy, introduced to protect the content of a page from JavaScript code
fetched from a different “origin” (defined as the tuple 〈 protocol,hostname,port 〉).
However, this is only the tip of the iceberg of a very complex mix of technolo-
gies and security solutions that are part of a very active research area focusing on
client-side (or Browser) security.

Since this dissertation targets instead the security of web applications (there-
fore more on the server-side of the architecture), it is sufficient to understand that,
while many techniques exist to isolate JavaScript code and protect the end users
against malicious scripts, this is often not enough. Web browsers are very com-
plex applications and they are often extended by third-party plugins, making their
attack surface very large. Therefore it is not unusual for attackers to find loopholes
or vulnerabilities to bypass the browser security mechanisms and execute arbitrary
code on the end host.

My Contribution in the Area of Web Application Security

My research in the area of web application security can be summarized along three
main directions. First of all, it is impossible to work in this area (at least it was
in 2005) without studying code injection vulnerabilities due to improper input val-
idation. Driven by insecure libraries and untrained programmers, this has been
the first cause of Web-related exploitations for almost a decade. The first part of
this document is dedicated to this topic and it introduces the classic SQL injec-
tion and Cross Site Scripting (XSS) vulnerabilities but also some less-known input
validation flaw such as parameter pollution. I chose three papers that look at the
input validation problem from three different angles: one proposing a technique to
identify and test validation routines, one looking at reports of classic vulnerabili-
ties to better understand their evolution, and one measurement study that aimed at
discovering the prevalence of a certain vulnerability on the Internet. I believe that
these three activities (measuring, protecting, and understanding) provide a good
summary of my activity in the area.

In the second part of this dissertation I introduce my work on a different class of
web vulnerabilities. Together with some colleagues at the University of California
- Santa Barbara, I was one of the first researcher to study automated approaches
to detect logic errors in web applications. Difficult to define and to capture in a
model, these vulnerabilities are very subtle and very difficult to find with automated
scanners. The reason is that in order to detect a vulnerability in the logic of a Web
application, one has to first understand and model the logic of the application itself.
In other words, one has to infer what the application should do, and then find ways
to subvert this intended behavior. In this second part of the dissertation I selected
two papers, one from 2007 to present the beginning of my research in the area, and
one in 2014 to show my current activity on the topic. Moreover, they also show a
transition over the years between a white-box approach and a black-box solution.

4

Chapter 1. Introduction

To conclude this dissertation, Part III presents a different approach to Web ap-
plication security that focuses on better understanding the other players involved in
the problem – beyond normal users and developers. Again, I selected two publica-
tions to summarize my research activity. The first (Chapter 10) in which I looked
at the role of web hosting providers in detecting when a website has been com-
promised and it now serves malicious content. The second (Chapter 11) presents
instead a study of how attackers exploit web applications and, more importantly,
what are their goals in this process.

After these three parts, in Chapter 12 I will summarize my contribution in the
area and present some future lines of research that will hopefully keep me busy for
the next few years.

5

List of Publications

This is the list of seven papers, sorted according to their publication date, that I
selected to include in this document.

D. Balzarotti, M. Cova, V. Felmetsger, G. Vigna
“Multi-Module Vulnerability Analysis of Web-based Applications”
ACM Conference on Computer and Communication Security (ACM CCS) 2007

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, G. Vigna
“Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applica-
tions”
29th IEEE Symposium on Security and Privacy 2008

Marco Balduzzi, Carment T. Gimenez, Davide Balzarotti, Engin Kirda “Automated dis-
covery of parameter pollution vulnerabilities in web applications”
Network and Distributed System Security Symposium (NDSS) 2011

Theodoor Scholte, Davide Balzarotti, Engin Kirda
“Quo Vadis? A Study of the Evolution of Input Validation Vulnerabilities in Web Applica-
tions”
Financial Cryptography and Data Security (FC) 2011

Davide Canali, Davide Balzarotti, Aurelien Francillon
“The Role of Web Hosting Providers in Detecting Compromised Websites”
International World Wide Web Conference (WWW) 2013

Davide Canali, Davide Balzarotti
“Behind the Scenes of Online Attacks: an Analysis of Exploitation Behaviors on the Web”
Network and Distributed System Security Symposium (NDSS) 2013

Giancarlo Pellegrino, Davide Balzarotti
“Toward Black-Box Detection of Logic Flaws in Web Applications”
Network and Distributed System Security (NDSS) 2014

6

Input Validation Vulnerabilities

7

2
The Evergreens

In the past decade, a large amount of effort has been spent to improve the security
of web applications, and a large fraction of this work has focused on mitigating
input validation vulnerabilities.

In few words, an input validation vulnerability arises when a web application
uses malicious input as part of a sensitive operation, without properly verifying or
sanitizing the input values prior to their use. The detection of these vulnerabilities
can be performed in a black-box fashion, for instance by using a remote testing
tool that probes an application and runs a number of pre-defined security tests. The
detection of input validation vulnerabilities can also be performed by looking at
the source code, typically by identifying all the paths between a source (where the
user input enters the system) and a sink (where the application outputs data to a
backend database or to the user browser).

While the class of input validation vulnerabilities contains many different types
of flaws, SQL injection and Cross Site Scripting (XSS) are certainly the two most
common examples. I call these vulnerabilities the evergreens, because (despite
being simple in their formulation and often easy to avoid) they have been a major
source of Internet attacks for well over a decade. SQL injections are to the web
world what buffer overflows are to binary software. Both vulnerabilities have a
very long history, but while exploiting buffer overflows is becoming more and more
difficult every year (thanks to an endless number of compiler and operating system
defenses), SQL injections in their simpler form are still a very severe issue today.

In this chapter I look at input validations vulnerabilities from three different an-
gles: by looking more closely to the validation and sanitation problem, by looking
for changes in the evolution of these vulnerabilities, and by showing that this class
contains examples that are still largely unknown and that affect a large number of
popular websites on the Internet.

9

Summary

Past research on vulnerability analysis was mostly focused on identifying cases in
which a web application directly uses external input in critical operations. In other
words, to keep things simple, most of the existing approaches tried to distinguish
two cases: those execution paths in which the user input was sanitized, and those
in which it did not.

However, little research had been done to analyze the correctness of the sani-
tization process. Unfortunately, the fact that a developer dedicated some code to
filter and sanitize potentially malicious input says nothing about the quality of that
code and about the fact that is both correct and complete. The first paper pre-
sented in this part introduces a novel approach to the analysis of the sanitization
process. More precisely, in our solution we combined static and dynamic analysis
techniques to identify faulty sanitization procedures that can be bypassed by an
attacker. We implemented our approach in a tool, called Saner, that we used to test
a number of real-world applications. In our experiments we were able to identify
several novel vulnerabilities that stem from erroneous sanitization procedures.

In the second paper I look back at the evolution of SQL injection and XSS
vulnerabilities - trying to find an answer to three important questions:

• Do attacks become more sophisticated over time?
(short answer is “no”)

• Do well-known and popular applications become less vulnerable over time?
(short answer is “partially”)

• Do the most affected applications become more secure over time?
(short answer is “at least regarding their initial vulnerabilities”)

Unfortunately, years of research have failed to eradicate this problem, and even
to considerably increase the bar for the attackers.

I conclude this part of the dissertation with a paper that received the Distin-
guished Paper Award at NDSS 2011. The goal of this work was to perform a large
black-box study of a new class of vulnerabilities called parameter pollution. We
did not invent this class, but we show that since most of the developers were not
aware of this particular risk, they failed to sanitize the user input appropriately. If
the previous paper showed that developers still make mistakes also for flaws that
are well understood, this paper shows how bad the overall picture is when we look
at less famous vulnerabilities that did not receive as much attention.

We developed a free service to test for this class of vulnerabilities and we con-
ducted experiments on over 5,000 popular websites. Our results show that about
30% of them contained vulnerable parameters (including several highprofile web-
sites such as Symantec, Google, VMWare, and Microsoft) and that at least 14% of
them could have been remotely exploited.

10

Saner: Composing Static and Dynamic Analysis to
Validate Sanitization in Web Applications

Davide Balzarotti§, Marco Cova§, Vika Felmetsger§, Nenad Jovanovic∗,
Engin Kirda¶, Christopher Kruegel§, and Giovanni Vigna§

§ University of California, Santa Barbara
{balzarot,marco,rusvika,chris,vigna}@cs.ucsb.edu

∗ Secure Systems Lab
Technical University Vienna
enji@seclab.tuwien.ac.at

¶Institute Eurecom
France

engin.kirda@eurecom.fr

Abstract

Web applications are ubiquitous, perform mission-
critical tasks, and handle sensitive user data. Unfortu-
nately, web applications are often implemented by devel-
opers with limited security skills, and, as a result, they
contain vulnerabilities. Most of these vulnerabilities stem
from the lack of input validation. That is, web applications
use malicious input as part of a sensitive operation, with-
out having properly checked or sanitized the input values
prior to their use.

Past research on vulnerability analysis has mostly fo-
cused on identifying cases in which a web application di-
rectly uses external input in critical operations. However,
little research has been performed to analyze the correct-
ness of the sanitization process. Thus, whenever a web ap-
plication applies some sanitization routine to potentially
malicious input, the vulnerability analysis assumes that the
result is innocuous. Unfortunately, this might not be the
case, as the sanitization process itself could be incorrect
or incomplete.

In this paper, we present a novel approach to the analy-
sis of the sanitization process. More precisely, we combine
static and dynamic analysis techniques to identify faulty
sanitization procedures that can be bypassed by an at-
tacker. We implemented our approach in a tool, called
Saner, and we applied it to a number of real-world ap-
plications. Our results demonstrate that we were able to
identify several novel vulnerabilities that stem from erro-
neous sanitization procedures.

1 Introduction

Web applications have evolved from simple CGI-based
gateways that provide access to back-end databases into

full-fledged, complex applications. Such applications (e.g.,
email readers, web portals, or e-commerce front-ends) are
developed using a number of different technologies and
frameworks, such as ASP.NET [21] or PHP [32]. Even
though these technologies provide a number of mecha-
nisms to protect an application from attacks, the security
of web applications ultimately rests in the hands of the
programmers. Unfortunately, these programmers are of-
ten under time-to-market pressure and not always aware of
the available protection mechanisms and their correct us-
age. As a result, web applications are riddled with security
flaws that can be exploited to circumvent authentication,
bypass authorization checks, or access sensitive user infor-
mation. A report published by Symantec in March 2007
states that, out of the 2,526 vulnerabilities that were docu-
mented in the second half of 2006, 66% affected web ap-
plications [42].

One of the most common sources of vulnerabilities
is the lack of proper validation of the parameters that
are passed by the client to the web application. In fact,
OWASP’s Top Ten Project, which lists the top ten sources
of vulnerabilities in web applications, puts unvalidated in-
put as the number one cause of vulnerabilities in web ap-
plications [30]. Input validation is a generic security proce-
dure, where an application ensures that the input received
from an external source (e.g., a user) is valid and meaning-
ful. For example, an application might check that the num-
ber of items to purchase, sent as part of a form submission,
is actually provided as an integer value and not as a non-
numeric string or a float. As another example, an applica-
tion might need to ensure that the message submitted to a
bulletin board does not exceed a certain length or does not
contain JavaScript code. Also, a program typically has to
enforce that arguments to database queries do not contain
elements that alter the intended meaning of these queries,
leading to SQL injection attacks.

1

A particular type of input validation is sanitization. In
general, sanitization is performed to remove possibly ma-
licious elements from the input. Section 2 introduces more
examples of how sanitization is performed in web applica-
tions. At this point, it suffices to say that sanitization is per-
formed on external input parameters before they are used in
critical operations. The lack of sanitization can introduce
vulnerabilities (e.g., cross-site scripting (XSS) [20] and
SQL injection [1,39] flaws) that can be exploited by attack-
ers. A number of past research efforts [9,13,17,18,22,45]
have focused on the problem of identifying vulnerabilities
in which external input is used without any prior sanitiza-
tion. These vulnerability detectors are typically based on
some form of data flow analysis that tracks the flow of in-
formation from the application’s inputs (called sources) to
points in the program that represent security-relevant oper-
ations (called sinks). The underlying assumption of these
approaches is that if a sanitization operation is performed
on all paths from sources to sinks, then the application is
secure.

Interestingly, there has been little research to precisely
model how effective the sanitization process actually is. In
fact, most approaches assume that if a regular expression
or a certain, built-in sanitization function is applied to an
external input, then the result is safe to use. Unfortunately,
this is not always the case. For example, a regular expres-
sion could be used by a programmer to check for the occur-
rence of certain values in the input without any intention to
perform sanitization. Also, it is possible to apply a saniti-
zation function to the input that protects from certain ma-
licious values, but does not offer complete protection from
all attacks. For example, in [41], the authors discuss the
possibility of subtle SQL injection vulnerabilities that can
be exploited even when the input has been processed by a
built-in PHP sanitization routine. Sanitization is particu-
larly dangerous when custom checking routines are used.
In these cases, a programmer does not rely on built-in input
validation functions, but, instead, manually specifies a list
of unwanted characters or a regular expression that should
remove malicious content.

In this paper, we introduce a novel approach to analyze
the correctness of the sanitization process. The approach
combines two complementary techniques to model the san-
itization process and to verify its thoroughness. More pre-
cisely, a first technique based on static analysis models
how an application modifies its inputs along the paths to
a sink, using precise modeling of string manipulation rou-
tines. This approach uses a conservative model of string
operations, which might lead to false positives. Therefore,
we devised a second technique based on dynamic analy-
sis. This approach works bottom-up from the sinks and
reconstructs the code used by the application to modify the
inputs. The code is then executed, using a large set of ma-
licious input values to identify exploitable flaws in the san-
itization process.

We implemented our techniques in a system called
Saner, a prototype that analyzes PHP applications. The

choice of PHP was driven by the fact that PHP is one of
the most popular languages for web application develop-
ment. According to the latest Netcraft survey [27], more
than 20 million sites were using PHP in June 2007. In the
monthly Security Space Reports [36], PHP has constantly
been rated as the most popular Apache module over the
last few years. To evaluate our system, we used Saner on
a set of real-world applications. The results show that the
sanitization process is faulty in a number of cases and that
apparently effective sanitization routines can be bypassed
to exploit the applications.

The contributions of this paper are the following:

• We describe a static analysis technique that charac-
terizes the sanitization process by modeling the way
in which an application processes input values. This
allows us to identify cases where the sanitization is
incorrect or incomplete.

• We introduce a dynamic analysis technique that is
able to reconstruct the code that is responsible for
the sanitization of application inputs, and then exe-
cute this code on malicious inputs to identify faulty
sanitization procedures.

• We compose the two techniques to leverage their ad-
vantages and mitigate their disadvantages.

• We implemented our approach and evaluated the sys-
tem on a set of real-world applications. During our
experiments, we identified a number of previously un-
known vulnerabilities in the sanitization routines of
the analyzed programs.

The rest of the paper is structured as follows. In Sec-
tion 2, we provide an example of the type of errors in the
sanitization process that we are interested in identifying.
In Section 3, we present our techniques for the analysis of
the sanitization process in web applications. Then, in Sec-
tion 4, we describe a prototype implementation of our ap-
proach and the results of its evaluation on real-world appli-
cations. Section 5 presents related work. Finally, Section 6
concludes and outlines future work.

2 Motivation

In this section, we discuss in more detail the ways in
which web applications can perform input validation. This
discussion also helps to establish a more precise notion of
sanitization. Then, we provide an example of a custom
sanitization routine that is typically not handled by static
vulnerability detectors. This demonstrates the need for an
improved analysis process and serves as an underlying mo-
tivation for our work.

2.1 Input Validation and Sanitization

Web applications typically work by first reading some
input from the environment (either provided directly by

2

a user or by another program), then processing this data,
and finally outputting the results. As previously stated, the
program locations where input enters the application are
referred to as sources. The locations where this input is
used are called sinks. Of course, sources often take data
directly from potentially malicious users, and the applica-
tion can make little (or no) assumptions about the values
that are supplied. Unfortunately, many types of sinks can-
not process arbitrary values, and security problems may
arise when specially crafted input is passed to these sinks.
We refer to these sinks as sensitive sinks.

An example of a sensitive sink is a SQL function that ac-
cesses the database. When a malicious user is able to sup-
ply unrestricted input to this function, she might be able to
modify the contents of the database in unintended ways or
extract private information that she is not supposed to ac-
cess. This security problem is usually referred to as a SQL
injection vulnerability [1]. Another example of a sensitive
sink is a function that sends some data back to the user.
In this case, an attacker could leverage the possibility to
send arbitrary data to a user to inject malicious JavaScript
code, which is later executed by the browser that consumes
the output. This problem is commonly known as an XSS
vulnerability [20].

To avoid security problems, an application has to en-
sure that all sensitive sinks receive arguments that are well-
formed, according to some specification that depends on
the concrete type of the sink. Because input from poten-
tially malicious users can assume arbitrary values, the pro-
gram has to properly validate this input. Therefore, the ap-
plication checks the input for values that violate the specifi-
cation. When such invalid values are found, a programmer
has two options. The first option is to abort further process-
ing: the application stops to handle the request and returns
an error code to signal incorrect input. The second option
is to transform the input value such that the altered value
conforms to the input specification and no longer poses a
security threat when passed to a sensitive sink. We denote
the process of transforming the input to a representation
that is no longer dangerous as sanitization. Typically, sani-
tization involves the removal of (meta)-characters that have
a special meaning in the context of the sink, escaping these
characters, or truncating the length of the input.

2.2 Static Analysis and Proper
Sanitization

Static analysis tools that check the security of (web) ap-
plications often employ data flow analysis to track the use
of program inputs. The goal of these systems is to iden-
tify program paths between the location where an input en-
ters the application and a location where this input is used.
Once such a program path is identified, the tool checks
whether the programmer has properly sanitized the input
on its way from the source to the sensitive sink. When in-
put is properly sanitized on all paths from an input source
to a sensitive sink, the application is correct and does not

contain a security vulnerability. However, it is unfortu-
nately not immediately obvious when to declare input as
properly sanitized.

The first problem is that the input sanitization depends
on the type of sink that consumes the input. For example,
when an attacker can inject SQL commands into the output
that the application sends back to a user, this application is
not vulnerable. A security problem arises only when the
attacker can inject that same input into a function that ac-
cesses the database. As a result, static analysis tools typi-
cally require a policy that specifies for each type of sensi-
tive sinks (such as database access or output functions) the
set of operations that constitute proper sanitization.

The second problem that makes it hard to ascertain
proper sanitization is the difficulty of specifying all sani-
tization operations a priori. Fortunately, many languages
provide built-in functions that sanitize input. For exam-
ple, the PHP function htmlentities converts charac-
ters that have special meaning in HTML into their corre-
sponding HTML entities (e.g., the character ‘<’ is con-
verted into ‘<’). This ensures that all characters
in a string preserve their meanings when interpreted as
HTML. The PHP manual states that this function is useful
“in preventing user-supplied text from containing HTML
markup.” Applying htmlentities to an input string
ensures that the resulting string can be safely sent back to a
user. The reason is that all script tags in the input (such as
“<script>”) are converted into tokens that are no longer
interpreted by a browser as the start of JavaScript code, but
simply displayed as the string “<script>.” Of course,
it is easy to recognize the use of such functions as proper
sanitization.

Besides the use of built-in sanitization functions, a pro-
grammer can also write custom code that strips dangerous
characters from an input string. For example, the program-
mer could apply the PHP function str replace to the
input string and remove all occurrences of the character
‘<’ (more precisely, to replace all occurrences of the angle
bracket character with the empty string). In this case, the
result would also be safe with respect to XSS and could be
sent back to the user. To see the difference between stan-
dard and custom sanitization, consider the example code in
Figure 1. Of course, the mere fact that the programmer ap-
plies a string replacement operation on an input value does
not ensure that the result is properly sanitized.

1 $input = _GET[’x’];
2

3 $standard = htmlentities($input);
4 $standard = ’Hello ’ . $standard;
5 echo $standard;
6

7 $custom = str_replace(’<’, ’’, $input);
8 $custom = ’Hello ’ . $custom;
9 echo $custom;

Figure 1. Standard and custom sanitization.

When analyzing the code in Figure 1, most static
analysis tools would correctly flag the use of variable

3

$standard in Line 5 as safe. The reason is that they are
typically equipped with a policy that specifies that all val-
ues processed by htmlentities can be safely echoed
back to a user. The situation is more complicated when an-
alyzing the use of the function str replace, which per-
forms custom sanitization in this case. In principle, static
analyzers could interpret the application of any function
that modifies an input (e.g., through string replacement)
as an indication that the programmer performed sanitiza-
tion. If this strategy is used, the analysis would correctly
consider the application of the str replace function on
Line 7 as a form of sanitization. Of course, this approach
suffers from two drawbacks. First of all, the program-
mer might have simply applied this function to alter the
string based on some requirement implied by the applica-
tion logic, and changing the string does not imply that the
result is safe to be used by a sensitive sink. Second, the
programmer could have made a mistake. Even when the
input is modified with the intention to make it safe, there
is no guarantee that the result is correct (and our results
demonstrate that programmers do make frequent mistakes
when using custom sanitization routines). Also, the oppo-
site strategy of assuming that all custom sanitization oper-
ations are incorrect is problematic, because it causes static
analysis tools to report incorrect warnings in case a pro-
grammer has correctly applied custom sanitization.

Current static analysis systems (see Section 5 for a de-
tailed discussion of related work) typically disregard the
use of custom sanitization routines. The result is that
whenever a programmer makes use of custom sanitization,
these tools report an error. This requires a tedious, manual
inspection of the false positives. Of course, once a saniti-
zation routine has been manually examined and annotated
as safe, more powerful static analysis tools will honor this
annotation and no longer report false positives. Unfortu-
nately, programmers are often unlikely to spot the applica-
tion of incorrect custom sanitization. The reason for this is
that programmers expect the static analysis tools to report
an error in association with their custom sanitization rou-
tines, and, therefore, there is little need to double-check
them. This is dangerous, as we have found several in-
stances in a number of real-world programs in which cus-
tom sanitization was used incorrectly.

To address the shortcomings of current analysis tools,
we propose a technique that can handle the use of custom
sanitization routines and properly track the effect of func-
tions that manipulate and modify program input. The goal
is to model the effect of sanitization routines so that we
can check, for every sensitive sink, whether the input that
can reach these sinks might contain malicious values. This
solves two problems. First, we can reduce the number of
false positives produced by current static analysis tools by
taking into account correct sanitization. Second, we can
identify incorrect sanitization routines and alert the pro-
grammer when she has made a mistake.

3 Approach

The goal of Saner is to analyze the use of custom saniti-
zation routines to identify possible XSS and SQL injection
vulnerabilities in web applications. In the context of our
work, any function that takes as input a (string) value and
that can output a modified version of this input is consid-
ered a possible sanitization routine. In particular, this in-
cludes functions that replace or remove certain characters
or substrings from their input (such as the PHP functions
str replace or eregi replace). As mentioned pre-
viously, this requires our system to model the ways in
which these functions can modify the application’s input.
To this end, we use a combination of static and dynamic
program analysis techniques.

The core of the approach consists of a static anal-
ysis component that uses data flow techniques to iden-
tify the flows of input values from sources to sensitive
sinks. This component is based on the open-source web
vulnerability scanner called Pixy [17, 18]. In its current
form, Pixy only provides information about the presence
of data flows between sources and sinks. In addition, it can
determine whether built-in sanitization operations (such
as htmlentities) are applied on all paths between a
source and a sink. To achieve this, it is sufficient to as-
sign one of two types (or labels) to each program variable:
tainted or untainted. Whenever input is read from a user
and stored in a variable, the variable initially receives the
label tainted. Once a variable is sanitized, its label is set
to untainted. Whenever a tainted variable is used in a sen-
sitive sink, an error is signaled. Unfortunately, this simple
approach cannot model the effect of sanitization routines,
as a variable can only be tainted or untainted, and the tool
cannot capture the set of values that the variable can hold.
To address this problem, we have extended Pixy to derive
an over-approximation of the set of (string) values that each
program variable can hold. This calculation is done for ev-
ery point in the program. For each sensitive sink, we can
then check whether this value set contains any element that
poses a security risk when used at that sink.

The static analysis component is sound with respect to
the supported language features1. That is, whenever the
static analysis component declares a sanitization operation
to be correct, we are certain that there exists no vulnerabil-
ity. The drawback of this approach is that the system might
produce false positives (i.e., not every reported problem is
an actual vulnerability). Because the number of false pos-
itives can be large (depending on the application), we aug-
ment the static analysis with an additional dynamic analy-
sis phase.

The goal of the dynamic phase is to examine all those
program paths from input sources to sensitive sinks that
the static analysis has identified as suspicious. More pre-
cisely, using dynamic analysis, we attempt to confirm the
existence of a potential security vulnerability (reported by

1Most notably, our analysis does not support the eval function and
certain cases of aliased array elements.

4

the static analysis phase) by finding program inputs that
can bypass the sanitization routines and reach the sensitive
sink. To this end, the dynamic analysis is used to simulate
the effect of the program operations on the input while it is
propagated to the sensitive sink (in particular, sanitization
operations are of interest). Of course, the analysis is per-
formed by exercising the code with a large set of different
input values, which contain many different ways of encod-
ing and hiding malicious characters. In some sense, the dy-
namic analysis phase automates the actions of a program-
mer when a static analysis tool reports a warning. Similar
to our dynamic phase, the programmer would first identify
the operations that are applied to an input on the path from
the source to the sink. Then, using a number of test cases,
she would attempt to understand whether one of these in-
puts could lead to a security violation.

Whenever the dynamic analysis phase determines that
a malicious value can reach a sensitive sink, this input is
reported as a concrete example that violates the security of
the application. If no such input can be found, there are
two options. The first option is to assume that the static
analysis phase has incorrectly flagged a correct sanitiza-
tion routine as suspicious. This sacrifices soundness be-
cause the dynamic analysis might miss a true vulnerability,
but it is convenient as no further manual inspection is re-
quired. The second option is to report confirmed vulnera-
bilities with higher confidence, and to yield the remaining
warnings to the programmer.

3.1 Sanitization-Aware Static Analysis

As mentioned in Section 2, existing static analysis ap-
proaches simply “guess” whether a custom sanitization
routine is effective or not. A sound analysis would regard
all types of custom sanitization as ineffective, which typ-
ically leads to many false positives. An unsound analysis
would assume that custom sanitization is always correct,
which may result in missed vulnerabilities. Pixy, the anal-
ysis tool that we build upon, follows a sound approach.
Hence, our first goal is to improve the existing static anal-
ysis so that it is able to assess the effectiveness of custom
sanitization routines. As a result, whenever our improved
analysis verifies that a custom sanitization is correct, it has
essentially suppressed a false positive that (the original)
Pixy would have reported. To achieve this goal, we present
a technique that leverages transducer-based, implicit taint
propagation. Once the static analysis is finished, our sec-
ond objective is to provide the subsequent dynamic analy-
sis phase with appropriate information that allows for fur-
ther inspection of all suspicious sanitization procedures.

3.1.1 Basic String Automata

As a first step for modeling sanitization routines, we re-
quire information about the set of values that different pro-
gram variables may hold, not only the information whether
they are tainted or not. To this end, we employ an analy-

sis that can approximate the string values that certain vari-
ables might hold at certain program points, using finite au-
tomata. Commonly, automata are used as acceptors. That
is, they are applied for deciding whether string values be-
long to a certain language. For our purposes, we make use
of another property of automata (or, equivalently, regular
expressions), namely the ability to describe an arbitrary set
of strings.

In our automata representation, every edge denotes a
single-character transition. Note that the label 〈.〉 stands
for an arbitrary character. In addition to the characters that
make up a string value, automata also need to be able to en-
code information about the taint status of these stings. That
is, we want to be able to express that certain parts of a string
value are tainted, whereas other parts are untainted. This
allows us to reconstruct which parts of the strings are pos-
sibly derived from (malicious) user input, and which parts
stem from static strings embedded in the program source
code. This property is achieved by associating taint quali-
fiers to the transitions of the automata. An edge can either
represent a tainted character (represented by a dotted line)
or an untainted character (represented by a solid line).

H E L L O
<.>

Figure 2. Automata for the string “Hello”,
and for an unknown, tainted string.

As example, two automata are shown in Figure 2. The
left automaton represents the static string value “Hello”,
and hence, contains a series of transitions labeled with the
individual characters of this string. Since the string derives
from a static literal provided by the programmer, it is con-
sidered to be untainted, which is represented by solid tran-
sitions. In contrast, the automaton on the right side could
represent the value set for variable $ GET[’x’]. Because
this value is user-supplied and not known until runtime, the
automaton describes the set of all possible strings. The dot-
ted transition indicates that the value is tainted.

Dependence Graphs. To compute the set of string val-
ues that a variable at a certain program point can hold, we
leverage Pixy’s dependence analysis. Dependence anal-
ysis is a data flow analysis that computes a dependence
graph for every program point (and each variable). Such
dependence graphs provide reaching definitions for a par-
ticular program point. Intuitively, this means that a de-
pendence graph provides a list of all variables (program
points) that might directly influence (or reach) the current
program point. As an example, consider the dependence
graph in Figure 3. This graph reflects the dependencies for
variable $custom on Line 9 in Figure 1.

5

GET['x'],1

'<', 7 '', 7 $input, 7

str_replace, 7

$custom, 8"Hello", 8

strcat, 8

$custom, 9

Figure 3. Example dependence graph.

1 decorate(Node n) {
2 decorate all successors of n;
3 if n is a string node:
4 decorate n with an automaton for this string
5 else if n is an <input> node:
6 decorate n depending on type of input
7 else if n is an operation node:
8 simulate the operation’s semantics
9 else if n is a variable node:

10 decorate n with the union of n’s successor
11 automata
12 else if n is a SCC node:
13 decorate n with a star automaton
14 (the taint value of its transition depends
15 on the successor nodes)
16 }

Figure 4. Dependence graph decoration al-
gorithm.

Computing Automata. Assume for the moment that a
dependence graph for a certain variable (at a particular
program point) does not contain cycles. In this case, we
can compute the automaton for this variable by applying
the algorithm shown in Figure 4. This algorithm takes the
root of the dependence graph as input, and recursively pro-
cesses all nodes of the graph in a postorder traversal. Dur-
ing this traversal, each processed node is associated (deco-
rated) with a separate automaton. Each of these automata
describes the possible string values of the corresponding
node. For computing such an automaton, the automata of
all successor nodes are required as input, which explains
the postorder traversal. Once all successors of a node have
been successfully decorated, the way how the current node
is decorated depends on the type of this node.

In the simplest case, the current node represents a string
literal. Such nodes are simply decorated with an automaton
that describes exactly this string. For a program 〈input〉
node (shown shaded in Figure 3), it is necessary to ana-
lyze the type of this input. If the node represents a variable
whose value is taken from the user, such as $ GET[’x’],
the automaton shown on the right in Figure 2 is used for
decoration. This automaton represents the set of all pos-
sible strings (we will refer to such an automaton as “star
automaton” from now on). Its sole transition is tainted to

reflect the fact that the user input can be malicious. If the
input cannot be directly controlled by a remote user, the
transition would be untainted.

If the node to be processed is an operation node (that
is, a call to a built-in function), then the semantic of this
operation has to be simulated. In case of a string con-
catenation operation (represented as strcat), this is sim-
ply done by concatenating the automata of the successor
nodes. All other operations are divided into two groups
(and our system is equipped with a list that assigns built-in
functions to one of these categories). The first group con-
tains functions that are precisely modeled. That is, our sys-
tem is able to compute an automaton that describes all pos-
sible output strings, even when the input parameters to the
function are not concrete string instances but automata as
well. This is realized with the help of transducers, which
are described in more detail in the following Section 3.1.2.
We have developed a number of transducers for functions
that manipulate strings (such as str replace) as well
as functions that are commonly used for input sanitization
(such as html entities). This is essential to be able to
precisely capture the effect of sanitization routines.

The second group of operations contains functions that
are not modeled. In this case, we resort to a conservative
approximation and assume that each function returns the
set of all possible strings (represented as the star automa-
ton). The taint status of the automaton’s transition depends
on the taint status of the function’s actual parameters. To
be more precise, the taint status for such functions is the
least upper bound over the taint status of their parameters.
That is, if any parameter is tainted, then the return value is
tainted as well. Otherwise, the return value is not tainted.

The next case in the algorithm of Figure 4 (Line 9)
applies if the current node is a node representing a vari-
able. In a dependence graph, the successor nodes of a
variable node represent the values that this variable may
possess. Different successor nodes correspond to different
paths through the program. This fact can be translated into
an automaton by creating the union of the successor nodes’
automata. For example, if a variable $a depends on the two
string literals “b” and “c”, it means that $a can hold one
of these two strings at runtime. An automaton that encodes
this information is created by computing the union of the
two automata that represent “b” and “c”, respectively.

Cyclic Dependence Graphs. The previously described
algorithm for transforming dependence graphs into au-
tomata is not directly applicable to graphs that contain cy-
cles. In general, the precise modeling of cyclic string op-
erations is a difficult problem [4, 24]. Our solution is to
replace strongly connected components (SCCs) in the de-
pendence graph with special SCC nodes, which results in
a dependence graph without cycles. This explains the fi-
nal Lines 12 to 15 of our decoration algorithm in Figure 4.
Here, SCC nodes are treated analogously to built-in func-
tions that are not modeled. That is, they are decorated with
a star automaton, and the taint value of this automaton’s

6

transition is given by the taint values of the SCC node’s
successors.

Discussion. In general, strings can be created or mod-
ified by one of the following three methods: the use of
string literals (e.g., $s = ’ab’), the concatenation of two
strings, or the use of a built-in function. The use of the
first two methods, string literals and string concatenation,
are always handled precisely by our algorithm. This is also
true for built-in functions that are modeled by transducers.
Built-in functions that are not explicitly modeled are con-
servatively approximated with a star automaton. As a re-
sult, our analysis either computes precise results, or a safe
approximation of the actual result. The only exception is
that we do not handle the manipulation of strings through
indexing. For instance, it is possible to change the value
of the third character of some string variable $s through
an assignment to $s{2}. While this technique for modi-
fying strings is common in C programs, it occurs rarely in
PHP applications. In fact, all applications that we evalu-
ated for this paper did not make use of index-based string
modifications.

3.1.2 Precise Function Modeling

As mentioned previously, for the analysis of custom san-
itization, it is necessary to introduce a precise modeling
of string-modifying functions (such as str replace)
and replacement functions using regular expressions
(ereg replace and preg replace). A suitable al-
gorithm was presented in the natural language processing
community by Mohri and Sproat [25]. This algorithm is
based on the use of finite state transducers. A transducer
is an automaton whose transitions are associated with out-
put symbols. This way, it is not only able to accept (or
reject) input strings, but it also produces output for each
input string.

For example, when using Mohri and Sproat’s algorithm
to analyze the string operations on Lines 7 and 8 in Fig-
ure 1, we obtain the automaton shown in Figure 5. This au-
tomaton precisely captures the possible values of the vari-
able $custom. That is, it describes the set of strings that
start with the prefix “Hello”, and end with a suffix that
does not contain the ‘<’ character. Unfortunately, the com-
puted automaton does not distinguish between tainted and
untainted transitions anymore. Instead, it simply assumes
all transitions to be untainted. This is because Mohri and
Sproat’s algorithm is not designed to work on taint-aware
automata. We will present a solution to this problem later
in this section.

H E L L O not(<)

Figure 5. Automaton after replacement of ’<’.

not(<)
<

any

Figure 6. Example target automaton for XSS.

3.1.3 Vulnerability Detection Through Intersection

To check whether a program is vulnerable at some sensi-
tive sink (even when sanitization routines are previously
applied), it is necessary to determine whether it is possi-
ble that the input to this sensitive sink contains any ma-
licious characters or strings. For instance, an XSS attack
typically requires characters such as ‘<’ to be present, as
they are needed to construct JavaScript or HTML code.
In our approach, we verify this requirement by intersect-
ing the automaton that represents the sink’s input with an
automaton that encodes the set of undesired strings (the
target automaton). If the automaton that results from this
intersection is empty2, it means that none of the undesired
strings can be contained in the input, and that this sink is
safe.

We are aware of the fact that certain XSS attacks do
not require the attacker to inject a ‘<’ character into the
program output. For example, if an application lets a user
modify HTML tags (such as CCS properties or fonts), an
attacker could inject script handlers into tag attributes. In
such cases, the automaton that captures such attacks will
need to be more complex. This can be done without requir-
ing any modifications to our basic technique. Moreover,
by checking for the presence of the ‘<’ character, our sys-
tem already covers a significant fraction of existing XSS
threats.

A simple example automaton that represents a conser-
vative approximation of the undesired strings with respect
to XSS is shown in Figure 6. This target automaton repre-
sents all strings that contain at least one ‘<’ character. In-
tersecting this automaton with the automaton from Figure 5
yields an empty automaton, which means that this input
cannot be used to successfully perform an attack. By doing
this, we have successfully determined that the applied cus-
tom sanitization was effective. In contrast, the intersection
of the target automaton with the automaton that represents
the potentially dangerous value of variable $ GET[’x’]
(right side of Figure 2) is non-empty, since the unknown
value might contain an arbitrary number of ‘<’ characters.

3.1.4 Implicit Taint Propagation

Unfortunately, the techniques for function modeling and
vulnerability detection described above are still lacking an
important ingredient for reaching a sufficient level of preci-
sion. The reason is that the algorithm of Mohri and Sproat

2To be precise: If the resulting automaton accepts only the empty lan-
guage.

7

does not operate on taint-aware automata, but, instead, on
traditional automata without taint qualifiers associated to
their transitions. That is, the algorithm is not able to prop-
agate taint values through the modeled functions. Without
additional measures, this information loss would lead to
false positives, as taint information is essential for vulner-
ability detection. For instance, the simple example code
depicted in Figure 7 below would result in a false positive.

$s = "Hello\n";
$x = str_replace("\n", ’
’, $s);
echo $x;

Figure 7. Code that causes a false positive.

$s = ’a’;
$x = str_replace(’a’, $_GET[’x’], $s);
echo $x;

Figure 8. Code that could cause a false neg-
ative.

In this code, all occurrences of the ‘\n’ control char-
acter are replaced with an HTML line break. Intersecting
the automaton that is computed for $x with the XSS target
automaton would yield a non-empty result, since $x does
contains a ‘<’ character. As a consequence, our analysis
would report a vulnerability for this example.

A possible approach to solve the problem of propa-
gating taint values through custom sanitization functions
would be to modify Mohri and Sproat’s algorithm such that
it becomes taint-aware. This modification would ensure
that the algorithm accepts taint-aware automata as input
(i.e., the arguments of the modeled sanitization function),
and returns a taint-aware automaton as output. However,
we propose an alternative solution that is sound, efficient,
less complex, and less error-prone than a modification of
the existing algorithm. Instead of explicitly keeping track
of both tainted and untainted values, we concentrate our at-
tention on the tainted parts of the automata. In this implicit
taint propagation, strings that are statically embedded into
the application by the programmer (and hence, untainted)
are replaced by the empty string during the automata com-
putation. This has the effect that only tainted strings are ex-
plicitly encoded in the automata, and that static, untainted
strings can no longer lead to false positives.

If used without care, however, implicit taint propaga-
tion can cause false negatives in certain cases (i.e., vulner-
abilities might be missed). Consider the (rather contrived)
example in Figure 8. Here, the program replaces the char-
acter ‘a’ inside the string $s with a user-provided value
(taken from $ GET[’x’]). If our analysis would prop-
agate taint values implicitly (and replace the value of $s
with the empty string), it would incorrectly deduce that
the str replace operation results in the empty string
as well. Under the XSS target automaton defined above,
an empty string is benign, and, therefore, the vulnerability
would be missed. To ensure soundness, it is necessary to

compensate the information loss due to the implicit taint
propagation with a supplementary “safety net.” This ad-
ditional mechanism corresponds to checking whether the
second parameter of str replace (or, analogously, the
replacement parameter of similar functions) is tainted. If
the parameter is tainted, the result of the function invo-
cation is conservatively approximated with the automaton
that describes the set of all possible strings. This ensures
that implicit taint propagation does not introduce false neg-
atives.

3.1.5 Providing Information to Dynamic Analysis

The dynamic analysis that follows the static analysis
phase is focused on the detection of routines that perform
insufficient custom sanitization. Hence, it only requires
information about those vulnerabilities reported by the
static analysis process that actually involve the use of
custom sanitization routines. For instance, consider the
following example code:

1 $x = str_replace(’<script>’, ’’, $_GET[’x’]);
2 echo $x;

In this program, the variable $ GET[’x’] is insuffi-
ciently sanitized. The programmer attempted to remove all
script tags from the input. Unfortunately, this simple
sanitization technique can be easily circumvented by em-
bedding JavaScript code in HTML event handlers (such as
onload), which do not require the use of script tags.
When checking this code, the dynamic analysis should be
informed that there is a possible vulnerability due to insuf-
ficient sanitization, and that this vulnerability involves the
user-controlled variable $ GET[’x’] as source and the
echo statement on Line 2 as sink. That is, the dynamic
analysis is provided with source-sink pairs that describe
possible vulnerabilities due to insufficient custom sanitiza-
tion. This information is extracted from the dependence
graphs that static analysis uses internally by means of a
simple reachability computation.

Recall that the focus of this paper is on the analysis of
custom sanitization routines. As a consequence, we do not
provide dynamic analysis with information about vulnera-
bilities that do not involve any custom sanitization. Instead,
these vulnerabilities are immediately reported to the user.

3.2 Testing Sanitization Routines

The static analysis phase is conservative, and, therefore,
it may generate false positives, which a developer needs
to manually assess. This process, however, is tedious and
error-prone. The goal of the dynamic analysis (or testing)
phase is to automate this task, or at least, to automatically
confirm vulnerabilities for which inputs can be found that
bypass sanitization functions.

During the dynamic phase, we test the effectiveness of
the sanitization routines applied along the paths between a
source and the corresponding sink. This is done by directly

8

executing the corresponding sanitization routines, using as
input a number of attack strings. Then, a decision function
(typically called an “ oracle” in a testing context) is used
to evaluate whether the attack strings were successfully re-
duced to non-malicious values. If the testing process con-
firms that the sanitization is actually ineffective between a
source and a sink, it also provides the path along which
malicious input can reach the sink, as well as a sample at-
tack string that successfully exploits the vulnerability. This
information can then be leveraged by the developer to iden-
tify and fix the problem.

Ideally, one would run dynamic tests on a live installa-
tion of the application. However, it is often the case that
a vulnerability may be exploited (and, therefore, discov-
ered through testing procedures) only if the application is
in a certain, well-defined state (e.g., after the administra-
tor has logged in and the database contains specific val-
ues). Unfortunately, it is very difficult to test an application
under these conditions in a completely automated fashion.
Therefore, we take a different testing approach that focuses
only on the sanitization process itself and abstracts away all
other details of the application.

The dynamic analysis phase is composed of two differ-
ent steps. First, we construct a sanitization graph for each
pair of sources and sinks that are provided by the static
analysis component. Conceptually, we model the sanitiza-
tion process as the execution of a sequence of primitive op-
erations, i.e., sanitization functions. The sanitization graph
is the data structure that we use to efficiently store the se-
quences of sanitization operations that are applied to the
input along all paths from a source to its sink. The second
step of the dynamic analysis uses the sanitization graph to
test the corresponding sanitization code using a number of
predefined test cases.

3.2.1 Extracting the Sanitization Graph

For a given pair of source and sink nodes, the sanitiza-
tion graph is a slice (subgraph) of the interprocedural data-
flow graph of the application. This slice contains all nodes
that correspond to sanitization instructions along the paths
from the source to the sink. More precisely, we first com-
pute the interprocedural data-flow graph of the program
between the source and the sink nodes. By definition,
each node of the resulting subgraph represents an oper-
ation that affects the contents of the variables used by
the sink. This graph is then simplified by keeping only
those nodes that correspond to statements relevant to the
sanitization process. These include all calls to language-
provided sanitization routines (such as strip tags and
htmlspecialchars), regular-expression-based substi-
tution functions (preg replace), string-based substi-
tutions (e.g., str replace, strtoupper), as well as
other built-in string operations (e.g., concatenation).

As an example, consider the code snippet shown in Fig-
ure 9. The static analysis of the program identifies that a
user-provided input on Line 11 (the source) can reach the

1 <?php
2 function sanitize($data){
3 $res = eregi_replace("<script", "", $data);
4 if(version_compare(phpversion(),"4.3.0")=="-1")
5 $res = mysql_escape_string($res);
6 else
7 $res = mysql_real_escape_string($res);
8 return $res;
9 }

10

11 $name = sanitize($_GET["username"]);
12 echo "Name: ".$name;
13 ?>

Figure 9. Customized sanitization function.

source

eregi_replace

mysql_escape_string mysql_real_escape_string

sink

Figure 10. Sanitization graph.

echo statement at Line 12 (the sink) without proper sani-
tization. Following the data flow edges, we identify three
operations that affect the content of the variable $name
that is used by the sink: mysql real escape string
at Line 5, mysql escape string at Line 7, and the
regular expression at Line 3. The nodes corresponding to
these three functions are connected according to the edges
in the data flow graph, to reflect the order in which the op-
erations are performed in the original program. Figure 10
shows the resulting sanitization graph for our simple ex-
ample.

3.2.2 Testing the Effectiveness of the Sanitization
Routines

To analyze the effectiveness of the sanitization operations
performed by the application, we use the sanitization graph
to extract all possible paths Pi that lead from the source to
the sink. In our experiments, we found that the sanitiza-
tion graph is usually acyclic. However, in order to avoid
possible paths of infinite length, we adopted the common
solution of traversing each loop only once. For each path
Pi, we generate a block of code Ci by concatenating the
PHP instructions that correspond to each node that belongs
to Pi. This operation may involve resolving values of vari-
ables to determine (or extract) parameters used in a func-
tion call. In our example, the call to eregi replace is
examined to fetch the constant values of the first and sec-
ond parameter. The set of all the blocks Ci corresponds
to all the possible combinations of sanitization operations
that are applied by the program between the source and the
sink.

9

Since the sanitization graph only considers data flow in-
formation, it is possible that our analysis generates code
corresponding to infeasible paths, i.e., paths that cannot be
executed at runtime. This can result from the fact that the
sanitization graph does not model branch conditions, and,
therefore, the dynamic analysis might consider branches
that, in the original program, are infeasible. In case user
input is not properly sanitized along an infeasible path, the
tool might generate a false positive. This would occur if
proper sanitization is performed on all other, feasible paths.
However, we have not observed such a case in our exper-
iments. Also, note that even though we remove all cycles
from the sanitization graph, the number of paths can still
grow exponentially. When the number of paths exceeds
the capacity of our dynamic analysis to examine them all,
we assume that the sanitization is incorrect. Again, this
problem has not occurred during our experiments.

Depending on the type of the sink, we then select the
appropriate test suite to be used in the experiment. For the
prototype implementation of Saner, we implemented two
different test suites: one for testing cross-site scripting at-
tacks and one for testing SQL injection attacks. Both test
suites contain a large number of test cases, each represent-
ing a particular value of user input that contains malicious
data. We created these test suites using attack strings de-
rived from both our own experience and from specialized
web sites (such as [23,35]). For instance, typical input val-
ues that can be used to test the effectiveness of sanitization
code for XSS are:

<script>alert(1);</script>
<scr<scriptipt src=http://evil.com/attack.js>

<SCRIPT src="http://..."?

Some of these test cases are just straightforward exam-
ples of XSS attacks, while others represent more complex
cases that are likely to evade poorly-written sanitization
routines. Note that we do not claim that the set of test cases
that we adopt in our test runs is complete. Instead, the goal
of the dynamic analysis part is to examine automatically
and in detail those cases in which the static analysis phase
has reported a potential vulnerability.

Finally, we invoke the PHP interpreter to evaluate the
result of executing each block of code Ci on the list of
malicious inputs contained in the selected test suite. The
results of the executions are collected and analyzed by
a special oracle function associated with the test case.
This function is responsible for deciding whether the input
string was successfully sanitized by the code under test.
To do that, it is usually enough to check for the occurrence
of particular substrings in the result. However, more ad-
vanced techniques can be used to implement oracle func-
tions, such as analyzing the structure of a SQL query to
verify the result of a SQL injection.

In our example of Figure 10, we can identify two dif-
ferent paths through the sanitization graph. During the ex-
ecution of the first test case (the one that uses the input
string <script>alert(1);</script>), we invoke

the PHP interpreter to evaluate the two following pieces of
code:

Code 1:
$tmp = "<script>alert(1);</script>";
$tmp = eregi_replace("<script", "", $tmp);
$tmp = mysql_escape_string($tmp);

Code 2:
$tmp = "<script>alert(1);</script>";
$tmp = eregi_replace("<script", "", $tmp);
$tmp = mysql_real_escape_string($tmp);

At the end of the two executions, the value of the $tmp
variable is analyzed by the oracle function associated with
the test case. In this simple case, the oracle is realized
as a check to verify that the resulting string still contains
the unescaped script tag. Note that the execution
of this test does not spot any vulnerability, since the
eregi replace function does remove the opening tag
from the input string. However, the following test case,
which is based on the attack string <scr<scriptipt
src=http://evil.com/attack.js>, will immedi-
ately reveal the weakness of the sanitization routine.

4 Evaluation

We implemented our approach in a prototype tool called
Saner, and we evaluated this system on five popular,
publicly-available PHP applications that contain custom
sanitization routines.

The results of our analysis are shown in Table 1. The ta-
ble shows the total number of security-sensitive sinks that
are present in each analyzed program (sinks total). The
next column (sinks with sanitization) shows the subset of
sinks that have as input at least one value that depends on
the output of a sanitization routine. That is, for each sink,
there exists at least one program path such that the output
of a sanitization routine flows into this sink. This number
is important, as it represents those cases where incorrect
sanitization could have a potential impact on the security
of the program. It serves as a baseline for those sinks that
need to be further analyzed for incorrect sanitization. Note
that the number of sinks with sanitization is significantly
smaller than the total number of sinks. The reason is that
many of the sensitive sinks do not receive any tainted in-
put. Also, in a few cases, tainted input reaches sensitive
sinks directly, without any sanitization. In such cases, Pixy
would report a vulnerability. However, for this paper, we
are only interested in paths on which sanitization opera-
tions are performed.

The column eliminated (basic) shows the number of
sensitive sinks with sanitization for which the basic anal-
ysis of Pixy determines that there is no security problem.
This could be, for example, when the sanitization routine
is not processing any malicious input, and, as a result, its
output is guaranteed to be benign. The column eliminated
(advanced) counts those cases in which the sensitive sinks
do process potentially malicious input, but our improved
static analysis is able to verify that the sanitization process
works as intended. Finally, all sinks for which the static

10

Application
Sinks Static Analysis Dynamic Analysis

Total
With Sinks Sinks Sinks Sinks Not

Sanitization Eliminated Eliminated Analyzed Vulnerable Vulnerable
(Basic) (Advanced)

Jetbox 2.1 311 7 5 0 2 1 1
MyEasyMarket 4.1 737 50 0 45 5 5 0
PBLGuestbook 1.32 41 5 2 0 3 3 0
PHP-Fusion 6.01 1,015 67 19 0 48 4 44
Sendcard 3.4.1 84 10 2 0 8 1 7

Totals 2,188 139 28 45 66 14 52

Table 1. Detection results.

analysis process cannot verify the correctness of the pre-
ceding sanitization routines are forwarded to the dynamic
analysis (sinks analyzed).

The column sinks confirmed reports the total number
of sinks that are confirmed to be vulnerable after running
the dynamic analysis phase. The last column (not vulner-
able) shows those sinks for which the dynamic analysis
could not find input to bypass the sanitization routines. We
manually verified that all these cases are indeed harmless
and represent false positives produced by the static anal-
ysis phase. This demonstrates that the dynamic analysis
phase was able to correctly produce input values to bypass
the sanitization routines in all vulnerable cases. Of course,
in general, dynamic analysis suffers from false negatives.
Thus, to remain sound, a human analyst would have to ver-
ify all cases manually in which no malicious input is found.
However, our experiments show that the dynamic analysis
phase is very accurate in practice. Therefore, one could
choose to trust its results. In this case, the system would
only report sanitization routines that are very likely incor-
rect and also suggest input values that can be used to ex-
ploit the identified vulnerabilities.

The outcome of the experiments confirms our original
hypothesis that sanitization mechanisms used in real-world
applications are not always effective and can often be cir-
cumvented by determined attackers. To the best of our
knowledge, all the ineffective sanitization routines discov-
ered during the experiments correspond to novel, previ-
ously unknown vulnerabilities (with the exception of one
of those found in PBLGuestbook, which was previously
described in CVE-2006-3617). Therefore, we identified 13
novel vulnerabilities in the five applications we analyzed.
We have working exploits for each vulnerability and noti-
fied the appropriate application developers.

4.1 Discussion of Sanitization Errors

A detailed analysis of the vulnerabilities detected in our
experiments reveals that the sanitization process performed
by a program can be ineffective for several reasons, which
we classify based on the most common cases that we have
encountered.

First, the code that performs the sanitization can contain
programming errors. That is especially true if the sanitiza-
tion is based on regular expressions, whose complex syn-
tax can lead inexperienced developers to introduce subtle
bugs in their specification. For example, MyEasyMarket
attempts to sanitize the user-provided parameter www by
using the following regular expression-based substitution:

ereg_replace("[ˆA-Za-z0-9 .-@://]","",$www);

Clearly, the parameter is used to store a URL and the devel-
oper intended to allow it to include the ‘-’ (dash) charac-
ter. Unfortunately, the dash character, when used inside a
character class definition (marked by the square brackets),
is interpreted as the character range separator. Therefore,
the regular expression leaves unaffected all characters in-
cluded in the range between ‘.’ (dot) and ‘@’ (at), which
includes the open and close tag characters (< and >) and the
equal symbol (=). Thus, an attacker can inject the string
<script src=http://evil.com/attack.js/> and
successfully perform a cross-site scripting attack.

Second, the sanitization process can be bug-free but in-
sufficient. This is usually due to two reasons: the devel-
oper is not aware of all possible attack vectors (e.g., does
not remove all HTML elements that can cause the execu-
tion of JavaScript code), or, even if she is, she ignores the
fact that browsers accept and interpret malformed, non-
standard documents. As an example of the first problem,
consider the following sanitization performed in Jetbox
(slightly simplified for readability):

function removeEvilTags($source){
$allowedTags = "<h1><i><a>";
$source = strip_tags($source, $allowedTags);
return preg_replace(’/<(.*?)>/ie’,

"’<’.removeEvilAttributes(’\\1’).’>’",
$source);

}

function removeEvilAttributes($tagSource){
$stripAttrib = ’javascript:|onclick|".
"ondblclick|onmousedown|onmouseup|".
"onmouseover|onmousemove|onmouseout|".
"onkeypress|onkeydown|onkeyup|style|".
"onload|onchange’;

return preg_replace("/$stripAttrib/i",
’forbidden’, $tagSource);

}

11

The developer intended to only permit the use of a
limited number of HTML tags cleaned of attributes that
allow for the execution of JavaScript code. However,
the list of insecure attributes is not complete: for exam-
ple, the input string <a onfocus="malicious code"
href="url">dummy remains unaltered when it is
processed by the sanitization routines, and thus, it can be
used to execute malicious code. As an example of the
second problem, consider the sanitization performed by
PBLGuestbook:

preg_replace(
"/\<SCRIPT(.*?)\>(.*?)\<\/SCRIPT(.*?)\>/i",
"SCRIPT BLOCKED", $value);

Note that the specified pattern looks for a closing
script tag. Unfortunately, most browsers accept mal-
formed documents where an open tag is not followed by
a corresponding close tag, and automatically insert the
missing close tag. Therefore, an attacker can provide the
input string <script>malicious code< to circumvent
this sanitization.

Finally, the sanitization process implemented by a de-
veloper may correctly take into account all attack vectors
but still be evadable. For example, consider the following
sanitization:

str_replace("script","", $input)

This sanitization routine is intended to completely re-
move all occurrences of the string “script” from the
user input. Unfortunately, an attacker can bypass this sani-
tization by providing the string <scrscriptipt> code
</scrscriptipt> as input. The reason is that this
string is transformed by the sanitization procedure into
<script>code <script>, which invokes the embedded
JavaScript code.

4.2 Discussion of Effectiveness and
Efficiency

The combination of static and dynamic techniques
proved to be effective. In fact, for the smaller applications,
the dynamic testing phase was always able to automati-
cally confirm all the alerts provided by the static analysis
part. The advantage of using the dynamic analysis is more
evident when analyzing larger applications. For example,
in PHP-Fusion, the static analysis component generates a
large number of alerts, which, in all benign cases, were cor-
rectly identified as false positives by the dynamic analysis
phase.

Our results also indicate that current state-of-the-art vul-
nerability analysis tools would benefit from our approach,
especially when analyzing applications that use a non-
trivial amount of custom sanitization code. In fact, our ap-
proach provides a method to reduce the false positives that
are generated when a tool conservatively considers all cus-
tom sanitization routines to be ineffective, and false nega-
tives if the tool takes the opposite approach of considering
all sanitization routines to be secure. The reason is that

the sanitization functions are precisely modeled, and not a
priori assumed to be either entirely correct or faulty.

Table 2 presents the runtime performance of Saner. For
each application, we report the total number of lines of
code (lines of code), the time required to perform the static
analysis phase (static analysis time), the time required
to perform the dynamic analysis phase (dynamic analy-
sis time), and the total time (total time). Note that, even
though in this prototype implementation performance was
not a primary consideration, the time required to perform
our analysis is in the order of a few minutes for almost
all applications, and, in all cases, well under 20 minutes.
Through careful engineering, the performance of our re-
search prototype could be further enhanced. However, we
believe that the current system operates well in practice
and can be successfully used with large, real-world appli-
cations.

Interestingly, during the dynamic analysis phase, most
of the time was spent to compute the inter-procedural data
flow graph and extract the sanitization graphs. In our ex-
periments, sanitization graphs were generally small, both
in terms of number of nodes (i.e., sanitization primitives
used) and of number of paths. Therefore, the time spent
running the test attacks had a limited impact on the total
time.

5 Related Work

The approach described in this paper is a composition
of static and dynamic analysis techniques. Therefore, in
the following two sections, we review the research work
that is related to these two types of analysis.

5.1 Static Analysis

Type-Based Analysis. For typed programming languages,
information about the taint status of variables can be propa-
gated through the program by extending the type system of
the language. For example, CQual [7] is a tool that allows
one to extend the type system of the C language with user-
defined qualifiers. After defining the new type system, the
programmer manually introduces the additional qualifiers
at a few key points in the application. CQual’s qualifier
inference then determines whether the program contains
a type error under the extended system. This technique
was used by Shankar et al. [38] for the detection of format
string vulnerabilities, and by Johnson and Wagner [16] to
identify user/kernel pointer bugs in the Linux kernel. Anal-
ogously, Zhang et al. [46] discovered security problems re-
garding the placement of authorization hooks in the Linux
Security Modules framework.

JFlow [26] is an extension to the Java programming
language that adds a type system for tracking information
flow. In this system, the user is provided with annotations
(labels) that define restrictions on the way in which the in-
formation may be used in the program, permitting the veri-
fication of information confidentiality and integrity. JFlow

12

Application Lines of Code (#) Static Analysis Time (s) Dynamic Analysis Time (s) Total time (s)

Jetbox 2.1 69,177 62 5 67
MyEasyMarket 4.1 2,544 202 26 228
PBLGuestbook 1.32 1,595 40 180 220
PHP-Fusion 6.01 56,339 723 386 1,109
Sendcard 3.4.1 8,504 130 38 168

Table 2. Performance results.

supports a wide range of language features (such as objects
and exceptions), and is implemented in the Jif [15] tool.

Rule-Based Bug Finding. In [5], Engler et al. present
meta-level compilation, a technique for the translation of
simple user-defined rules (such as “never use floating point
in the kernel”) into extensions for the C compiler. Dur-
ing the compilation of a program, these extensions are able
to determine whether the program violates the specified
rules. An automated extraction of such program rules from
a given application is described in [6]. In [2], the authors
use the system to detect potentially dangerous accesses to
user-supplied, unchecked values in Linux and OpenBSD.

Web Application Analysis. There exist several ap-
proaches that are focused on the detection of “taint-style”
vulnerabilities (such as XSS or SQL injections), which
frequently occur in web applications. Huang et al. [13]
adapted parts of the techniques used in CQual to develop
an intraprocedural analysis for PHP programs. In [14], the
same authors present an alternative approach that is based
on bounded model checking. Whaley and Lam [44] de-
scribed an interprocedural, flow-insensitive alias analysis
for Java applications. Their analysis is based on binary de-
cision diagrams, and was used by Livshits and Lam [22]
for the detection of taint-style vulnerabilities. As already
mentioned, our approach is based on Pixy [17,18], an open
source static PHP analyzer that uses taint analysis for de-
tecting XSS vulnerabilities.

In [9], the authors applied the Java String Analyzer by
Christensen et al. [4] to extract models of a program’s
database queries, and used these models as the basis for
a runtime monitoring and protection component for SQL
injection attacks. The main difference compared to our ap-
proach is that the extracted models do not contain infor-
mation about the taint status of embedded variables. As
a result, it is not possible to detect vulnerabilities using
static analysis only. In our system, we can identify vulner-
abilities using static analysis alone. In addition, we use a
dynamic phase to automatically determine inputs that can
exploit a vulnerability.

Xie and Aiken [45] presented an interprocedural and
flow-sensitive system for the discovery of SQL injec-
tion vulnerabilities through a bottom-up analysis of basic
blocks, procedures, and the whole program. In their work,
the authors take into account the effect of applying one
of a number of regular expressions to an input value. In
principle, the authors manually specify a list of regular ex-

pressions that simply extends the list of built-in sanitiza-
tion routines (such as htmlentities). In contrast, our
technique automatically decides whether an arbitrary reg-
ular expression is suitable for sanitization, and requires no
manual extensions when scanning new applications.

The system that is probably closest to ours was devel-
oped by Wassermann and Su [43]. In their paper, the au-
thors present a static analysis technique for finding subtle
SQL injection flaws. For this, they independently and con-
currently developed a mechanism to determine the possi-
ble string values of variables in PHP programs. This al-
lows them to take into account the effect of sanitization
routines. The differences to our work are twofold. First,
our focus is different. We attempt to verify the correctness
of the sanitization process and do not limit our analysis to
the detection of SQL injection vulnerabilities. Second, our
system employs an additional dynamic analysis phase to
find automatically input values that can exploit a vulnera-
bility.

5.2 Dynamic Analysis

The dynamic techniques described in this paper are
related to the research in the area of applying dynamic
taint propagation analysis to web applications. Perl’s Taint
mode [31] is one of the best-known examples of such ap-
proaches. Similar approaches have been applied to other
languages as well: Nguyen-Tuong et al. [28] propose
modifications of the PHP interpreter to dynamically track
tainted data in PHP programs, and Haldar et al. [8] have
instrumented the Java Virtual Machine. Pietraszek and
Vanden Berghe [33] present a unifying view of injection
vulnerabilities and describe a general approach to the de-
tection and prevention of injection attacks through the dy-
namic tracking of the flow of untrusted data inside an ap-
plication. None of these approaches, however, provides a
precise modeling of sanitization routines used to untaint
data, and, thus, these approaches do not offer an effective
protection against web attacks.

The dynamic part of our work is also related to a num-
ber of research results and tools in the areas of application
security testing and fault injection [3,12,19,29,37,40]. All
these systems inject malicious (or sometimes random) in-
put into the applications to identify security problems. In
our tool, we inject strings corresponding to possible XSS
and SQL injection attacks to dynamically execute parts of
the analyzed applications. Our work is also related to the

13

data flow testing of applications, such as [10, 11, 34]. In
this type of testing, data flow graphs are used to identify
the test case requirements for a program. In our approach,
we use data flow graphs to find program statements related
to the sanitization process.

6 Conclusions

Web applications perform mission-critical tasks and
handle sensitive information. Even though there have been
a number of research efforts to identify the use of un-
validated input in web applications, little has been done
to characterize how sanitization is actually performed and
how effective it is in blocking web-based attacks.

In this paper, we have presented Saner, a novel ap-
proach to the evaluation of the sanitization process in web
applications. The approach relies on two complementary
analysis techniques to identify faulty sanitization proce-
dures. We implemented our approach, and by applying
it to real-world applications, we identified novel vulnera-
bilities that stem from incorrect or incomplete sanitization.
Future work will focus on the analysis of type-based val-
idation procedures, as scripting languages often allow the
programmer to interpret the values of variables in different
ways, depending on the application context. This might
lead to vulnerabilities that are difficult to detect.

Acknowledgements

This work has been supported by the Austrian Science
Foundation (FWF) and by Secure Business Austria (SBA)
under grants P-18764, P-18157, and P-18368, and by the
National Science Foundation, under grants CCR-0238492,
CCR-0524853, and CCR-0716095.

References

[1] C. Anley. Advanced SQL Injection in SQL Server Applica-
tions. Technical report, Next Generation Security Software,
Ltd, 2002.

[2] K. Ashcraft and D. Engler. Using Programmer-Written
Compiler Extensions to Catch Security Holes. In IEEE
Symposium on Security and Privacy, 2002.

[3] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kem-
merer, and G. Vigna. SNOOZE: toward a Stateful NetwOrk
prOtocol fuzZEr. In 9th Information Security Conference
(ISC), Samos Island, Greece, September 2006.

[4] A. Christensen, A. Møller, and M. Schwartzbach. Pre-
cise Analysis of String Expressions. In International Static
Analysis Symposium (SAS), 2003.

[5] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
System Rules Using System-Specific, Programmer-Written
Compiler Extensions. In Symposium on Operating Systems
Design and Implementation (OSDI), 2000.

[6] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to Infer-
ring Errors in Systems Code. In Symposium on Operating
System Principles (SOSP), 2001.

[7] J. Foster, M. Faehndrich, and A. Aiken. A Theory of Type
Qualifiers. In Conference on Programming Language De-
sign and Implementation (PLDI), 1999.

[8] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Prop-
agation for Java. In 21st Annual Computer Security Ap-
plications Conference (ACSAC), pages 303–311, December
2005.

[9] W. Halfond and A. Orso. AMNESIA: Analysis and Mon-
itoring for NEutralizing SQL-Injection Attacks. In Inter-
national Conference on Automated Software Engineering
(ASE), pages 174–183, November 2005.

[10] M. Harrold and G. Rothermel. Performing Data Flow Test-
ing on Classes. In 2nd ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, pages 154–163, 1994.

[11] M. Harrold and M. Soffa. Interprocedural Data Flow Test-
ing. In ACM SIGSOFT 3rd Symposium on Software Testing,
Analysis, and Verifications, pages 158–167, 1989.

[12] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior Mon-
itoring. In 11th International Conference on World Wide
Web (WWW), 2003.

[13] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. Se-
curing Web Application Code by Static Analysis and Run-
time Protection. In 12th International World Wide Web
Conference (WWW), 2004.

[14] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo.
Verifying Web Applications Using Bounded Model Check-
ing. In Conference on Dependable Systems and Networks
(DSN), 2004.

[15] Jif: Java + Information Flow. http://www.cs.
cornell.edu/jif/, 2007.

[16] R. Johnson and D. Wagner. Finding User/Kernel Pointer
Bugs With Type Inference. In 13th USENIX Security Sym-
posium, 2004.

[17] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabil-
ities (Short Paper). In IEEE Symposium on Security and
Privacy, 2006.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Anal-
ysis for Static Detection of Web Application Vulnerabili-
ties. In ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, 2006.

[19] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secu-
Bat: A Web Vulnerability Scanner. In 15th International
World Wide Web Conference (WWW), United Kingdom,
May 2006.

[20] A. Klein. Cross Site Scripting Explained. Technical report,
Sanctum Inc., 2002.

[21] J. Liberty and D. Hurwitz. Programming ASP.NET.
O’REILLY, February 2002.

[22] B. Livshits and M. Lam. Finding Security Vulnerabilities
in Java Applications with Static Analysis. In 14th USENIX
Security Symposium, pages 271–286, August 2005.

[23] F. Mavituna. SQL Injection Cheat Sheet, Version
1.4. http://ferruh.mavituna.com/makale/
sql- injection-cheatsheet/, May 2007.

[24] Y. Minamide. Static Approximation of Dynamically Gener-
ated Web Pages. In 14th International Conference on World
Wide Web (WWW), 2005.

[25] M. Mohri and R. Sproat. An Efficient Compiler for
Weighted Rewrite Rules. In 34th Annual Meeting on As-
sociation for Computational Linguistics, 1996.

14

[26] A. Myers. JFlow: Practical Mostly-Static Information Flow
Control. In Symposium on Principles of Programming Lan-
guages (POPL), 1999.

[27] Netcraft. PHP Usage Stats. http://www.php.net/
usage.php, June 2007.

[28] A. Nguyen-Tuong, S. Guarnieri, D. Greene, and D. Evans.
Automatically Hardening Web Applications Using Precise
Tainting. In 20th International Information Security Con-
ference (SEC), pages 372–382, May 2005.

[29] Nikto. Web Server Scanner. http://www.cirt.net/
code/nikto.shtml/.

[30] OWASP. Top ten project. http://www.owasp.org/,
May 2007.

[31] Perl. Perl security. http://perldoc.perl.org/
perlsec.html.

[32] PHP: Hypertext Preprocessor. http://www.php.net,
2005.

[33] T. Pietraszek and C. V. Berghe. Defending against Injec-
tion Attacks through Context-Sensitive String Evaluation.
In Recent Advances in Intrusion Detection (RAID), pages
372–382, 2005.

[34] S. Rapps and E. Weyuker. Selecting Software Test Data Us-
ing Data Flow Information. IEEE Transactions on Software
Engineering, 11(4):367–375, April 1985.

[35] RSnake. XSS (Cross Site Scripting) Cheat Sheet. http:
//ha.ckers.org/xss.html, May 2007.

[36] Security Space. Apache Module Report. http:
//www.securityspace.com/s_survey/ data/
man.200603/apachemods.html, April 2006.

[37] T. N. SecurityTM. Nessus Vulnerability Scanner. http:
//www.nessus.org/.

[38] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting
Format String Vulnerabilities with Type Qualifiers. In 10th
USENIX Security Symposium, 2001.

[39] K. Spett. Blind SQL Injection. Technical report, SPI Dy-
namics, 2003.

[40] Spike. http://www.immunitysec.com/
resources-freesoftware.shtml.

[41] Z. Su and G. Wassermann. The Essence of Command Injec-
tion Attacks in Web Applications. In Symposium on Prin-
ciples of Programming Languages (POPL), 2006.

[42] Symantec. Symantec internet security threat report, March
2007.

[43] G. Wassermann and Z. Su. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), 2007.

[44] J. Whaley and M. Lam. Cloning-Based Context-Sensitive
Pointer Alias Analysis Using Binary Decision Diagrams.
In Conference on Programming Language Design and Im-
plementation (PLDI), 2004.

[45] Y. Xie and A. Aiken. Static Detection of Security Vulner-
abilities in Scripting Languages. In 15th USENIX Security
Symposium, August 2006.

[46] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for
static analysis of authorization hook placement. In 11th
USENIX Security Symposium, 2002.

15

Quo Vadis? A Study of the Evolution of Input
Validation Vulnerabilities in Web Applications

Theodoor Scholte1, Davide Balzarotti2, Engin Kirda2,3

1 SAP Research, Sophia Antipolis
theodoor.scholte@sap.com

2 Institut Eurecom, Sophia Antipolis
{balzarotti,kirda}@eurecom.fr

3 Northeastern University, Boston
kirda@eurecom.fr

Abstract. Web applications have become important services in our
daily lives. Millions of users use web applications to obtain information,
perform financial transactions, have fun, socialize, and communicate. Un-
fortunately, web applications are also frequently targeted by attackers.
Recent data from SANS institute estimates that up to 60% of Internet
attacks target web applications.
In this paper, we perform an empirical analysis of a large number of web
vulnerability reports with the aim of understanding how input validation
flaws have evolved in the last decade. In particular, we are interested
in finding out if developers are more aware of web security problems
today than they used to be in the past. Our results suggest that the
complexity of the attacks have not changed significantly and that many
web problems are still simple in nature. Hence, despite awareness pro-
grams provided by organizations such as MITRE, SANS Institute and
OWASP, application developers seem to be either not aware of these
classes of vulnerabilities, or unable to implement effective countermea-
sures. Therefore, we believe that there is a growing need for languages
and application platforms that attack the root of the problem and secure
applications by design.

1 Introduction

The web has become part of everyone’s daily life, and web applications now
support us in many of our daily activities. Unfortunately, web applications are
prone to various classes of vulnerabilities. Hence, much effort has been spent on
making web applications more secure in the past decade (e.g., [4][15][28]).

Organizations such as MITRE [15], SANS Institute [4] and OWASP [28] have
emphasized the importance of improving the security education and awareness
among programmers, software customers, software managers and Chief Informa-
tion Officers. These organizations do this by means of regularly publishing lists

with the most common programming errors. Also, the security research com-
munity has worked on tools and techniques to improve the security of web ap-
plications. These techniques include static code analysis [9, 14, 33–35], dynamic
tainting [23, 24, 27], combination of dynamic tainting and static analysis [32],
prevention by construction or by design [8, 13, 29, 36] and enforcement mecha-
nisms executing within the browser [1, 7, 10, 31]. Some of these techniques have
been commercialized and can be found in today’s development toolsets. An ex-
ample is Microsoft’s FxCop [6] which can be integrated into some editions of
Microsoft Visual Studio.

Although a considerable amount of effort has been spent by many different
stake-holders on making web applications more secure, we lack quantitative ev-
idence that this attention has improved the security of web applications over
time. In particular, we are interested in finding out and understanding how two
common classes of vulnerabilities, namely SQL injection and Cross Site Script-
ing, have evolved in the last decade.

We chose to focus our study on SQL Injection and Cross-Site Scripting vul-
nerabilities as these classes of web application vulnerabilities have the same root
cause: improper sanitization of user-supplied input that result from invalid as-
sumptions made by the developer on the input of the application. Moreover,
these classes of vulnerabilities are prevalent, well-known and have been well-
studied in the past decade. Thus, it is likely that there is a sufficient number of
vulnerability reports available to allow an empirical analysis.

In this paper, by performing an automated analysis, we attempt to answer
the following questions:

1. Do attacks become more sophisticated over time?
We automatically analyzed over 2600 vulnerabilities and found out that the
vast majority of them was not associated to any sophisticated attack tech-
niques. Our results suggest that the exploits do not intend to evade any input
validation, escaping or encoding defense mechanisms. Moreover, we do not
observe any particular increasing trend with respect to complexity.

2. Do well-known and popular applications become less vulnerable over time?
Our results show that an increasing number of applications have exactly
one vulnerability. Furthermore, we observe a shift from popular applications
to non-popular applications with respect to SQL Injection vulnerabilities, a
trend that is, unfortunately, not true for Cross-Site Scripting.

3. Do the most affected applications become more secure over time?

We studied in detail the ten most affected open source applications resulting
in two top ten lists – one for Cross-Site Scripting and one for SQL Injec-
tion. In total, 197 vulnerabilities were associated with these applications. We
investigated the difference between foundational and non foundational vul-
nerabilities and found that the first class is decreasing over time. Moreover,
an average time of 4.33 years between the initial software release and the
vulnerability disclosure date suggests that many of today’s reported Cross-
Site Scripting vulnerabilities were actually introduced into the applications
many years ago.

The rest of the paper is organized as follows: The next section describes our
methodology and data gathering technique. Section 3 presents an analysis of the
SQL Injection and Cross-Site Scripting reports and their associated exploits. In
Section 4, we present the related work and then briefly conclude the paper in
Section 5.

2 Methodology

To be able to answer how Cross Site Scripting and SQL Injections have evolved
over time, it is necessary to have access to significant amounts of vulnerability
data. Hence, we had to collect and classify a large number of vulnerability re-
ports. Furthermore, automated processing is needed to be able to extract the
exploit descriptions from the reports. In the next sections, we explain the process
we applied to collect and classify vulnerability reports and exploit descriptions.

2.1 Data Gathering

One major source of information for security vulnerabilities is the CVE dataset,
which is hosted by MITRE [19]. According to MITRE’s FAQ [21], CVE is not
a vulnerability database but a vulnerability identification system that ‘aims to
provide common names for publicly known problems’ such that it allows ‘vulner-
ability databases and other capabilities to be linked together’. Each CVE entry
has a unique CVE identifier, a status (‘entry’ or ‘candidate’), a general descrip-
tion, and a number of references to one or more external information sources of
the vulnerability. These references include a source identifier and a well-defined
identifier for searching on the source’s website. Vulnerability information is pro-
vided to MITRE in the form of vulnerability submissions. MITRE assigns a CVE
identifier and a candidate status. After the CVE Editorial Board has reviewed
the candidate entry, the entry may be assigned the ‘Accept’ status.

For our study, we used the CVE data from the National Vulnerability Database
(NVD) [25] which is provided by the National Institute of Standards and Tech-
nology (NIST). In addition to CVE data, the NVD database includes the fol-
lowing information:

– Vulnerability type according to the Common Weakness Enumeration (CWE)
classification system [20].

– The name of the affected application, version numbers, and the vendor of
the application represented by Common Platform Enumeration (CPE) iden-
tifiers [18].

– The impact and severity of the vulnerability according to the Common Vul-
nerability Scoring System (CVSS) standard [17].

The NIST publishes the NVD database as a set of XML files, in the form:
nvdcve-2.0-year.xml, where year is a number from 2002 until 2010. The first
file, nvdcve-2.0-2002.xml contains CVE entries from 1998 until 2002. In order
to build timelines during the analysis, we need to know the discovery date, dis-
closure date, or the publishing date of a CVE entry. Since CVE entries originate

from different external sources, the timing information provided in the CVE and
NVD data feeds proved to be insufficient. For this reason, we fetch this infor-
mation by using the disclosure date from the corresponding entry in the Open
Source Vulnerability Database (OSVDB) [11].

For each candidate and accepted CVE entry, we extracted and stored the
identifier, the description, the disclosure date from OSVDB, the CWE vulnera-
bility classification, the CVSS scoring, the affected vendor/product/version in-
formation, and the references to external sources. Then, we used the references
of each CVE entry to retrieve the vulnerability information originating from
the various external sources. We stored this website data along with the CVE
information for further analysis.

2.2 Vulnerability Classification

Since our study focuses particularly on Cross-Site Scripting and SQL Injection
vulnerabilities, it is essential to classify the vulnerability reports. As mentioned
in the previous section, the CVE entries in the NVD database are classified
according to the Common Weakness Enumeration classification system. CWE
aims to be a dictionary of software weaknesses. NVD uses only a small subset
of 19 CWEs for mapping CVEs to CWEs, among those are Cross-Site Scripting
(CWE-79) and SQL Injection (CWE-89).

Although NVD provides a mapping between CVEs and CWEs, this map-
ping is not complete and many CVE entries do not have any classification at
all. For this reason, we chose to perform a classification which is based on both
the CWE classification and on the description of the CVE entry. In general, a
CVE description is formatted according to the following pattern: {description of
vulnerability} {location description of the vulnerability} allows {description of
attacker} {impact description}. Thus, the CVE description includes the vulner-
ability type.

For fetching the Cross-Site Scripting related CVEs out of the CVE data, we
selected the CVEs associated with CWE identifier ‘CWE-79’. Then, we added
the CVEs having the text ‘Cross-Site Scripting’ in their description by perform-
ing a case-insensitive query. Similarly, we classified the SQL Injection related
CVEs by using the CWE identifier ‘CWE-89’ and the keyword ‘SQL Injection’.

2.3 The Exploit Data Set

To acquire a general view on the security of web applications, we are not only
interested in the vulnerability information, but also in the way each vulnerability
can be exploited. Some external sources of CVEs that provide information con-
cerning Cross-Site Scripting or SQL Injection-related vulnerabilities also provide
exploit details. Often, this information is represented by a script or an attack
string.

An attack string is a well-defined reference to a location in the vulnerable
web application where code can be injected. The reference is often a complete
URL that includes the name of the vulnerable script, the HTTP parameters, and
some characters to represent the placeholders for the injected code. In addition

0

1000

2000

3000

4000

5000

6000

7000

8000

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

Total Number of Vulnerabili!es

Number of SQL Injec!on CVEs

Number of XSS CVEs

(a) Vulnerability trends in numbers.

0

2

4

6

8

10

12

14

16

18

20

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

Percentage of SQL Injec!on CVEs

Percentage of XSS CVEs

(b) Vulnerability trends in percentages

Fig. 1: Cross-Site Scripting and SQL Injection vulnerabilities over time.

of using placeholders, sometimes, real examples of SQL or Javascript code may
also be used. Two examples of attack strings are:

http://[victim]/index.php?act=delete&dir=&file=[XSS]

http://[victim]/index.php?module=subjects&func=viewpage&pageid=[SQL]

At the end of each line, note the placeholders that can be substituted with
arbitrary code by the attacker.

The similar structure of attack strings allows our tool to automatically ex-
tract, store and analyze the exploit format. Hence, we extracted and stored all
the attack strings associated with both Cross-Site Scripting and the SQL Injec-
tion CVEs.

3 Analysis of the Vulnerabilities Trends

The first question we wish to address in this paper is whether the number of SQL
Injection and Cross-Site Scripting vulnerabilities reported in web applications
has been decreasing in recent years. To answer this question, we automatically
analyzed the 39,081 entries in the NVD database from 1998 to 2009. We had
to exclude 1,301 CVE entries because they did not have a corresponding match
in the OSVDB database and, as a consequence, did not have a disclosure date
associated with them. For this reason, these CVE entries are not taken into
account for the rest of our study. Of the remaining vulnerability reports, we
identified a total of 5222 Cross-Site Scripting entries and 4810 SQL Injection
entries.

Figure 1a shows the number of vulnerability reports over time and figure 1b
shows the percentage of reported Cross-Site Scripting and SQL Injection vul-
nerabilities over the total CVE entries.

0%

20%

40%

60%

80%

100%

2005 2006 2007 2008 2009

Percentage of XSS CVEs with simple a!ack strings

Percentage of XSS CVEs with complex a!ack strings

(a) Cross-Site Scripting

0%

20%

40%

60%

80%

100%

2005 2006 2007 2008 2009

Percentage of SQLI CVEs with simple a!ack strings

Percentage of SQLI CVEs with complex a!ack strings

(b) SQL Injection

Fig. 2: Complexity exploits over time.

Our first expectation based on intuition was to observe the number of re-
ported vulnerabilities follow a classical bell shape: beginning with a slow start
when the vulnerabilities are still relatively unknown, then a steep increase cor-
responding to the period in which the attacks are disclosed and studied, and
finally a decreasing phase when the developers start adopting the required coun-
termeasures.

In fact, the graphs show an initial phase (2002-2004) with very few reports,
followed by a steep increase of Cross-Site Scripting and SQL Injection vulnera-
bility reports in the years 2004, 2005 and 2006. Note that this trend is consistent
with historical developments. Web security started increasing in importance af-
ter 2004, and the first XSS-based worm was discovered in 2005 (i.e., “Samy
Worm”). Hence, web security threats such as Cross-Site Scripting and SQL In-
jection started receiving more focus after 2004.

Unfortunately, the number of reported vulnerabilities has not significantly
decreased since 2006. In other words, the number of vulnerabilities found in
2009 is comparable with the number reported in 2006. In the rest of this section,
we will formulate and verify a number of hypotheses to explain the possible
reasons behind this phenomenon.

3.1 Attack Sophistication

Hypothesis 1 Simple, easy-to-find vulnerabilities have now been replaced by
complex vulnerabilities that require more sophisticated attacks.

The first hypothesis we wish to verify is whether the overall number of vul-
nerabilities is not decreasing because the simple vulnerabilities discovered in the
early years have now been replaced by new ones that involve more complex attack
scenarios. For example, the attacker may have to carefully craft the malicious
input in order to reach a subtle vulnerable functionality, or to pass certain input
transformations (e.g., uppercase or character replacement). In particular, we are
interested in identifying those cases in which the application developers were

aware of the threats, but implemented insufficient, easy to evade sanitization
routines.

One way to determine the “complexity” of an exploit is to analyze the attack
string, and to look for evidence of possible evasion techniques. As mentioned in
Section 2.3, we automatically extracted the exploit code from the data provided
by external vulnerability information sources. Sometimes, these external sources
do not provide exploit information for every reported Cross-Site Scripting or SQL
Injection vulnerability, do not provide exploit information in a parsable format,
or do not provide any exploit information at all. As a consequence, not all CVE
entries can be associated with an attack string. On the other hand, in some cases,
there exist several ways of exploiting a vulnerability, and, therefore, more attack
strings may be associated with a single vulnerability report. In our experiments,
we collected attack strings for a total of 2632 distinct vulnerabilities.

To determine the exploit complexity, we looked at several characteristics
that may indicate an attempt from the attacker to evade some form of input
sanitization. The selection of the characteristics is inspired by so-called injection
cheat sheets that are available on the Internet [16][30].

In particular, we classify a Cross-Site Scripting attack string as complex (i.e.,
in contrast to simple) if it contains one or more of the following characteristics:

– Different cases are used within the script tags (e.g., ScRiPt).
– The script-tags contains one or more spaces (e.g., < script>)
– The attack string contains ‘landingspace-code’ which is the set of attributes

of HTML-tags (e.g., onmouseover, or onclick)
– The string contains encoded characters (e.g.,))
– The string is split over multiple lines

For SQL Injection attack strings, we looked at the following characteristics:

– The use of comment specifiers (e.g., /**/) to break a keyword
– The use of encoded single quotes (e.g., ‘%27’, ‘'’; ‘'’, ‘Jw==’)
– The use of encoded double quotes (e.g., ‘%22’, ‘"’, ‘"’, ‘Ig==’)

If none of the previous characteristics is present, we classify the exploit as
“simple”. Figures 2a and 2b show the percentage of CVEs having one or more
complex attack strings4. The graphs show that the majority of the available
exploits are, according to our definition, not sophisticated. In fact, in most of
the cases, the attacks were performed by injecting the simplest possible string,
without requiring any tricks to evade input validation.

Interestingly, while we observe a slight increase in the number of SQL In-
jection vulnerabilities with sophisticated attack strings, we do not observe any
significant increase of Cross-Site Scripting attack strings. This may be a first
indication that developers are now adopting (unfortunately insufficient) defense
mechanisms to prevent SQL Injection , but that they are still failing to sanitize
the user input to prevent Cross-Site Scripting vulnerabilities.

4 The graph starts from 2005 because there were less than 100 vulnerabilities having
exploit samples available before that year. Hence, results before 2005 are statistically
less significant.

0

200

400

600

800

1000

1200

1400

2002 2003 2004 2005 2006 2007 2008 2009

XSS vulnerability reports

Applica!ons with 1 XSS vulnerability report

Applica!ons with 2 XSS vulnerability reports

Applica!ons with 3 or more XSS vulnerability reports

(a) Cross-Site Scripting affected applica-
tions.

0

200

400

600

800

1000

1200

1400

1600

2002 2003 2004 2005 2006 2007 2008 2009

SQLI vulnerability reports

Applica!ons with 1 SQLI vulnerability report

Applica!ons with 2 SQLI vulnerability reports

Applica!ons with 3 or more SQLI vulnerability reports

(b) SQL Injection affected applications.

Fig. 3: The number of affected applications over time.

To conclude, the available empirical data suggests that an increased attack
complexity is not the reason behind the steadily increasing number of vulnera-
bility reports.

3.2 Application Popularity

Since the complexity does not seem to explain the increasing number of reported
vulnerabilities, we decided to focus on the type of applications. We started by
extracting the vulnerable application’s name from a total of 8854 SQL Injection
and Cross-Site Scripting vulnerability reports in the NVD database that are
associated to one or more CPE identifiers.

Figures 3a and 3b plot the number of applications that are affected by a
certain number of vulnerabilities over time. Both graphs clearly show how the
increase in the number of vulnerabilities is a direct consequence of the increasing
number of vulnerable applications. In fact, the number of web applications with
more than one vulnerability report over the whole time frame is quite low, and
it has been slightly decreasing since 2006.

Based on this finding, we formulated our second hypothesis:

Hypothesis 2 Popular applications are now more secure while new vulnerabil-
ities are discovered in new, less popular, applications.

The idea behind this hypothesis is to test whether more vulnerabilities were
reported about well-known, popular applications in the past than they are today.
That is, do vulnerability reports nowadays tend to concentrate on less popular,
or recently developed applications?

0%

20%

40%

60%

80%

100%

2004 2005 2006 2007 2008 2009

XSS vulnerability reports about not popular applica!ons

XSS vulnerability reports about popular applica!ons

(a) Cross-Site Scripting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2004 2005 2006 2007 2008 2009

SQLI vulnerability reports about not popular applica!ons

SQLI vulnerability reports about popular applica!ons

(b) SQL Injection

Fig. 4: Vulnerability reports about applications and their popularity over time.

The first step consists of determining the popularity of these applications in
order to be able to understand if it is true that popular products are more aware
of (and therefore less vulnerable to) Cross-Site Scripting and SQL Injection
attacks.

We determined the popularity of applications through the following process:

1. Using Google Search, we performed a search on the vendor and application
names within the Wikipedia domain.

2. When one of the returned URLs contain the name of the vendor or the name
of the application, we flag the application as being ‘popular’. Otherwise, the
application is classified as being ‘unpopular’.

3. Finally, we manually double-checked the list of popular applications in or-
der to make sure that the corresponding Wikipedia entries describe software
products and not something else (e.g., when the product name also corre-
sponds to a common English word).

After the classification, we were able to identify 676 popular and 2573 un-
popular applications as being vulnerable to Cross-Site Scripting . For SQL Injec-
tion, we found 328 popular and 2693 unpopular vulnerable applications. Figure 4
shows the percentages of vulnerability reports that are associated with popular
applications. The trends support the hypothesis that SQL Injection vulnerabili-
ties are indeed moving toward less popular applications – maybe as a consequence
of the fact that well-known product are more security-aware. Unfortunately, ac-
cording to Figure 4a, the same hypothesis is not true for Cross-Site Scripting: in
fact, the ratio of well-known applications vulnerable to Cross-Site Scripting has
been relatively constant in the past six years.

Even though the empirical evidence also does not support our second hy-
pothesis, we noticed one characteristic that is common to both types of vulnera-
bilities: popular applications, probably because they are analyzed in more detail,
typically have a higher number of reported vulnerabilities. The results, shown

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 or

more

Popular Applica!ons Not Popular Applica!ons

Number of XSS Vulnerabily Reports

(a) Cross-Site Scripting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 or

more

Popular Applica!ons Not Popular Applica!ons

Number of SQLI Vulnerability Reports

(b) SQL Injection

Fig. 5: Popularity of applications across the distribution of the number of vulner-
ability reports.

in Figures 5a and 5b, suggest that it would be useful to investigate how these
vulnerabilities have evolved in the lifetime of the applications.

3.3 Vulnerability lifetime

So far, we determined that a constant, large number of simple, easy-to-exploit
vulnerabilities are still found in many web applications today. Also, we deter-
mined that that the high number of reports is driven by an increasing number
of vulnerable applications, and not by a small number of popular applications.
Based on these findings, we formulate our third hypothesis:

Hypothesis 3 Even though the number of reported vulnerable applications is
growing, each application is becoming more secure over time.

This hypothesis is important, because, if true, it would mean that web ap-
plications, in particular the well-known products, are becoming more secure.
To verify this hypothesis, we studied the lifetimes of Cross-Site Scripting and
SQL Injection vulnerabilities in the ten most-affected open source applications
according to the NIST NVD database.

By analyzing the changelogs, for each application, we extracted in which
version a vulnerability was introduced and in which version the vulnerability
was fixed. In order to obtain reliable insights into the vulnerabilities lifetime,
we excluded the vulnerability reports that were not confirmed by the respective
vendor. For our analysis, we used the CPE identifiers in the NVD database,
the external vulnerability sources, the vulnerability information provided by the
vendor, and we also extract information from the version control systems (CVS,
or SVN) of the different products.

Table 1a and Table 1b show a total of 145 Cross-Site Scripting and 52 SQL
Injection vulnerabilities in the most affected applications. The tables distinguish
foundational and non-foundational vulnerabilities. Foundational vulnerabilities

Foundational Non-Foundational

bugzilla 4 9
drupal 0 22
joomla 5 3

mediawiki 3 22
mybb 9 2

phorum 3 5
phpbb 4 2

phpmyadmin 14 13
squirrelmail 10 3
wordpress 6 6

Total 58 87

(a) Cross-Site Scripting

Foundational Non-Foundational

bugzilla 1 8
coppermine 1 3

e107 0 3
joomla 4 0
moodle 0 3
mybb 9 3

phorum 0 4
phpbb 2 1
punbb 3 3

wordpress 0 4

Total 20 32

(b) SQL Injection

Table 1: Foundational and non-foundational vulnerabilities in the ten most af-
fected open source web applications.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Number of founda!onal XSS vulnerabili!es

years a"er ini!al release

(a) Cross-Site Scripting

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Number of founda!onal SQLI vulnerabili!es

years a"er ini!al release

(b) SQL Injection

Fig. 6: Time elapsed between initial release and vulnerability disclosure.

are vulnerabilities that were present in the first version of an application, while
non-foundational vulnerabilities were introduced after the initial release.

We observed that 40% of the Cross-Site Scripting vulnerabilities are founda-
tional and 60% are non-foundational. For SQL Injection, these percentages are
38% and 61%. These results suggest that most of the vulnerabilities are intro-
duced by new functionality that is built into new versions of a web application.

Finally, we investigated how long it took to discover the foundational vulner-
abilities. Figure 6a and Figure 6b plot the number of foundational vulnerabilities
that were disclosed after a certain amount of time had elapsed after the initial
release of the applications. The graphs show that most SQL Injection vulnera-
bilities are usually discovered in the first year after the release of the product.
For Cross-Site Scripting vulnerabilities, the result is quite different. Many foun-
dational vulnerabilities are discovered even 10 years after the code was initially
released. This observation suggests that it is very problematic to find Cross-Site
Scripting vulnerabilities compared to SQL Injection vulnerabilities. We believe

that this difference is caused by the fact that the attack surface for SQL Injection
attacks is much smaller when compared with Cross-Site Scripting . Therefore, it
is easier for developers to identify (and protect) all the sensitive entry points in
the application code.

The difficulty of finding Cross-Site Scripting vulnerabilities is confirmed by
the average elapsed time between the initial software release and the disclosure
of foundational vulnerabilities. For SQL Injection vulnerabilities, this value is 2
years, while for Cross-Site Scripting is 4.33 years.

4 Related Work

Our work is not the first study of vulnerability trends based on CVE data. In [2],
Christey et al. present an analysis of CVE data covering the period 2001 - 2006.
The work is based on manual classification of CVE entries using the CWE clas-
sification system. In contrast, [22] uses an unsupervised learning technique on
CVE text descriptions and introduces a classification system called ‘topic model’.
While the works of Christey et al. and Neuhaus et al. focus on analysing general
trends in vulnerability databases, our work specifically focuses on web applica-
tion vulnerabilities, and, in particular, Cross-Site Scripting and SQL Injection.
We have investigated the reasons behind the trends.

Clark et al. present in [3] a vulnerability study with a focus on the early
existence of a software product. The work demonstrates that re-use of legacy
code is a major contributor to the rate of vulnerability discovery and the num-
ber of vulnerabilities found. In contrast to our work, the paper does not focus
on web applications, and it does not distinguish between particular types of
vulnerabilities.

Another large-scale vulnerability analysis study was conducted by Frei et
al. [5]. The work focuses on zero-day exploits and shows that there has been a
dramatic increase in such vulnerabilities. Also, the work shows that there is a
faster availability of exploits than of patches.

In [12], Li et al. present a study on how the number of software defects
evolve over time. The data set of the study consists of bug reports of two Open
Source software products that are stored in the Bugzilla database. The authors
show that security related bugs are becoming increasingly important over time
in terms of absolute numbers and relative percentages, but do not consider web
applications.

Ozment et al. [26] studied how the number of security issues relate to the
number of code changes in OpenBSD. The study shows that 62 percent of the
vulnerabilities are foundational ; they were introduced prior to the release of the
initial version and have not been altered since. The rate at which foundational
vulnerabilities are reported is decreasing, somehow suggesting that the security
of the same code is increasing. In contrast to our study, Ozment el al.’s study
does not consider the security of web applications.

To the best of our knowledge, we present the first vulnerability study that
takes a closer, detailed look at how two popular classes of web vulnerabilities
have evolved over the last decade.

5 Discussion and Conclusion

Our findings in this study show that the complexity of Cross Site Scripting and
SQL Injection exploits in vulnerability reports have not been increasing. Hence,
this finding suggests that the majority of vulnerabilities are not due to sani-
tization failure, but due to the absence of input validation. Despite awareness
programs provided by MITRE [19], SANS Institute [4] and OWASP [28], appli-
cation developers seem to be neither aware of these classes of vulnerabilities, nor
are able to implement effective countermeasures.

Furthermore, our study suggests that a main reason why the number of web
vulnerability reports have not been decreasing is because many more applications
are now vulnerable to flaws such as Cross-Site Scripting and SQL Injection . In
fact, we observe a trend that SQL Injection vulnerabilities occur more often in
an increasing number of unpopular applications.

Finally, when analyzing the most affected applications, we observe that years
after the initial release of an application, Cross-Site Scripting vulnerabilities
concerning the initial release are still being reported. Note that this is in contrast
to SQL Injection vulnerabilities. We believe that one of the reasons for this
observation could be because SQL Injection problems may be easier to fix (e.g.,
by using stored procedures).

The empirical data we collected and analyzed for this paper supports the
general intuition that web developers are bad at securing their applications. The
traditional practice of writing applications and then testing them for security
problems (e.g., static analysis, blackbox testing, etc.) does not seem be work-
ing well in practice. Hence, we believe that more research is needed in securing
applications by design. That is, the developers should not be concerned about
problems such as Cross Site Scripting or SQL Injection. Rather, the program-
ming language or the platform should make sure that the problems do not occur
when developers produce code (e.g., similar to solutions such as in [29] or man-
aged languages such as C# or Java that prevent buffer overflow problems).

Acknowledgments

The research leading to these results was partially funded by the European
Union Seventh Framework Programme (FP7/2007-2013) from the contract N
216917 (for the FP7-ICT-2007-1 project MASTER) and N 257007. This work
has also been supported by the POLE de Competitivite SCS (France) through
the MECANOS project and the French National Research Agency through the
VAMPIRE project. We would also like to thank Secure Business Austria for
their support.

References

1. Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered
harmful in client-side xss filters. In WWW ’10: Proceedings of the 19th international
conference on World wide web, pages 91–100, New York, NY, USA, 2010. ACM.

2. S. M. Christey and R. A. Martin. Vulnerability type distributions in cve.
http://cwe.mitre.org/documents/vuln-trends/index.html, 2007.

3. S. Clark, S. Frei, M. Blaze, and J. Smith. Familiarity breeds contempt: The hon-
eymoon effect and the role of legacy code in zero-day vulnerabilities. In Annual
Computer Security Applications Conference, 2010.

4. Rohit Dhamankar, Mike Dausin, Marc Eisenbarth, and James King. The top cyber
security risks. http://www.sans.org/top-cyber-security-risks/, 2009.

5. Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale vul-
nerability analysis. In LSAD ’06: Proceedings of the 2006 SIGCOMM workshop
on Large-scale attack defense, pages 131–138, New York, NY, USA, 2006. ACM.

6. Microsoft Inc. Msdn code analysis team blog.
http://blogs.msdn.com/b/codeanalysis/, 2010.

7. Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 601–610, New York, NY, USA,
2007. ACM.

8. Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and Joachim Posegga.
Secure code generation for web applications. In Fabio Massacci, Dan S. Wallach,
and Nicola Zannone, editors, ESSoS, volume 5965 of Lecture Notes in Computer
Science, pages 96–113. Springer, 2010.

9. Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities (short paper). In SP ’06: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy, pages 258–263,
Washington, DC, USA, 2006. IEEE Computer Society.

10. Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. Noxes:
a client-side solution for mitigating cross-site scripting attacks. In SAC ’06: Pro-
ceedings of the 2006 ACM symposium on Applied computing, pages 330–337, New
York, NY, USA, 2006. ACM.

11. Jake Kouns, Kelly Todd, Brian Martin, David Shettler, Steve Tornio, Craig
Ingram, and Patrick McDonald. The open source vulnerability database.
http://osvdb.org/, 2010.

12. Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. Have things changed now?: an empirical study of bug characteristics in
modern open source software. In ASID ’06: Proceedings of the 1st workshop on
Architectural and system support for improving software dependability, pages 25–
33, New York, NY, USA, 2006. ACM.

13. Benjamin Livshits and Úlfar Erlingsson. Using web application construction frame-
works to protect against code injection attacks. In PLAS ’07: Proceedings of the
2007 workshop on Programming languages and analysis for security, pages 95–104,
New York, NY, USA, 2007. ACM.

14. V. Benjamin Livshits and Monica S. Lam. Finding security errors in Java programs
with static analysis. In Proceedings of the 14th Usenix Security Symposium, pages
271–286, August 2005.

15. Bob Martin, Mason Brown, Alan Paller, and Dennis Kirby. 2010 cwe/sans top 25
most dangerous software errors. http://cwe.mitre.org/top25/, 2010.

16. Ferruh Mavituna. Sql injection cheat sheet. http://ferruh.mavituna.com/sql-
injection-cheatsheet-oku/, 2009.

17. Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to the
common vulnerability scoring system version 2.0. http://www.first.org/cvss/cvss-
guide.html, 2007.

18. MITRE. Common platform enumeration (cpe). http://cpe.mitre.org/, 2010.

19. MITRE. Common vulnerabilities and exposures (cve). http://cve.mitre.org/, 2010.
20. MITRE. Common weakness enumeration (cwe). http://cwe.mitre.org/, 2010.
21. MITRE. Mitre faqs. http://cve.mitre.org/about/faqs.html, 2010.
22. Stephan Neuhaus and Thomas Zimmermann. Security trend analysis with cve topic

models. In Proceedings of the 21st IEEE International Symposium on Software
Reliability Engineering, November 2010.

23. James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity software. In
NDSS. The Internet Society, 2005.

24. Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically hardening web applications using precise tainting. In Ryôichi
Sasaki, Sihan Qing, Eiji Okamoto, and Hiroshi Yoshiura, editors, SEC, pages 295–
308. Springer, 2005.

25. Computer Security Division of National Institute of Standards and Technology.
National vulnerability database version 2.2. http://nvd.nist.gov/, 2010.

26. Andy Ozment and Stuart E. Schechter. Milk or wine: does software security im-
prove with age? In USENIX-SS’06: Proceedings of the 15th conference on USENIX
Security Symposium, Berkeley, CA, USA, 2006. USENIX Association.

27. Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Alfonso Valdes and Diego Zamboni,
editors, RAID, volume 3858 of Lecture Notes in Computer Science, pages 124–145.
Springer, 2005.

28. The Open Web Application Security Project. Owasp top 10 - 2010, the ten most
critical web application security risks, 2010.

29. W. Robertson and G. Vigna. Static enforcement of web application integrity
through strong typing. In Proceedings of the 18th conference on USENIX secu-
rity symposium, pages 283–298. USENIX Association, 2009.

30. RSnake. Xss (cross site scripting) cheat sheet esp: for filter evasion.
http://ha.ckers.org/xss.html, 2009.

31. K. Vikram, Abhishek Prateek, and Benjamin Livshits. Ripley: automatically se-
curing web 2.0 applications through replicated execution. In CCS ’09: Proceedings
of the 16th ACM conference on Computer and communications security, pages
173–186, New York, NY, USA, 2009. ACM.

32. Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel, Engin
Kirda, and Giovanni Vigna. Cross site scripting prevention with dynamic data
tainting and static analysis. In In Proceedings of 14th Annual Network and Dis-
tributed System Security Symposium (NDSS 2007), 2007.

33. Gary Wassermann and Zhendong Su. Sound and Precise Analysis of Web Appli-
cations for Injection Vulnerabilities. In Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation, San Diego,
CA, June 2007. ACM Press New York, NY, USA.

34. Gary Wassermann and Zhendong Su. Static Detection of Cross-Site Scripting
Vulnerabilities. In Proceedings of the 30th International Conference on Software
Engineering, Leipzig, Germany, May 2008. ACM Press New York, NY, USA.

35. Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting
languages. In USENIX-SS’06: Proceedings of the 15th conference on USENIX
Security Symposium, Berkeley, CA, USA, 2006. USENIX Association.

36. Dachuan Yu, Ajay Chander, Hiroshi Inamura, and Igor Serikov. Better abstractions
for secure server-side scripting. In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 507–516, New York, NY, USA, 2008. ACM.

Automated Discovery of Parameter Pollution Vulnerabilities in Web Applications

Marco Balduzzi∗, Carmen Torrano Gimenez ‡, Davide Balzarotti∗, and Engin Kirda∗ §

∗ Institute Eurecom, Sophia Antipolis
{balduzzi,balzarotti,kirda}@eurecom.fr

‡ Spanish National Research Council, Madrid
carmen.torrano@iec.csic.es

§Northeastern University, Boston
ek@ccs.neu.edu

Abstract

In the last twenty years, web applications have grown
from simple, static pages to complex, full-fledged dynamic
applications. Typically, these applications are built using
heterogeneous technologies and consist of code that runs
both on the client and on the server. Even simple web ap-
plications today may accept and process hundreds of dif-
ferent HTTP parameters to be able to provide users with
interactive services. While injection vulnerabilities such as
SQL injection and cross-site scripting are well-known and
have been intensively studied by the research community, a
new class of injection vulnerabilities called HTTP Parame-
ter Pollution (HPP) has not received as much attention. If
a web application does not properly sanitize the user input
for parameter delimiters, exploiting an HPP vulnerability,
an attacker can compromise the logic of the application to
perform either client-side or server-side attacks.

In this paper, we present the first automated approach for
the discovery of HTTP Parameter Pollution vulnerabilities
in web applications. Using our prototype implementation
called PAPAS (PArameter Pollution Analysis System), we
conducted a large-scale analysis of more than 5,000 pop-
ular websites. Our experimental results show that about
30% of the websites that we analyzed contain vulnerable
parameters and that 46.8% of the vulnerabilities we discov-
ered (i.e., 14% of the total websites) can be exploited via
HPP attacks. The fact that PAPAS was able to find vulnera-
bilities in many high-profile, well-known websites suggests
that many developers are not aware of the HPP problem.
We informed a number of major websites about the vulner-
abilities we identified, and our findings were confirmed.

1 Introduction

In the last twenty years, web applications have grown
from simple, static pages to complex, full-fledged dynamic
applications. Typically, these applications are built using
heterogeneous technologies and consist of code that runs
on the client (e.g., Javascript) and code that runs on the
server (e.g., Java servlets). Even simple web applications
today may accept and process hundreds of different HTTP
parameters to be able to provide users with rich, interactive
services. As a result, dynamic web applications may con-
tain a wide range of input validation vulnerabilities such
as cross site scripting (e.g., [4, 5, 34]) and SQL injec-
tion (e.g., [15, 17]).

Unfortunately, because of their high popularity and a
user base that consists of millions of Internet users, web
applications have become prime targets for attackers. In
fact, according to SANS [19], attacks against web applica-
tions constitute more than 60% of the total attack attempts
observed on the Internet. While flaws such as SQL injec-
tion and cross-site scripting may be used by attackers to
steal sensitive information from application databases and
to launch authentic-looking phishing attacks on vulnerable
servers, many web applications are being exploited to con-
vert trusted websites into malicious servers serving content
that contains client-side exploits. According to SANS, most
website owners fail to scan their application for common
flaws. In contrast, from the attacker’s point of view, auto-
mated tools, designed to target specific web application vul-
nerabilities simplify the discovery and infection of several
thousand websites.

While injection vulnerabilities such as SQL injection and
cross-site scripting are well-known and have been inten-

sively studied, a new class of injection vulnerabilities called
HTTP Parameter Pollution (HPP) has not received as much
attention. HPP was first presented in 2009 by di Paola and
Carettoni at the OWASP conference [27]. HPP attacks con-
sist of injecting encoded query string delimiters into other
existing parameters. If a web application does not prop-
erly sanitize the user input, a malicious user can compro-
mise the logic of the application to perform either client-
side or server-side attacks. One consequence of HPP attacks
is that the attacker can potentially override existing hard-
coded HTTP parameters to modify the behavior of an appli-
cation, bypass input validation checkpoints, and access and
possibly exploit variables that may be out of direct reach.

In this paper, we present the first automated approach for
the discovery of HTTP Parameter Pollution vulnerabilities
in web applications. Our prototype implementation, that we
call PArameter Pollution Analysis System (PAPAS), uses a
black-box scanning technique to inject parameters into web
applications and analyze the generated output to identify
HPP vulnerabilities. We have designed a novel approach
and a set of heuristics to determine if the injected parame-
ters are not sanitized correctly by the web application under
analysis.

To the best of our knowledge, no tools have been pre-
sented to date for the detection of HPP vulnerabilities in
web applications, and no studies have been published on
the topic. At the time of the writing of this paper, the most
effective means of discovering HPP vulnerabilities in web-
sites is via manual inspection. At the same time, it is unclear
how common and significant a threat HPP vulnerabilities
are in existing web applications.

In order to show the feasibility of our approach, we used
PAPAS to conduct a large-scale analysis of more than 5,000
popular websites. Our experimental results demonstrate
that there is reason for concern as about 30% of the websites
that we analyzed contained vulnerable parameters. Further-
more, we verified that 14% of the websites could be ex-
ploited via client-side HPP attacks. The fact that PAPAS
was able to find vulnerabilities in many high-profile, well-
known websites such as Google, Paypal, Symantec, and Mi-
crosoft suggests that many developers are not aware of the
HPP problem.

When we were able to obtain contact information, we
informed the vulnerable websites of the vulnerabilities we
discovered. In the cases where the security officers of the
concerned websites wrote back to us, our findings were con-
firmed.

We have created an online service based on PAPAS1

(currently in beta version) that allows website maintainers
to scan their sites. As proof of ownership of a site, the web-
site owner is given a dynamically-generated token that she

1The PAPAS service is available at: http://papas.iseclab.
org

can put in the document root of her website.

In summary, the paper makes the following contribu-
tions:

• We present the first automated approach for the detec-
tion of HPP vulnerabilities in web applications. Our
approach consists of a component to inject parameters
into web applications and a set of tests and heuristics to
determine if the pages that are generated contain HPP
vulnerabilities.

• We describe the architecture and implementation of the
prototype of our approach that we call PAPAS (PA-
rameter Pollution Analysis System). PAPAS is able to
crawl websites and generate a list of HPP vulnerable
URLs.

• We present and discuss the large-scale, real-world ex-
periments we conducted with more than 5,000 popu-
lar websites. Our experiments show that HPP vulner-
abilities are prevalent on the web and that many well-
known, major websites are affected. We verified that at
least 46.8% of the vulnerabilities we discovered could
be exploited on the client-side. Our empirical results
suggest that, just like in the early days of cross site
scripting and cross site request forgery [1], many de-
velopers are not aware of the HPP problem, or that they
do not take it seriously.

The paper is structured as follows: The next section give
an explanation of parameter pollution attacks and provides
examples. Section 3 describes our approach and presents
the main components of PAPAS. Section 4 presents and
discusses the evaluation of PAPAS. Section 5 lists related
work, and Section 6 briefly concludes the paper.

2 HTTP Parameter Pollution Attacks

HTTP Parameter Pollution attacks (HPP) have only re-
cently been presented and discussed [27], and have not re-
ceived much attention so far. An HPP vulnerability allows
an attacker to inject a parameter inside the URLs generated
by a web application. The consequences of the attack de-
pend on the application’s logic, and may vary from a simple
annoyance to a complete corruption of the application’s be-
havior. Because this class of web vulnerability is not widely
known and well-understood yet, in this section, we first ex-
plain and discuss the problem.

Even though injecting a new parameter can sometimes
be enough to exploit an application, the attacker is usually
more interested in overriding the value of an already exist-
ing parameter. This can be achieved by “masking” the old
parameter by introducing a new one with the same name.

For this to be possible, it is necessary for the web applica-
tion to “misbehave” in the presence of duplicated parame-
ters, a problem that is often erroneously confused with the
HPP vulnerability itself. However, since parameter pollu-
tion attacks often rely on duplicated parameters in practice,
we decided to study the parameter duplication behavior of
applications, and measure it in our experiments.

2.1 Parameter Precedence in Web Applications

During the interaction with a web application, the client
often needs to provide input to the program that generates
the requested web page (e.g., a PHP or a Perl script). The
HTTP protocol [12] allows the user’s browser to transfer
information inside the URI itself (i.e., GET parameters),
in the HTTP headers (e.g., in the Cookie field), or inside
the request body (i.e., POST parameters). The adopted
technique depends on the application and on the type and
amount of data that has to be transferred.

For the sake of simplicity, in the following, we focus on
GET parameters. However, note that HPP attacks can be
launched against any other input vector that may contain
parameters controlled by the user.

RFC 3986 [7] specifies that the query component (or
query string) of a URI is the part between the “?” character
and the end of the URI (or the character “#”). The query
string is passed unmodified to the application, and consists
of one or more field=value pairs, separated by either an
ampersand or a semicolon character. For example, the URI
http://host/path/somepage.pl?name=john
&age=32 invokes the verify.pl script, passing the val-
ues john for the name parameter and the value 32 for the
age parameter. To avoid conflicts, any special characters
(such as the question mark) inside a parameter value must
be encoded in its %FF hexadecimal form.

This standard technique for passing parameters is
straightforward and is generally well-understood by web
developers. However, the way in which the query string is
processed to extract the single values depends on the appli-
cation, the technology, and the development language that
is used.

For example, consider a web page that contains a check-
box that allows the user to select one or more options in a
form. In a typical implementation, all the check-box items
share the same name, and, therefore, the browser will send
a separate homonym parameter for each item selected by
the user. To support this functionality, most of the pro-
gramming languages used to develop web applications pro-
vide methods for retrieving the complete list of values as-
sociated with a certain parameter. For example, the JSP
getParameterValues method groups all the values to-
gether, and returns them as a list of strings. For the lan-
guages that do not support this functionality, the developer

has to manually parse the query string to extract each single
value.

However, the problem arises when the developer expects
to receive a single item and, therefore, invokes methods
(such as getParameter in JSP) that only return a sin-
gle value. In this case, if more than one parameter with the
same name is present in the query string, the one that is re-
turned can either be the first, the last, or a combination of
all the values. Since there is no standard behavior in this sit-
uation, the exact result depends on the combination of the
programming language that is used, and the web server that
is being deployed. Table 1 shows examples of the parameter
precedence adopted by different web technologies.

Note that the fact that only one value is returned is not a
vulnerability per se. However, if the developer is not aware
of the problem, the presence of duplicated parameters can
produce an anomalous behavior in the application that can
be potentially exploited by an attacker in combination with
other attacks. In fact, as we explain in the next section,
this is often used in conjunction with HPP vulnerabilities to
override hard-coded parameter values in the application’s
links.

2.2 Parameter Pollution

An HTTP Parameter Pollution (HPP) attack occurs when
a malicious parameter Pinj , preceded by an encoded query
string delimiter, is injected into an existing parameter Phost.
If Phost is not properly sanitized by the application and its
value is later decoded and used to generate a URL A, the
attacker is able to add one or more new parameters to A.

The typical client-side scenario consists of persuading a
victim to visit a malicious URL that exploits the HPP vul-
nerability. For example, consider a web application that al-
lows users to cast their vote on a number of different elec-
tions. The application, written in JSP, receives a single pa-
rameter, called poll id, that uniquely identifies the elec-
tion the user is participating in. Based on the value of the pa-
rameter, the application generates a page that includes one
link for each candidate. For example, the following snippet
shows an election page with two candidates where the user
could cast her vote by clicking on the desired link:� �
Url: http://host/election.jsp?poll_id=4568

Link1:
Vote for Mr. White

Link2:
Vote for Mrs. Green� �

Suppose that Mallory, a Mrs. Green supporter, is inter-
ested in subverting the result of the online election. By ana-
lyzing the webpage, he realizes that the application does not
properly sanitize the poll id parameter. Hence, Mallory

Technology/Server Tested Method Parameter Precedence
ASP/IIS Request.QueryString("par") All (comma-delimited string)
PHP/Apache $ GET["par"] Last
JSP/Tomcat Request.getParameter("par") First
Perl(CGI)/Apache Param("par") First
Python/Apache getvalue("par") All (List)

Table 1: Parameter precedence in the presence of multiple parameters with the same name

can use the HPP vulnerability to inject another parameter of
his choice. He then creates and sends to Alice the following
malicious Url:� �
http://host/election.jsp?poll_id=4568%26candidate%3Dgreen� �

Note how Mallory “polluted” the poll id parameter
by injecting into it the candidate=green pair. By click-
ing on the link, Alice is redirected to the original election
website where she can cast her vote for the election. How-
ever, since the poll id parameter is URL-decoded and
used by the application to construct the links, when Alice
visits the page, the malicious candidate value is injected
into the URLs2:� �
http://host/election.jsp?poll_id=4568%26candidate%3Dgreen

Link 1: <a href=vote.jsp?poll_id=4568&candidate=green
&candidate=white>Vote for Mr. White

Link 2: <a href=vote.jsp?poll_id=4568&candidate=green
&candidate=green>Vote for Mrs. Green� �

No matter which link Alice clicks on, the applica-
tion (in this case the vote.jsp script) will receive two
candidate parameters. Furthermore, the first parameter
will always be set to green.

In the scenario we discussed, it is likely that the devel-
oper of the voting application expected to receive only one
candidate name, and, therefore, relied on the provided ba-
sic Java functionality to retrieve a single parameter. As a
consequence, as shown in Table 1, only the first value (i.e.,
green) is returned to the program, and the second value
(i.e., the one carrying the Alice’s actual vote) is discarded.

In summary, in the example we presented, since the vot-
ing application is vulnerable to HPP, it is possible for an
attacker to forge a malicious link that, once visited, tam-
pers with the content of the page, and returns only links that
force a vote for Mrs. Green.

Cross-Channel Pollution HPP attacks can also be used
to override parameters between different input channels. A

2URLs in the page snippets have the injected string emphasized by us-
ing a red, underlining font.

good security practice when developing a web application
is to accept parameters only from the input channel (e.g.,
GET, POST, or Cookies) where they are supposed to be
supplied. That is, an application that receives data from a
POST request should not accept the same parameters if they
are provided inside the URL. In fact, if this safety rule is ig-
nored, an attacker could exploit an HPP flaw to inject arbi-
trary parameter-value pairs into a channel A to override the
legitimate parameters that are normally provided in another
channel B. Obviously, for this to be possible, a necessary
condition is that the web technology gives precedence to A
with respect to B.

HPP to bypass CSRF tokens One interesting use of HPP
attacks is to bypass the protection mechanism used to pre-
vent cross-site request forgery. A cross-site request forgery
(CRSF) is a confused deputy type of attack [16] that works
by including a malicious link in a page (usually in an im-
age tag) that points to a website in which the victim is sup-
posed to be authenticated. The attacker places parameters
into the link that are required to initiate an unauthorized ac-
tion. When the victim visits the attack page, the target ap-
plication receives the malicious request. Since the request
comes from a legitimate user and includes the cookie asso-
ciated with a valid session, the request is likely to be pro-
cessed.

A common technique to protect web applications against
CSRF attacks consists of using a secret request token (e.g.,
see [20, 25]). A unique token is generated by the applica-
tion and inserted in all the sensitive links URLs. When the
application receives a request, it verifies that it contains the
valid token before authorizing the action. Hence, since the
attacker cannot predict the value of the token, she cannot
forge the malicious URL to initiate the action.

A parameter pollution vulnerability can be used to inject
parameters inside the existing links generated by the appli-
cation (that, therefore, include a valid secret token). With
these injected parameters, it may be possible for the attacker
to initiate a malicious action and bypass CSRF protection.

A CSRF bypassing attack using HPP was demonstrated
in 2009 against Yahoo Mail [10]. The parameter injection
permitted to bypass the token protections adopted by Ya-
hoo to protect sensitive operations, allowing the attacker to

delete all the mails of a user.
The following example demonstrates a simplified ver-

sion of the Yahoo attack:� �
Url:
showFolder?fid=Inbox&order=down&tt=24&pSize=25&startMid=0
%2526cmd=fmgt.emptytrash%26DEL=1%26DelFID=Inbox%26
cmd=fmgt.delete

Link:
showMessage?sort=date&order=down&startMid=0
%26cmd%3Dfmgt.emptytrash&DEL=1&DelFID=Inbox&
cmd=fmgt.delete&.rand=1076957714� �

In the example, the link to display the mail message is
protected by a secret token that is stored in the .rand pa-
rameter. This token prevents an attacker from including the
link inside another page to launch a CSRF attack. How-
ever, by exploiting an HPP vulnerability, the attacker can
still inject the malicious parameters (i.e., deleting all the
mails of a user and emptying the trash can) into the legiti-
mate page. The injection string is a concatenation of the two
commands, where the second command needs to be URL-
encoded twice in order to force the application to clean the
trash can only after the deletion of the mails.

3 Automated HPP Vulnerability Detection
with PAPAS

Our PArameter Pollution Analysis System (PAPAS) to
automatically detect HPP vulnerabilities in websites con-
sists of four main components: A browser, a crawler, and
two scanners.

The first component is an instrumented browser that is
responsible for fetching the webpages, rendering the con-
tent, and extracting all the links and form URLs contained
in the page.

The second component is a crawler that communicates
with the browser through a bidirectional channel. This
channel is used by the crawler to inform the browser on
the URLs that need to be visited, and on the forms that need
to be submitted. Furthermore, the channel is also used to
retrieve the collected information from the browser.

Every time the crawler visits a page, it passes the ex-
tracted information to the two scanners so that it can be
analyzed. The parameter Precedence Scanner (P-Scan) is
responsible for determining how the page behaves when it
receives two parameters with the same name. The Vulnera-
bility Scanner (V-Scan), in contrast, is responsible for test-
ing the page to determine if it is vulnerable to HPP attacks.
V-Scan does this by attempting to inject a new parameter
inside one of the existing ones and analyzing the output.
The two scanners also communicate with the instrumented
browser in order to execute the tests.

All the collected information is stored in a database that
is later analyzed by a statistics component that groups to-
gether information about the analyzed pages, and generates
a report for the vulnerable URLs.

The general architecture of the system is summarized in
Figure 1. In the following, we describe the approach that is
used to detect HPP vulnerabilities and each component in
more detail.

3.1 Browser and Crawler Components

Whenever the crawler issues a command such as the vis-
iting of a new webpage, the instrumented browser in PA-
PAS first waits until the target page is loaded. After the
browser is finished parsing the DOM, executing the client-
side scripts, and loading additional resources, a browser ex-
tension (i.e., plugin) extracts the content, the list of links,
and the forms in the page.

In order to increase the depth that a website can be
scanned with, the instrumented browser in PAPAS uses a
number of simple heuristics to automatically fill forms (sim-
ilarly to previously proposed scanning solutions such as
[24]). For example, random alphanumeric values of 8 char-
acters are inserted into password fields and a default e-
mail address is inserted into fields with the name email,
e-mail, or mail.

For sites where the authentication or the provided inputs
fail (e.g., because of the use of CAPTCHAs), the crawler
can be assisted by manually logging into the application us-
ing the browser, and then specifying a regular expression to
be used to prevent the crawler from visiting the log-out page
(e.g., by excluding links that include the cmd=logout pa-
rameter).

3.2 P-Scan: Analysis of the Parameter Prece-
dence

The P-Scan component analyzes a page to determine
the precedence of parameters if multiple occurrences of the
same parameter are injected into an application. For URLs
that contain several parameters, each one is analyzed until
the page’s precedence has been determined or all available
parameters have been tested.

The algorithm we use to test the precedence of parame-
ters starts by taking the first parameter of the URL (in the
form par1=val1), and generates a new parameter value
val2 that is similar to the existing one. The idea is to gen-
erate a value that would be accepted as being valid by the
application. For example, a parameter that represents a page
number cannot be replaced with a string. Hence, a number
is cloned into a consecutive number, and a string is cloned
into a same-length string with the first two characters mod-
ified.

DB

Stat GeneratorStat Generator

 Crawler Crawler

 V-Scan V-Scan

 P-Scan P-Scan

Browser
Extension

Instrumented
Browser

Reports

Figure 1: Architecture of PAPAS

In a second step, the scanner asks the browser to gen-
erate two new requests. The first request contains only the
newly generated value val2. In contrast, the second re-
quest contains two copies of the parameter, one with the
original value val1, and one with the value val2.

Suppose, for example, that a page accepts two parame-
ters par1 and par2. In the first iteration, the first parameter
is tested for the precedence behavior. That is, a new value
new val is generated and two requests are issued. In sum,
the parameter precedence test is run on that pages that are
the results of the three following requests:� �
Page0 - Original Url: application.php?

par1=val1&par2=val2
Page1 - Request 1: application.php?

par1=new val&par2=val2
Page2 - Request 2: application.php?

par1=val1&par1=new val&par2=val2� �
A naive approach to determine the parameter precedence

would be to simply compare the three pages returned by
the previous requests: If Page1 == Page2, then the sec-
ond (last) parameter would have precedence over the first.
If, however, Page2 == Page0, the application is giving
precedence to the first parameter over the second.

Unfortunately, this straightforward approach does not
work well in practice. Modern web applications are very
complex, and often include dynamic content that may still
vary even when the page is accessed with exactly the same
parameters. Publicity banners, RSS feeds, real-time statis-
tics, gadgets, and suggestion boxes are only a few examples
of the dynamic content that can be present in a page and that
may change each time the page is accessed.

The P-Scan component resolves the dynamic content
problem in two stages. First, it pre-processes the page and
tries to eliminate all dynamic content that does not depend
on the values of the application parameters. That is, P-Scan
removes HTML comments, images, embedded contents, in-

teractive objects (e.g., Java applets), CSS stylesheets, cross-
domain iFrames, and client-side scripts. It also uses regular
expressions to identify and remove “timers” that are often
used to report how long it takes to generate the page that
is being accessed. In a similar way, all the date and time
strings on the page are removed.

The last part of the sanitization step consists of removing
all the URLs that reference the page itself. The problem is
that as it is very common for form actions to submit data to
the same page, when the parameters of a page are modified,
the self-referencing URLs also change accordingly. Hence,
to cope with this problem, we also eliminate these URLs.

After the pages have been stripped off their dynamic
components, P-Scan compares them to determine the prece-
dence of the parameters. Let P0’, P1’, and P2’ be the
sanitized versions of Page0, Page1, and Page2. The
comparison procedure consists of five different tests that are
applied until one of the tests succeeds:

I. Identity Test - The identity test checks whether the pa-
rameter under analysis has any impact on the content
of the page. In fact, it is very common for query strings
to contain many parameters that only affect the inter-
nal state, or some “invisible” logic of the application.
Hence, if P0’ == P1’ == P2’, the parameter is
considered to be ineffective.

II. Base Test - The base test is based on the assumption
that the dynamic component stripping process is able
to perfectly remove all dynamic components from the
page that is under analysis. If this is the case, the sec-
ond (last) parameter has precedence over the first if
P1’==P2’. The situation is the opposite if P2’ ==
P0’. Note that despite our efforts to improve the dy-
namic content stripping process as much as possible, in
practice, it is rarely the case that the compared pages
match perfectly.

III. Join Test - The join test checks the pages for indica-

tions that show that the two values of the homonym
parameters are somehow combined together by the ap-
plication. For example, it searches P2’ for two values
that are separated by commas, spaces, or that are con-
tained in the same HTML tag. If there is a positive
match, the algorithm concludes that the application is
merging the values of the parameters.

IV. Fuzzy Test - The fuzzy test is designed to cope with
pages whose dynamic components have not been per-
fectly sanitized. The test aims to handle identical pages
that may show minor differences because of embedded
dynamic parts. The test is based on confidence inter-
vals. We compute two values, S21 and S20, that repre-
sent how similar P2’ is to the pages P1’ and P0’ re-
spectively. The similarity algorithm we use is based on
the Ratcliff/Obershelp pattern recognition algorithm,
(also known as gestalt pattern matching [28]), and re-
turns a number between 0 (i.e, completely different) to
1 (i.e., perfect match). The parameter precedence de-
tection algorithm that we use in the fuzzy test works as
follows:� �
if ABS(S21-S20) > DISCRIMINATION_THRESHOLD:

if (S21 > S20) and (S21 > SIMILARITY_THRESHOLD):
Precedence = last

else (S20 > S21) and (S20 > SIMILARITY_THRESHOLD):
Precedence = first

else:
Unknown precedence

else:
Unknown precedence� �

To draw a conclusion, the algorithm first checks if the
two similarity values are different enough (i.e., the val-
ues show a difference that is greater than a certain dis-
crimination threshold). If this is the case, the closer
match (if the similarity is over a minimum similarity
threshold) determines the parameter precedence. In
other words, if the page with the duplicated parameters
is very similar to the original page, there is a strong
probability that the web application is only using the
first parameter, and ignoring the second. However, if
the similarity is closer to the page with the artificially
injected parameter, there is a strong probability that the
application is only accepting the second parameter.

The two threshold values have been determined by
running the algorithm on one hundred random web-
pages that failed to pass the base test, and for which
we manually determined the precedence of parame-
ters. The two experimental thresholds (set respectively
to 0.05 and 0.75) were chosen to maximize the accu-
racy of the detection, while minimizing the error rate.

V. Error Test - The error test checks if the application
crashes, or returns an ”internal” error when an identi-

cal parameter is injected multiple times. Such an error
usually happens when the application does not expect
to receive multiple parameters with the same name.
Hence, it receives an array (or a list) of parameters in-
stead of a single value. An error occurs if the value is
later used in a function that expects a well-defined type
(such as a number or a string). In this test, we search
the page under analysis for strings that are associated
with common error messages or exceptions. In par-
ticular, we adopted all the regular expressions that the
SqlMap project [13] uses to identify database errors in
MySQL, PostgreSQL, MS SQL Server, Microsoft Ac-
cess, Oracle, DB2, and SQLite.

If none of these five tests succeed, the parameter is dis-
carded from the analysis. This could be, for example, be-
cause of content that is generated randomly on the server-
side. The parameter precedence detection algorithm is then
run again on the next available parameter.

3.3 V-Scan: Testing for HPP vulnerabilities

In this section, we describe how the V-Scan component
tests for the presence of HTTP Parameter Pollution vulner-
abilities in web applications.

For every page that V-Scan receives from the crawler,
it tries to inject a URL-encoded version of an innocuous
parameter into each existing parameter of the query string.
Then, for each injection, the scanner verifies the presence
of the parameter in links, action fields and hidden fields of
forms in the answer page.

For example, in a typical scenario, V-Scan injects the
pair “%26foo%3Dbar” into the parameter “par1=val1”
and then checks if the “&foo=bar” string is included in-
side the URLs of links or forms in the answer page.

Note that we do not check for the presence of the vul-
nerable parameter itself (e.g., by looking for the string
“par1=val1&foo=bar”). This is because web applica-
tions sometimes use a different name for the same parame-
ter in the URL and in the page content. Therefore, the pa-
rameter “par1” may appear under a different name inside
the page.

In more detail, V-Scan starts by extracting the list
PURL = [PU1, PU2, . . . PUn] of the parameters that
are present in the page URL, and the list PBody =
[PB1, PB2, . . . PBm] of the parameters that are present in
links or forms contained in the page body.
It then computes the following three sets:

• PA = PURL ∩ PBody is the set of parameters that ap-
pear unmodified in the URL and in the links or forms
of the page.

• PB = p | p ∈ PURL ∧ p /∈ PBody contains the
URL parameters that do not appear in the page. Some

of these parameters may appear in the page under a
different name.

• PC = p | p /∈ PURL ∧ p ∈ PBody is the set of
parameters that appear somewhere in the page, but that
are not present in the URL.

First, V-Scan starts by injecting the new parameter in
the PA set. We observed that in practice, in the majority
of the cases, the application copies the parameter to the
page body and maintains the same name. Hence, there
is a high probability that a vulnerability will be identi-
fied at this stage. However, if this test does not discover
any vulnerability, then the scanner moves on to the sec-
ond set (PB). In the second test, the scanner tests for the
(less likely) case in which the vulnerable parameter is re-
named by the application. Finally, in the final test, V-Scan
takes the parameters in the PC group, attempts to add these
to the URL, and use them as a vector to inject the ma-
licious pair. This is because webpages usually accept a
very large number of parameters, not all of which are nor-
mally specified in the URL. For example, imagine a case in
which we observe that one of the links in the page con-
tains a parameter “language=en”. Suppose, however,
that this parameter is not present in the page URL. In the
final test, V-Scan would attempt to build a query string like
“par1=var1&language=en%26foo%3Dbar”.

Note that the last test V-Scan applies can be executed on
pages with an empty query string (but with parameterized
links/forms), while the first two require pages that already
contain a query string.

In our prototype implementation, the V-Scan component
encodes the attacker pair using the standard URL encod-
ing schema3. Our experiments show that this is sufficient
for discovering HPP flaws in many applications. However,
there is room for improvement as in some cases, the attacker
might need to use different types of encodings to be able to
trigger a bug. For example, this was the case of the HPP
attack against Yahoo (previously described in Section 2)
where the attacker had to double URL-encode the “clean-
ing of the trash can” action.

Handling special cases In our experiments, we identified
two special cases in which, even though our vulnerability
scanner reported an alert, the page was not actually vulner-
able to parameter pollution.

In the first case, one of the URL parameters (or part of
it) is used as the entire target of a link. For example:� �
Url: index.php?v1=p1&uri=apps%2Femail.jsp%3Fvar1%3Dpar1

%26foo%3Dbar
Link: apps/email.jsp?var1=par1&foo=bar� �

3URL Encoding Reference, http://www.w3schools.com/
TAGS/ref_urlencode.asp

A parameter is used to store the URL of the target page.
Hence, performing an injection in that parameter is equiva-
lent to modifying its value to point to a different URL. Even
though this technique is syntactically very similar to an HPP
vulnerability, it is not a proper injection case. Therefore, we
decided to consider this case as a false positive of the tool.

The second case that generates false alarms is the op-
posite of the first case. In some pages, the entire URL of
the page becomes a parameter in one of the links. This
can frequently be observed in pages that support printing or
sharing functionalities. For example, imagine an applica-
tion that contains a link to report a problem to the website’s
administrator. The link contains a parameter page that ref-
erences the URL of the page responsible for the problem:

� �
Url: search.html?session_id=jKAmSZx5%26foo%3Dbar&q=shoes

Link: service_request.html?page=search%2ehtml%3f
session_id%3djKAmSZx5&foo=bar&q=shoes� �

Note that by changing the URL of the page, we also
change the page parameter contained in the link. Clearly,
this is not an HPP vulnerability.

Since the two previous implementation techniques are
quite common in web applications, PAPAS would erro-
neously report these sites as being vulnerable to HPP. To
eliminate such alarms and to make PAPAS suitable for
large-scale analysis, we integrated heuristics into the V-
Scan component to cross-check and verify that the vulner-
abilities that are identified do not correspond to these two
common techniques that are used in practice.

In our prototype implementation, in order to eliminate
these false alarms, V-Scan checks that the parameter in
which the injection is performed does not start with a
scheme specifier string (e.g., http://). Then, it veri-
fies that the parameter as a whole is not used as the tar-
get for a link. Furthermore, it also checks that the entire
URL is not copied as a parameter inside a link. Finally,
our vulnerability analysis component double-checks each
vulnerability by injecting the new parameter without url-
encoding the separator (i.e., by injecting &foo=bar in-
stead of %26foo%3Dbar). If the result is the same, we
know that the query string is simply copied inside another
URL. While such input handling is possibly a dangerous
design decision on the side of the developer, there is a high
probability that it is intentional so we ignore it and do not
report it by default. However, such checks can be deacti-
vated anytime if the analyst would like to perform a more
in-depth analysis of the website.

3.4 Implementation

The browser component of PAPAS is implemented as a
Firefox extension, while the rest of the system is written in
Python. The components communicate over TCP/IP sock-
ets.

Similar to other scanners, it would have been possible to
directly retrieve web pages without rendering them in a real
browser. However, such techniques have the drawback that
they cannot efficiently deal with dynamic content that is of-
ten found on Web pages (e.g., Javascript). By using a real
browser to render the pages we visit, we are able to analyze
the page as it is supposed to appear to the user after the dy-
namic content has been generated. Also, note that unlike
detecting cross site scripting or SQL injections, the ability
to deal with dynamic content is a necessary prerequisite to
be able to test for HPP vulnerabilities using a black-box ap-
proach.

The browser extension has been developed using the
standard technology offered by the Mozilla development
environment: a mix of Javascript and XML User Interface
Language (XUL). We use XPConnect to access Firefox’s
XPCOM components. These components are used for in-
voking GET and POST requests and for communicating
with the scanning component.

PAPAS supports three different operational modes: fast
mode, extensive mode and assisted mode. The fast mode
aims to rapidly test a site until potential vulnerabilities are
discovered. Whenever an alert is generated, the analysis
continues, but the V-Scan component is not invoked to im-
prove the scanning speed. In the extensive mode, the entire
website is tested exhaustively and all potential problems and
injections are logged. The assisted mode allows the scanner
to be used in an interactive way. That is, the crawler pauses
and specific pages can be tested for parameter precedence
and HPP vulnerabilities. The assisted mode can be used by
security professionals to conduct a semi-automated assess-
ment of a web application, or to test websites that require a
particular user authentication.

PAPAS is also customizable and settings such as scan-
ning depths, numbers of injections that are performed, wait-
ing times between requests, and page loading timeouts are
all configurable by the analyst.

3.5 Limitations

Our current implementation of PAPAS has several limi-
tations. First, PAPAS does not support the crawling of links
embedded in active content such as Flash, and therefore, is
not able to visit websites that rely on active content tech-
nologies to navigate among the pages.

Second, currently, PAPAS focuses only on HPP vulner-
abilities that can be exploited via client-side attacks (e.g.,

analogous to reflected XSS attacks) where the user needs
to click on a link prepared by the attacker. Some HPP vul-
nerabilities can also be used to exploit server-side compo-
nents (when the malicious parameter value is not included
in a link but it is decoded and passed to a back-end com-
ponent). However, testing for server-side attacks is more
difficult than testing for client-side attacks as comparing re-
quests and answers is not sufficient (i.e., similar to the dif-
ficulty of detecting stored SQL-injection vulnerabilities via
black-box scanning). We leave the detection of server-side
attacks to future work.

4 Evaluation

We evaluated our detection technique by running two ex-
periments. In the first experiment, we used PAPAS to au-
tomatically scan a list of popular websites with the aim of
measuring the prevalence of HPP vulnerabilities in the wild.
We then selected a limited number of vulnerable sites and,
in a second experiment, performed a more in-depth analysis
of the detected vulnerabilities to gain a better understanding
of the possible consequences of the vulnerabilities our tool
automatically identified.

4.1 HPP Prevalence in Popular Websites

In the first experiment, we collected 5,000 unique URLs
from the public database of Alexa. In particular, we ex-
tracted the top ranked sites from each of the Alexa’s cate-
gories [3]. Each website was considered only once – even
if it was present in multiple distinct categories, or with dif-
ferent top-level domain names such as google.com and
google.fr.

The aim of our experiments was to quickly scan as many
websites as possible. Our basic premise was that it would
be likely that the application would contain parameter in-
jection vulnerabilities on many pages and on a large number
of parameters if the developers of the site were not aware of
the HPP threat and had failed to properly sanitize the user
input.

To maximize the speed of the tests, we configured the
crawler to start from the homepage and visit the sub-pages
up to a distance of three (i.e., three clicks away from the
website’s entry point). For the tests, we only considered
links that contained at least one parameter. In addition, we
limited the analysis to 5 instances per page (i.e., a page with
the same URL, but a different query string was considered
a new instance). The global timeout was set to 15 minutes
per site and the browser was customized to quickly load
and render the pages, and run without any user interaction.
Furthermore, we disabled pop-ups, image loading, and any
plug-ins for active content technologies such as Flash, or

Categories # of Tested Categories # of Tested
Applications Applications

Internet 698 Government 132
News 599 Social Networking 117

Shopping 460 Video 114
Games 300 Financial 110
Sports 256 Organization 106
Health 235 University 91

Science 222 Others 1401
Travel 175

Table 2: TOP15 categories of the analyzed sites

Silverlight. An external watchdog was also configured to
monitor and restart the browser in case it became unrespon-
sive.

In 13 days of experiments, we successfully scanned
5,016 websites, corresponding to a total of 149,806 unique
pages. For each page, our tool generated a variable amount
of queries, depending on the number of detected parame-
ters. The websites we tested were distributed over 97 coun-
tries and hundreds of different Alexa categories. Table 2
summarizes the 15 categories containing the higher number
of tested applications.

Parameter Precedence For each website, the P-Scan
component tested every page to evaluate the order in which
the GET parameters were considered by the application
when two occurrences of the same parameter were spec-
ified. The results were then grouped together in a per-site
summary, as shown in Figure 2. The first column reports the
type of parameter precedence. Last and First indicate that
all the analyzed pages of the application uniformly consid-
ered the last or the first specified value. Union indicates that
the two parameters were combined together to form a sin-
gle value, usually by simply concatenating the two strings
with a space or a comma. In contrast, the parameter prece-
dence is set to inconsistent when different pages of the web-
site present mismatching precedences (i.e., some pages fa-
vor the first parameter’s value, others favor the last). The
inconsistent state, accounting for a total of 25% of the ana-
lyzed applications, is usually a consequence of the fact that
the website has been developed using a combination of het-
erogeneous technologies. For example, the main implemen-
tation language of the website may be PHP, but a few Perl
scripts may still be responsible for serving certain pages.

Even though the lack of a uniform behavior can be suspi-
cious, it is neither a sign, nor a consequence of a vulnerable
application. In fact, each parameter precedence behavior
(even the inconsistent case) is perfectly safe if the applica-
tion’s developers are aware of the HPP threat and know how
to handle a parameter’s value in the proper way. Unfortu-

nately, as shown in the rest of the section, the results of our
experiments suggest that many developers are not aware of
HPP.

Figure 2 shows that for 4% of the websites we analyzed,
our scanner was not been able to automatically detect the
parameter precedence. This is usually due to two main rea-
sons. The first reason is that the parameters do not affect
(or only minimally affect) the rendered page. Therefore,
the result of the page comparison does not reach the dis-
crimination threshold. The second reason is the opposite
of the first. That is, the page shows too many differences
even after the removal of the dynamic content, and the re-
sult of the comparison falls below the similarity threshold
(see Section 3.2 for the full algorithm and an explanation of
the threshold values).

The scanner found 238 applications that raised an SQL
error when they were tested with duplicated parameters.
Quite surprisingly, almost 5% of the most popular websites
on the Internet failed to properly handle the user input, and
returned an ”internal” error page when a perfectly-legal pa-
rameter was repeated twice. Note that providing two param-
eters with the same name is a common practice in many ap-
plications, and most of the programming languages provide
special functionalities to access multiple values. Therefore,
this test was not intended to be an attack against the appli-
cations, but only a check to verify which parameter’s value
was given the precedence. Nevertheless, we were surprised
to note error messages from the websites of many major
companies, banks and government institutions, educational
sites, and others popular websites.

HPP Vulnerabilities PAPAS discovered that 1499 web-
sites (29.88% of the total we analyzed) contained at least
one page vulnerable to HTTP Parameter Injection. That is,
the tool was able to automatically inject an encoded param-
eter inside one of the existing parameters, and was then able
to verify that its URL-decoded version was included in one
of the URLs (links or forms) of the resulting page.

However, the fact that it is possible to inject a parameter

Parameter Precedence WebSites
Last 2,237 (44.60%)
First 946 (18.86%)

Union 381 (7.60%)
Inconsistent 1,251 (24.94%)

Unknown 201 (4.00%)
Total 5,016 (100.00%)

Database Errors 238 (4.74%)

Last
First
Union
Inconsistent
Unknown

Figure 2: Precedence when the same parameter occurs multiple time

does not reveal information about the significance and the
consequences of the injection. Therefore, we attempted to
verify the number of exploitable applications (i.e., the sub-
set of vulnerable websites in which the injected parameter
could potentially be used to modify the behavior of the ap-
plication).

We started by splitting the vulnerable set into two sepa-
rate groups. In 872 websites (17.39%), the injection was on
a link or a form’s action field. In the remaining 627 cases
(12.5%), the injection was on a form’s hidden field.

For the first group, our tool verified if the parameter in-
jection vulnerability could be used to override the value of
one of the existing parameters in the application. This is
possible only if the parameter precedence of the page is con-
sistent with the position of the injected value. For example,
if the malicious parameter is always added to the end of the
URL and the first value has parameter precedence, it is im-
possible to override any existing parameter.

When the parameter precedence is not favorable, a vul-
nerable application can still be exploitable by injecting a
new parameter (that differs from all the ones already present
in the URL) that is accepted by the target page.

For example, consider a page target.pl that accepts
an action parameter. Suppose that, on the same page, we
find a page poor.pl vulnerable to HPP:� �
Url: poor.pl?par1=val1%26action%3Dreset
Link: target.pl?x=y&w=z&par1=val1&action=reset� �

Since in Perl the parameter precedence is on the first
value, it is impossible to override the x and w parameters.
However, as shown in the example, the attacker can still
exploit the application by injecting the action parameter
that she knows is accepted by the target.pl script. Note
that while the parameter overriding test was completely au-
tomated, this type of injection required a manual supervi-
sion to verify the effects of the injected parameter on the
web application.

The final result was that at least 702 out of the 872 ap-
plications of the first group were exploitable. For the re-

maining 170 pages, we were not able, through a parameter
injection, to affect the behavior of the application.

For the applications in the second group, the impact of
the vulnerability is more difficult to estimate in an auto-
mated fashion. In fact, since modern browsers automati-
cally encode all the form fields, the injected parameter will
still be sent in a url-encoded form, thus making an attack
ineffective.

In such a case, it may still be possible to exploit the appli-
cation using a two-step attack where the malicious value is
injected into the vulnerable field, it is propagated in the form
submission, and it is (possibly) decoded and used in a later
stage. In addition, the vulnerability could also be exploited
to perform a server-side attack, as explained in Section 3.5.
However, using a black-box approach, it is very difficult to
automatically test the exploitability of multi-step or server-
side vulnerabilities. Furthermore, server-side testing might
have had ethical implications (see Section 4.3 for discus-
sion). Therefore, we did not perform any further analysis in
this direction.
To conclude, we were able to confirm that in (at least) 702
out of the 1499 vulnerable websites (i.e., 46.8%) that PA-
PAS identified, it would have been possible to exploit the
HPP vulnerability to override one of the hard-coded param-
eters, or to inject another malicious parameter that would
affect the behavior of the application.

Figure 3 shows the fraction of vulnerable and exploitable
applications grouped by the different Alexa categories. The
results are equally divided, suggesting that important finan-
cial and health institutions do not seem to be more security-
aware and immune to HPP than leisure sites for sporting
and gaming.

False Positives In our vulnerability detection experi-
ments, the false positives rate was 1.12% (10 applications).
All the false alarms were due to parameters that were used
by the application as an entire target for one of the links.
The heuristic we implemented to detect these cases (ex-
plained in Section 3.3) failed because the applications ap-
plied a transformation to the parameter before using it as a

Financial
Games

Government
Health

Internet
News

Organization
Science

Shopping
Social Networking

Sports
Travel

University
Video

Others

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

Vulnerable
Exploitable

Figure 3: Vulnerability rate for category

link’s URL.
Note that, to maximize efficiency, our results were ob-

tained by crawling each website at a maximum depth of
three pages. In our experiments, we observed that 11% of
the vulnerable pages were directly linked from the home-
page, while the remaining 89% were equally distributed be-
tween the distance of 2 and 3. This trend suggests that it
is very probable that many more vulnerabilities could have
been found by exploring the sites in more depth.

4.2 Examples of Discovered Vulnerabilities

Our final experiments consisted of the further analysis of
some of the vulnerable websites that we identified. Our aim
was to gain an insight into the real consequences of the HPP
vulnerabilities we discovered.

The analysis we performed was assisted by the V-Scan
component. When invoked in extensive mode, V-Scan was
able to explore in detail the web application, enumerating
all the vulnerable parameters. For some of the websites, we
also registered an account and configured the scanner to test
the authenticated part of the website.

HPP vulnerabilities can be abused to run a wide range of
different attacks. In the rest of this section, we discuss the
different classes of problems we identified in our analysis
with the help of real-world examples.

The problems we identified affected many important and
well-known websites such as Microsoft, Google, VMWare,
About.com, Symantec, history.com, flickr, and Paypal.
Since, at the time of writing, we have not yet received con-
firmation that all of the vulnerabilities have been fixed, we
have anonymized the description of the following real-word
cases.

Facebook Share Facebook, Twitter, Digg and other so-
cial networking sites offer a share component to easily share
the content of a webpage over a user profile. Many news
portals nowadays integrate these components with the in-
tent of facilitating the distribution of their news.

By reviewing the vulnerability logs of the tested appli-
cations, we noticed that different sites allowed a parameter
injection on the links referencing the share component of
Facebook. In all those cases, a vulnerable parameter would
allow an attacker to alter the request sent to Facebook and to
trick the victim into sharing a page chosen by the attacker.
For example, it was possible for an attacker to exploit these
vulnerabilities to corrupt a shared link by overwriting the
reference with the URL of a drive-by-download website.

In technical terms, the problem was due to the fact that
it was possible to inject an extra url-to-share parameter that
could overwrite the value of the parameter used by the ap-
plication. For example:� �
Url:
<site>/shareurl.htm?PG=<default url>&zItl=<description>

%26url-to-share%3Dhttp://www.malicious.com
Link:
http://www.facebook.com/sharer.php?

url-to-share=<default url>&t=<description>&
url-to-share=http://www.malicious.com� �

Even though the problem lies with the websites that use
the share component, Facebook facilitated the exploitation
by accepting multiple instances of the same parameter, and
always considering the latest value (i.e., the one on the
right).

We notified the security team of Facebook and proposed
a simple solution based on the filtering of all incoming shar-
ing requests that include duplicate parameters. The team
promptly acknowledged the issue and informed us that they
were willing to put in place our countermeasure.

CSRF via HPP Injection Many applications use hidden
parameters to store a URL that is later used to redirect the
users to an appropriate page. For example, social networks
commonly use this feature to redirect new users to a page
where they can look up a friend’s profile.

In some of these sites, we observed that it was possible
for an attacker to inject a new redirect parameter inside the
registration or the login page so that it could override the

hard-coded parameter’s value. On one social-network web-
site, we were able to inject a custom URL that had the effect
of automatically sending friend requests after the login. In
another site, by injecting the malicious pair into the regis-
tration form, an attacker could perform different actions on
the authenticated area.

This problem is a CSRF attack that is carried out via an
HPP injection. The advantages compared to a normal CSRF
is that the attack URL is injected into the real login/regis-
tration page. Moreover, the user does not have to be already
logged into the target website because the action is auto-
matically executed when the user logs into the application.
However, just like in normal CSRF, this attack can be pre-
vented by using security tokens.

Shopping Carts We discovered different HPP vulnerabil-
ities in online shopping websites that allow the attacker to
tamper with the user interaction with the shopping cart com-
ponent.

For example, in several shopping websites, we were able
to force the application to select a particular product to be
added into the user’s cart. That is, when the victim checks
out and would like to pay for the merchandise, she is actu-
ally paying for a product that is different from the ones she
actually selected. On an Italian shopping portal, for exam-
ple, it was even possible to override the ID of the product
in such a way that the browser was still showing the image
and the description of the original product, even when the
victim was actually buying a different one.

Financial Institutions We ran PAPAS against the authen-
ticated and non-authenticated areas of some financial web-
sites and the tool automatically detected several HPP vul-
nerabilities that were potentially exploitable. Since the links
involved sensitive operations (such as increasing account
limits and manipulating credit card operations), we imme-
diately stopped our experiments and promptly informed the
security departments of the involved companies. The prob-
lems were acknowledged and are currently being fixed.

Tampering with Query Results In most cases, the HPP
vulnerabilities that we discovered in our experiments allow
the attacker to tamper with the data provided by the vulner-
able website, and to present to the victim some information
chosen by the attacker.

On several popular news portals, we managed to modify
the news search results to hide certain news, to show the
news of a certain day with another date, or to filter the news
of a specific source/author. An attacker can exploit these
vulnerabilities to promote some particular news, or conceal
news that can hurt his person/image, or even subvert the
information by replacing an article with an older one.

Also some multimedia websites were vulnerable to HPP
attacks. In several popular sites, an attacker could over-
ride the video links and make them point to a link of his
choice (e.g., a drive-by download site), or alter the results
of a query to inject malicious multimedia materials. In one
case, we were able to automatically register a user to a spe-
cific streaming event.

Similar problems also affected several popular search en-
gines. We noticed that it would have been possible to tam-
per with the results of the search functionality by adding
special keywords, or by manipulating the order in which
the results are shown. We also noticed that on some search
engines, it was possible to replace the content of the com-
mercial suggestion boxes with links to sites owned by the
attacker.

4.3 Ethical Considerations

Crawling and automatically testing a large number of ap-
plications may be considered an ethically sensitive issue.
Clearly, one question that arises is if it is ethically accept-
able and justifiable to test for vulnerabilities in popular web-
sites.

Analogous to the real-world experiments conducted by
Jakobsson et al. in [21, 22], we believe that realistic exper-
iments are the only way to reliably estimate success rates
of attacks in the real-world. Unfortunately, criminals do
not have any second thoughts about discovering vulnerabil-
ities in the wild. As researchers, we believe that our ex-
periments helped many websites to improve their security.
Furthermore, we were able to raise some awareness about
HPP problems in the community.

Also, note that:

• PAPAS only performed client-side checks. Similar
client-side vulnerability experiments have been pe-
formed before in other studies (e.g., for detecting
cross site scripting, SQL injections, and CSRF in the
wild [24, 29]). Furthermore, we did not perform any
server-side vulnerability analysis because such experi-
ments had the potential to cause harm.

• We only provided the applications with innocuous pa-
rameters that we knew that the applications were al-
ready accepting, and did not use any malicious code as
input.

• PAPAS was not powerful enough to influence the per-
formance of any website we investigated, and the scan
activities was limited to 15 minutes to further reduce
the generated traffic.

• We informed the concerned sites of any critical vulner-
abilities that we discovered.

• None of the security groups of the websites that we
interacted with complained to us when we informed
them that we were researchers, and that we had dis-
covered vulnerabilities on their site with a tool that
we were testing. On the contrary, many people were
thankful to us that we were informing them about vul-
nerabilities in their code, and helping them make their
site more secure.

5 Related work

There are two main approaches [14] to test software
applications for the presence of bugs and vulnerabilities:
white-box testing and black-box testing. In white-box test-
ing, the source code of an application is analyzed to find
flaws. In contrast, in black-box testing, input is fed into
a running application and the generated output is analyzed
for unexpected behavior that may indicate errors. PAPAS
adopts a black-box approach to scan for vulnerabilities.

When analyzing web applications for vulnerabilities,
black-box testing tools (e.g., [2, 8, 24, 33]) are the most
popular. Some of these tools (e.g., [2]) claim to be generic
enough to identify a wide range of vulnerabilities in web
applications. However, recent studies ([6, 11]) have shown
that scanning solutions that claim to be generic have seri-
ous limitations, and that they are not as comprehensive in
practice as they pretend to be.

Two well-known, older web vulnerability detection and
mitigation approaches in literature are Scott and Sharp’s
application-level firewall [30] and Huang et al.’s [17] vul-
nerability detection tool that automatically executes SQL
injection attacks. Scott and Sharp’s solution allows to de-
fine fine-grained policies manually in order to prevent at-
tacks such as parameter tampering and cross-site scripting.
However, it cannot prevent HPP attacks and has not been
designed with this vulnerability in mind. In comparison,
Huang et al.’s work solely focuses on SQL injection vulner-
ability detection using fault injection.

To the best of our knowledge, only one of the available
black-box scanners, Cenzic Hailstorm [9], claims to support
HPP detection. However, a study of its marketing material
reveals that the tool only looks for behavioral differences
when HTTP parameters are duplicated (i.e., not a sufficient
test by itself to detect HPP). Unfortunately, we were not
able to obtain more information about the inner-workings
of the tool as Cenzic did not respond to our request for an
evaluation version.

The injection technique we use is similar to other black-
box approaches such as SecuBat [24] that aim to discover
SQL injection, or reflected cross site scripting vulnerabili-
ties. However, note that conceptually, detecting cross site
scripting or SQL injection is different from detecting HPP.
In fact, our approach required the development of a set of

tests and heuristics to be able to deal with dynamic content
that is often found on webpages today (content that is not
an issue when testing for XSS or SQL injection). Hence,
compared to existing work in literature, our approach for
detecting HPP, and the prototype we present in this paper
are unique.

With respect to white-box testing of web applications,
a large number of static source code analysis tools (e.g.,
[23, 31, 34]) that aim to identify vulnerabilities have been
proposed. These approaches typically employ taint tracking
to help discover if tainted user input reaches a critical func-
tion without being validated. We believe that static code
analysis would be useful and would help developers iden-
tify HPP vulnerabilities. However, to be able to use static
code analysis, it is still necessary for the developers to un-
derstand the concept of HPP. Previous research has shown
that the sanitization process can still be faulty if the devel-
oper does not understand a certain class of vulnerability [4].

Note that there also exists a large body of more general
vulnerability detection and security assessment tools (e.g.,
Nikto [26], and Nessus [32]). Such tools typically rely on
a repository of known vulnerabilities and test for the exis-
tence of these flaws. In comparison, our approach aims to
discover previously unknown HPP vulnerabilities in the ap-
plications that are under analysis.

With respect to scanning, there also exist network-level
tools such as nmap [18]. Tools like nmap can determine the
availability of hosts and accessible services. However, they
cannot detect higher-level application vulnerabilities.

In comparison to the work we present in this paper, to
the best of our knowledge, no large-scale study has been
performed to date to measure the prevalence and the signif-
icance of HPP vulnerabilities in popular websites.

6 Conclusion

Web applications are not what they used to be ten years
ago. Popular web applications have now become more dy-
namic, interactive, complex, and often contain a large num-
ber of multimedia components. Unfortunately, as the pop-
ularity of a technology increases, it also becomes a target
for criminals. As a result, most attacks today are launched
against web applications.

Vulnerabilities such as cross site scripting, SQL injec-
tion, and cross site request forgery are well-known and
have been intensively studied by the research community.
Many solutions have been proposed, and tools have been
released. However, a new class of injection vulnerabili-
ties called HTTP Parameter Pollution (HPP) that was first
presented at the OWASP conference [27] in 2009 has not
received as much attention. If a web application does not
properly sanitize the user input for parameter delimiters, us-
ing an HPP vulnerability, an attacker can compromise the

logic of the application to perform client-side or server-side
attacks.

In this paper, we present the first automated approach for
the discovery of HPP vulnerabilities in web applications.
Our prototype implementation called PArameter Pollution
Analysis System (PAPAS) is able to crawl websites and dis-
cover HPP vulnerabilities by parameter injection. In order
to determine the feasibility of our approach and to assess
the prevalence of HPP vulnerabilities on the Internet today,
we analyzed more than 5,000 popular websites. Our results
show that about 30% of the sites we analyzed contain vul-
nerable parameters and that at least 14% of them can be
exploited using HPP. A large number of well-known, high-
profile websites such as Symantec, Google, VMWare, and
Microsoft were among the sites affected by HPP vulnera-
bilities that we discovered. We informed the sites for which
we could obtain contact information, and some of these sites
wrote back to us and confirmed our findings.

We hope that this paper will help raise awareness and
draw attention to the HPP problem.

Acknowledgments This work has been supported by
the POLE de Competitivite SCS (France) through the
MECANOS project and by the French National Research
Agency through the VAMPIRE project. The work has also
received support from the Secure Business Austria in Vi-
enna.

References

[1] C. A. A-2000-02. Malicious HTML Tags Embedded in
Client Web Requests, 2000. http://www.cert.org/
advisories/CA-2000-02.html.

[2] Acunetix. Acunetix Web Vulnerability Scanner. http:
//www.acunetix.com/, 2008.

[3] I. Alexa Internet. Alexa - Top Sites by Category: Top.
http://www.alexa.com/topsites/category.

[4] D. Balzarotti, M. Cova, V. Felmetsger, D. Balzarotti, N. Jo-
vanovic, C. Kruegel, E. Kirda, and G. Vigna. Saner: Com-
posing Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In IEEE Symposium on Security and
Privacy, 2008.

[5] D. Bates, A. Barth, and C. Jackson. Regular Expressions
Considered Harmful in Client-Side XSS Filters. In 19th
International World Wide Web Conference. (WWW 2010),
2010.

[6] J. Bau, E. Burzstein, D. Gupta, and J. C. Mitchell. State of
the Art: Automated Black-Box Web Application Vulnerabil-
ity Testing. In Proceedings of IEEE Security and Privacy,
May 2010.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Rfc 3986, uni-
form resource identifier (uri): Generic syntax, 2005. http:
//rfc.net/rfc3986.html.

[8] Burp Spider. Web Application Security. http://
portswigger.net/spider/, 2008.

[9] Cenzic. Cenzic Hailstormr. http://www.cenzic.
com/, 2010.

[10] S. di Paola and L. Carettoni. Client side Http Parameter
Pollution - Yahoo! Classic Mail Video Poc, May 2009.
http://blog.mindedsecurity.com/2009/05/
client-side-http-parameter-pollution.
html.

[11] A. Doupé, M. Cova, and G. Vigna. Why Johnny Cant Pen-
test: An Analysis of Black-Box Web Vulnerability Scanners.
Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 111–131, 2010.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Rfc 2616, hypertext trans-
fer protocol – http/1.1, 1999. http://www.rfc.net/
rfc2616.html.

[13] B. D. A. G. and M. Stampar. sqlmap. http://sqlmap.
sourceforge.net.

[14] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of
Software Engineering. Prentice-Hall International, 1994.

[15] W. G. J. Halfond and A. Orso. Preventing SQL injection
attacks using AMNESIA. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering,
2006.

[16] N. Hardy. The Confused Deputy: (or why capabilities might
have been invented). ACM SIGOPS Operating Systems Re-
view, 22(4), October 1988.

[17] Y. Huang, S. Huang, and T. Lin. Web Application Secu-
rity Assessment by Fault Injection and Behavior Monitor-
ing. 12th World Wide Web Conference, 2003.

[18] Insecure.org. NMap Network Scanner. http://www.
insecure.org/nmap/, 2010.

[19] S. Institute. Top Cyber Security Risks,
September 2009. http://www.sans.org/
top-cyber-security-risks/summary.php.

[20] A. B. C. Jackson and J. C. Mitchell. Robust Defenses for
Cross-Site Request Forgery. In 15th ACM Conference on
Computer and Communications Security, 2007.

[21] M. Jakobsson, P. Finn, and N. Johnson. Why and How
to Perform Fraud Experiments. Security & Privacy, IEEE,
6(2):66–68, March-April 2008.

[22] M. Jakobsson and J. Ratkiewicz. Designing ethical phishing
experiments: a study of (ROT13) rOnl query features. In
15th International Conference on World Wide Web (WWW),
2006.

[23] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper). In IEEE Symposium on Security and Privacy,
2006.

[24] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A
Web Vulnerability Scanner. In World Wide Web Conference,
2006.

[25] N. J. E. Kirda and C. Kruegel. Preventing Cross Site Re-
quest Forgery Attacks. In IEEE International Conference
on Security and Privacy in Communication Networks (Se-
cureComm), Baltimore, MD, 2006.

[26] Nikto. Web Server Scanner. http://www.cirt.net/
code/nikto.shtml, 2010.

[27] OWASP AppSec Europe 2009. HTTP Parameter Pollution,
May 2009. http://www.owasp.org/images/b/
ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf.

[28] J. Ratcliff and D. Metzener. Pattern matching: The gestalt
approach. Dr. Dobbs Journal, 7:46, 1988.

[29] D. Reading. CSRF Flaws Found on Major Websites: Prince-
ton University researchers reveal four sites with cross-site
request forgery flaws and unveil tools to protect against
these attacks, 2008. http://www.darkreading.
com/security/app-security/showArticle.
jhtml?articleID=211201247.

[30] D. Scott and R. Sharp. Abstracting Application-level Web
Security. 11th World Wide Web Conference, 2002.

[31] Z. Su and G. Wassermann. The Essence of Command Injec-

tion Attacks in Web Applications. In Symposium on Princi-
ples of Programming Languages, 2006.

[32] Tenable Network Security. Nessus Open Source Vulnerabil-
ity Scanner Project. http://www.nessus.org/, 2010.

[33] Web Application Attack and Audit Framework. http://
w3af.sourceforge.net/.

[34] Y. Xie and A. Aiken. Static Detection of Security Vulner-
abilities in Scripting Languages. In 15th USENIX Security
Symposium, 2006.

Logic Vulnerabilities

57

6
From Traditional Flaws to Logic Flows

Despite the considerable effort from the security community to mitigate the prob-
lem, traditional vulnerabilities due to improper input validation are still a serious
flaw. However, they are not the only type of vulnerability that affects web applica-
tions. Together with researchers at the University of California at Santa Barbara, I
worked on the characterization of logic errors – a much more subtle type of vul-
nerability. In addition, I also proposed the first automated approaches (both white-
and black-boxes) to detect these vulnerabilities [1]

To date, the class of logic vulnerabilities still lacks a formal definition. How-
ever, in practice it is typically the consequence of an insufficient validation of the
business process of a web application. The resulting violations may involve both
the control plane (i.e., the way users can and should navigate between different
pages) and the data plane (i.e., the way information propagates from one page to
another).

Attacks against the control plane exploit the fact that a web application may fail
to properly enforce what are the valid sequences of actions that can be performed
by the user. For example, an application may not enforce that a user is logged
in as administrator to change the database settings (authentication bypass), or it
may not check that all the steps in the checkout process of a shopping cart are
executed in the right order. Logic errors involving the data flow of the application
are caused instead by failing to enforce that the user cannot tamper with certain
values that propagate between different HTTP requests. As a result, an attacker
can try to reuse expired authentication tokens (replay attack), or mix together the
values obtained by running several parallel sessions of the same web application.

During my postdoc at the UCSB, I worked on a novel approach to the anomaly-
based detection of attacks against web applications [1]. The tool we developed
was designed to analyze the internal state of a web application and learn the rela-

[1] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, Giovanni Vigna “Swaddler: An Approach
for the Anomaly-based Detection of State Violations in Web Applications” – 10th International
Symposium on Recent Advances in Intrusion Detection (RAID)

59

tionships between the application’s critical execution points and the application’s
internal state. By doing this, our solution was able to identify attacks that attempt
to bring an application in an inconsistent, anomalous state. This also includes vi-
olations of the intended workflow of a web application, in which an attacker can
bypass authorization mechanisms (e.g., by gaining access to restricted portions of
a web application) or subvert the correct business logic of the application (e.g., by
skipping a required step in the checkout sequence of operations on an e-commerce
web site). Even if we did not thing about that in these terms, those represented
the first examples of logic vulnerabilities and the paper also proposed an anomaly-
based protection against this class of attacks.

Summary

The second part of this dissertation includes two papers that focus on logic vul-
nerabilities. In the first, published in 2007 at the ACM CCS conference, I studied
web vulnerabilities that involve the interaction between different server-side mod-
ules. In particular, together with my co-authors, we developed a novel vulnerability
analysis approach that characterizes both the extended state and the intended work-
flow of a web application. Using this model, we proposed an analysis technique
that was able to take into account, for the first time, inter-module relationships as
well as the interaction of an application’s modules with back-end databases. As a
result, our solution was able to identify sophisticated multi-step attacks against the
application’s workflow that were not addressed by previous approaches.

The second paper presented in this part was published at the NDSS conference
in 2014. In this study, which I co-authored with the first Ph.D. student I supervised,
I came back to the problem of logic vulnerabilities and I discussed the first auto-
mated black-box technique to detect this type of flaws. In particular, in this paper
we proposed a technique that analyzes network traces in which users interact with
a certain application’s functionality (e.g., a shopping cart). We then applied a set
of heuristics to identify behavioral patterns that are likely related to the underlying
application logic. For example, sequences of operations always performed in the
same order, values that are generated by the server and then re-used in the follow-
ing user requests, or actions that are never performed more than once in the same
session. These candidate behaviors are then verified by executing very specific test
cases generated according to a number of attack patterns. The advantage of this ap-
proach is that the test case generation steps are performed offline. In other words,
they do not require to probe the application or generate any additional interaction
and network traffic. In our experiments we applied our prototype to seven real
world E-commerce web applications, discovering ten very severe and previously
unknown logic vulnerabilities.

60

Multi-Module Vulnerability Analysis of Web-based
Applications

Davide Balzarotti, Marco Cova, Viktoria V. Felmetsger, and Giovanni Vigna
Computer Security Group

University of California, Santa Barbara
Santa Barbara, CA, USA

{balzarot, marco, rusvika, vigna}@cs.ucsb.edu

ABSTRACT
In recent years, web applications have become tremendously pop-
ular, and nowadays they are routinely used in security-critical envi-
ronments, such as medical, financial, and military systems. As the
use of web applications for critical services has increased, the num-
ber and sophistication of attacks against these applications have
grown as well. Current approaches to securing web applications
focus either on detecting and blocking web-based attacks using
application-level firewalls, or on using vulnerability analysis tech-
niques to identify security problems before deployment.

The vulnerability analysis of web applications is made difficult
by a number of factors, such as the use of scripting languages, the
structuring of the application logic into separate pages and code
modules, and the interaction with back-end databases. So far, ap-
proaches to web application vulnerability analysis have focused on
single application modules to identify insecure uses of informa-
tion provided as input to the application. Unfortunately, these ap-
proaches are limited in scope, and, therefore, they cannot detect
multi-step attacks that exploit the interaction among multiple mod-
ules of an application.

We have developed a novel vulnerability analysis approach that
characterizes both the extended state and the intended workflow of
a web application. By doing this, our analysis approach is able to
take into account inter-module relationships as well as the interac-
tion of an application’s modules with back-end databases. As a re-
sult, our vulnerability analysis technique is able to identify sophis-
ticated multi-step attacks against the application’s workflow that
were not addressed by previous approaches. We implemented our
technique in a prototype tool, called MiMoSA, and tested it on sev-
eral applications, identifying both known and new vulnerabilities.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms: Security

Keywords: Web Applications, Multi-step Attacks, Vulnerability
Analysis, Static Analysis, Dynamic Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

1. INTRODUCTION
Web applications are growing in popularity. The introduction of

sophisticated mechanisms for the handling of asynchronous events
in web browsers and the availability of a number of frameworks for
the rapid prototyping of server-side components have fostered the
development of new applications and the transition of “traditional”
applications (e.g., mail readers) to web-based platforms.

While new technologies have brought in significant advantages
in terms of support to the development process, improved perfor-
mance, and increased interoperability, little has been done to tackle
security issues. Therefore, as the complexity of web applications
increases, the possibility for abuse increases as well. For exam-
ple, a simple analysis of the CVE vulnerability database [4] shows
that the percentage of web-based attacks rose from 25% of the total
number of entries in 2000 to 61% in 2006.

This situation is made worse by the fact that web applications are
usually reachable through firewalls by design, and, in addition, the
server-side logic is often developed under time-to-market pressure
by developers with insufficient security skills. As a result, vulnera-
ble web applications are deployed and made available to the whole
Internet, creating easily-exploitable entry points for the compro-
mise of entire networks.

To address the security problems associated with web applica-
tions, the research community has proposed a number of solutions.
A first class of solutions focuses on detecting (and possibly block-
ing) web-based attacks. This can be done by analyzing the requests
sent to web applications [13, 2, 21, 17, 18] or, in some cases, by an-
alyzing the data delivered by the applications to the clients [11, 8].
These solutions have the advantage that they do not require any
modification to the application being protected. However, they
have a significant impact on the system’s performance, and, in case
of false positives (i.e., wrong detections), they may block legitimate
traffic.

A second class of solutions focuses on identifying flaws in the
implementation of a web application before the application is de-
ployed. These approaches utilize static and dynamic analysis tech-
niques to identify vulnerabilities in web applications [7,9,14]. Most
of these approaches are based on the assumption that vulnerabilities
in web applications are the result of insecure data flow. Therefore,
these techniques attempt to identify when data originating from
outside the application (e.g., from user input) is used in security-
critical operations without being first checked and sanitized.

Even though these approaches are effective at detecting suspi-
cious uses of unsanitized data, they suffer from three main limita-
tions. First, their scope is limited to a single web application mod-
ule, such as a single PHP file or a single ASP component. There-
fore, these techniques are not able to identify vulnerabilities that
are caused by the interaction of multiple modules. Second, these

approaches are not able to correctly model the interactions among
multiple technologies, such as the use of multiple languages in the
same application, or the use of back-end databases to store persis-
tent data. Third, and most important, these techniques do not take
into account either the intended workflow of a web application or
its extended state.

The intended workflow of a web application represents a model
of the assumptions that the developer has made about how a user
should navigate through the application. Web applications are of-
ten designed to guide the user through a specific sequence of steps.
For example, an e-commerce site could be structured so that the
user first logs in, then browses a catalog and chooses some goods,
and eventually checks out and purchases the items. The constraints
among operations (e.g., one has to select some goods before pur-
chasing them) define the application’s intended workflow.

A number of mechanisms have been devised to track the progress
of a user through the intended workflow of a web application. These
mechanisms provide ways to store information that survives a sin-
gle client-server interaction and define the extended state of the
application. For example, in a LAMP application1 the extended
state could include the request variables used in each module and,
in addition, the PHP session data and the database tables, which
are shared between modules. The extended state can also include
information that is sent back and forth between the client and the
server to keep track of a user session, such as hidden form fields
and application-specific cookies. Therefore, the extended state of
an application is a distributed collection of session-related infor-
mation, which is accessed and modified by the modules of a web
application at different times during a user session.

Unfortunately, it is possible that different modules of an applica-
tion have different assumptions on how the extended state is stored
and handled, leading to vulnerabilities in the application. We call
these vulnerabilities multi-module vulnerabilities to emphasize the
fact that they originate from the interaction of multiple application
modules, which communicate by reading and modifying the appli-
cation’s extended state.

In this paper, we present a novel vulnerability analysis approach
that combines several analysis techniques to identify sophisticated
multi-module vulnerabilities in web applications. In our approach,
we first leverage dynamic approaches to analyze block-level prop-
erties in the code of web application modules. We then use static
analysis to extract properties at the module level. Finally, we use
model checking techniques to identify possible paths in a web ap-
plication’s workflow that could lead to an insecure state.

The contributions of our approach are the following:

• We introduce a novel model of web application extended
state that characterizes permanent storage and is not limited
to the variables and data structures defined in a single proce-
dure or code module.

• We present a novel approach to analyze the interaction be-
tween the application’s code and back-end databases, which
allows for the identification of sophisticated data-driven at-
tacks.

• We introduce an approach to derive the intended workflow of
a web application and an analysis technique to identify multi-
step attacks that violate the expected inter-module workflow
of a web application.

We implemented our approach in a prototype analysis tool, called
1A LAMP application is a web application based on the composi-
tion of Linux, Apache, MySQL, and PHP.

MiMoSA2, for PHP-based web applications, and we evaluated it on
a number of real-world applications, finding both known and new
vulnerabilities. The results show that our approach is able to iden-
tify complex vulnerabilities that state-of-the-art techniques are not
able to identify.

The rest of the paper is structured as follows. In Section 2, we
present some examples of the vulnerabilities that are the focus of
our approach. In Section 3, we introduce the web application model
that is at the basis of our analysis. Section 4 and 5 describe our ap-
proach to the identification of multi-module vulnerabilities in web
applications. Then, Section 6 presents the results of applying our
analysis to real-world applications. Finally, Section 7 presents re-
lated work, and Section 8 briefly concludes.

2. MULTI-MODULE ATTACKS
Multi-module attacks can be categorized into two classes: data-

flow attacks and workflow attacks. Data-flow attacks exploit the
insecure handling of user-provided information that is stored in the
web application’s state and passed from one module to another. In
workflow attacks, an attacker leverages errors in how the state is
handled by the application’s modules in order to use the application
in ways that violate its intended workflow.

Data-flow Attacks.
In multi-module data-flow attacks, the attacker uses a first mod-

ule to inject some data into the web application’s extended state.
Then, a second module uses the attacker-provided data in an in-
secure way3. Examples of multi-module data-flow attacks include
SQL injection [3] and persistent (or stored) Cross-Site Scripting
attacks (XSS) [12].

A web application is vulnerable to a SQL injection attack when it
uses unsanitized user data to compose queries that are later passed
to a database for evaluation. The exploitation of a SQL injection
vulnerability can lead to the execution of arbitrary queries with the
privileges of the vulnerable application and, consequently, to the
leakage of sensitive information and/or unauthorized modification
of data. In a typical multi-module SQL injection scenario, the at-
tacker uses a first module to store an attack string containing ma-
licious SQL directives in a location that is part of the application’s
extended state (e.g., a session variable). Then, a second module
reads the value of the same location from the extended state and
uses it to build a query to the database. As a result, the malicious
SQL directives are “injected” into the query.

In cross-site scripting attacks, an attacker forces a web browser
to evaluate attacker-supplied code (typically JavaScript) in the con-
text of a trusted web site. The goal of these attacks is to circumvent
the same-origin policy, which prevents scripts or documents loaded
from one site from getting or setting the properties of documents
originating from different sites. In a multi-module XSS attack, a
first module is leveraged to store the malicious code in a location
that is part of the extended state of the application, e.g., in a field
of a table in the back-end database. Then, at a later time, the ma-
licious code is presented to a user by a different module. The user
browser executes the code under the assumption that it originates
from the vulnerable application rather than from the attacker, effec-
tively circumventing the same-origin policy.

Workflow Attacks.
Most web applications have policies that restrict how they can

2MiMoSA stands for Multi-Module State Analyzer.
3As it will be clear later, this second module can be a second invo-
cation of the module that performed the first step of the attack.

be navigated to ensure that their functionality and data is accessed
in a well-defined and controlled way. Usually, to implement these
restrictions a module stores in the web application’s extended state
the current navigation state, e.g., whether or not the current user
has logged in or has already visited a certain page. Other modules,
then, use this portion of the state information to deny or authorize
access to other parts of the application.

Workflow attacks attempt to circumvent these navigation restric-
tions. For example, a workflow attack could try to directly access a
page that is not reachable through normal navigation mechanisms,
such as hyper-textual links4. These attacks may allow one to by-
pass authorization mechanisms (e.g., gaining access to restricted
portions of a web application) or to subvert the correct business
logic of the application (e.g., skipping a required step in the check-
out sequence of operations on an e-commerce web site).

3. A FORMAL CHARACTERIZATION OF
MULTI-MODULE VULNERABILITIES

In the previous sections, we described how the state of a web
application can be maintained in a number of different ways. In
order to abstract away from the various language- or technology-
specific mechanisms, we introduce the concept of state entity. A
state entity E is similar to a variable in a traditional programming
language, in that it can be used to store parts of the application’s
state. Different modules can share information by accessing the
same state entities. The set of all the state entities corresponds to
what we defined in the introduction as the application’s extended
state.

We classify the state entities into two classes: server-side and
client-side. Server-side entities model the part of the extended state
that is maintained on the server. For example, a server-side entity
can represent a field in a database or a PHP session variable. Client-
side entities are instead used to model the part of the extended state
stored in and/or generated by the user’s browser. Cookies, GET
and POST parameters are examples of this type of entities.

3.1 Module Views
To summarize the operations that each module performs on the

application’s extended state, we introduce the concept of Module
View (or simply view hereinafter). Each view represents all the
state-equivalent execution paths in a single module, i.e., all the
paths in the control-flow graph (CFG) of a module that perform the
same operations on the state entities. When an application mod-
ule is executed, e.g., as a consequence of a user request, the path
followed by the execution in that module is completely included in
one and only one of its views. In this case, we say that the view that
contains the executed path is “entered” by the user. We describe the
algorithm used to summarize a module into its views in Section 4.3.

Consider, for example, the login module of an application. When
a user provides correct credentials, the module may define a set of
new session variables (e.g., to track that the user is authenticated
and to load her preferences). On the contrary, the module may
redirect unauthorized users to an error page without changing the
extended state. These two different behaviors depend on the cur-
rent extended state of the application, namely on the values of the
request parameters and the content of the database that stores the
information about the users. The view abstraction allows us to asso-
ciate with each behavior a compact representation that summarizes
its effect on the extended state of the application.

Formally, a view V is represented as a triple (Φ,Π,Σ) where:

4This attack is sometimes referred to as “forceful browsing.”

• Φ is the view’s pre-condition, which consists of a predicate
on the values of the state entities. The program paths mod-
eled by the view can be executed only when the view pre-
condition is true (evaluated in the context of the current ex-
tended state).

• Π is the set of post-conditions of the view. These conditions
model, as a sequence of write operations on state entities, the
way in which the extended state is modified by the execution
of the program paths represented by the view. Each write
operation has the following form:

write(EL, ER,Ψ).

This operation copies the content of the left entity EL (which
can also be a constant value) to the right entity ER. The
set Ψ contains the sanitization operations applied to the left
entity before its value is transferred to the right entity. If the
sanitization set is empty, no sanitization is applied.

• Σ is the set of sinks contained inside the view. Each sink is
a pair (E,Op) where E is a state entity and Op is a poten-
tially dangerous operation (such as a SQL query or an eval
statement) that uses the entity unsanitized. Note that the un-
sanitized use of an entity is not necessarily a vulnerability,
since the sanitization process may take place inside one of
the other views (belonging to the same module or to another
module).

The extended state of an application may change as the user
moves from one web page to another, clicking on links, submit-
ting forms, following redirects, or just jumping to a new URL. In
fact, when a view is entered, the extended state S is updated by ap-
plying the view’s post-conditions to the extended state in which the
application was before entering the view. Let Vi = (Φi,Πi,Σi) be
the view entered at step i of the user’s navigation process, then:

Sinit = ∅ Si = apply(Πi, Si−1).

In addition to the set of the entity values, the extended state also
keeps track of the current sanitization state of each entity. An en-
tity E is sanitized in the application state Si (represented by the
predicate san(E,Si)) if its value is set by sanitizing write opera-
tions. In this work, we take the standard approach of assuming that
sanitization operations are always effective in removing malicious
content from user-provided data.

3.2 Application Paths
The presence of the pre-condition predicate in each view limits

the possible paths that a user may follow inside the web application.
We say that a path P = 〈V0, V1, . . . , Vn〉, where Vi is a view,
belongs to the set of Navigation Paths N if and only if:

∀i < n, Si |= Φi+1,

that is, if and only if the state at each intermediate step satisfies the
pre-condition of the following step.

Since at the beginning of the execution the application state is
empty, it must be ∅ |= Φ0. In order for this to happen, the pre-
condition Φ0 must be empty or it must contain only predicates on
client-side entities. This is justified by the fact that pre-conditions
containing only client-side entities (for example, those requesting
a particular value for a certain GET parameter) can always be sat-
isfied if the user provides the right value. We define the set of

Application Entry Points η as the subset of views that can be used
as starting points in a navigation path:

Vi ∈ η iff ∅ |= Φi.

The subset of navigation paths allowed by the application design
is called the Intended Path set, I ⊆ N . These paths represent
the workflow of the web application, expressed either through the
use of explicit links provided by the application or through other
common user navigation behaviors. We say that a navigation path
〈V0, . . . , Vn〉 belongs to the intended path set of the application if
and only if:

∀i < n

„
Vi+1 ∈ η∨∃Link(Vi, Vi+1)∨Vi−1 = Vi+1∨Vi = Vi+1

«
.

In other words, at each step of the path the next view satisfies one of
the following: it is an application entry point, is reachable through
a link, is the same as the previous view (which corresponds to the
user pressing the back button in her browser), or is the same as the
current view (which corresponds to the use of the refresh button).

Given the previous definition, we can now provide a formal char-
acterization of the two classes of vulnerabilities we introduce in this
paper. A violation of the intended workflow of the application oc-
curs when:

∃p ∈ N | p /∈ I,
that is, when there exists a valid navigation path that is not an in-
tended path.

A multi-module data-flow vulnerability is defined as:

∃p = 〈V0, . . . , Vn〉 ∈ N , ∃Ex ∈ Σn | ¬ san(Ex, Sn−1),

that is, there is a path in the application such that some portion of
the application’s extended state is used in a security-critical opera-
tion without being properly sanitized.

4. INTRA-MODULE ANALYSIS
The analysis performed by MiMoSA consists of two phases: an

intra-module phase, which examines each module of the applica-
tion in isolation, followed by an inter-module phase, where the ap-
plication is considered as a whole.

The goal of the intra-module analysis is to summarize each appli-
cation module into a set of views, by determining its pre-condition,
post-conditions, and sinks. From each module, we also extract the
list of all outgoing links and we associate them with the views they
belong to. This information is then used by the inter-module anal-
ysis to reconstruct the intended workflow of the application.

The main steps of the intra-module phase are shown in Fig-
ure 1. Note that these steps are obviously language-dependent.
Even though in this paper we focus on applications written in the
PHP language, our approach can be easily extended to extract views
from modules written in other programming languages.

To better illustrate our technique, we will refer to a simple web
application whose code is presented in Figure 2. The application
is written in PHP and consists of three modules: index.php,
which is the application entry point, create.php, which allows
new users to create an account, and answer.php, which provides
some information that should be accessible only to registered users.
The application state is maintained using both a relational database,
which contains the users’ accounts, and a PHP session variable, i.e.,
_SESSION["loggedin"].

Even though the application is very simple, it contains repre-
sentative examples of the security problems that our approach is

able to identify. In particular, the application contains two vul-
nerabilities. The first vulnerability is caused by the fact that the
index.php module uses usernames retrieved from the database
as part of its output page. Usernames are strings arbitrarily cho-
sen by users during the registration process implemented by the
create.php module. Since these strings are never sanitized in
any module, the application is vulnerable to XSS attacks. The sec-
ond vulnerability is contained in the answer.php module. The
module incorrectly checks the value of the loggedin variable in-
stead of _SESSION["loggedin"] in order to verify the user
status. However, if the PHP register_globals option is acti-
vated and the _SESSION["loggedin"] variable has not been
defined (i.e., the user is not logged in), an attacker can include a
loggedin parameter in her GET or POST request, effectively
shadowing the session variable with a value of her choosing. This
could be leveraged to bypass the registration mechanism and ac-
cess the restricted answer.php module without being previously
authenticated, thus violating the intended workflow of the applica-
tion.

As it is clear from the examples above, these vulnerabilities are
carried out in multiple steps and involve multiple modules. The
ultimate goal of our analysis is to detect these multi-module vul-
nerabilities. However, in order to analyze the interactions between
modules, it is first necessary to analyze the properties of each mod-
ule. This analysis is the focus of the rest of this section.

4.1 Control-Flow and Data-Flow Graphs
Extraction

The first step of the intra-module analysis is the extraction of the
control-flow and data-flow graphs from each module of the applica-
tion. Our implementation leverages Pixy [9], a static analysis tool
for detecting intra-module vulnerabilities in PHP applications. We
adopted Pixy’s PHP parser, control-flow graph derivation compo-
nent, and alias analysis component. In addition, we extended Pixy
with a data-flow component that computes the def-use chains for a
module using a standard algorithm [1]. The resulting tool provides
all the information needed for the following steps of the analysis.
The main limitation of Pixy, besides being limited to intra-module
analysis only, is the lack of support for object-oriented code. Where
needed, we manually pre-processed input modules to work around
this problem.

4.2 Database Analysis
Databases are often used by web applications to store data per-

manently. This data is usually accessible by every module of the ap-
plication. Therefore, it is important to characterize module-database
interactions as they could be leveraged to perform a multi-module
attack.

The goal of the database analysis is to translate the interaction
between an application module and the back-end database into a
set of variable assignments. By doing this, the following steps of
the analysis (e.g., the view extraction process) can handle database
operations and assignments to variables in a uniform way.

For example, consider the following SQL query that writes the
content of the variable uname to the column username in the
database table users:

UPDATE users SET username=$uname WHERE...

As a result of the database analysis, a new assignment is added after
the call to the function that executes the query. In our example,
MiMoSA generates the following assignment node:

$DB_dbname_users_username = $uname;

Links
extraction

PHP
module

Parsing and
CFG

construction
Database
analysis

Data-
flow

analysis
Views

extraction
View
set

Figure 1: The main steps of the intra-module analysis. The parts in gray are implemented by Pixy.

Note that DB_dbname_users_username is a new variable cre-
ated by our analysis to model the part of the database modified by
the UPDATE operation.

The PHP language provides a number of internal functions to
connect to different types of relational databases. In our proto-
type implementation, we focused on the MySQL library because
of its popularity. However, if the target application uses a different
database, our technique can be easily adapted to address a different
set of primitives. In PHP, access to the MySQL database is usually
performed by first calling the mysql_query function to execute
a query, and then by using one of the mysql_fetch functions to
access the results of the query in an iterative fashion.

The main challenge in the database analysis is to properly re-
construct the values that a query can assume at runtime, so that we
can determine the tables and columns that are modified by the op-
eration. To achieve this, we traverse the control-flow graph of the
module, looking for calls to the mysql_query function. Since,
in general, static analysis cannot provide the value that the query
will assume at runtime, we apply a dynamic analysis technique
to the block of PHP code that precedes the function call to de-
rive the names and fields of the tables involved in the query. The
analysis extracts the largest deterministic path eP that precedes the
mysql_query call. A deterministic path is a sequence of nodes
in the control-flow graph that only contains branch instructions
whose conditional expressions can be statically determined. We
then remove from eP any input/output related operation, and we re-
place any undefined variable in eP with a placeholder.

The resulting code is passed to the PHP interpreter in order to
dynamically determine the value that the query string can assume
along the path eP . If the resulting query performs an UPDATE or
an INSERT operation, it is immediately parsed to extract the as-
signment nodes as shown before. Queries that contain a SELECT
statement are instead analyzed only when the analysis finds that the
corresponding mysql_fetch function is used to assign the result
values to one or more PHP variables.

Consider for instance the mysql_fetch_assoc call at line
16 of index.php of our sample application. Following the data-
flow edges we reach the corresponding query string at line 12.
The dynamic analysis along the deterministic path reconstructs the
query "SELECT * FROM users". The database analyzer then
checks the database schema to resolve the "*" symbol to the corre-
sponding list of column names and it finally generates the resulting
assignments nodes:

$row["username"] = $DB_dbname_users_username;
$row["password"] = $DB_dbname_users_password;

Once these assignments are introduced to the module, the fol-
lowing analysis steps are able to treat the application state stored in
a back-end database and the state stored in program variables in a
uniform way.

4.3 Views Extraction
The goal of this step is to summarize a module into a set of

views. This is a key step in our intra-module analysis, because
it produces the module meta-information necessary to perform the
inter-module vulnerability analysis.

To extract a module’s views, we first perform state analysis to
determine all statements in the control-flow graph that are state-
related, i.e., that either contain state entities or are control- or data-
dependent on state-related statements. We consider state entities
of a PHP application the variables used to refer to request param-
eters (_GET, _POST, _REQUEST), cookies (_COOKIE), ses-
sion variables (_SESSION), and the database variables generated
by the database analysis step. This allows us to exclude from fur-
ther analysis statements that do not depend on or modify the appli-
cation state. Therefore, in the rest of the analysis we consider only
the subgraph of the CFG that contains state-related nodes. The al-
gorithm we use in this step is based on the functional data-flow
analysis framework of [19], as implemented in Pixy.

4.3.1 Identifying Sinks and State Entities
To identify sinks, we determine all nodes in the CFG that contain

an operation relevant to our analysis. In particular, we look for two
types of operations: state-related operations and sink-related op-
erations. State-related operations are those statements that modify
the server-side state. For example, we identify uses of the session
mechanism, that is, assignments to the _SESSION array or calls
to the session_register() function. Sink-related operations
are statements where state entities are used in sensitive sinks. Our
technique focuses on identifying inter-module XSS and SQL injec-
tion attacks, and, therefore, we keep track of state entities displayed
to the user or used in a database query. Consider, for example, the
create.php module in our example. The analysis identifies two
relevant operations: at line 19, a database query is executed, and, at
line 21, the variable _SESSION["loggedin"] is modified.

After the relevant operations have been identified, we derive their
conditional guards, i.e., the conditions associated with the branches
in the CFG that must be taken in order to reach the statement as-
sociated with the operation. Note that we only keep track of state-
dependent conditions, as identified by the state analysis. In our ex-
ample, the two operations that we identified in create.php are
guarded by the conditional statement at line 9. The analysis also
recognizes that the true branch of the conditional must be taken to
trigger the operations.

Then, for each variable that occurs in a conditional guard or in
a state- or sink-related statement, we reconstruct its dependency
with respect to state entities. We currently model several types of
dependencies. In particular, propagation dependencies model the
assignment of one variable to another; call dependencies denote
the fact that a variable takes its value from the result of a func-
tion call (in particular, we currently model sanitization functions);
binary dependencies model the composition of two variables, for

1 <html>
2 <head>
3 <title>The answer to Life, the
4 Universe, and Everything</title>
5 </head>
6
7 <body>
8
9 <?php

10 echo "People that know the answer:";
11
12 $sql = "SELECT * FROM users ";
13 mysql_select_db("dbname");
14 $res = mysql_query($sql);
15
16 while($row = mysql_fetch_assoc($res))
17 echo $row["username"];
18 ?>
19
20 Create User
21
22 </body>
23 </html>

index.php

1 <?php
2 session_start();
3
4 if ($loggedin != "ok") {
5 header("Location: index.php");
6 exit;
7 }
8
9 echo "42";

10 ?>
11
12 <html>
13 <head>
14 <title>The final answer is:</title>
15 </head>
16
17 <body>
18 Homepage
19 </body>
20 </html>

answer.php

1 <html>
2 <head>
3 <title>Create a new user</title>
4 </head>
5
6 <body>
7
8 <?php
9 if (isset($_POST["user"])) {

10
11 $user = addslashes($_POST["user"]);
12 $pass = addslashes($_POST["pass"]);
13
14 session_start();
15
16 $sql = ’INSERT INTO users ’ .
17 ’VALUES (\’’ . $user .
18 ’\’, \’’ . $pass . ’\’)’;
19 mysql_query($sql);
20
21 $_SESSION["loggedin"] = "ok";
22
23 header("Location: answer.php");
24 exit;
25 }
26 ?>
27
28 <form action="create.php"
29 method="POST">
30
31 UserName:
32 <input name="user" type="text">

33 Password:
34 <input name="pass" type="password">

35 <input name="create" type="submit">
36
37 </form>
38
39 </body>
40 </html>

create.php

Table: users
+----------+-------------+
| Field | Type |
+----------+-------------+
| username | varchar(32) |
| password | varchar(32) |
+----------+-------------+

Database schema

Figure 2: Example application.

example through mathematical or string operators; constant depen-
dencies denote that a variable takes a constant value; superglobal
dependencies indicate that a variable takes a value from one of the
superglobal objects in PHP, e.g., from a request or session variable.
Multiple dependencies are composed together until each variable is
reduced to either a constant or a state entity.

Note that an additional set of conditional guards can be discov-
ered during the dependency reconstruction analysis: for example,
a variable used in an operation might assume different values de-
pending on some conditions. Such conditions are added to the set
of conditional guards for the operation.

In our example, the variable _SESSION["loggedin"], used
in the state-related statement at line 21 in create.php, is asso-
ciated with a constant dependency that models the fact that it was
assigned the constant value ok. The conditional guard at line 9 is
reduced to the composition of a call dependency (to the isset()
function) and a superglobal dependency (to the _POST["user"]
variable).

4.3.2 Creating the View
After all sensitive operations and their complete set of condi-

tional guards have been identified, we translate them into pre-con-
ditions, post-conditions, and sinks. Currently the following predi-
cates are used in pre-conditions: Exist(v) is true if and only if the
entity v is defined in the current application state. Compare(v, u,

op), where v and u are state entities and op is an operator, is true
if and only if the expression v op u is true. MiMoSA currently
supports the operators <, >, =, and their combinations. The Prop-
agate predicate is used in post-conditions: Propagate(v, u, San)
denotes that the value of the entity v is propagated to u applying
the sanitization operations specified by the set San. For sinks, the
following predicates are used: InSql(v) denotes that the state entity
v is used in a SQL query; Displayed(v) indicates that v is displayed
to the user. Conditions can be combined with the use of and, or,
and not operators.

In addition, we introduce the special Unknown predicate, which
is assumed to be always satisfiable, to model the cases where we
cannot resolve the dependency of a program variable to a state en-
tity. This happens, for example, when a variable takes its value
from a complex series of calls to functions that we do not model.

As an example of the view creation process, consider the module
create.php of our sample application. MiMoSA summarizes it
into two views, corresponding to the two branches of the condi-
tional statement at line 9. One view (corresponding to the false
branch) has pre-condition not Exist($_POST["user"]) and empty
post-conditions and sinks. The other view (corresponding to the
true branch) has pre-condition Exist($_POST["user"]). The as-
signments introduced by the database analysis step to model the
SQL query at line 19 are modeled with the post-conditions Propa-
gate($_POST["user"], DB_dbname.users.username, {addslashes})

and Propagate($_POST["pass"], DB_dbname.users.password,
{addslashes}). In both cases, the analysis keeps track of the san-
itization operated by the addslashes() function. Finally, the
assignment to the session variable _SESSION["loggedin"] is
modeled with the post-conditions Exist($_SESSION["loggedin"])
and Propagate("ok", $_SESSION["loggedin"], ∅). The complete
set of views for our example application is shown in Table 1.

In a module, the number of extracted views is exponential in the
number of state-related conditional statements. As a consequence,
the view extraction process is slow when dealing with very complex
modules. Therefore, whenever the number of views is determined
to be larger than a certain threshold, MiMoSA can be configured to
switch to a simplified view construction approach. In this approach,
instead of generating views for all the paths in the CFG of a mod-
ule, we only generate the views corresponding to a number of paths
sufficient to include all the state- and sink-related operations con-
tained in the module. As a result, all the post-conditions and sinks
of the module are extracted and will be analyzed during the detec-
tion phase. However, since not all their possible combinations are
considered, the simplified approach might introduce inaccuracies.

4.4 Links Extraction
The last step before starting the inter-module vulnerability anal-

ysis is to extract the links contained in the module and associate
them with the views they belong to.

We parse both PHP and HTML code looking for HTML hyper-
links, form actions and inputs, source attributes of frames, and calls
to the PHP function header()5. We also have a limited support
for link extraction from JavaScript code. If the URL of the link is
dynamic, i.e., it is generated using a block of PHP code, the link
extraction routine tries to determine its runtime value by applying a
dynamic analysis technique similar to the one used in the database
analysis phase.

Once all the links have been extracted, we identify the set of
views to which each link belongs. In order to do this, we determine
the conditional branches in the CFG that must be taken in order for
a link to be shown to the user and we compare these branch expres-
sions with the pre-conditions of the extracted views. Consider, for
instance, the link to answer.php contained in the create.php
module of our example application. Our analysis recognizes that it
is displayed only if the execution follows the true branch of the con-
ditional statement at line 9. <create.php>.view_0 is the only
view compatible with this execution and, therefore, it is identified
as the source view of the link.

To correctly model the application workflow, in addition to hav-
ing the names of the modules to which one can navigate from a
given view, we also need to extract the set of inputs that are sub-
mitted along the link. In particular, we need to determine which
GET and POST requests parameters are submitted if a user follows
the link. For example, in our sample application, if a user submits
the form at line 28 of the create.php module, the user-provided
parameters user and pass are submitted as a part of the POST
request to create.php.

5. INTER-MODULE ANALYSIS
In the second phase of our analysis, we connect the views ex-

tracted during the intra-module analysis into a single graph. This
graph models the intended workflow of the entire web application.
We then use a model checking technique to identify multi-module
data-flow vulnerabilities and violations of the intended workflow.

5The header() function in PHP is commonly used to set the
HTTP Location header to redirect users to a different page.

<index.php>.view_0

<create.php>.view_1

HREF

<create.php>.view_0

FORM

<answer.php>.view_0

REDIRECT

<answer.php>.view_1

HREF

REDIRECT REDIRECT

Figure 4: Intended workflow of our example application.

The main steps of the inter-module phase are shown in Figure 3.
Note that since this phase is built on top of the view abstraction, it
is completely independent of the programming languages in which
the modules are developed.

5.1 Intended Workflow
In the first step of the inter-module phase, we use the link infor-

mation extracted during the intra-module analysis to connect all the
views of the application into a single graph.

We connect a source view Vi to a target view Vj if Vi contains
a link l that references Vj’s module and the parameters provided
by l satisfy the pre-condition of Vj . In particular, we adopt the
following two rules:

1. If Vj’s pre-condition contains predicates over client-side state
entities, we check that the extracted link satisfies these re-
quirements. For example, if the pre-condition requires the
presence of a particular GET parameter, we check that the
link provides a parameter with the required name.

2. If Vj’s pre-condition contains predicates over server-side state
entities, we assume that these predicates are always satisfied.
The rationale is that, in general, it is not possible to deter-
mine the extended state of the application considering the
two views in isolation, because it depends on the path that
the user has followed to reach Vi. Therefore, we conserva-
tively assume that the state can satisfy Vj’s pre-condition.

When both conditions are satisfied, we assume that there is an
intended path between the two views and we connect them to-
gether. For example, the link in <index.php>.view_0 (line
20) is connected to the view <create.php>.view_1 but not to
<create.php>.view_0. In fact, the pre-condition of <cre-
ate.php>.view_0 requires the existence of a POST parameter
named user that is obviously not provided if the user clicks on
the link in index.php. The intended workflow for our example
application is given in Figure 4.

Finally, the analysis identifies the application’s entry points. We
exclude the modules that appear inside an include statement
from this step of the analysis, because they are generally not in-
tended to be directly accessed by the user. Of the remaining mod-
ules, we consider as entry point any view that has either an empty
pre-condition or a pre-condition that contains only predicates over
GET parameters (see Section 3).

Module View ID Pre-conditions Post-conditions Sinks
index.php view_0 ∅ ∅ Displayed(DB_dbname.-

users.username)

create.php view_0 Exist($_POST["user"]) Propagate($_POST["user"],
DB_dbname.users.username,
{addslashes})

∅

Propagate($_POST["pass"],
DB_dbname.users.password,
{addslashes})

Exist($_SESSION ["loggedin"])

Propagate("ok", $_SES-
SION["loggedin"], ∅)

create.php view_1 not Exist($_POST["user"]) ∅ ∅
answer.php view_0 not (Exist($loggedin) and

Compare($loggedin, "ok", =))
∅ ∅

answer.php view_1 Exist($loggedin) and
Compare($loggedin, "ok", =)

∅ ∅

Table 1: Views generated for the example application of Figure 2.

View
set

Intended
workflow

determination
Vulnerability

detection ReportsPublic view
identification

Figure 3: The main steps of the inter-module analysis.

Unfortunately, in some cases it is not possible to differentiate
between an application’s entry point and the developer’s failure to
put the necessary safety checks into a module. For example, in
our experiments we tested a web application where in one of the
administration pages the developer forgot to put a check to verify
that the user was actually logged in as administrator. Our technique
classified the views of this module as entry points since they did not
have any pre-condition at all. Nevertheless, the user of our tool can
easily detect these vulnerabilities by inspecting the automatically
generated list of entry points.

5.2 Detecting Public Views
The intended path introduced in Section 3 did not model a very

important concept of a web application: the existence of publicly-
accessible pages. These pages (such as the FAQs pages) are very
common in many web sites but they are rarely intended as entry
points to the application. Therefore, we do not generate any secu-
rity alert if it is possible to access these pages violating the intended
workflow of the application.

For this reason, we adopted the following rules to detect and
mark the publicly-accessible views:

• Starting from one of the application entry points, all the views
that are reachable along some intended path traversing only
views that have empty post-conditions are marked as pub-
lic. This models the fact that if it is possible to reach a view
through a path that does not change the extended state of the
application, the access to the view is not supposed to be re-
stricted.

• Any empty redirect view is public. An empty redirect view
is a view that does not have any post-condition, any sink, and
only contains a redirect link. This models all the views used
to detect and redirect unauthenticated users that try to access
a restricted page.

In the example, our algorithm marked <create.php>.view_0,
<create.php>.view_1, and <answer.php>.view_0 as
public views. The first two because they are reachable without
any change in the application state and the last one because it is
an empty redirect.

5.3 Detection Algorithm
Our graph exploration mechanism simulates a user that moves

from one view to another. At each step, we select a new view to
add to the current path, we evaluate its pre-condition against the
current state, and, if the pre-condition is satisfied, we update the
state to reflect the effects of the view’s post-conditions.

Each path is analyzed to check if it satisfies the definition we
provided in Section 2 for multi-step data-flow vulnerabilities and
workflow violations. In general, if the graph is correct, it is pos-
sible to find all the vulnerabilities simply by trying each possible
navigation path in the application. Our solution is similar to a
model checking approach, and, unfortunately, it suffers from the
same path explosion problem. Therefore, we limit our analysis to
paths that contain up to one loop and with a total length limited
by a user-defined upper bound. In our experiments, in fact, we ob-
served that most of the vulnerabilities can be exploited using a very
limited number of steps (usually less than 5).

Our detection algorithm traverses the graph following the in-
tended paths. At each step it checks if it is possible to jump to
one of the views that should not be reachable from the current po-
sition. If it succeeds, it raises a workflow violation alert and it does
not go any further along that path. This means that some vulner-
abilities may not be discovered because they are hidden “behind”
other vulnerabilities. In this case, the user should fix the discovered
vulnerability and run the analysis again.

By applying MiMoSA to our sample application, we identify the
two existing vulnerabilities. Figure 5 shows the reports produced
by MiMoSA for the example application of Figure 2.

Workflow Violation:
Path:

- index.php[view_0]
- answer.php[view_1]

DISPLAY of unsanitized entity:
Entity: DB_dbname.users.username
Example of Exploitable Path:

- create.php[view_0]
- index.php[view_0]

Figure 5: Vulnerabilities detected in the sample application of
Figure 2.

6. EVALUATION
To prove the effectiveness of our approach in detecting multi-

module data-flow vulnerabilities and violations of the intended work-
flow of a web application, we ran our tool on five real-world web
applications.

The selected applications satisfy three requirements: i) they are
written in PHP and they contain multiple modules, ii) they use both
session variables and database tables to maintain the application
state, and iii) they do not contain object-oriented code. The list of
chosen applications is shown in Table 2. The table also shows the
list of known vulnerabilities for each application.

For each application we ran the intra-module analysis in order
to extract the set of views corresponding to the application mod-
ules. We then ran the inter-module analysis to connect together the
views and calculate the intended application workflow. Finally, we
applied our detection algorithm to find anomalies in the possible
navigation paths and to detect multi-module data-flow vulnerabili-
ties.

The results of our tests are summarized in Table 3. For the intra-
module phase, the table reports the number of views extracted and
the time required by the analysis6. In the inter-module phase, we
explored up to one hundred million paths, covering at least all the
paths of length 3. The table reports the time required to generate
the paths and the alert messages raised by our tool. The alerts are
grouped according to the entities involved (for the data-flow vulner-
abilities) and the modules (for the workflow violations). For both
data-flow and workflow vulnerabilities, we report the number of
violations detected by our tool, the number of false positives, and
how many of the remaining violations correspond to exploitable
vulnerabilities.

MiMoSA was able to find all the known vulnerabilities and to
discover several new ones.

With regard to multi-module data-flow vulnerabilities, we had
only one false positive. In fact, in the MyEasyMarket application,
the PHP variable REMOTE_ADDR is saved in the database and later
printed to the user. Even though the value of the variable is never
sanitized, it is automatically set to the IP address of the client’s
machine by the PHP engine. Therefore, it only has a limited range

6All the experiments were executed on a Pentium 4 3.6GHz with
2G of RAM.

of valid values (numbers and dots) that do not allow a user to mount
an attack against the application.

MiMoSA also reported several violations of the intended work-
flow of the web applications. Even though in most of the cases they
corresponded only to anomalous paths into the application (e.g., di-
rectly jumping from the login to the logout page), we were also able
to confirm that some of the reported violations correspond to actual
vulnerabilities that could be exploited to gain unauthorized access
to a restricted page.

While the inter-module analysis is the more time consuming phase,
the intra-module analysis is certainly the more fragile, since it is
where the static analysis techniques that we use introduce most of
the approximations. Any imperfection in this phase can result in
an increasing number of both false positives and false negatives.
For instance, during the construction of the intended paths, we ob-
served that some of the views were isolated, with no connection
to any other part of the application7. This was probably caused by
an error in the view extraction, such as a missing link or a wrong
pre-condition predicate.

To better test the accuracy of our intra-module analysis and eval-
uate its impact on the final results, we selected one of the appli-
cations in our test suite (i.e., SimpleCMS) and manually analyzed
the output of each step of the view extraction phase. The results
are shown in Table 4. MiMoSA achieves a high accuracy in the
extraction of database operations, links, post-conditions, and sinks.
Also the rate of unknown conditions, i.e., the pre-conditions that
MiMoSA was not able to correctly reconstruct, is reasonable, con-
sidering that we are using a static analysis technique.

In this application, the number of generated views is, instead,
considerably higher than the number of views actually present in
the application code. This happens because of two main reasons.
First, MiMoSA might generate views corresponding to paths that
are infeasible in the program, such as the ones that traverse nodes
with conflicting conditions. The presence of these views does not
affect the final results since they are never entered during the detec-
tion phase. The second reason is that MiMoSA can generate dupli-
cate views, i.e., views with different but equivalent pre-conditions.
Even though this may lead to inaccuracy in the final results, in most
of the cases its main effect is just to slow down the path generation
phase.

7. RELATED WORK
In the introduction, we briefly mentioned some recent works in

the areas of intrusion detection and application firewalls that fo-
cus on detecting and blocking web-based attacks. Since our work
focuses on vulnerability analysis, and, consequently, deals with a
different class of problems than the detection of attacks at runtime,
we are not going to further review these works here.

There is a number of recent works in the area of vulnerability
analysis of web-based applications. Most of these approaches are
based on taint propagation analysis applied to application written
in PHP [7, 9, 10, 22] or Java [6, 14].

The WebSSARI tool [7] is one of the first works that applies
static taint propagation analysis to find security vulnerabilities in
PHP. WebSSARI targets three specific types of vulnerabilities: cross-
site scripting, SQL injection, and general script injection. The
tool uses flow-sensitive, intra-procedural analysis based on a lat-
tice model and typestate. When the tool determines that tainted data
reaches sensitive functions, it automatically inserts runtime guards,

7These views were not taken into consideration by our path explo-
ration algorithm since they could not provide any useful informa-
tion to the user.

Application Name PHP Files Description Known Vulnerabilities
Aphpkb 0.71 59 Knowledge-base management system –

BloggIt 1.01 24 Blog engine CVE-2006-7014

MyEasyMarket 4.1 23 On-line shop –

Scarf 2006-09-20 18 Conference administration CVE-2006-5909

SimpleCms 22 Content management system BID 19386

Table 2: PHP applications used in our experiments. Vulnerabilities are referenced by their Common Vulnerabilities and Exposures
ID (CVE) or their Bugtraq ID (BID).

Application Intra-Module Analysis Inter-Module Analysis

Views Time Time DF Violations-(FP) DF Vulnerabilities WF Violations-(FP) WF Vulnerabilities
Aphpkb 4680 31:24m 3:00h 0-(0) 0 17-(10) -

BloggIt 339 2:12m 0:31h 14-(0) 14 3-(0) -

MyEasyMarket 449 1:12:00h 6:36h 2-(1) 1 1-(0) 1a

Scarf 1721 7:30m 1:10h 3-(0) 3 3-(0) 1

SimpleCms 417 0:22m 2:50h 8-(0) 8 5-(0) 4
a Detected through inspection of the entry point list, as discussed in Section 5.1.

Table 3: Results of the experiments. DF: Data Flow, WF: Work Flow, FP: False Positives.

i.e., sanitization routines.
Xie and Aiken [22] use intra-block, intra-procedural, and inter-

procedural taint propagation analysis to find SQL injection vul-
nerabilities in PHP code. This approach uses symbolic execution
to model the effect of statements inside functions. These effects
are summarized into the pre- and post-condition sets for each ana-
lyzed function. The function pre-conditions contain a derived set of
memory locations that have to be sanitized before the function invo-
cation, while the post-conditions contain the set of parameters and
global variables that are sanitized inside the function. To model the
effects of sanitization routines, the approach uses a programmer-
provided set of possible sanitization functions, considers certain
forms of casting as a sanitization process, and, in addition, keeps a
database of sanitizing regular expressions, whose effects are speci-
fied by the programmer.

Pixy [9,10], which we have described in Section 4.1, specifically
targets the identification of intra-module XSS vulnerabilities. This
tool seems to be the most complete static PHP analyzer in terms
of the PHP features modeled. To the best of our knowledge, it
is the only publicly available tool for the analysis of PHP-based
applications.

None of the described approaches performs inter-module analy-
sis, that is, all the vulnerabilities identified by these approaches are
local to a single application module. Unlike our approach, these
techniques do not have any notion of the application’s extended
state, and, therefore, they are unable to capture the workflow vul-
nerabilities described in Section 2. By considering all inputs gen-
erated from outside of an application as being tainted, these ap-
proaches should be able to identify some types of multi-module
data-flow vulnerabilities. However, because of the locality of the
analysis, they are incapable of tracing the origins of multi-steps at-
tacks, and, as a result, are subject to a much higher false positive
rate.

There is also a number of works that apply dynamic analysis
techniques to the analysis of web-based applications. For example,
approaches that use dynamic taint propagation analysis, conceptu-
ally similar to Perl’s taint mode but often with a more refined granu-
larity, have been applied to other languages as well: Nguyen-Tuong

et al. [15] propose modifications of the PHP interpreter to dynami-
cally track tainted data in PHP programs, and Haldar et al. [5] apply
a similar approach to the Java Virtual Machine.

Pietraszek and Vanden Berghe [16] present a unifying view of
injection vulnerabilities and describe a general approach for de-
tecting and preventing injection attacks. This approach is based on
instrumenting the platform, such as the PHP interpreter, to track the
flow of untrusted data inside the applications. A context-sensitive
string evaluation is then performed at each sensitive sink to detect
injection attacks.

All dynamic approaches described above either are able or, at
least in theory, can be extended to detect multi-module data-flow
attacks. The main difference with our approach is that we are able
to detect such vulnerabilities statically, considering all the possi-
ble application’s paths. Also, none of these approaches can detect
workflow vulnerabilities because they do not model or take into
account the application’s intended workflow.

There are also several recent approaches that try to identify SQL
injection attacks by building models of legitimate queries that can
be performed by an application and comparing these models to
the dynamically-generated queries. Whenever these queries struc-
turally violate the static model, an attack is detected. For example,
the AMNESIA tool [6] targets SQL injection attacks in Java-based
applications. AMNESIA defines a SQL injection attack as the at-
tack in which the logic or semantics of a legitimate SQL statement
is changed due to malicious injection of new SQL keywords or op-
erators. Thus, to detect such attacks, the semantics of dynamically-
generated queries is checked against a derived model that repre-
sents the intended semantics of the query.

Su and Wassermann [20] propose another approach that uses the
syntactic structure of the program-generated output to identify in-
jection attacks, such as XSS, XPath injection, and shell injection
attacks. The current implementation, called SqlCheck is designed
to detect SQL injection attacks only. The approach works by track-
ing sub-strings from the user input through the program execution.
The tracking is implemented by augmenting input strings with spe-
cial characters, which mark the start and the end of each sub-string.
Then, dynamically-generated queries are intercepted and checked

Views Accuracy Rate of

Extracted Optimal DB Operations Links Post-Conds Sinks Unknown Conditions
417 47 96% 78% 100% 100% 15%

Table 4: Accuracy of the view extraction step for SimpleCMS.

by a modified SQL parser. Using the meta-information provided by
the sub-string markers, the parser is able to determine if the query’s
valid syntactic form is modified by the sub-string derived from user
input, and, in that case, it blocks the query.

Both AMNESIA and SqlCheck can successfully detect SQL in-
jection attacks at the time of injection; however, without a sig-
nificant implementation effort, none of them can detect data-flow
vulnerabilities such as persistent XSS attacks. Obviously, both ap-
proaches, as being based on the syntactic structure of legitimate
output, are incapable of detecting workflow vulnerabilities/attacks.

8. CONCLUSIONS
As web applications that perform security-critical tasks become

more sophisticated, there is an increasing need for techniques and
tools that can address the novel security issues introduced by these
applications. In particular, because of the heterogeneous nature of
web applications, it is important to develop new techniques that are
able to analyze the interaction among multiple application modules
and different technologies.

In this paper, we presented a novel vulnerability analysis ap-
proach that takes into account the multi-module, multi-technology
nature of complex web applications. Our technique is able to model
both the intended workflow and the extended state of a web appli-
cation in order to identify both workflow and data-flow attacks that
involve multiple modules.

We developed a prototype tool, called MiMoSA, that implements
our approach and we tested it on a number of real-world applica-
tions. The results show that by modeling explicitly the state and
workflow of a web application, it is possible to identify complex
vulnerabilities that existing state-of-the-art approaches are not able
to identify.

Future work will focus on two main directions. First, we will
include additional technologies so that we can cover a larger class
of applications. Second, we plan to leverage the findings of the
static analysis to automatically generate test drivers to reduce the
number of the false positives.

Acknowledgments
This research was partially supported by the National Science Foun-
dation, under grants CCR-0238492, CCR-0524853, and CCR-0716095.

9. REFERENCES
[1] A. V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co.,
Inc., 1986.

[2] M. Almgren, H. Debar, and M. Dacier. A Lightweight Tool for
Detecting Web Server Attacks. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), pages 157–170,
February 2000.

[3] C. Anley. Advanced SQL Injection in SQL Server Applications.
Technical report, Next Generation Security Software, Ltd, 2002.

[4] Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/, 2006.

[5] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propagation
for Java. In Proceedings of the Annual Computer Security

Applications Conference (ACSAC’05), pages 303–311, December
2005.

[6] W. Halfond and A. Orso. AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks. In Proceedings of the
International Conference on Automated Software Engineering
(ASE’05), pages 174–183, November 2005.

[7] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo.
Securing Web Application Code by Static Analysis and Runtime
Protection. In Proceedings of the International World Wide Web
Conference (WWW’04), pages 40–52, May 2004.

[8] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing Cross Site
Request Forgery Attacks. In Proceedings of the IEEE International
Conference on Security and Privacy for Emerging Areas in
Communication Networks (Securecomm), pages 1–10, September
2006.

[9] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 258–263,
May 2006.

[10] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities. In Proceedings
of the ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS’06), pages 27–36, June 2006.

[11] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A
Client-Side Solution for Mitigating Cross Site Scripting Attacks. In
Proceedings of the ACM Symposium on Applied Computing (SAC),
pages 330–337, April 2006.

[12] A. Klein. Cross Site Scripting Explained. Technical report, Sanctum
Inc., 2002.

[13] C. Kruegel and G. Vigna. Anomaly Detection of Web-based
Attacks. In Proceedings of the ACM Conference on Computer and
Communication Security (CCS ’03), pages 251–261, October 2003.

[14] B. Livshits and M. Lam. Finding Security Vulnerabilities in Java
Applications with Static Analysis. In Proceedings of the USENIX
Security Symposium (USENIX’05), pages 271–286, August 2005.

[15] A. Nguyen-Tuong, S. Guarnieri, D. Greene, and D. Evans.
Automatically Hardening Web Applications Using Precise Tainting.
In Proceedings of the International Information Security
Conference (SEC’05), pages 372–382, May 2005.

[16] T. Pietraszek and C. Vanden Berghe. Defending against Injection
Attacks through Context-Sensitive String Evaluation. In
Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID’05), pages 372–382, 2005.

[17] I. Ristic. ModSecurity. http://www.modsecurity.org/,
November 2006.

[18] D. Scott and R. Sharp. Abstracting Application-Level Web
Security. In Proceedings of the International World Wide Web
Conference (WWW’02), pages 396–407, May 2002.

[19] M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data
Flow Analysis. In N. Jones and S. Muchnick, editors, Program
Flow Analysis: Theory and Applications, chapter 7. Prentice Hall,
1981.

[20] Z. Su and G. Wassermann. The Essence of Command Injection
Attacks in Web Applications. In Proceedings of the Annual
Symposium on Principles of Programming Languages (POPL’06),
pages 372–382, January 2006.

[21] G. Vigna, W. Robertson, V. Kher, and R.A. Kemmerer. A Stateful
Intrusion Detection System for World-Wide Web Servers. In
Proceedings of the Annual Computer Security Applications
Conference (ACSAC 2003), pages 34–43, December 2003.

[22] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in
Scripting Languages. In Proceedings of the USENIX Security
Symposium (USENIX’06), pages 271–286, August 2006.

Toward Black-Box Detection of Logic Flaws in Web
Applications

Giancarlo Pellegrino
EURECOM, France

SAP Product Security Research, France
giancarlo.pellegrino@eurecom.fr

Davide Balzarotti
EURECOM, France

davide.balzarotti@eurecom.fr

Abstract—Web applications play a very important role in
many critical areas, including online banking, health care, and
personal communication. This, combined with the limited security
training of many web developers, makes web applications one of
the most common targets for attackers.

In the past, researchers have proposed a large number of
white- and black-box techniques to test web applications for the
presence of several classes of vulnerabilities. However, traditional
approaches focus mostly on the detection of input validation flaws,
such as SQL injection and cross-site scripting. Unfortunately,
logic vulnerabilities specific to particular applications remain
outside the scope of most of the existing tools and still need
to be discovered by manual inspection.

In this paper we propose a novel black-box technique to detect
logic vulnerabilities in web applications. Our approach is based
on the automatic identification of a number of behavioral patterns
starting from few network traces in which users interact with
a certain application. Based on the extracted model, we then
generate targeted test cases following a number of common attack
scenarios.

We applied our prototype to seven real world E-commerce
web applications, discovering ten very severe and previously-
unknown logic vulnerabilities.

I. INTRODUCTION

Web applications play a very important role in many
critical areas, and are currently trusted by billions of users to
perform financial transactions, store personal information, and
communicate with their friends. Unfortunately, this makes web
applications one of the primary targets for attackers interested
in a wide range of malicious activities.

To mitigate the existing threats, researchers have proposed
a large number of techniques to automatically test web appli-
cations for the presence of several classes of vulnerabilities.
Existing solutions span from black-box fuzzers and pentesting

tools to static analysis systems that parse the source code of
an application looking for well-defined vulnerability patterns.
However, traditional approaches focus mostly on the detection
of input validation flaws, such as SQL injection and cross-site
scripting. To date, more subtle vulnerabilities specific to the
logic of a particular application are still discovered by manual
inspection [33].

Logic vulnerabilities still lack a formal definition, but,
in general, they are often the consequence of an insufficient
validation of the business process of a web application. The
resulting violations may involve both the control plane (i.e., the
navigation between different pages) and the data plane (i.e., the
data flow that links together parameters of different pages). In
the first case, the root cause is the fact that the application
fails to properly enforce the sequence of actions performed
by the user. For example, an application may not require a
user to log in as administrator to change the database settings
(authentication bypass), or it may not check that all the steps
in the checkout process of a shopping cart are executed in
the right order. Logic errors involving the data flow of the
application are caused instead by failing to enforce that the
user cannot tamper with certain values that propagate between
different HTTP requests. As a result, an attacker can try to
replay expired authentication tokens, or mix together the values
obtained by running several parallel sessions of the same web
application.

Formal specifications describing the evolution of the inter-
nal state and of the expected user behavior are almost never
available for web applications. This lack of documentation
makes it very hard to find logic vulnerabilities. For example,
while being able to add several times the same product to a
shopping cart is a common feature, being able to add several
times the same discount code is likely a logic vulnerability.
A human can easily understand the difference between these
two scenarios, but for an automated scanner without the proper
application model it is very hard to tell the two behaviors apart.

Only recently the research community has started investi-
gating automated approaches to detect logic vulnerabilities [9,
18, 21]. Unfortunately, the existing solutions have serious
scalability problems that limit their applicability to small
applications. Moreover, the source code of the application is
often required in order to extract a proper model to guide the
test case generation. As a result, to date the impact of available
automated tools has been quite limited.

As an alternative approach, researchers have recently re-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

sorted to manual analysis to expose several severe logic flaws
in real world commercial applications [34, 35] resulting, for
instance, in the ability to shop online for free. Following the
step of these previous works, in this paper we show that
it is possible to automatically infer an approximate model
of a web application starting from a few network traces in
which a user “stimulates” a certain functionality. Our goal
is not to automatically reconstruct an accurate model of the
application or of its protocol (several works already exist in this
direction [14, 15]) but instead to empirically show that even
a simple representation of the application logic is sufficient to
perform automated reasoning and to generate test cases that
are likely to expose the presence of logic vulnerabilities.

In this paper we propose a technique that analyzes network
traces in which users interact with a certain application’s
functionality (e.g., a shopping cart). We then apply a set of
heuristics to identify behavioral patterns that are likely related
to the underlying application logic. For example, sequences of
operations always performed in the same order, values that are
generated by the server and then re-used in the following user
requests, or actions that are never performed more than once in
the same session. These candidate behaviors are then verified
by executing very specific test cases generated according to
a number of attack patterns. It is important to note that our
approach is not a fuzzer, and both the trace analysis and the
test case generation steps are performed offline. In other words,
they do not require to probe the application or generate any
additional interaction and network traffic.

While our approach is application-agnostic, the choice of
the attack patterns reflects a particular class of logic flaws
and application domain — and in our case were customized
for E-commerce applications. In particular, we applied our
prototype to seven large shopping cart applications adopted
by millions of online stores. The prototype discovered ten
previously-unknown logic flaws among which five of them
allow an attacker to pay less or even shop for free.

In summary, this paper makes the following contributions:

1) We introduce a new black-box technique to test
applications for logic vulnerabilities;

2) We present the implementation of a tool based on our
technique and we show how the tool can be used to
test several real web applications, even with a very
limited knowledge and a small number of network
traces;

3) We discover ten previously-unknown vulnerabilities
in well-known and largely deployed web applications.
Most of these vulnerabilities have a very high impact
and would allow an attacker to buy online for free
from hundreds of thousands of online stores.

Structure of the paper. Section II presents the black-box
approach. Section III describes the experiments that we per-
formed and Section IV shows the results. Section V discusses
the limitations of our approach and Section VI presents related
work on detecting logic vulnerabilities. Finally, Section VII
concludes the paper.

II. APPROACH

The OWASP Testing Guide 3.0 [33] suggests a four-step
approach to test for logic flaws in a black-box setting. First, the
tester studies and understands the web application by playing
with it and reading all the available documentation. Second,
she prepares the information required to design the tests,
including the intended workflow and the data flow. Then she
proceeds with the design of the test cases, e.g., by reordering
steps or skip important operations. Finally, she sets up the
testing environment by creating test accounts, runs the tests,
and verifies the results.

Our approach aims at automating the previous steps in a
single black-box tool. First, starting from a list of network
traces containing HTTP conversations, our system infers an
application model and clusters resources related to the same
workflow “step” (Section II-A). Second, our technique an-
alyzes the model and extracts a set of behavioral patterns
(Section II-B) modeling both the workflow and data flow of
the application. Third, we apply a set of attack patterns to
automatically generate test cases (Section II-C). Finally, we
execute them against the web application (Section II-D), and
we use an oracle to verify whether the logic of the application
has been violated (Section II-E).

In the rest of the section we describe each phase in details
using E-commerce web applications as a running example.

A. Model Inference

The technique we present is passive and black-box. We do
not require any access to the application source code (both on
the client- and server-side), and we do not actively crawl the
application pages nor generate any traffic to probe its internal
state. Instead, we take as input a list of HTTP conversations.
These traces can be manually generated by the tester, or
collected by logging real user activity.

For simplicity, we consider only traces that exercise a
specific functionality of the web application. For example, if
the web application is a shopping cart, we use traces in which
users log in, add items into the cart, and check out to buy the
products. Nothing prevents the tester from generating traces
that also contain other functionalities, such as browsing the
online catalog or posting product reviews. However, focusing
only on one aspect of the business logic helps our system to
find the relevant operations with a minimum number of input
traces.

Web applications often involve multiple parties. For in-
stance, E-commerce web applications typically involve the
client, the store, and the payment service. However, the com-
munication between them is normally channeled through the
client and, therefore, we focus on this point to collect the
traces. In addition, it is useful to collect data from different de-
ployments of the same web application, to allow our inference
method to identify parameter values hard-coded in a certain
installation.

The first phase consists of building the model of the
application, called navigation graph. This is done in two steps:
resource abstraction, and resource clustering.

2

r1,1 r1,2
r1,4

r 2,1 r 2,2

r1,3

r 2,3

74.125.230.240 > 192.168.1.89
192.168.1.89 > 74.125.230.240
74.125.230.240 > 192.168.1.89

Resource
Abstraction

Resource
Clustering

r1,1

r1,2

r1,4

r2,1

r 2,2

r1,3

r2,3

I F

STRING

INT

Data flow
Patterns

Workflow
Patterns

 1) Model Inference

2) Behavioral Patterns

r1,1

r1,2

r1,4

r 2,1

r2,2

r1,3

r 2,3

I F

PChain 1

PChain 2

3) Test Cases Generation

Test Cases

4) Test Cases Execution

r1,1

r1,2

r1,4

r2,1

r 2,2

r1,3

r 2,3

I F

MWP

Rp

TrWP

St

TrWP

74.125.230.240 > 192.168.1.89
192.168.1.89 > 74.125.230.240
74.125.230.240 > 192.168.1.89

Execution

Oracle

Verdict:
Flaw found
in test
1 and 2

r1,1 r1,2
r1,4

r 2,1 r 2,2

r1,3

r 2,3

r1,1

r1,2

r1,4

r 2,1

r2,2

r1,3

r 2,3

I F

r1,1

r1,2

r1,4

r 2,1

r 2,2

r1,3

r 2,3

I F

MWP

Rp

TrWP

St

TrWP

r1,2
r1,4

r 2,1 r2,2

r1,3

r 2,3

r1,1 r1,2
r1,4r1,3

r1,1 r1,2
r1,4r1,3

r1,1 r1,2
r1,4r1,3

r1,1

Fig. 1: Architecture of our approach.

1) Resource Abstraction

Input traces are sequences of pairs of HTTP requests and
responses. The first step of the inference phase consists of
creating a synthesis of the resources. Our approach currently
supports JSON data objects [17] and HTML pages. However,
it can be easily extended to other types such as SOAP
messages [36].

We call abstract HTML page the collection of (i) its URL,
(ii) the POST data, (iii) the anchors and forms contained in
the HTML code and their DOM paths, (iv) the URL in the
meta refresh tag, and, if any, (v) the HTTP redirection location
header. We call abstract JSON object a collection of (i) its
URL, (ii) the POST data, (iii) the pairs of value and path in
the object, and (iv) the HTML links if any HTML code is
contained. For example, Figure 2 shows the abstract resource
of the following JSON object:

{‘items’: {
‘item1’: [‘price’:19.9,‘tax’:1.6],
‘item2’: [...]}}

From each abstract resource we extract a set of elements
corresponding to all possible parameters that appear in the
URLs, in the POST data, and in all the links. Each element
is characterized by a name, a value, a path, and an inferred
syntactic type. Our approach supports the integer type, decimal
type, URL type, email address type, word type (alphabeti-
cal strings e.g., “add”, “remove”, . . .), string type, list type
(comma-separated values), and unknown type (i.e., everything
else). The type is associated to each element by inspecting the
values of the element. Obvious priority rules are applied in

items

item1

root

store.com/ajax.php?action=cart store.com/ajax.php?action=<word>

item2

items

root

item2

tax=1.6

price=19.9

item1

tax=<dec>

price=<dec>

Fig. 2: Resource abstraction and syntactic type inference of a
JSON data object

case of ambiguity – e.g., id=20 can be both a number and a
string, but being the first a subset of the second, it is considered
to be a number.

2) Resource Clustering

Modern web applications map application logic operations
to different resources. For instance, the operation of displaying
the shopping cart could involve an initial HTML page contain-
ing the skeleton of the web page and then use a number of
asynchronous AJAX requests to populate the page with the
list of items, tax, available vouchers, and so on. We cluster
these resources in three phases. First, we relate asynchronous
requests to the resource that originated them, i.e., synchronous
resource. Then we group together resources considering both

3

(a)

(b) login.php do.php?
action=cart

do.php?
action=show

ajax.php?
action=cart

(c) r1 r 2 r 4r3

〈 r 2 〉

Fig. 3: (a) Application-level actions, (b) URLs requested, and
(c) abstract resources with list of originators

similarity and the originators. Third, we split a cluster if a
parameter of its resources encodes a command rather than
carrying a value.

During the first phase, we pre-process input traces to
identify AJAX requests. This can be done by checking the
“X-Requested-With” HTTP request header [32] or by detecting
JSON responses. After that, we associate each resource to its
originators. Figure 3 provides an example of this first phase.
In Figure 3.c we have the HTML page r1 followed by the
page r2. Then r2 requests r3 by using AJAX that enriches r2
with new HTML code, or new client-side scripts. The example
then ends with r4 that we assume to be caused by a link in r2
or added by r3. Figure 3.c also shows the list of originators
of each resource. r1, r2, and r4 have no originators, while r3
was originated by r2.

In the second phase, we cluster resources. In general, two
resources are grouped in the same cluster if they have the same
URL domain and path, the same GET/POST parameter names,
and, if any, the same redirection URL. When comparing
parameters we do not take into account their values, but only
their syntactic types. For example, the following three URLs
are equivalent:

store.com/do.php?action=add&id=3
store.com/do.php?action=add&id=7
store.com/do.php?action=show&id=3

We compare first synchronous resources as explained be-
fore, and then the asynchronous ones. Two asynchronous
resources are in the same cluster if they have the same URL
domain and path, GET/POST parameter names, redirection
URL, and the same originators.

During the last phase, we identify the parameters that are
encoding a command rather than transporting a value. For
each parameter we take the pages that have the same value as
that parameter. For example, the parameter action divides
the gray cluster of Figure 4.a in two sub-groups, one for the
cart value and one for the show value. We then compute
the page similarity between pages in the same sub-group and
between pages in different sub-groups. The comparison is done
by looking at the DOM path of HTML forms, their action
attribute (URL domain and parameter names), and the name
of the nested input elements. The function is applied to sub-
groups by calculating the percentage of pages that are similar.

(a)

(b)

login.php do.php?
action=<word>

ajax.php?
action=<word>

login.php do.php?
action=cart

ajax.php?
action=<word>

do.php?
action=show

Fig. 4: (a) Clusters after comparing all the resources (b) Clus-
ters after having identified parameters encoding a command

If the similarity inside the same sub-groups is high (more than
55%), and between different sub-groups is low (less than 45%),
then we assume the parameter is used to specify an operation
and we create a different node for each value. Otherwise we
leave the cluster unmodified. The result of this phase is shown
in Figure 4.b.

The navigation graph is a directed graph G = (C ∪
{I, F}, E) where C is the set of clusters, I the source node,
F the final node, and E the set of edges. We place the edge
(u, v) if there exists one input trace π in which a resource
r′ ∈ u immediately precedes a resource r′′ ∈ v. Then, for
each rj at the beginning of each trace (i.e. π = 〈rj , . . .〉), we
place the edge (I, u) where rj ∈ u and for each rj at the end
of each trace, (i.e. π = 〈. . . , rj〉) we place the edge (u, F)
where rj ∈ u. Finally, we associate to each node u the set of
all the elements for every r ∈ u.

B. Behavioral Patterns

Behavioral patterns are workflow and dataflow patterns that
are likely related to the logic of the application. We divide
workflow patterns into Trace Patterns, that model what users
normally do in our input traces, and Model Patterns that model
what the navigation graph allows to be done. Finally, Data
Propagation Patterns model how data is propagated throughout
the navigation graph.

1) Trace Patterns

Trace patterns model the actions performed by the user in
the input traces. In particular, we focus on three patterns:

Singleton Nodes
A node is a singleton if it is never visited more than
once by any input trace. Some of the users may visit
these nodes, and some may not - but no one visits them
twice. For example, submitting a discount voucher can
be an operation observed in some of input traces but
none of them is submitting a voucher twice.

Multi-Step Operations
A Multi-Step Operation is a sequence of consecutive
nodes always visited in the same order. This is very
common in many functionalities in web applications.
For example, payment procedures or user registrations
often consist of a precise sequence of steps, and all

4

a

b

c

d

f

St

St

MWP

TrWP St

TrWP

e
MWP

Rp

RpRp

TrWP

MWP

Rp

TrWP

Fig. 5: Example of behavioral patterns using π1 =
〈a, b, a, c, d, e, f, e〉 and π2 = 〈a, c, d, e, f, e〉

traces going through those processes always execute
them in the same exact order.

Trace Waypoints
We use the term waypoint to describe nodes that play
an important role in the interaction between the user
and the application. In particular, trace waypoints are
those nodes that appear in all the input traces. For
example, if all our traces contain a purchase, then the
redirection to the payment website (e.g., PayPal) is a
trace waypoint.

2) Model Patterns

Model patterns model the sequences of actions that are
allowed according to the navigation graph:

Repeatable Operations
Nodes that are part of a loop in the navigation graph
are associated to operations that can potentially be
repeated multiple times.

Model Waypoints
Model waypoints are nodes that belong to every path
in the navigation graph that goes from the source node
to the final node. These nodes are not only visited in
all input traces, but there is no way in the navigation
graph to bypass them. By definition, every model
waypoint is also a trace waypoint but not vice versa.

Figure 5 shows an example to better describe the difference
between model and trace patterns. The example shows the be-
havioral patterns of a navigation graph extracted from two in-
put traces π1 = 〈a, b, a, c, d, e, f, e〉 and π2 = 〈a, c, d, e, f, e〉.
The symbols St, TrWP, Rp, and MWP stand for, respectively,
singleton nodes, trace waypoints, repeatable nodes, and model
waypoints. The thick dotted line delimits the multi-step oper-
ation.

x=v1 y=v2

z=v1

π1

b

b

c

d

k=v1

w=v3
z=v4 k=v5

x=v1 y=v2

z=v6 k=v1

j=v7 m=v1

x y

z

a

b

d

c

k

w

j m

Clust. π2

a

Parameters Parameters Clust. Parameters

Fig. 6: Propagation Chains: from traces to the navigation graph

3) Data Propagation Patterns

A propagation chain is a set of parameters with the same
value which is sent back and forth between the client and the
web application during the HTTP conversation. We say that
two parameters have the same value if there are some input
traces in which they hold the same value, and there are no
traces in which the values are different (since the user does not
perform the same actions in all the traces, a certain parameter
may not be present in all of them). We say that the chain is
client generated if the initial value is chosen by the user, and
server generated otherwise. A similar classification is used
by Wang et al. [34]. However, their notion is limited to single
input traces while ours is extended to traces of different lengths
and to the navigation graph.

We compute propagation chains in two steps. First, we
identify the propagation chain of each value within a trace.
Let us consider the example in Figure 6. Here, in the input
trace π1, the parameter x has the same value of z and of
k. In trace π2, the parameter x is still equal to k, but it is
now different from z. Moreover, the same value matches the
parameter m. Second, by comparing the chains of traces, we
remove contradictions reaching the result shown in the right
side of Figure 6.

C. Test Case Generation

In this section we describe the generation of test cases. This
is done by adopting a number of attack patterns that model how
an attacker can use the application in an unconventional way.
In particular, we focus on a set of actions an attacker could
perform: repeating operations, skipping operations, subverting
the order of operations, and mixing parameter values across
user sessions. For each action we designed a pattern. These
patterns are presented in Figure 7 and are based on the
navigation graph of Figure 5. We enriched Figure 7 with
numbers for showing the order in which the nodes are visited.
For simplicity, we are omitting the source node I and the final
node F , respectively connected to a and e.

It is important to note that, while the approach presented
in this paper is generic, the choice of the attack patterns needs
to reflect a particular class of logic flaws (in our case, the
subversion of either the control or data-flow of the application).
Other types of logic vulnerabilities, such as authentication
bypass, may require the use of other patterns (e.g., randomly
access administration pages) that could be added to our system

5

a

b

c

d

e

1

2
5

6

7

3

4

a

b

c

d

1

23

4

a

b

c

d

e

5

67

8

9

par=x

Multiple Execution
of Repeatable Singletons

Breaking Server-Generated
Propagation Chains

(a) (b) (c) (e)

a

b

d

1

2
3

5

Waypoints Detour

a

b

d

e

6

7

8

9

par
1
=x

par
2
=y

a

b

c

d

e

1

23

4 5

6

Breaking Multi-Step
Operations

a

b

c

d

e

1

23

4

(d)

c''

c'
4

f

8

9
f

7

8
f

10

11
f

5

6
f

10

11

Fig. 7: Test case generation patterns

but that are outside the scope of our paper. However, the use of
custom techniques to detect certain vulnerabilities is common
to many other tools and approaches - e.g., a technique designed
to find SQL injections cannot be used out of the box to detect
other types of input sanitization vulnerabilities.

1) Multiple Execution of Repeatable Singletons

This pattern models an attacker that tries to execute an
operation several times. If the model has a node that is
repeatable and singleton, it means that even though there is
a way to repeat an operation multiple times, this was never
observed in our input traces. Therefore, the attacker tries to
visit it twice.

Figure 7.a shows the steps of the test case. We select an
input trace that visits b (e.g., 〈a, b, a, c, d, e, f, e〉), a repeatable
and singleton node. Then we split it into two parts at the node
after the singleton (e.g., 〈a, b〉 and 〈a, c, d, e, f, e〉). We call
these two parts prefix and suffix. Second, we find the shortest
loop from the singleton node to itself (e.g., 〈b, a, b〉). Finally,
the test case is the concatenation of the prefix, the loop without
the first node, and the suffix.

2) Breaking Multi-Step Operations

This pattern models an attacker that breaks multi-step
operations. For example, once the payment page is reached, the
attacker goes back and adds an item into the cart. In general,
there are several ways of breaking the multi-step operation of
Figure 5. The first approach is to use a different ordering (e.g.,
〈a, d, c, e, f〉). A second approach is to interleave other steps.
In this pattern, we focused on the latter approach in which we
repeat a step already included in the multi-step later in the test
case. For example, in the test case 〈a, c, d, c, e, f〉 in Figure 7.b
we repeat c after d. In this pattern, we repeat c also after e
and f , but not after a.

3) Breaking Server-Generated Propagation Chains

The goal of this attack pattern is to tamper with the data
flow of the web application. An example of test case is shown
in Figure 7.c. The first part of the test interacts with the
application and captures the value x of a server-generated
propagation chain. In the second part, we start another session
and interrupt the propagation chain by replacing the value of
par with x.

Since web applications contain many server-generated
propagation chains (e.g., all the item or message IDs), this
attack pattern may generate a very large number of test cases.
Therefore, we focus only on two types of propagation chains:
the ones containing unique values (i.e., that differ in all the
input traces and are therefore related to the session) and the
ones containing installation-specific values (i.e., values that are
constant only within the same installation).

The test case generation is the following. First, we select
the parameters belonging to the chain that appear inside an
HTTP request. These parameters are called injection points
and model the point in which an attacker can replace the
value generated by the server. For example, in Figure 7.c the
parameter par of the node d is an injection point. Second, we
select two traces from different user sessions that are visiting
the node of the injection point. The first is truncated at the
injection point and the second is appended to the first one.
With reference to Figure 7.c, the two parts are respectively at
the left- and right-hand side.

4) Waypoints Detour

Waypoints are operations that are executed always by all
the input traces such as payment, or providing shipping data.
When these operations happen only once per input trace, they
seem to indicate some sort of milestone in the execution of
the business process of the web application. In the waypoint
detour pattern, the attacker tries to skip these type of operations
by using one of two possible techniques. If the waypoint node
is not part of a propagation chain, we simply try to skip it.

6

Otherwise, we try to remove the part of the navigation graph
between two waypoints, reconstructing the propagation chains
by fetching the missing data values from another user session.

Figure 7.d shows an example of this pattern. On the left
side we skip the waypoint d, while on the right side we
cut the subgraph between a and d. In this second case, if
the URL of node d depends on a value that appears in the
segment between a and d, we prepare another user session by
selecting an input trace and interrupting it at d. The generation
of this part is similar to breaking propagation chains. The first
user session is then 〈a, b, a, c′, c′′, d〉. Afterwards, we prepare
the second user session that skips the sequence between a
and d. In this example, there are two possibilities: skipping
〈b, a, c′, c′′〉 or 〈c′, c′′〉. Figure 7.e shows only the latter. In
this case the test case is the concatenation of 〈a, b, a, c′, c′′, d〉
and 〈a, b, a, d, e, f, e〉. For this case we also support the variant
in which the first user session is not interrupted at the node
d.

D. Test Case Execution

The test cases described in Section II-C are abstract and
still miss the details to be properly executed. For example,
the values of some parameters cannot be determined from
the model and need to be collected during the test case
execution. In addition, it is important that after each test the
application is reset to its initial state to avoid interferences
between consecutive executions. For example, a test may leave
a number of items in the shopping cart, thus affecting following
experiments. In general, it is often sufficient to delete the
cookies and empty the shopping cart at the end of each test.

The execution engine iterates over each node of the test
case, concretizes the POST/GET parameters, and submits
the HTTP request. The responses are parsed according to
the propagation chains in order to extract server-generated
parameters to be used in latter requests. If the execution engine
is not able to properly reconstruct a chain (e.g., because the
page that was supposed to generate its value returned an error)
the execution engine aborts the execution and reports that the
test was not executed; it reports executed otherwise.

E. Test Oracle

The approach we propose in this paper is completely
independent from the business logic of the web application.
Our technique can automatically identify behavioral patterns,
and then generate test cases to break those patterns in a number
of different ways. The system can also determine if a given
test was executed correctly, but this is as far as it is possible
to go with an application-agnostic approach. For example,
replacing the value of a security token in a payment workflow
would probably make the entire process fail. Unfortunately,
without any knowledge about the underlying business logic,
the test verdict could only say whether the pattern was applied
successfully, but it can not draw any conclusion about the
possible implications. Therefore, if we want our tool to be
able to report possible violations of the application logic, we
need to extract the sequence of events that occur during a test

case execution and compare them with the logic property that
we want to violate.

A simple way to express a logic property for shopping
carts could be the following: if an order is approved for a
user, then the user must have completed a payment for the
corresponding amount. In this formulation two events play a
central role: the fact that an order is placed, and the fact that
a user has paid a certain amount. Another important aspect of
this property is the time dependency between the two events.
Since propositional logic can only express truth regardless of
the time, in our approach, we model logic properties as Linear
Temporal Logic (LTL) formulas [30, 23]. LTL adds temporal
connectives like O (once in the past) to traditional logical
operators like ∧ (and), and =⇒ (implies). This enables us to
verify whether one event will eventually happen in the future
or it already happened in the past.

For example, the above logic property can be written in
LTL as follows:

ordplaced ∧ onStore(S) =⇒ O(paid(U, I)) (1)

where ordplaced, onStore(S), and paid(U, I) are respectively
the events order placed, operation performed on the store S,
and user U paid the price of item I . Now, the problem of
identifying a violation of the logic property is recast into the
problem of checking whether the LTL formula is satisfied or
not by a given test case.

In our approach, the Test Oracle is the component that
given an execution of a test case returns true if a certain
predefined logic property is violated, and false otherwise. The
oracle is composed of two parts: an events extractor and an
LTL formula checker. The extractor collects from the executed
test a partially ordered set of events (events can happen in
sequence or in parallel) grouped by user sessions. The second
part verifies whether all sequences satisfy the provided LTL
formula.

It is important to note that both the events and the LTL
formula depend on the type of applications under test and on
the type of vulnerabilities that we are interested to find. For
example, to find authentication bypass vulnerabilities it would
be interesting to observe events related to the user login and
to the access of private pages. However, since in this paper we
focus on the test of E-commerce applications, we are more
interested in monitoring the money transfer and the value of
the purchased items, as described in more details in the next
section.

III. EXPERIMENTS

We could use our tool to test online stores (e.g., Amazon).
However, our tests require to attempt malformed operations
and to complete a large number of checkout processes. This
would be both unethical, since the application can malfunction
as a result of our tests, and very expensive, since it requires
to buy at least one product for each test case. Therefore,
we opted to run our tests on seven well-known open source
applications available for offline testing, as reported in Table
I. The table also shows an estimation of their popularity,
measured with the search results obtained by performing a

7

Web App. No. of Installations
OpenCart 9,710,000
Magento 3,130,000
PrestaShop 650,000
CS-Cart 260,000
TomatoCart 119,000
osCommerce 80,500
AbanteCart 21,200
Total 13,970,700

TABLE I: Popularity index

number of googledorks [1]. Each Google query was built
by combining both the URL structure (e.g., the path of the
checkout endpoint) and some static HTML content extracted
from the web pages (e.g., “powered by. . . ” of the footer). As
such, the numbers reported in the table are only a lower bound
of the number of publicly-accessible installations available on
the Internet. This conservative measurement shows that these
seven applications are used by almost 14 million E-commerce
installations. As a comparison, the two applications tested by
Wang et al. [34] returned less than 40,000 hits using similar
Google dorks.

A. General Setup

We installed two instances of each web application (here-
inafter Store A and Store B). All installations except for
AbanteCart and PrestaShop were then configured to use both
the PayPal Express Checkout [3] and the PayPal Payments
Standard [4] methods. In total we prepared 12 configurations1.

All applications were configured in sandbox mode. In this
configuration, each application performs transactions by using
the PayPal sandbox payment gateway. These payments do not
involve real money as they are performed between the seller
and buyer testing accounts.

B. Testing Oracle

In their experiments, Wang et al. [35] used the following
shopping cart property:

“The store S changes the status of an item I to “paid” with
regard to a purchase being made by user U if and only if (i)
S owns I; (ii) a payment is guaranteed to be transferred from
an account of U to that of S in the CaaS; (iii) the payment
is for the purchase of I , and is valid for only one piece of I;
(iv) the amount of this payment is equal to the price of I .”

However, this property is not entirely verifiable in a black-
box setting. For instance, it is not possible to test the truth of
the predicate “S owns I” nor to check whether the due amount
has been transferred to the merchant’s account. Therefore, we
simplified the above invariant by removing the non-verifiable
clauses. The new property that can be used for automated
black-box testing becomes:

1When we did the experiments, AbanteCart and PrestaShop were providing,
respectively, only PayPal Payments Standard and PayPal Express Checkout.

When the store S confirms the user U that an order has
been placed, then in the past U paid S the amount equal to
the price of I and U agreed on purchasing I from S.

We modeled the logic property using the following events
extracted during each test case execution:

• ordplaced when the shop confirms that the order has
been placed;

• onStore(S) when an operation has been performed
on the store S;

• paid(U, I) when the user U authorizes the payment
gateway to pay the price of I;

• toStore(S) when the payment is meant for the store
S;

• ack(I), when the user acknowledges to buy I .

The logic property is then formulated as:

ordplaced ∧ onStore(S) =⇒
O(paid(U, I) ∧ toStore(S) ∧

O(ack(U, I) ∧ onStore(S))) (2)

C. Input Traces

To generate the input traces we created two user accounts,
U1 and U2, each controlling a PayPal buyer testing account.
For each web application we captured in total six HTTP
conversations, three for each store: one with U1 buying one
item, one with U2 buying another item, and one with U1

buying two different items. All the input traces satisfy the logic
property 2. These input traces were sufficient to stimulate the
main shopping cart functionalities, but a better training could
be used in the future to expose also more subtle features, or
for detecting different types of logic flaws.

D. Test Case Generation

Table II shows the test cases grouped by attack pattern.
The test case generation produced about 3100 test cases,
an average of 262 per application. Table II shows also the
test execution result. An execution failed when the test case
brought the application in a state in which it was impossible
to proceed (e.g., because of error pages in intermediate steps).
This is a common result, since by definition our tests stress the
application to expose some unexpected behavior. The number
of test cases violating the LTL formula is reported in Table III.
As mentioned before, there are events that are not visible to
the oracle. Therefore, a violation to the LTL formula does not
always correspond to a vulnerability. In fact, it is possible that
further checks performed in the back end of the application
would detect and block the attack. To distinguish logic vul-
nerabilities from other bugs (e.g., erroneously reporting to the
user a failed transaction as successful) we manually inspected
the balance sheets of the merchant, the list of orders, and their
status. Whenever the result was not confirmed by our manual

8

Test Case Generation Test Case Execution
Web App. Time hh:ss (a) (b) (c) (d), (e) Time hh:ss Exec. Not Exec. Total
AbanteCart Std � 00:01 9 51 21 152 04:51 74 159 233
Magento Exp 00:02 10 82 5 246 16:23 240 103 343

Std 00:02 14 62 7 303 14:50 210 176 386
OpenCart Exp 00:01 10 77 3 83 02:34 140 33 173

Std 00:01 15 38 22 60 02:08 71 64 135
osCommerce Exp � 00:01 4 13 6 142 03:22 117 48 165

Std 00:01 8 63 10 144 03:42 128 97 225
PrestaShop Exp � 00:01 12 22 3 100 02:42 85 52 137
TomatoCart Exp 00:02 9 68 10 215 04:54 238 64 302

Std 00:02 17 32 37 138 04:36 115 109 224
CS-Cart Exp 00:05 8 24 6 562 12:02 347 253 600

Std 00:02 16 54 15 137 05:29 127 95 222
Total 132 586 145 2282 1892 1253 3145

TABLE II: Statistics per application on the test case generation and test case execution phases. Columns (a), (b), (c), (d), and (e)
are the attack patterns in Figure 7 while columns Exec. and Not Exec. refer to the two possible outcomes of the test execution
engine.

No. Caused by
Web App. of Viols. Bugs Vulns.
AbanteCart Std 17 16 1
Magento Exp 65 65 -

Std 126 126 -
OpenCart Exp 58 46 12

Std 30 30 -
osCommerce Exp 42 22 20

Std 35 34 1
PrestaShop Exp - - -
TomatoCart Exp 90 65 25

Std 24 24 -
CS-Cart Exp 313 313 -

Std 109 108 1
Total 909 849 60

100% 93.4% 6.6%

TABLE III: Number of test cases violating Property 2 and the
root cause.

inspection, we classified it as a normal bug. The remaining
cases correspond instead to anomalous behaviors associated to
real software vulnerabilities, as explained in the next Section. It
is important to note that over 28.9% of the test cases generated
by our approach brought the application in a state that violated
the LTL formula, and 1 test out of 52 exposed a previously-
unknown logic vulnerability.

Test case generation does not require much resources, while
the execution phase can be quite time consuming (16h for
Magento). This is largely due to the lack of parallelization in
our experiments, and to the fact that the PayPal sandbox is
much slower than its live counterpart. The model inference
– omitted from Figure II – required an average of 9m per
application to build the navigation graphs that, in average,
contained 34 nodes and 48 edges.

IV. RESULTS

Table III reports the total number of violations of the
security property 2. In other words, by tampering with either
the workflow or the data flow according to our attack patterns,
our system was able to bring the web application in a faulty
state in 909 cases. All these cases corresponded to tests
that were executed until the final page in which the store
congratulates the customer for the successful purchase (that
caused the generation of the events ordplaced ∧ onStore(S))
even though the paid amount was not correct. While these
violations are all the consequences of bugs in the application
code, not all of them can be exploited by an attacker.

This is an important point and a fundamental limitation
of black-box approaches. Our tool can only observe the
application state “from the outside”, and therefore it cannot
distinguish between a presentation bug (in which the informa-
tion displayed on the web pages are wrong but the internal state
of the application is correct) and a more serious vulnerability
(in which also the internal state is compromised).

To distinguish between the two types of bugs, we manually
inspected the state of the backend database: the result is
the distinction summarized in Table III between harmless
presentation bugs (93.4%) and real vulnerabilities (6.6%).
While these results indicate that the true positive rate of
our tool is 6.6%, also the remaining 93.4% of the violations
correspond to real bugs in the application that need to be fixed
by the developers. Once all the presentation issues have been
solved, the alarms raised by our tool would correspond only
to exploitable vulnerabilities.

A. Vulnerabilities

Table III shows that 60 of our test cases (1.9% of the total)
exposed a logic vulnerability in the target applications. We
discovered the following flaws:

• In osCommerce 2.3.1, CS-Cart 3.0.4, and Abante-
Cart 1.0.4 with PayPal Payments Standard a malicious

9

U 1 B PayPalAStore Store

add item I

checkout

add item I'

checkout

acc
B
, amt

I'
, inv

I'
, URL

B

acc
A
, amt

I'
, inv

I'
, URL

B

acc
A
, amt

I
, inv

I
, URL

A

authorize payment to acc
A

return to URL
B

URL
B

order placed in Store B
ord

placed

onStore(“Store B”)

paid(U
1
, I')

toStore(“Store A”)

Events

ack(U
1
, I),

onStore(“Store A”)

login

login

ack(U
1
, I'),

onStore(“Store B”)

Fig. 8: Shopping for free with osCommerce 2.3.1 and Aban-
teCart 1.0.4

customer can shop for free (exploitable)

• In OpenCart 1.5.3.1 and TomatoCart 1.1.7 with PayPal
Express Checkout a malicious customer can pay less
(exploitable)

• In TomatoCart 1.1.7 with PayPal Express Checkout a
malicious customer can shop for free (exploitable)

• OpenCart 1.5.3.1, TomatoCart 1.1.7, and osCom-
merce 2.3.1 with PayPal Express Checkout a customer
can pay an amount different from what she authorized
(not exploitable)

• TomatoCart 1.1.7 with PayPal Express Checkout a
customer pays another customer’s cart (not ex-
ploitable)

All the exploitable flaws have been already responsibly
disclosed. When the developers did not answer within two
weeks of our notification, we reported the vulnerabilities also
to the US Cert2. In the following we describe each class of
vulnerability we discovered in our experiments.

1) osCommerce, CS-Cart, and AbanteCart with PayPal Pay-
ments Standard - Shopping for Free

These flaws were discovered by tests that interrupted the
server-generated propagation chain transporting the PayPal
account of the merchant. An example is shown in Figure 8.
The left-hand side of the Figure shows the message sequence
chart while the right-hand side shows events grouped by user
session. Each user session begins with a login message. The
events show how the violation was detected by the oracle. At

2See http://www.kb.cert.org/vuls, IDs 459446, 207540, and 583564

U 1 PayPal

add item I

checkout

add item I'

Token

order placed in Store A

Events

Token

authorize payment to acc
A

Token, PayerID

Token, PayerID

order placed in Store A

Token, PayerID

login

login

Store AU 2

ack(U
1
, I),

onStore(“Store A”)

ord
placed

onStore(“Store A”)

paid(U
1
, I)

toStore(“Store A”)

ord
placed

onStore(“Store A”)

Fig. 9: Paying less with OpenCart 1.5.3.1 and Tomato-
Cart 1.1.7

the end of the execution, ordplaced ∧ onStore(“Store B”) is
satisfied as all the events in it were observed. However, the
left-hand side of the Formula (1) is not satisfied because none
of the events in it were observed.

The manual inspection verified that (i) no payment was
made to the Store B, (ii) the status of the order in the back
office of Store B was “completed”, and (iii) the invoice was
paid. It is straightforward to turn the above test into a real
attack. Indeed, when redirected to PayPal, an attacker can
replace the seller PayPal account with another PayPal account
under her control. In this case, the attacker can pay herself for
an item she buys in an online shop.

2) OpenCart and TomatoCart with PayPal Express Checkout -
Pay Less

In OpenCart and TomatoCart with PayPal Express Check-
out an attacker can pay less than the value of the items.
The flaw has been detected by using the waypoints detour
pattern. The test case generator produced 11 test cases for
OpenCart and 11 for TomatoCart in which the user U2 skips
the nodes of the redirection to PayPal for the payment and
reconstructs the URL with values taken from the user session
of U2. A representative test case is shown in Figure 9. In
the second user session ordplaced ∧ onStore(“Store A”) is
satisfied. However, the other clauses of the formula are not
satisfied because neither the user acknowledgment nor the
payment were observed.

The manual inspection found two distinct orders in the list
of orders, one for I and for I ′. Both orders were in the state
“paid” and ready for shipping. However, the balance sheet of
the merchant contains only the transaction for I , while nothing
is recorded for I ′.

10

U 1 PayPal

add item I

checkout

add item I'

Token

order placed in Store A

Events

Token

authorize payment to acc
A

Token, PayerID

Token, PayerID

login

login

Store AU 2

ack(U
1
, I),

onStore(“Store A”)

paid(U
1
, I)

toStore(“Store A”)

ord
placed

onStore(“Store A”)

Fig. 10: Shopping for free with TomatoCart 1.1.7

This test can be turned into an attack by first buying a cheap
item and intercepting the redirection URL from PayPal to the
store. Then the attacker can login again, add an expensive item
to the cart, and replay the URL captured before to complete
the transaction. Even worse, we verified that the attacker (or
any other user) can reuse the same TokenID and PayerID to
complete an arbitrary number of additional fake transactions.
This process is only bounded by the timeout set by PayPal on
the token.

3) TomatoCart with PayPal Express Checkout - Shopping for
Free

This problem has been identified by 11 different test cases
generated with the waypoint detour pattern. A representative
test case is shown in Figure 10. Figure 10 shows that in
the second user session ordplaced ∧ onStore(“Store A”) is
satisfied. However, the other clauses of the formula are not
satisfied because neither user acknowledgment nor the payment
were observed.

The manual inspection verified that no payment for I and
for I ′ were done. However, the list of orders contained the
order for I ′ in a “paid” state and ready for shipping. This
test case can be turned into an attack as shown before with
the difference that the attacker ends the first user session after
receiving Token and PayerID from PayPal.

4) osCommerce, OpenCart and TomatoCart with PayPal Ex-
press Checkout - Pay Less

In osCommerce the test was generated by the waypoints
detour pattern, while in OpenCart and TomatoCart tests were
generated by breaking server-generated propagation chains.

In osCommerce, the test is similar to the one shown in Fig-
ure 10 while for OpenCart and TomatoCart, the tests are similar
to the one in Figure 8. When PayPal Express Checkout is

U 1 PayPal

add item I, sid

checkout, sid

add item I', sid'

order placed in Store A

Events

login

login

Store AU 2

checkout, sid

authorize payment to acc
A

payment ok

pay

pay

payment ok

ack(U
1
, I),

onStore(“Store A”)

paid(U
1
, I')

toStore(“Store A”)

ord
placed

onStore(“Store A”)

Fig. 11: Session fixation in TomatoCart 1.1.7

selected, the store and PayPal are exchanging the Token via
redirections. Here, the pattern interrupted the chain of Token
when the user is redirected to PayPal for the payment. In both
cases the oracle verified that the user U2 had a confirmation
and that paid(U2, I

′) ∧ toStore(A) is satisfied. However, the
oracle could not verify O(ack(U2, I

′) ∧ onStore(A)) because
it observed O(ack(U2, I) ∧ onStore(A)).

A manual inspection confirmed that only the order for I ′
was in the list of the orders with status “paid”, while the order
for I was still “payment pending”. However, in the balance
sheet of the merchant, the payment for I ′ was done by U1

instead of U2. In this case, U1 authorized PayPal to pay for I
while her credit card was charged for I ′.

In order to turn this tests into a real attacks, the attacker
needs to intercept the redirection URL that is carried over
SSL/TLS channels. In addition, it must block the user-victim
from executing the redirection. This could require the attacker
to either break the SSL/TLS encryption layer or to mount
a SSL/TLS MITM (Man-In-The-Middle) attack. However, in
both cases the attacker will be able to capture also the payment
data of the victim enabling her to shop for free in any case.

5) TomatoCart with PayPal Express Checkout - Session Fixa-
tion

Our experiments discovered a session fixation vulnerability
in which U2 could impersonate another user. The test cases
were created by breaking the propagation chain of the param-
eter sid in two points. Figure 11 shows one of them. The
events of Figure 11 did not satisfy the formula because the
payment I ′ was of a different amount than the one the user
acknowledged for I .

The parameter sid carries the same value in the cookie and
breaking it causes a session fixation in which, in our case, U2

11

results logged in as U1. From that point on, U2 can access the
data of U1. As a consequence, U2 (now logged as U1) pays
the cart of U1. However, we could not find any exploitation
of this flaw. Supposing that the victim (i.e. U2) “clicks” on an
URL crafted by the attacker (U1), then the victim could notice
the fraud in three moments (i) when checking the summary
of order, (ii) when providing the shipping address (it shows
the attacker’s one), and (iii) during the payment because the
amount is different.

V. LIMITATIONS

Our approach uses attack patterns that tamper with the
observed data flow and workflow. However, it does not test
for other types of logic vulnerabilities such as unauthorized
access to resources. Moreover, we did not consider cases in
which the attacker can also play the role of a malicious store,
or the cases in which the attacker can intercept and tamper
with the messages between the application and the payment
service. We believe that our techniques could also be effective
at detecting other kinds of logic flaws, even though we have not
experimentally tested this hypothesis. This could be achieved
by adding input traces of privileged user (e.g., admin), by
adding other behavioral patterns, or by adding new attack
patterns.

Second, the test generation favors efficiency over coverage.
This means that only a few values are used for each test
category, to maximize the possibility to find bugs in a limited
amount of time. A more thorough exploration of the attack
space could be used to discover more vulnerabilities, however
this could require a considerable amount of execution time.
The focus of this paper is to show how an automated approach
can be used to find logic vulnerabilities in many real-word
applications, and not to analyze in depth a single application
(a scenario that would also require more input traces to better
explore the application’s logic).

Finally, we modeled logic properties in LTL. The use
of LTL enables us to verify events with time dependency.
However, LTL do not support algebra whose terms appear at
different moment of the execution. For example, our oracles
cannot verify whether the payment is the sum of the items
the user added into the cart at some point in the past. There
are works that extend LTL with constraints on integer num-
bers [10], and they could be used by our oracle for checking
more fine-grained properties.

VI. RELATED WORK

A large number of solutions have been proposed to detect
vulnerabilities in web applications. However, most of the
previous work focus on the automated detection of well-known
classes of vulnerabilities related to insufficient input validation,
such as Cross-Site Scripting (XSS) [26], Cross-Site Request
Forgery (CSRF) [2, 27] and SQL injection [22]. Since our
goal is to find logic flaws, we will not present these solutions
in this section.

a) Detection of Logic Vulnerabilities

When the source code of the application is available, tools
such as MiMoSA [9], Waler [21], and Swaddler [16] can be
used to discover logic vulnerabilities. MiMoSA and Waler
extract a model from the source code and then use a model
checker to detect a violation of invariants. Swaddler [16]
detects attacks when the software is at the deployment phase
of its life-cycle. It first learns the normal behavior of the ap-
plication and then monitors state variables at runtime looking
for deviations from the normal behavior.

When the source code is not available, the problem of
extracting a model becomes more difficult. Doupé et al. [19]
and Li and Xue [28] proposed two black-box testing tools. The
former presents a state-aware input fuzzer to detect XSS and
SQLi vulnerabilities. The tool infers a model that is used as an
oracle for choosing the next URL to crawl. Both our approach
and this technique infer models to improve the automatic
detection of vulnerabilities. However, we use a passive learning
technique tailored to generate test cases to detect logic flaws,
and not an active scanning to drive an input fuzzer. The
second work presents BLOCK, a tool that learns model and
invariants by observing HTTP conversations and then detects
authentication bypass attacks. As opposed to BLOCK our
approach does not aim at intercepting attacks, but at generating
security tests for detecting flaws. Both works could not be used
to find this class of vulnerabilities. The former work proposes
a stateful crawler with an input fuzzer that does not attempt to
violate the logic of the application. The latter focuses on the
detection of authentication bypass attacks by inferring session
variable invariants.

An approach similar to BLOCK is InteGuard [37]. Inte-
Guard aims at protecting multi-party web applications from
exploitation of vulnerabilities in the API integration. Inte-
Guard focuses mainly on the browser-relayed messages in
which data values are exchanged between the parties through
the web browser. In particular, InteGuard uses a passive
model inference technique based on data-flow analysis and
differential analysis to extract inter-services dataflow-related
invariants. The former is used to extract the flows of data
values while the latter is used to detect properties of data
flows such as transaction-specific or implementation-specific
values. Our approach uses similar techniques to extract these
type of invariants. However, in addition to that, it extracts
also invariants of the observable workflow of the application,
and takes into account both intra-service invariants, e.g., idem-
potent operations, and inter-service invariants, e.g., multi-step
operations.

Given the limited success of automated black-box tech-
niques, manual methodologies have been recently proposed.
Our work is mainly inspired by Wang et al. [34, 35], who
presented an analysis of Cashier as a Service (CaaS) based
web stores, and a large-scale analysis of web Single Sign-On
protocols. The former work describes a black-box methodol-
ogy that given a number of HTTP conversations, labels API
arguments and shows with which ones an attacker could play in
the attempt of violating security invariants. The latter refines
the previous one by (i) considering the role played by the
attacker during the protocol execution and (ii) adding semantic
and syntactic labels to protocol parameters. Both techniques

12

had a large impact due to the severe vulnerabilities the authors
were able to find in real-world applications. However, these
papers propose techniques and guidelines that need to be
manually applied by a security expert. Our work extends their
technique in four ways. First, it infers a model from set
of HTTP conversations. Second, it generalizes the notion of
propagation chain of a single trace into propagation chain of an
application model. Third, it infers observable characteristics of
the workflow of the business function. Finally, it automatically
generates and executes test cases using a number of attack
patterns.

AUTHSCAN [8] is an approach similar to our work. It
infers a model from implementations combining white-box and
black-box techniques. AUTHSCAN focuses on the detection
of flaws specific to authentication protocols (See Lowe et
al.[29] for a survey of authentication property) and it requires
a list of application-specific JavaScript function signatures in
order to infer an accurate model of the protocol participants.
On the contrary, our approach focuses on business-related
web application properties and uses an application-independent
model inference technique.

b) Model Inference

There is a large body of works addressing the problem
of inferring a model for testing purposes. Model inference is
divided in two categories: active learning and passive learning.
Active learning techniques interact with the application under
inference in order to explore its behavior whereas passive
learning techniques build a model from a set of observations.
Hossen et al. [25] proposed to apply the active learning
algorithm L* [5] to infer a deterministic finite automaton
and refining it with testing. Dury et al. [20] described an
approach based on passive learning of web-based business
applications. They used Parameterized Finite Automaton (PFA)
that enriches the classic notion of finite automaton [24] with
guards on transitions and parameters on states. PFA models
control flow and data flow of an application. Guards are
inferred using data mining algorithms like C4.5 [31]. Models
are then translated into the Promela language and fed to the
model checker SPIN [23] for verifying application-dependent
properties. However, in the first approach the authors proposed
a direction and say little on the type of flaws they aim
at detecting, while in the second the authors focus on the
inference part and do not cover the actual testing.

c) Model-Based Security Testing

New ideas have been proposed in order to use models for
the (semi-)automatic security testing of web applications when
models are available. For example, Armando et al. [7] proposed
to detect logic flaws and testing web-based security proto-
cols. The approach consists of using the SAT-based Model
Checker [6] to validate a formal specification against security
desiderata. If a violation occurs, it is executed against a real
implementation. Büchler et al. [13] proposed an approach that
assumes (i) a model is given (ii) and the model is secure. Then
they propose to mutate the model by injecting vulnerabilities
and to use a model checker for detecting violations. If a
problem is found, then they use the counterexample returned
by the model checker as an abstract test case for testing

implementations. Bodei et al. [11] proposed to model Service-
Oriented applications in CaSPiS (Calculus of Services with
Pipelines and Sessions), a process calculus with the notion of
session and pipelines [12], to perform a control flow analysis
for detecting misuse of the application. The authors tested their
technique on a known vulnerable version of the CyberOffice
shopping cart detecting the price-modification attack. However,
for all these works still remains the problem that a model of
the application is often not available in practice.

VII. CONCLUSIONS

In this paper we presented a new technique for the black-
box detection of logic flaws in web applications. Our ap-
proach uses a passive model inference technique that builds
a navigation graph from a set of network traces. We then
apply a number of heuristics to extract behavioral patterns that
are likely related to the underlying application logic. These
behaviors, together with a number of attack patterns, are used
for generating test cases.

We developed a prototype tool and tested seven E-
commerce applications. The prototype generated and executed
more than 3100 test cases, 900 of which violated the expected
behavior of the application. As a result, our tool detected ten
previously-unknown logic vulnerabilities in the applications
under test. Five of them allow an attacker to pay less or even
shop for free.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union Seventh Framework Programme under grant agreement
no. 257007 (project SysSec) and no. 257876 (project SPaCIoS
Secure Provision and Consumption in the Internet of Services).

REFERENCES

[1] “The google hacking database at hacking for charity.”
[Online]. Available: http://www.hackersforcharity.org/
ghdb/

[2] “Requestrodeo: Client side protection against session
riding,” in the OWASP Europe 2006 Conference, Report
CW448, Departement Computerwetenschappen, KU Leu-
ven, May 2006, 2006.

[3] “Paypal express checkout integration
guide,” August 2012. [Online]. Available:
https://cms.paypal.com/cms content/US/en US/files/
developer/PP ExpressCheckout IntegrationGuide.pdf

[4] “Paypal payments standard integration guide,”
June 2012. [Online]. Available: https://cms.
paypal.com/cms content/US/en US/files/developer/PP
WebsitePaymentsStandard IntegrationGuide.pdf

[5] D. Angluin, “Learning regular sets from queries and
counterexamples,” Inf. Comput., vol. 75, no. 2, Nov. 1987.

13

[6] A. Armando, R. Carbone, and L. Compagna, “Ltl model
checking for security protocols,” in Computer Security
Foundations Symposium, 2007. CSF ’07. 20th IEEE, July
2007, pp. 385–396.

[7] A. Armando, G. Pellegrino, R. Carbone, A. Merlo, and
D. Balzarotti, “From model-checking to automated test-
ing of security protocols: Bridging the gap,” in TAP, ser.
LNCS, A. D. Brucker and J. Julliand, Eds., vol. 7305.
Springer, 2012.

[8] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena,
J. Sun, Y. Liu, and J. S. Dong, “Authscan: Automatic ex-
traction of web authentication protocols from implemen-
tations,” in 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013, San Diego, California, USA,
February 24-27, 2013.

[9] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna,
“Multi-module vulnerability analysis of web-based appli-
cations,” in Proceedings of the 14th ACM conference on
Computer and communications security, ser. CCS ’07.
New York, NY, USA: ACM, 2007.

[10] M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella,
and M. Rossi, “Smt-based verification of ltl specifi-
cations with integer constraints and its application to
runtime checking of service substitutability,” CoRR, vol.
abs/1004.2873, 2010.

[11] C. Bodei, L. Brodo, and R. Bruni, “Static detection of
logic flaws in service-oriented applications,” in ARSPA-
WITS, ser. LNCS, P. Degano and L. Viganò, Eds., vol.
5511. Springer, 2009.

[12] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti, “Ses-
sions and pipelines for structured service programming,”
in FMOODS, ser. LNCS, G. Barthe and F. S. de Boer,
Eds., vol. 5051. Springer, 2008.

[13] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-
automatic security testing of web applications from a
secure model,” in SERE. IEEE, 2012.

[14] J. Caballero, P. Poosankam, C. Kreibich, and D. Song,
“Dispatcher: Enabling Active Botnet Infiltration using
Automatic Protocol Reverse-Engineering,” in Proceed-
ings of the 16th ACM Conference on Computer and
Communication Security, Chicago, IL, November 2009.

[15] P. M. Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda, “Prospex: Protocol specification extraction,”
in Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, ser. SP ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 110–125.
[Online]. Available: http://dx.doi.org/10.1109/SP.2009.14

[16] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler: An approach for the anomaly-based detection
of state violations in web applications,” in RAID, ser.
LNCS, C. Krügel, R. Lippmann, and A. Clark, Eds., vol.
4637. Springer, 2007.

[17] D. Crockford, “RFC4627: The application/json media
type for javascript object notation (json),” July 2006.

[Online]. Available: http://tools.ietf.org/html/rfc4627

[18] A. Doupé, B. Boe, C. Kruegel, and G. Vigna, “Fear the
ear: discovering and mitigating execution after redirect
vulnerabilities,” in Proceedings of the 18th ACM con-
ference on Computer and communications security, ser.
CCS ’11. New York, NY, USA: ACM, 2011.

[19] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “En-
emy of the State: A State-Aware Black-Box Vulnerability
Scanner,” in Proceedings of the 2012 USENIX Security
Symposium (USENIX 2012), Bellevue, WA, August 2012.

[20] A. Dury, H. H. Hallal, and A. Petrenko, “Inferring be-
havioural models from traces of business applications,” in
Proceedings of the 2009 IEEE International Conference
on Web Services, ser. ICWS ’09. Washington, DC, USA:
IEEE Computer Society, 2009.

[21] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vi-
gna, “Toward automated detection of logic vulnerabil-
ities in web applications,” in Proceedings of the 19th
USENIX conference on Security, ser. USENIX Secu-
rity’10. Berkeley, CA, USA: USENIX Association,
2010.

[22] W. G. Halfond, J. Viegas, and A. Orso, “A Classification
of SQL-Injection Attacks and Countermeasures,” in Pro-
ceedings of the IEEE International Symposium on Secure
Software Engineering, Arlington, VA, USA, March 2006.

[23] G. J. Holzmann, The SPIN Model Checker - primer and
reference manual. Addison-Wesley, 2004.

[24] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduc-
tion to Automata Theory, Languages, and Computation
(3rd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[25] K. Hossen, R. Groz, and J. Richier, “Security vulnera-
bilities detection using model inference for applications
and security protocols,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on, march 2011.

[26] M. Johns, “Code injection vulnerabilities in web applica-
tions: Exemplified at cross-site scripting,” Ph.D. disser-
tation, 2011.

[27] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross
site request forgery attacks,” in SecureComm. IEEE,
2006.

[28] X. Li and Y. Xue, “Block: a black-box approach for
detection of state violation attacks towards web appli-
cations,” in Proceedings of the 27th Annual Computer
Security Applications Conference, ser. ACSAC ’11. New
York, NY, USA: ACM, 2011.

[29] G. Lowe, “A hierarchy of authentication specifications,”
in Computer Security Foundations Workshop, 1997. Pro-
ceedings., 10th, 1997, pp. 31–43.

[30] A. Pnueli, “The temporal logic of programs,” in FOCS.
IEEE Computer Society, 1977.

[31] J. R. Quinlan, C4.5: programs for machine learning. San

14

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1993.

[32] The jQuery Foundation, “jQuery,” January 2013.
[Online]. Available: http://jquery.com/

[33] The OWASP Foundation, “OWASP Testing Guide,”
December 2008. [Online]. Available: https://www.owasp.
org/index.php/OWASP Testing Project

[34] R. Wang, S. Chen, and X. Wang, “Signing me onto
your accounts through facebook and google: a traffic-
guided security study of commercially deployed single-
sign-on web services.” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy. IEEE Computer
Society, 2012.

[35] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to
shop for free online – security analysis of cashier-as-a-
service based web stores,” in Proceedings of the 2011
IEEE Symposium on Security and Privacy, ser. SP ’11.
Washington, DC, USA: IEEE Computer Society, 2011.

[36] World Wide Web Consortium, “Simple Object Access
Protocol (SOAP) 1.2,” April 2007. [Online]. Available:
http://www.w3.org/TR/soap/

[37] L. Xing, Y. Chen, X. Wang, and S. Chen, “Integuard:
Toward automatic protection of third-party web service
integrations,” in 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013.

15

A Play with Many Actors

87

9
A Change of Perspective

In the previous chapters we discussed several classic and less classic vulnerabilities
that affect web applications. But to fully understand why the security of the average
website is so poor, it is not enough to look at the code. In fact, the security of web
applications is a multi-faced problem that involves many different players. How-
ever, the vast majority of the research in this area focuses either on the developers,
as they are the responsible to write the source code and introduce the vulnerabili-
ties in the first place, or on the final users, as they are often the weakest link in the
chain and the harder to secure against an attacker. The system administrator has
also being partially explored, with a number of server-side solutions that can either
prevent certain classes of vulnerabilities or mitigate the risk of exploitation.

In this final part of this document I want instead to present a parallel line of
research in which I investigated the role of other players that play an important
role in this ecosystem but that were often overlooked by previous researchers: the
hosting providers, and the attackers themselves.

I believe it is extremely important to study these actors to better understand
the general picture of web security. It is true the untrained developers and inse-
cure ready-to-deploy web applications are the main cause of many vulnerable web
sites. But this is only part of the problem. Web hosting providers offer cheap, and
sometimes even free, space to host simple web applications and are the preferred
choice for hundred of thousands of personal pages and little e-commerce solu-
tions. If their clients are in large part unable to detect when their pages have been
compromised, the hosting providers are in the perfect position to detect suspicious
behaviors, notify their customers, and stop malicious pages that would otherwise
remain unnoticed for long time.

On the other hand, studying the behavior and the motivation of the attackers
allow us to better understand what they are after when they compromise a web
application and how we can detect them more efficiently.

89

Summary

The first paper, published at the World Wide Web conference in 2013, focuses
on the role of the web hosting providers. By re-creating realistic (but harmless)
malicious behaviors that were clear and easily detectable signs of a compromise,
we were able to estimate if (and how well) popular hosting providers all around the
world could detect these signs and notify their customers. We also tested how the
same providers reacted once contacted by users that wanted to report a suspicious
behavior on the hosted sites.

The results were extremely negatives. While popular providers seem to invest
a considerable effort to prevent criminals from registering an account with them,
once a customer is registered most of the providers do absolutely nothing to de-
tect malicious or suspicious activities. Moreover, also abuse notifications are not
properly handled in most cases, thus preventing also other users to report malicious
activities.

The last paper in this dissertation, proposes the use of a novel high-interaction
honeypot to observe the attackers during, and after, they exploit a vulnerable web
application. The article, published at the Network and Distributed System Security
Symposium in 2013, presents a study of over 6,000 attacks – with a particular focus
on the clustering and identification of the files uploaded by the attackers to the
compromised machines. Based on the collected information, we were able to infer
the goal of the attackers and thus understand if they were interested in installing
phishing kits or in joining a botnet, in gathering information or in sending Spam.
As I will explain more in Chapter 12, I believe this information is very important
to design new security mechanism and fully understand how to properly address
the security of web applications.

90

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

The Role of Web Hosting Providers in Detecting
Compromised Websites

Davide Canali
EURECOM, France

canali@eurecom.fr

Davide Balzarotti
EURECOM, France

balzarotti@eurecom.fr

Aurélien Francillon
EURECOM, France

aurelien.francillon@eurecom.fr

ABSTRACT
Compromised websites are often used by attackers to deliver ma-
licious content or to host phishing pages designed to steal private
information from their victims. Unfortunately, most of the targeted
websites are managed by users with little security background -
often unable to detect this kind of threats or to afford an external
professional security service.

In this paper we test the ability of web hosting providers to detect
compromised websites and react to user complaints. We also test
six specialized services that provide security monitoring of web
pages for a small fee.

During a period of 30 days, we hosted our own vulnerable web-
sites on 22 shared hosting providers, including 12 of the most pop-
ular ones. We repeatedly ran five different attacks against each of
them. Our tests included a bot-like infection, a drive-by download,
the upload of malicious files, an SQL injection stealing credit card
numbers, and a phishing kit for a famous American bank. In ad-
dition, we also generated traffic from seemingly valid victims of
phishing and drive-by download sites. We show that most of these
attacks could have been detected by free network or file analysis
tools. After 25 days, if no malicious activity was detected, we
started to file abuse complaints to the providers. This allowed us
to study the reaction of the web hosting providers to both real and
bogus complaints.

The general picture we drew from our study is quite alarming.
The vast majority of the providers, or “add-on” security monitoring
services, are unable to detect the most simple signs of malicious
activity on hosted websites.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive Software (e.g., viruses,
worms, Trojan horses), Unauthorized access (e.g., hacking, phreak-
ing); C.4 [Performance of Systems]: Measurement techniques

Keywords
Shared web hosting; web security

1. INTRODUCTION
Owning and operating a website has become a quite common

activity in many parts of the world, and millions of websites are
operated, every day, for both personal and professional use. People
do not need anymore to be computer “gurus” in order to be able
to install and run a website: a web browser, a credit card with a

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

few dollars’ balance, and some basic computer skills are usually
enough to start such an activity.

Of all the possible ways to host a website, shared hosting is usu-
ally the most economical option. It consists in having a website
hosted on a web server where other websites may reside and share
the machine’s resources. Thanks to its low price, shared hosting has
become the solution of choice for hosting the majority of personal
and small business websites all over the world.

Being so common, however, shared hosting websites have also
high chances of being targets of web attacks, and become means for
criminals to spread malware or host phishing scams. In addition,
such websites are often operated by users with little or no secu-
rity background, who are unlikely to be able to detect attacks or to
afford professional security monitoring services.

Our work focuses on shared web hosting services, and presents a
study on what shared hosting providers do in order to help their cus-
tomers in detecting when their websites have been compromised.
We believe this is an important commitment, given the fact that
shared hosting customers are the most vulnerable to web attacks [9].
Furthermore, even a security-aware shared hosting customer would
never be able to fully protect and monitor his or her account with-
out the provider’s cooperation. In fact, in a shared hosting config-
uration, the user has few privileges on the machine and she is not
allowed to to run or install any monitoring or IDS application, nor
to customize the machine’s web server, its firewall, or security set-
tings. Thus, in order to protect his or her website, a user has to fully
rely on the security measures employed by the hosting provider.

In our study, we also tested the providers’ reactions to abuse
complaints, and the attack detection capabilities of six specialized
services providing security monitoring of websites for a small fee.

In a recent survey [4], Commtouch and the StopBadware organi-
zation reported the results of a questionnaire in which 600 owners
of compromised websites have been asked some questions about
the attacks that targeted their websites. From this study, it emerged
that, among the surveyed users, 49% of them were made aware
of the compromise by a browser warning, while in fewer cases they
were notified by their hosting provider (7%) or by a security organi-
zation (10%). Also, 14% of the users who took the survey said their
hosting provider removed the malicious content from their website
after the infection. At the end, only 12% of the customers were
satisfied from the way their hosting provider handled the situation,
while 28% of users who took the survey were considering to move
to a new provider because of this experience.

Inspired by the StopBadware report, we decided to systemati-
cally analyze, on a wider scale and in an automated way, how web
hosting companies behave with regard to the detection of com-
promised websites, what their reactions are in case of abuse com-

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

plaints, and how they proceed to inform a customer about his web-
site being compromised.

To our knowledge, this is the first work studying, on a worldwide
scale, the quality and reliability of security monitoring activities
performed by web hosting providers to detect compromised cus-
tomer websites. Unfortunately, the general picture we drew from
our results is quite alarming: the vast majority of providers and
“add-on” security monitoring services are unable to detect the most
simple signs of malicious activity on hosted websites. It is impor-
tant to note that we do not want to blame such providers for not
protecting their customers, since this service is often not part of
the contract for which users are paying for. However, we believe
it would be in the interest of the providers and of the general pub-
lic to implement simple detection mechanisms to promptly identify
when a website has been compromised and it is used to perform
malicious activities.

Section 2 of the paper describes the setup and deployment of
the test cases we employed to carry out our study; Section 3 re-
ports the results of our experiments, as well as some insights on
how hosting providers act with regard to preventing abusive uses
of their services and web attacks against their customers’ websites.
Section 4 explores the related work in this field. Section 5, finally,
summarizes the main findings of our work, and concludes the study
providing ideas for future improvements in this area of research.

2. SETUP AND DEPLOYMENT
For our study, we selected a total of 22 hosting providers, chosen

among the world’s top providers in 2011 and 2012 (we will refer
to these as global-1 to global-12), and among other regional pro-
viders operating in different countries (referred to as regional-1 to
regional-10). We selected the global providers by picking the ones
appearing most frequently on lists of top shared hosting providers
published on web hosting-related websites, e.g., tophosts.com,
webhosting.info, and webhostingreviews.com. The
regional providers were instead chosen from the "Country-wise
Top hosts" list published by the webhosting.infowebsite [19],
with the aim of having an approximately uniform geographical dis-
tribution over every area of the world. Our final list included pro-
viders in the US, Europe, India, Russia, Algeria, Hong Kong, Ar-
gentina and Indonesia.

For our study, we limited our choice to providers that allowed
international registrations, as our hosting accounts were registered
using real personal data of people belonging to our research group.
In fact, we noticed that some providers, probably because of reg-
ulations in their country, limit the possibility of registering a web
hosting service only to national customers. This is especially true
for countries such as China, Brazil, and Vietnam, whose providers
often require a national ID card number upon registration.

Also, our choice was limited to providers offering shared host-
ing services as part of their products, allowing to host at least one
domain name per account, supporting the PHP programming lan-
guage, and the FTP transfer protocol.

2.1 Test Cases
We conducted our study by registering five shared hosting ac-

counts for each of the 22 web hosting providers. Each one of
the five accounts was targeting a particular class of threat, chosen
among the most common types of web attacks that could be easily
detected by hosting providers.

Four out of the five test cases we deployed are based on a static
snapshot of a website running OsCommerce v.2.2. The application
was modified so that the PHP pages always returned a static ver-
sion of the site, without the need of installing a backend database.

Each snapshot was modified by hand in order to include the ad-hoc
code required for our experiments, and to diversify the content, the
appearance, and the images shown in each page.

Our test files were deployed in the /osco subdirectory of every
hosting account we registered, while the home page of each domain
showed only an empty page with the message "Coming soon...".
We did not create any link to the /osco subdirectory, and we ex-
cluded the possibility for web spiders to visit our test case websites
by denying any robot access using the robots.txt file. This
was done in order to avoid external visits to our test case websites,
which could have interfered with our tests.

Intentionally installing and exploiting vulnerable web applica-
tions on shared hosting accounts may raise some ethical and legal
concerns. For this reason, we carefully designed our tests to resem-
ble real compromised websites - being at the same time completely
harmless for both the provider and other Internet users. For exam-
ple, we modified the application code to mimic an existing vulner-
ability but, compared to their real counterparts, our code was exe-
cuted only when an additional POST parameter contained a pass-
word that we hardcoded in the application, thus allowing only us to
exploit the bug.

2.1.1 SQL Injection and Data Exfiltration (SQLi)
The first test case aimed at detecting whether web hosting pro-

viders detect or block SQL injection and data exfiltration attacks
against their customers’ websites. The test consisted in deploying
the static snapshot of OsCommerce including a page that mimics
the SQL injection vulnerabilty presented in CVE-2005-4677.

Setup - The product_info.php page was modified to rec-
ognize our SQL injection attempts and respond by returning a list
of randomly generated credit card numbers along with personal de-
tails of fictious people (name, address, email, and MD5 password
hash). In order to pass the Luhn test, fake credit card numbers were
generated using an online credit card test number generator [6].

Attack - The attack for this test case was run every hour, and
consisted of a script mimicking a real SQL injection attack: first,
the fake vulnerable page (product_info.php) was visited, then
a sequence of GET requests were sent to the same page adding dif-
ferent payloads to the products_id GET parameter. The first
request simulated somebody testing for the presence of SQL in-
jection vulnerabilities by setting products_id=99’; then, five
attack requests were issued to the same page by setting the follow-
ing payloads for the vulnerable parameter:

1 : 99 ’ UNION SELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . .
c c _ e x p i r a t i o n) FROM c u s t o m e r s LIMIT 1 , 1 /∗

2 : 99 ’ UNION ALL SELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . .
c c _ e x p i r a t i o n) FROM c u s t o m e r s LIMIT 2 , 1 /∗

3 : 99 ’ UNION S /∗∗ /ELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . .
c c _ e x p i r a t i o n) FROM c u s t o m e r s LIMIT 3 , 1 /∗

4 : 99 ’ UNION S /∗∗ /ELECT n u l l ,CONCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CONCAT(cc_ type , . . .
c c _ e x p i r a t i o n) FR /∗∗ /OM c u s t o m e r s LIMIT 4 , 1 /∗

5 : 99 ’ UNION S /∗∗ /ELECT n u l l ,CO/∗∗ /NCAT(f i r s t _ n a m e , . . .
c u s t o m e r s _ p a s s w o r d) , 1 ,CO/∗∗ /NCAT(cc_ type , . . .
c c _ e x p i r a t i o n) FR /∗∗ /OM c u s t o m e r s LI /∗∗ / MIT 5 , 1 /∗

Listing 1: Payloads of fake SQL Injection requests

The purpose of these payloads was to detect whether hosting
providers employ any blacklist-based approach to detect SQL in-
jection attempts on their customers’ websites. Requests in lines
1 and 2 would fail in case the providers employ simple blacklist-
ing rules (blocking any UNION SELECT and UNION ALL SE-
LECT) in URLs. The last three requests would fail only if provid-

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

ers deploy more complex rules that are able to blacklist typical SQL
words even in case they are stuffed with comments, or if words like
FROM, CONCAT and LIMIT are blacklisted as well.

2.1.2 Remote File Upload (Web Shell) and Code In-
jection Using Web Shell (SH)

The goal of this test is to understand whether providers detect
the upload and usage of a standard PHP shell, automatic file mod-
ifications on the customer’s account, or the presence of malicious
code on the home page of the website. In the test, a fake web shell
is uploaded to the hosting account, and fake commands are issued
to it, resulting in some drive-by-download code being added to the
home page of the e-commerce web application.

Setup - This test uses the base static snapshot of the OsCom-
merce v.2.2 web application, and simulates a Remote File Upload
vulnerability in the file admin/categories.php/login.php,
as the one described in [13]. Our fake attack was designed to up-
load a modified version of the popular c99 PHP shell (one of the
most common web shells on the web), that has no harmful effects
other than the ability to inject custom code in the home page of the
e-commerce web application. Also in this case, the custom code
injection is enabled only when certain hidden parameters are speci-
fied along with the request of the c99 shell, thus allowing only us to
trigger the injection. The content to be injected in OsCommerce’s
index page is a snippet of a real malicious code launching a drive-
by download attack, that has been disabled by wrapping it into an
if statement with a complex condition that is always False. We
submitted the index page with the injected content to the VirusTotal
online virus scanning service [1], and it was detected as malicious
by 13 anti virus engines.

Attack - The test case for this attack was run every hour, and
consisted in a script performing the upload of the web shell, fol-
lowed by a number of commands issued on the shell. The shell
file, called c99.php as the original shell, in order to be easily iden-
tifiable from the web server logs, was uploaded to the vulnerable
URL by specifying the secret parameter enabling the upload. If the
upload was successful, five commands were issued to the c99.php,
picked randomly from a list of GET and POST requests contain-
ing both Unix commands and file names, so to make the requests
seem like the result of someone trying to manually explore the con-
tents of the server. The requests simulated actions such as trying
to read files (e.g., /etc/passwd) and execute unix commands
(who, uptime, uname, ls, ps). Our intuition was that hosting
providers would probably be alerted by requests containing some of
these filenames or commands. Finally, the test used the PHP shell
to inject a plaintext version of the malicious code into the home
page of OsCommerce.

2.1.3 Remote File Upload of a Phishing Kit (Phish)
Similarly to the previous test, this test uses a file upload vulner-

ability in the OsCommerce application to upload a phishing kit to
the web server. The phishing kit consists of an archive containing
a static snapshot of a real Bank of America scam. The test aims at
detecting whether hosting providers are able to detect the presence
of a phishing kit on the customer’s account. The phishing kit was
installed inside a directory named /bankofamerica.com, thus
allowing to detect any visit to the scam pages by simply looking at
the requested URLs.

Setup - This copy of the application is configured with the same
Remote File Upload vulnerability explained for the previous test.
However, the vulnerable path for this test is admin/banner_
manager.php/login.php. Whenever this script is issued an
upload request for a file with tar extension, it uploads the archive

and automatically unpacks its contents to the upload directory, thus
allowing for an automatic installation of the phishing kit. The
phishing kit we deployed is an exact copy of a real Bank of Amer-
ica phishing kit found in the wild, modified to remove the back end
code (thus making it unable to store and send any user information).

Attack - This attack was split in two phases, which we refer
to as attacker and victim. The attacker phase, run every 6 hours,
consisted in triggering the remote file upload vulnerability and up-
loading the phishing kit. The victim phase of the attack was run
four times per hour, and consisted in a script that simulated a vic-
tim falling prey of the scam. In order to look realistic, the victim
requests were disguised as coming from a range of different valid
User-Agent strings used by web browsers on Windows operating
systems. Every simulated victim visit comprised a sequence of
GET and POST requests containing the form parameters required
by the phishing pages. At each victim visit, the data sent in the
requests was randomly picked among a set of fake personal details
we created by hand, containing names, addresses, passwords and
credit card numbers of fictitious people.

2.1.4 Suspicious Network Activity: IRC Bot (Bot)
This test aims at understanding whether providers employ any

network rules to detect suspicious connection attempts to possibly
malicious services. For this study, we opted to deploy to our ac-
counts a script simulating an IRC bot. The reason for this choice
is that IRC bots are probably one of the most common and easily
detectable bots, because IRC connections are very often made to
the standard IRC port (6667) using cleartext communication.

Setup - This test uses our basic OsCommerce installation with
no modifications. The executable bot client was deployed to the
hosting account via FTP, thus simulating an attack in which the
attacker has stolen the customer’s web hosting credentials. The
files to be uploaded are two IRC client binaries written in C (one
compiled for 32-bit architectures, and one for 64-bit ones), and
a PHP script that executes the right binary depending on the un-
derlying OS type, and outputs its results. The IRC client, once
launched, disguises itself as “syslogd” and tries to connect to a ma-
chine hosted on our premises that runs a fake IRC server on the
standard IRC port. If the connection succeeds, the client and server
exchange a few messages resembling real IRC commands (such
as NICK xxx, USER xxx, JOIN #channel) and the client
reports some information about the infected machine (host name,
OS type, kernel version); at last, the client closes the connection.

Attack - The test case for Bot was run every hour, and started
with opening a FTP connection and uploading the two binaries and
the PHP file in a new directory created in the web site’s root folder.
If the upload succeeded, an HTTP request was issued to the PHP
file launching the IRC client. The output of this request allowed us
to determine whether the hosting provider was blocking the use of
possibly dangerous PHP functions (IRC client execution denied -
system() function disabled), blocking outgoing connections to cer-
tain ports (binary executed, but connection attempt failed), or al-
lowing everything (successful connection to the server). In order
to make the upload of the IRC botnet files appear even more suspi-
cious, the FTP upload was executed using IP addresses from several
different countries.

2.1.5 Known Malicious Files (AV)
This test aimed at understanding whether providers perform any

scans of their disks with off-the-shelf anti virus software. The test
simply consisted in deploying, via FTP, two common known mali-
cious files to the customer’s hosting account.

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

Test # SQLi SH Phish Bot AV
Blocked by ModSecurity # # # # -base rule set
Blocked by ModSecurity G# # # -OWASP rule set
High severity IDS alerts 5 2 2 0 0
Detectable by antiviruses no yes no no yes

Table 1: Attacks detection using freely available state-of-the-
art security scanning tools. Legend:
no; G# in part; yes (full); - not applicable

Setup - Websites hosting this test used a simpler structure than
the previous tests, and consisted in a single static HTML page con-
taining random sentences in English and a few images. As in test
Bot, we chose to use FTP to upload the malicious files to the ac-
count, to simulate a case in which the attacker has knowledge of
the customer’s account credentials. The two malicious files were
c99.php, a real c99 PHP web shell, detected on VirusTotal with a
score of 25/43 (25 antivirus engines detecting it, out of 43 it was
tested against), and sb.exe, a copy of the 2011 Ramnit worm, de-
tected by 36 out of 42 antivirus products according to VirusTotal.
In order to make sure the malicious files were not reachable by any
web visitor, but only available to people having internal access to
the server, they were uploaded to a directory protected by means of
.htaccess (denying the listing of its files) and .htpasswd (requiring
a password to access its files from the web).

Attack - The attack itself consisted simply in connecting to the
hosting account’s web space via FTP and uploading every time
(deleting and re-uploading if already present) the protected direc-
tory and the two malicious files. Also in this case, FTP connections
were issued from IP addresses in different countries.

2.2 Attack Detection Using State-of-the-Art
Tools

Before deploying the tests to the shared hosting accounts, we
made sure they could be detected using common state-of-the art
tools, that can be easily employed by any hosting provider. In or-
der to do so, we executed our tests against an installation of the Se-
curityOnion Linux distribution, which includes a preconfigured set
of open source tools for monitoring suspicious network and system
activity (Bro IDS, Snort, Sguil). The installation of this distribution
was then equipped with the Apache2 web server and the ModSecu-
rity plugin, along with its base recommended rule set.

We also installed the OWASP ModSecurity “Core Rule Set”, a
set of common security rules for Apache ModSecurity that is main-
tained by the OWASP foundation [14]. These are free certified rule
sets providing generic protection from unknown vulnerabilities of-
ten found in web applications. We installed version 2.2.5 of the
rule set on our test machine, and disabled some rule sets (base rules
number 21, 23, 30) for being too generic and generating too many
false alarms. We finally ran each of the five test cases toggling on
and off the OWASP ModSecurity rules.

Table 1 summarizes what we were able to detect or block using
this setup, during the execution of each test. Four out of the five at-
tacks would have been blocked or detected by employing free net-
work and host monitoring solutions like the ones mentioned above,
and the remaining attack could have been easily detected by setting
up a simple connection filtering rule in the firewall.

2.2.1 SQLi
The attacks of test SQLi, when run using the basic installation of

ModSecurity, succeed, but generate a series of five different high
severity alerts about possible web server SQL injection attempts.
When the OWASP rule set is enabled, however, all the five SQL
injection attempts on which the attack is built fail.

2.2.2 SH
The SH test, executed against a webserver with the basic Mod-

Security rules, successfully uploads the c99 shell and injects the
drive-by code in index.php. However, two high severity events are
raised by the IDS, one of which notifying a remote code execu-
tion on OsCommerce v.2.2 (triggered by our attack to upload of the
web shell). If the OWASP rules are enabled, the remote file upload
succeeds but most of the commands issued to the web shell fail
and raise critical alert messages, notifying the possibility of a web
file injection attack. The index file modification, finally, fails and
raises a message notifying the detection of multiple URL encod-
ings in the request, as a possible sign of protocol evasion. Finally,
it has to be noted that, although we removed all the existing func-
tionalities from the original web shell, our c99.php contains some
original PHP code to display images and UI elements, plus our
custom drive-by injection code. As such, it would still be detected
during a virus scan by approximately 17% of the antivirus engines
on the market (its VirusTotal score is 7/42). The index.php contain-
ing the injected content would instead be detected by almost 30%
of the antiviruses, having a VirusTotal detection score of 13/44.

2.2.3 Phish
This attack succeeded but raised two high severity events: po-

tential remote code execution in OsCommerce v.2.2, and presence
of PHP tags in the HTTP post (detected on the tar file contain-
ing the phishing kit). On the victim’s side, no HTTP request is
blocked when uploading personal information to the scam pages.
A possible solution to stop, or at least raise alerts on the victim’s
requests, however, could be deploying a simple IDS/IPS rule that
detects the submission of parameters containing cleartext personal
details, such as credit card numbers and cvv2 codes.

2.2.4 Bot
The Bot test case was undetected by the basic and OWASP Mod-

Security rule sets, as it was run via FTP. In our tests, the connection
succeeded and the bot and fake IRC server completed their message
exchange. A normal firewall rule blocking outgoing connections to
port 6667 (IRC) would have, however, blocked the attack.

2.2.5 AV
The malware upload test (AV) was undetected by our test de-

ployment, because no HTTP traffic was generated and no network
antivirus was used. However, as explained in Section 2.1.5, we re-
call that the uploaded c99.php and sb.exe are common malicious
files detected by VirusTotal with a detection scores of 25/42 and
36/42, respectively. Therefore, the vast majority of off-the-shelf
antiviruses would have detected them during a scan of the website’s
root directory.

2.3 Test Scheduling and Provider Solicitation
All attacks were run without interruption on every hosting ac-

count for the first 25 days of testing. As explained in the previous
section, each attack was repeated multiple times per day in order to
generate more alerts and increase the probability of being detected.

If the hosting provider did not detect any suspicious activity
during this time frame, the tests entered a second phase, during

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

which we solicited the provider to detect our attacks and take action
against them. This solicitation took place as an abuse notification
email for the Phish and AV tests, in which we reported the presence
of malicious files on the web application. We also generated “fake”
abuse notifications to study the reaction of the providers to bogus
complains.

This allowed us to understand: 1) how quickly providers respond
to abuse notifications, if they ever do, 2) if they actually verify the
presence of malicious content or activity on the account before tak-
ing any action, and 3) what kind of actions they take in order to stop
the abuse. Abuse notifications were sent to providers by email, us-
ing real (authenticated) email addresses registered on 3rd party do-
mains, to make them look as realistic notifications from random
web users.

2.3.1 Real Abuse Notifications
Starting the 25th day of testing, we started sending one abuse

complaint per day to each provider on which tests Phish and AV had
not been previously detected. We stopped the notification process
and the real attacks on the account either when the 30 day testing
period elapsed, or after the provider responded to the notification.
The notification email explained that an email had been received,
with a link pointing to content hosted on the provider’s premises.
The link pointed to the phishing kit’s index page for Phish, and to
the sb.exe file for AV test. In addition, the email mentioned that the
user’s antivirus raised an alert when trying to visit the URL, and
suggested the web provider to check the contents of the account.

2.3.2 Fake Abuse Notifications
Apart from real abuse notifications, we also sent emails in which

we complained for perfectly clean websites. To perform this test,
we cleaned and re-used the account used for the SQLi and Bot tests.
The website contents were replaced by a single static HTML page
containing one JPG picture and a long list of news extracted from
the RSS feeds of popular international news websites. Starting on
the 25th day, we sent to every provider an email per day, where the
user complained about the presence of offending or malicious con-
tent on these accounts. Since at the time these emails were sent the
websites were absolutely clean, these fake notifications allowed us
to understand whether providers actually check the veracity of the
complaints they receive before taking any action. The first com-
plaint email was from a user pretending that the website’s content
was offending his religious views, and kindly asking to stop the
website owner from spreading such disrespectful messages. In the
second scenario, the notification email was from a user claiming to
have received an email with a link to the website in question. The
user explained that his browser denied access to the URL, and that
at a closer look the website looked like hosting a phishing scam.
Also in this case, the account hosting the reported webpage was
absolutely clean, hosting only the benign static HTML home page.

One may argue that, in case of these fake notifications, the pro-
vider could react by suspending or shutting down the user account
by having a look at the logs of the machine on which the account
was setup, and noticing past malicious activity, even though, at no-
tification time, the website was clean. We did our best in order to
avoid this from happening, by deploying our tests for fake notifica-
tions on accounts that hosted the SQLi and Bot tests. These tests
could not be considered malicious (no malware nor phishing files
were ever uploaded) but the mere evidence that the website was un-
der attack. Moreover, attacks for these tests could only have been
detected at a network level, since no trace was left on the disk.

3. EVALUATION
During our experiments, we evaluated the security measures put

in place by web hosting providers to detect malicious activities,
compromised websites, and prevent abuse of their services. We
group our findings in three categories: account verification upon
signup (3.1), compromise prevention and detection capabilities on
live websites (3.2.2), and responses to abuse notifications (3.3).

3.1 Sign-up Restrictions and Security
Measures

Even though our work was not meant to test the anti-abuse signup
policies of web hosting providers, we report here some results that
may contribute in understanding how much effort providers put in
preventing services subscription by malicious users.

Several providers try to discourage abusers by asking to verify
the information entered during the signup phase, either by calling
the customers on the phone, or by requiring a scanned copy of their
documents (such as government issued ID, credit card used for the
purchase). Some providers also use 3rd party fraud protection ser-
vices, that block purchases based on a set of heuristics. For ex-
ample, we observed several cases in which the providers correlated
the geographic location of the customer, the billing information,
and the IP address used for the purchase.

The shared hosting accounts we used for our study were all reg-
istered using real personal information of people working in our
group, and the billing information of our research institute. The
sign-up process was carried out from several IP addresses, using
either credit card or PayPal payments.

Anti-abuse signup policies vary widely between hosting provid-
ers. Top global hosting providers are more cautious with regard to
signup, often blocking attempts - e.g., blocking multiple registra-
tions from the same billing address and credit card number, verify-
ing the customer’s personal information by verification phone calls
or ID and credit card checks. Regional providers seem to be more
permissive, probably because they have less incentives in making
their signup process more difficult, which could make them lose
potential customers.

Among the twelve global providers, seven of them required us
to verify our account information for at least one of the accounts
we registered with them. In order to verify our account informa-
tion, all these companies required a scanned version or photocopy
of a government issued photo identification card (such as passport
or driver’s license) and the front and back of the credit card used at
signup (without showing the first 12 numbers and the cvv2 code).
Only one out of these seven companies claimed, on its website, to
manually verify every customer’s signup before allowing the pur-
chase of its web hosting services. Indeed, this was the only provider
that verified every account we registered with them.

Regional providers, instead, do not seem to be as cautious during
the account signup phase. Only one out of ten blocked an account
creation because of a mismatch between our billing address and the
geolocation of the IP address used for registration.

Finally, three of the regional providers we tested had a very sim-
ple signup process, where users could register an account in one
click, by filling all the required personal and payment information
in one page. These providers never asked us to verify our informa-
tion upon registration, and thus could possibly be a good choice for
criminals wanting to perform abusive subscriptions.

Signup verification requests are either sent during registration or
after a successful account registration and activation. While requir-
ing an account verification upon signup can be effective in prevent-
ing malicious registrations, it can also make the hosting provider
lose potential good customers that may not have time or patience

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

Provider
Verification time

Before Before After
payment activation activation

global-2 25% - 50%
global-3 25% - 25%
global-4 33% - -
global-5 40% - -
global-6 - 33% -
global-7 100% - -
global-8 50% 25% -
regional-2 33% - -

Table 2: Account verification times. Values represent the per-
centage of verification requests on the number of accounts we
registered for each provider. “Before payment” means dur-
ing the registration process. “Before activation” means once
the client’s billing account is created, but the hosting service
is not yet active. “After activation” indicates when the host-
ing account is active and a website has possibly already been
installed.

to provide all the required information. On the other hand, requir-
ing an account verification once the service has been purchased and
set up has the drawback of temporarily suspending an account on
which a website has already possibly been deployed, thus causing
a service outage for a benign customer. During our experiments we
encountered both situations. Table 2 shows the percentage of veri-
fication requests on the number of accounts we registered for each
provider, grouped by the time at which the request was issued. Only
providers that requested at least one account verification are listed.

The table shows that, in general, most of the anti-abuse systems
send alerts and block a registration attempt during the customer’s
signup phase. This typically happens when the user enters his or
her credit card details and tries to complete the hosting purchase.
Others, instead, let the client sign up for the service and receive its
management panel credentials, but lock the web hosting service ac-
tivation until a copy of the customer’s document is received by the
support department. Two web hosting providers (global-2,3) sent
verification requests when the web hosting account was already ac-
tive and the customer’s website deployed. This caused a temporary
service disruption for the affected accounts, making their websites
unavailable for several hours. Certain providers, finally, issued ver-
ification requests at different times, probably depending on the kind
of alert they received from their abuse prevention system (global-
2,3,8).

3.2 Attack and Compromise Detection
During the first phase of our experiments, we deployed our five

test suites on every hosting provider and recorded whether the host-
ing provider took some action or contacted us to notify that mali-
cious activity was observed on our account. As explained in Sec-
tion 2.3, if no malicious activity was detected on the account during
the first 25 days, we started sending abuse notifications to the host-
ing provider, in order to stimulate a response. The results of this
second phase are summarized in Section 3.3.

To make our fake attacks look realistic, our test cases were run
automatically at certain time intervals (as explained in Section 2.1),
and the attacks were executed from different IP addresses belong-
ing to several different countries. Also, in order to avoid having
only “artificial” malicious requests in the web server logs of our ac-
counts, we generated some background traffic simulating real vis-

its to our websites. This was accomplished by developing a simple
traffic generator tool, that visited every account we deployed every
10 minutes, and randomly followed links on every website up to a
depth of 30. In the general case, this meant following an average
of 13 links on every website, thus generating a bit less than two
thousand hits per day on every active account. The machine used
for traffic generation was not used for other experiments and used
a different set of public IP addresses than the ones we used to run
the attacks.

3.2.1 Attack Prevention
Even though our study focuses on the ability of the providers to

detect compromised websites, during our experiments some of our
attacks were blocked and were therefore ineffective. In some of
these cases, we proceeded by manually compromising the account.
For example, whenever a provider denied the possibility of run-
ning test SH, we manually uploaded the drive-by download code
to the account to continue the experiment. This allowed us to test
whether the provider was able to detect the menace by scanning the
customer’s account. For the phishing attack (Phish), since it had to
be detected on a network level, we did not take such measure and
thus no manual upload was performed on accounts of providers
blocking the remote file upload.

Table 3 reports, for each test and provider, whether the web host-
ing company took any measure to prevent the attack. Such mea-
sures depend on the test case, and ranged from employing URL
blacklists to blocking outgoing connections or process executions.

URL blacklisting.
Some providers employ URL blacklists in order to prevent SQL

injection attempts (test SQLi) and remote file uploads (SH, Phish).
However, as shown in column SQLi of Table 3, none of the pro-

viders we tested were able to fully prevent our SQL injection at-
tacks. This is probably due to the adoption of simple keyword-
based blacklisting rules, that can be easily bypassed by introduc-
ing SQL comments in the middle of blacklisted keywords (such as
using “SE/**/LECT” instead of “SELECT”, as explained in Sec-
tion 2.1.1). Two providers (global-1, regional-2) blocked the first
four requests of our attacks, and other five providers were able to
block only the first two. The remaining did not adopt any SQL-
injection protection mechanism at all.

Regarding tests SH and Phish, some providers were able to pre-
vent the attack by employing URL blacklists probably containing
specific rules for the detection of common vulnerabilities on web
applications, such as the ones we employed for the tests presented
in Section 2.2, provided by the OWASP foundation. Regarding
SH, Table 3 shows that some providers were able to only partially
prevent the attack. These providers did not block the file upload
itself, but employed blacklisting rules to block some requests to the
web shell (these requests contained common file names, e.g., /etc/-
passwd, or common parameter sequences such as .php?act=cmd).

Connection and OS-level filtering.
The attack files for test Bot were first uploaded to the customer’s

account via FTP, then the fake IRC client was executed issuing a
HTTP request to a PHP file launching an executable file using the
system() PHP function. A total of 18 providers were able to fully
stop the attack: of these, 50% did so by disabling the system() func-
tion in PHP, while the remaining half firewalled outgoing connec-
tions to the IRC port.

When the attack was prevented, we were expecting some form
of notification regarding the suspicious activity. After all, it is not

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

normal that a shared hosting user has a disguised process that tries
to connect to an IRC server every hour for one month.

Two hosting providers allowed the attack only at certain peri-
ods in time (global-2 and global-6). This may due to temporary
misconfigurations on their networks or to automatic account mi-
grations over different machines with different configurations (for
example, the account running test Bot on provider global-6 con-
nected to our fake IRC server from eight different hosts during the
25 days testing period).

No prevention results are shown for test AV, as this test did not
run any attack and no filtering was done on the upload of malicious
files via FTP.

As a final remark, we noticed that, for some tests, some provid-
ers had exactly the same behavior. This is the case, for example, of
global-1 and regional-2 and global-8 and regional-3. We thus be-
lieve that these providers employ the same protection mechanisms
and web server security configurations for their shared web host-
ing solutions. These services are probably provided by third party
companies as part of common off-the-shelf security solutions.

3.2.2 Compromise Detection
Sadly, all but one of the providers we tested did not notify their

clients when their websites were compromised and were used to
perpetrate obvious malicious activities.

The only hosting provider that reacted to one of the attacks was
global-4, but that reaction happened 17 days after the beginning of
test AV. The provider properly notified the presence of a malicious
file (the c99 shell) on the user’s web hosting account. In addition,
the provider warned the user that a service suspension would oc-
cur if no reply to the alert was received by the customer support
service within 24 hours. However, the message was not mention-
ing the presence of the other malicious file on the account, namely,
sb.exe. This suggests that the alert was an automated message
resulting from a virus scan of the account, and that no human oper-
ator actually checked the contents of the directory in which the two
malicious files were stored.

We were quite surprised by our findings, as we were expecting
to have at least a few of our scenarios detected by the vast major-
ity of web hosting providers. It emerges that, on shared hosting
servers, even the most basic virus scan is not as common as one
could expect. From our measurements, we are not able to tell if
the hosting providers run antivirus systems on their shared hosting
servers. However, if they do, they are either using outdated signa-
ture definitions, or the frequency at which they perform the scans
is less than once a month.

3.3 Solicitation Reactions
As explained in detail in Section 2.3, whenever one of our test

suites was not detected by the hosting provider for 25 consecutive
days, we started sending daily abuse notification emails to the pro-
vider’s abuse contact. The purpose of sending these messages was
to understand whether web hosting providers respond and react to
abuse notifications (e.g., by suspending a compromised account or
notifying the customer of his or her website being compromised).
To complete our test, we also sent fake abuse notifications for per-
fectly clean webpages, with the aim of understanding whether any
providers take action without first verifying the claims. This would
pose a serious menace, as it would be a very easy and effective
way to conduct a Denial of Service attack against websites of other
users. The following paragraphs are meant to give some insights
and details on what is presented in the “Solicitation Reaction” sec-
tion of Table 3.

3.3.1 Abuse Notifications
Unfortunately, 50% of both the global and regional web host-

ing providers never replied to any of the real abuse notifications we
sent. This percentage is quite alarming, and means that if a website
is hosting malicious content (such as phishing or malware), no ac-
tion will be taken to stop it from spreading and reaching its victims.
Moreover, phishing attacks and malware files used in dropzones
usually have a short lifetime, and, as such, even a late response to
a malware or phishing abuse notification would have little or no
effect on the general outcome of the attack.

Seven out of the eleven providers that replied to our complaints
replied either the same day or the day after the notification was sent.
This is a good indicator, meaning that these companies probably
care about web abuses and are able to handle these issues in a timely
manner. The only provider that replied later than 5 days after the
notification was regional-5, with an average response time of 16
days. After such a long delay any action would be basically useless,
as the website may have completely changed in the meantime.

There were a variety of reactions to our abuse complaints. The
most common approach was to temporary suspend the customer’s
account, with five companies performing at least one suspension
as result of a malware or phishing abuse complaint. We consider
this action a reasonable response to the abuse, causing a temporary
disruption of the services the client is paying for, but blocking the
immediate threat. Other providers responded to the notifications by
cleaning up the account, removing the suspicious files (4 providers
- note that this action seems to be more common among regional
providers), or by forwarding the abuse notification to the customer
(1 case). We considered such responses, in general, to be appro-
priate to stop the menaces from spreading, and at the same time
avoiding to impact too much the user’s services.

Provider global-12 reacted without notifying the website’s owner:
in the case of AV, the account was terminated, while in the case of
phishing (Phish), the directory containing the fake phishing kit was
removed. Also in the case of provider regional-6, actions were
taken without notifying the user, with the exception that, in this
case, the reactions to the abuse notifications consisted in deleting
all the files (including the clean ones) of the user’s websites!

Controversial responses to our abuse notifications were those
from providers that sent ultimatums to the user (marked with U,
in the table), warning him that offending content had been found
on his website, and that if no cleanup was performed within a few
hours, the account would have been suspended. This was contro-
versial because, as in the case of provider global-6, even though we
did not take any action to respond to the provider ultimatum, the
fake phishing pages were still present on our account after several
days. This means that the provider did not keep to its commitment.

Finally, a few responses were partially or fully unsatisfying. The
regional-3 provider replied to the malware abuse complaint proba-
bly after scanning the customer’s account using an antivirus. The
reply stated that a c99 PHP shell had been found on the account,
and asked the notifier if he wanted them to remove it. The ma-
licious executable was not mentioned at all and no further action
was taken, thus leaving both malicious files on the account. The
case of providers global-2, global-3 and global-5 is quite particular.
While experiments were in progress on most of the providers, and
once our tests Phish and AV reached their 25th day on global-2 and
global-5, notifications were sent to the two providers. First, pro-
vider global-5 replied by terminating the account (disabling both
the billing and the hosting account) and giving the customer 15
days to reply and to recover his files. We replied, asking to re-
enable the account for recovering our files, but in the meanwhile
another abuse response was received from provider global-2, ter-

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

Provider
Account Attack Prevention/Detection (days) Solicitation Reaction

verification SQLi SH Phish Bot AV Abuse Fake abuse Avg. reply
complaint complaint delay (days)

global-1 # G#/ # / # / - / # - / # # N N -
global-2 G# #/ # #/ # #/ # G#/ # - / # # T - - 1
global-3 G# - / - #/ # #/ # / # - / # # N/T - - -
global-4 G# #/ # #/ # #/ # / # - / (17) S G# U 0
global-5 G# - / - #/ # #/ # / # - / # # T - - 0
global-6 G# #/ # #/ # #/ # G#/ # - / # # U O 2
global-7 G#/ # #/ # #/ # / # - / # # N N -
global-8 G# G#/ # #/ # / - / # - / # # N N -
global-9 # #/ # / # / - / # - / # # N N -
global-10 # #/ # / # / - / # - / # G# S N 4
global-11 # #/ # #/ # #/ # / # - / # # N N -
global-12 # #/ # #/ # #/ # #/ # - / # G# T,C O 0
regional-1 # G#/ # G#/ # #/ # / # - / # S,C # S 0
regional-2 G# G#/ # / # / - / # - / # # N N -
regional-3 # G#/ # #/ # / - / # - / # G# O,C O 0
regional-4 # #/ # #/ # #/ # #/ # - / # # N N -
regional-5 # #/ # #/ # #/ # / # - / # G# S O 16
regional-6 # G#/ # G#/ # #/ # / # - / # G# C # C 1
regional-7 # #/ # #/ # #/ # / # - / # # N G# U 5
regional-8 # #/ # #/ # #/ # / # - / # S,F O 1
regional-9 # #/ # #/ # #/ # / # - / # # N N -
regional-10 # #/ # #/ # #/ # / # - / # # N # P 0

Table 3: The results of our study. Legend:
- not applicable
no / not satisfying
G# in part / partly satisfying
 yes (full) / satisfying

N no reply P forced password reset
S account suspension C cleanup or file removal
T account termination U ultimatum to the user
F complaint email forwarded O reply but no action

minating our account. Starting that moment, within a few hours,
all the accounts we had registered on providers global-2, global-3
and global-5 were terminated without any explanation, even when
we tried to contact the companies to ask details about the reasons of
our accounts’ termination. The only response we were able to get
was: “Due to certain items contained in the account information,
this account was flagged for fraud. For security reasons, this flag
caused the system to delete your account. At this time we ask you
to seek out a new hosting company.”

Either the three companies used the same support service, pro-
vided by a third party, or they shared information between them. In-
deed, the termination notifications for all the accounts on the three
providers were sent by the same support representatives, and con-
tained exactly the same text (only the email signature changed, con-
taining the email and postal address of the appropriate company).
For this reason, we expect the support center for these companies
was able to link our accounts’ personal information and understand
they were all registered by the same group of individuals. Thus,
having received complaints for two of the accounts, all the other
accounts that could have been reasonably linked to them were ter-
minated as well.

When this happened, some test cases had not been deployed yet
on these providers (SQLi on global-3, global-5) and others had not
yet reached their 25th day of execution (Phish on all, and SQLi
on global-2), thus no fake abuse notifications were sent for them.
This explains why Table 3 has missing data for such providers in
columns “SQLi” and “Fake abuse complaint”. This is also why in
the “Abuse complaint” cell for provider global-3, we listed N/T:

no abuse notification response was received (N), but a termination
occurred anyway (T) for other reasons.

Finally, for provider global-9, we were not able to properly con-
tact its abuse department: out of the four different abuse notifica-
tions we sent to its abuse email address, only the last two received
an automated reply, saying that in order to report an abuse, it is
necessary to click on the help link on the web hosting provider’s
home page and follow a series of steps (at the time we received
these responses, the five-days testing period was already expired).
We flagged this case as “no reply” because, although we tried to
submit the complaints following the company’s advice, the user in-
terface adopted by the provider makes it very difficult, even for an
experienced user, to find the right way to report a website abuse.
Moreover, once a visitor is able to reach the right page for submit-
ting a website abuse notification, he or she is required to register an
account before being able to file a complaint.

3.3.2 Fake Abuse Notifications
We expected most web hosting providers to ignore our abuse

notifications regarding “offending content” (see 2.3) and to check
the website’s contents but take no action in case of the fake phishing
complaints. In Table 3, we thus marked as “satisfying” also the
providers that never replied to our complaints. However, this is
not always a good sign, especially when the same provided never
responded to the real complaints.

Sadly, some of the reactions we observed were clearly in con-
trast with our expectations. Both providers marked with “U” be-
lieved either our religious complaint (global-4) or our phishing

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

one (regional-7), warning the website owner about the possibil-
ity for his account to be suspended if the offending content was
not removed within a few days. However, contrarily to what was
promised, the content of the websites was left untouched and none
of these providers took any action to block the user’s account after
the ultimatum expired.

One provider, regional-1, suspended one of our clean accounts
on the same day it was notified as hosting a phishing website.
regional-6, instead, acted as in the case of real abuse complaints: all
the pages on the account’s web hosting directory were deleted, and
the website’s home page was replaced by an “under construction”
page. This was already bad when associated to a real malicious
content, but in case of a bogus complaint it is really an unacceptable
behavior. One last provider, then, responded to the fake phishing
abuse notification by sending the website owner an email stating
that his website has been attacked, and as such a password reset
had been forced on the account. Furthermore, the malicious files
were disabled (by means of changing their access permissions) and
their list was sent to the user: the list contained the benign web-
site home page and the jpeg picture included in it. We were not
able to figure out how the web hosting provider assumed the static
HTML home page and the picture could contain malicious code.

Only four web hosting providers replied to our fake abuse noti-
fications with messages that completely satisfied our expectations.
In these cases, marked with “O” in the table, the support representa-
tive informed the notifier that upon manual inspection, the website
seemed to be clean, and, in case some content seems to be offend-
ing somebody’s cultural views, the issue has to be resolved in per-
son by contacting the owner of the website. From this analysis it
seems that regional providers are slightly more likely to perform a
manual content inspection on the websites they host (at least 30%
of the ones we tested), compared to global providers (only two out
of twelve).

3.4 Re-Activation Policies
Whenever an hosting account was suspended, providers often

provide the customer with the steps to follow in order to have the
account re-activated. These steps usually imply changing every
password of the account (billing, FTP, database passwords, etc.),
writing a letter or an email stating the agreement to the provider’s
Terms of Service, and removing the malicious files or re-installing
a clean copy of the website. Among the companies that suspended
our accounts, global hosting providers seem to stick to strict legal
requirements before allowing customers to have their accounts re-
activated after a violation of the terms of service. The two hosting
providers that suspended at least one of our accounts required us
to send an email (global-4) or a scanned letter or fax (global-10)
to their support department, stating that we have followed all the
necessary steps to clean up our account and reset our login cre-
dentials, and that in future we will abide by the terms of service
of the company. Regional providers appear to be more “informal”
with regard to this, as often a simple email replying to the incident
notification, explaining that we were running a vulnerable web ap-
plication or using a weak FTP password, was sufficient to have our
account re-activated. Also regional providers, however, in their in-
cident notifications, advised the user to follow basic steps to secure
his account (password change, website cleanup) before requesting
a service re-activation. During our tests on regional-1, in one case,
a scanned version of the customer’s identification card was required
in order to re-activate a suspended account.

Finally, in the case of service terminations, the providers just
wanted the user to leave their company, replying to service re-
activation requests with emails stating in that, given the kind of

activity encountered on the account, the company was not willing
anymore to provide their service to such customers.

3.5 Security Add-on Services
In our study, we also evaluated the ability of third party “add-on

security providers” to detect attacks or abuses on a website. These
services can be purchased separately from web hosting accounts∗,
and associated with a domain or website to monitor. In some cases,
the subscriber has even the option to give his FTP/SFTP access cre-
dentials to the security service, to allow an in-depth scan of all the
files on his or her account (also those that may not be reachable
from the web). For our study, we selected four companies offer-
ing such security services, chosen among the most common and
advertised on the web. We limited our choice to services that are
affordable for a personal or small business use ($30/month max
subscription price). We did so in order to test services that are in
line with the level of web hosting we were testing. Indeed, it would
not be reasonable to pay hundreds of dollars per month, or more, to
protect a $10/month hosting plan.

Some of the add-on companies we evaluated are proposing sev-
eral level of service, at different pricing. We thus registered every
protection level available, up to the $30/month threshold we had
fixed, ending up registering a total of six security add-on services
(two each from the companies offering multiple levels of protec-
tion). Six additional hosting accounts were purchased, from differ-
ent companies, in order to accommodate our tests for these security
services. In the following, we refer to them as sec-1 through sec-4.
The two variants for companies offering different levels of protec-
tion are labeled with a -basic or -pro suffix, to distinguish, respec-
tively, the cheapest version of the service from the more expensive
one. Services in the -pro version, for both providers sec-1 and sec-
2, allow to scan, daily, all the files on the customer’s FTP hosting
account, if they are provided with his or her access credentials. We
configured both services to enable this kind of scans. The other four
security services, contrarily, perform only scans on publicly acces-
sible pages of the websites they are configured to monitor. Such
scans include, in most of the cases, checking for malware, mali-
cious links, blacklisted pages, and performing reputation checks on
both the website and the provider hosting its contents.

3.5.1 Evaluation of the Security Services
The security services’ evaluation schedule was tighter than the

normal test evaluation schedule, as we expected security add-on
services to react faster to attacks and suspicious account activities,
being specially designed for detecting security issues. Thus, the
tests on accounts hosting the security add-on services were run for
a total duration of 50 days, 10 days for each test, from SH to AV.
The SQL injection test was not run on such web hosting accounts,
because its attack does not generate any side effect on the host-
ing account and thus could not be detected by third party external
security services.

We noticed that two of the companies providing the add-on secu-
rity services are listed among the partners of known URL blacklist-
ing services. We therefore used the last 10 days of testing to study
reactions to the notification of suspicious URLs to such blacklists.
For this, we scheduled a last test consisting in a new deployment
of SH, along with the submission of its drive-by download page
to a few malicious URL reporting and blacklisting services. The

∗Although these services can be purchased separately, several web
hosting providers offer security services from third party compa-
nies at a discounted price, if purchased in conjunction with a web
hosting plan.

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

Provider Attack Detection
SH Phish Bot AV SH-BL

sec-1-basic # # # # #
sec-1-pro # # # G#
sec-2-basic # # # # #
sec-2-pro # # # # #
sec-3 # # # # #
sec-4 # # # # #

Table 4: Results of our evaluation of third party security ser-
vices. Symbols and their meanings are the same as in Table 3.

URL blacklisting requests were sent on the same day the tests were
deployed. We refer to this test as “SH-BL”.

Results are shown in Table 4. One can see that detection ca-
pabilities for add-on services are comparable to those of providers.
However, in this case, customers pay for a service whose only com-
mitment should be monitoring a website in search of potential vul-
nerabilities or malicious content. Almost all the services we tested
in this part of our study seem to completely fail this objective.

All the services were configured to send notifications to the user
whenever a security issue was detected on the monitored website.
None of the add-on security services detected anything anomalous
during our tests SH, Phish, Bot (attacks were all successful and
never blocked by the hosting provider). Test AV was not detected
either, but the sec-1-pro service raised a warning for having de-
tected the c99 web shell on our hosting account. However, this alert
was visible only when logged on the security service’s web man-
agement panel, where the c99.php file was listed as suspicious. No
critical alerts were issued, nor any email was sent to the user as no-
tification for this event. Finally, the only successful detection was
performed by the sec-1-pro service, detecting our drive-by down-
load page the day following our blacklisting request for its URL. As
the sec-1 security company was listed as one of the partners of the
blacklisting service, we expect that our URL blacklisting request
was forwarded to the security service right after our submission,
thus allowing a timely detection.

4. RELATED WORK
Several works have studied the threats that affect websites all

around the world as well as users visiting infected pages [15–17].
Research has been focusing also on the ways in which criminals
exploit search engines in order to reach their victims, by poisoning
search results for popular queries [7]. Other papers have explored
how similar techniques are used in order to find vulnerable web-
sites [12] and web servers [8]. Researchers have also studied how
all these activities are combined by criminals in order to be able
to conduct attack campaigns in which tens of thousands of hosts
are infected [18]. Canali et al. [3] studied the behavior of actual
attackers on the web, by installing vulnerable web applications in a
controlled environment.

Bau et al. [2] evaluated current commercial tools for detecting
vulnerabilities in web applications. Such tools mainly rely on black-
box approaches, and are not able to find all possible vulnerabilities.

Recently, a web hosting provider [5] anounced an improvement
of his hosting offer by adding free automated website vulnerability
scanning, fixing and recovery. Such service is premsumably run-
ning as white-box approach on the network and server side. This
service is related to what, in our work, we refer to as “add-on” se-
curity services. Unfortunately, this service was announced when

our experiments were already completed, and it was therefore not
possible to integrate it into our results.

Commtouch [4] surveyed 600 compromised websites owners and,
among other things, reported on the process by which the websites
owners became aware of the compromise. However, this was done
with a publicly advertised pool on detected compromised websites
and may therfore be biased.

Finally, some past work bas been focusing on studying the take-
down process employed in the case of phishing websites [10, 11].
This is related to some of the findings we reported in Section 3.3,
but is aimed at studying the phenomenon at a ISP and hosting pro-
vider level, rather than analyzing the providers’ responses one by
one and provide details on how they react to abuse notifications.

To our knowledge, this paper is the first attempt to systematically
study, on a worldwide scale, how web hosting providers act with
regard to the security of their customers and of their own infras-
tructure - focusing in particular on the detection of compromised
accounts, rather than the presence of vulnerabilities.

5. LESSONS LEARNED, CONCLUSIONS
We can summarize the main findings of our experiments around

the following five points:
Registration - Top providers invest a considerable effort to col-

lect information about the users who register with them. This pro-
cedure can be an effective technique to prevent criminals from host-
ing their malicious pages on those providers.

Prevention - About 40% of the providers deployed some kind of
security mechanism to block simple attacks, ranging from SQL in-
jections to exploitation of common web application vulnerabilities.

Detection - Once the customer is registered, most of the provid-
ers do nothing to detect malicious activities or compromised web-
sites - therefore providing very little help to their customers. We
were surprised to discover that 21 out of the 22 tested providers did
not even run an antivirus once per month (or they run them with
old or insufficient signature sets) on the hosted websites. More-
over, none of them considered suspicious having multiple outgoing
connection attempts towards an IRC server.

Abuse Notification - Only 36% of the providers reacted to our
abuse notifications. When they promptly replied, most of the time
their reaction was inappropriate or excessive. None of the global
providers and only one of the regional ones were able to properly
manage both the real and the fake complaints in a timely manner.

Security Services - The use of inexpensive security add-on ser-
vices did not provide any additional layer of security in our exper-
iments. Also the services that were configured to scan the content
of our sites via FTP failed to discover the malicious files.

The main differences between global and regional providers ap-
peared to be in terms of registration verification (in favor of global
providers) and reaction to real complaints (in favor of regional
ones).

As we already mentioned in the introduction of this paper, web
hosting providers are in the position to play a key role in the secu-
rity of the Web. In fact, they host millions of websites that are often
poorly managed by unexperienced users, and that are likely to be
compromised to spread malware and host phishing kits. Unfortu-
nately, all the shared web hosting providers we tested in our study
missed this opportunity.

6. ACKNOWLEDGEMENTS
The research leading to these results has received funding from

the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement n◦257007.

This is a preprint of an Article accepted for publication in WWW ’13 c©2013 International World Wide Web Conference Committee

7. REFERENCES
[1] VirusTotal - Free Online Virus, Malware and URL Scanner.

https://www.virustotal.com/.
[2] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the

art: Automated black-box web application vulnerability
testing. In Security and Privacy (SP), 2010 IEEE Symposium
on, pages 332–345. IEEE, 2010.

[3] D. Canali and D. Balzarotti. Behind the scenes of online
attacks: an analysis of exploitation behaviors on the web. In
Proceedings of the 20th Annual Network and Distributed
System Security Symposium, NDSS ’13, Feb. 2013.

[4] Commtouch and StopBadware. Compromised Websites - An
Owner’s Perspective.
http://stopbadware.org/pdfs/compromised-
websites-an-owners-perspective.pdf,
February 2012.

[5] W. de Vries. Hosting provider antagonist automatically fixes
vulnerabilities in customers’ websites. https://www.
antagonist.nl/blog/2012/11/hosting-
provider-antagonist-automatically-fixes-
vulnerabilities-in-customers-websites,
November 2012.

[6] fyicenter.com. Credit card number generator - test data
generation. http:
//sqa.fyicenter.com/Online_Test_Tools/
Test_Credit_Card_Number_Generator.php,
2010.

[7] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
deseo: combating search-result poisoning. In Proceedings of
the 20th USENIX conference on Security, SEC’11, pages
20–20, Berkeley, CA, USA, 2011. USENIX Association.

[8] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
Heat-seeking honeypots: design and experience. In
Proceedings of the 20th international conference on World
wide web, WWW ’11, pages 207–216, New York, NY, USA,
2011. ACM.

[9] Larry Ullman. Understand your hosting, five critical
e-commerce security tips in five days. Peachpit Blog, 2011.
http://www.peachpit.com/blogs/blog.aspx?
uk=Understand-Your-Hosting-Five-

Critical-E-Commerce-Security-Tips-in-
Five-Days.

[10] T. Moore and R. Clayton. Examining the impact of website
take-down on phishing. In Proceedings of the anti-phishing
working groups 2nd annual eCrime researchers summit,
eCrime ’07, pages 1–13, New York, NY, USA, 2007. ACM.

[11] T. Moore and R. Clayton. The consequence of
non-cooperation in the fight against phishing. In eCrime
Researchers Summit, 2008, pages 1 –14, oct. 2008.

[12] T. Moore and R. Clayton. Financial cryptography and data
security. chapter Evil Searching: Compromise and
Recompromise of Internet Hosts for Phishing, pages
256–272. Springer-Verlag, Berlin, Heidelberg, 2009.

[13] Number 7. osCommerce ’categories.php’ Arbitrary File
Upload Vulnerability, November 2010. http:
//www.securityfocus.com/bid/44995/info.

[14] OWASP foundation and TrustWave SpiderLabs. Owasp
modsecurity core rule set project. https:
//www.owasp.org/index.php/Category:
OWASP_ModSecurity_Core_Rule_Set_Project,
2012.

[15] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.
All your iframes point to us. In Proceedings of the 17th
conference on Security symposium, SS’08, pages 1–15,
Berkeley, CA, USA, 2008. USENIX Association.

[16] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser analysis of
web-based malware. In Proceedings of the first conference
on First Workshop on Hot Topics in Understanding Botnets,
HotBots’07, pages 4–4, Berkeley, CA, USA, 2007. USENIX
Association.

[17] N. Provos, M. A. Rajab, and P. Mavrommatis. Cybercrime
2.0: When the cloud turns dark. Queue, 7(2):46–47, Feb.
2009.

[18] B. Stone-Gross, M. Cova, C. Kruegel, and G. Vigna. Peering
through the iframe. In INFOCOM, 2011 Proceedings IEEE,
pages 411 –415, april 2011.

[19] webhosting.info. Country-wise top hosts.
http://www.webhosting.info/webhosts/
tophosts/Country/, 2012.

Behind the Scenes of Online Attacks:
an Analysis of Exploitation Behaviors on the Web

Davide Canali
EURECOM, France
canali@eurecom.fr

Davide Balzarotti
EURECOM, France

balzarotti@eurecom.fr

Abstract

Web attacks are nowadays one of the major threats on the
Internet, and several studies have analyzed them, providing
details on how they are performed and how they spread.
However, no study seems to have sufficiently analyzed the
typical behavior of an attacker after a website has been
compromised.

This paper presents the design, implementation, and de-
ployment of a network of 500 fully functional honeypot web-
sites, hosting a range of different services, whose aim is to
attract attackers and collect information on what they do
during and after their attacks. In 100 days of experiments,
our system automatically collected, normalized, and clus-
tered over 85,000 files that were created during approxi-
mately 6,000 attacks. Labeling the clusters allowed us to
draw a general picture of the attack landscape, identifying
the behavior behind each action performed both during and
after the exploitation of a web application.

1 Introduction

Web attacks are one of the most important sources of
loss of financial and intellectual property. In the last years,
such attacks have been evolving in number and sophisti-
cation, targeting governments and high profile companies,
stealing valuable personal user information and causing fi-
nancial losses of millions of euros. Moreover, the number
of people browsing the web through computers, tablets and
smartphones is constantly increasing, making web-related
attacks a very appealing target for criminals.

This trend is also reflected in the topic of academic re-
search. In fact, a quick look at the papers published in the
last few years shows how a large number of them cover
web-related attacks and defenses. Some of these studies fo-
cus on common vulnerabilities related to web applications,
web servers, or web browsers, and on the way these compo-
nents get compromised. Others dissect and analyze the in-

ternals of specific attack campaigns [13, 5, 17], or propose
new protection mechanisms to mitigate existing attacks.

The result is that almost all the web infections panorama
has been studied in detail: how attackers scan the web or
use google dorks to find vulnerable applications, how they
run automated attacks, and how they deliver malicious con-
tent to the final users. However, there is still a missing piece
in the puzzle. In fact, no academic work seems to have suf-
ficiently detailed the behavior of an average attacker during
and after a website is compromised. Sometimes the attack-
ers are only after the information stored in the service it-
self, for instance when the goal is to steal user credentials
through a SQL injection. But in the majority of the cases,
the attacker wants to maintain access to the compromised
machine and include it as part of a larger malicious infras-
tructure (e.g., to act as a C&C server for a botnet or to de-
liver malicious documents to the users who visit the page).

While the recent literature often focuses on catchy top-
ics, such as drive-by-downloads and black-hat SEO, this is
just the tip of the iceberg. In fact, there is a wide variety
of malicious activities performed on the Internet on a daily
basis, with goals that are often different from those of the
high-profile cyber criminals who attract the media and the
security firms’ attention.

The main reason for which no previous work was done
in this direction of research is that almost all of the existing
projects based on web honeypots use fake, or ’mock’ appli-
cations. This means that no real attacks can be performed
and thus, in the general case, that all the steps that would
commonly be performed by the attacker after the exploita-
tion will be missed.

As a result, to better understand the motivation of the
various classes of attackers, antivirus companies have often
relied on the information reported by their clients. For ex-
ample, in a recent survey conducted by Commtouch and the
StopBadware organization [7], 600 owners of compromised
websites have been asked to fill a questionnaire to report
what the attacker did after exploiting the website. The re-
sults are interesting, but the approach cannot be automated,
it is difficult to repeat, and there is no guarantee that the

users (most of the time not experts in security) were able to
successfully distinguish one class of attack from the other.

In this paper we provide, for the first time, a compre-
hensive and aggregate study of the behavior of attackers on
the web. We focus our analysis on two separate aspects: i)
the exploitation phase, in which we investigate how attacks
are perfomed until the point where the application is com-
promised, and ii) the post-exploitation phase, in which we
examine what attackers do after they take control of the ap-
plication. The first part deals with methods and techniques
(i.e., the “how”) used to attack web applications, while the
second part tries to infer the reasons and goals (i.e., the
“why”) behind such attacks.

For this reason, in this paper we do not analyze common
SQL injections or cross-site scripting vulnerabilities. In-
stead, our honeypot is tailored to attract and monitor crimi-
nals that are interested in gaining (and maintaining) control
of web applications. Our results show interesting trends on
the way in which the majority of such attacks are performed
in the wild. For example, we identify 4 separate phases and
13 different goals that are commonly pursued by the attack-
ers. Within the limits of the available space, we also provide
some insights into a few interesting attack scenarios that we
identified during the operation of our honeypots.

The remainder of the paper is organized as follows: in
Section 2 we explore the current state of the art concerning
web honeypots and the detection and analysis of web at-
tacks. Section 3 describes the architecture of the honeypot
network we deployed for our study; Section 4 gives more
details about the deployment of the system and the way we
collected data during our experiments. Finally, Section 5
and Section 6 summarize the results of our study in term
of exploitation and post-exploitation behaviors. Section 7
concludes the paper and provides ideas on future directions
in the field.

2 Related Work

Honeypots are nowadays the tool of choice to detect at-
tacks and suspicious behaviors on the Internet. They can be
classified in two categories: client honeypots, which detect
exploits by actively visiting websites or executing files, and
server honeypots, which attract the attackers by exposing
one or more vulnerable (or apparently vulnerable) services.

In this study, we are mainly interested in the second
category, since our aim is to study the behavior of at-
tackers after a web service has been compromised. Sev-
eral server-side honeypots have been proposed in the past
years, allowing for the deployment of honeypots for virtu-
ally any possible service. In particular, we can distinguish
two main classes: high-interaction and low-interaction hon-
eypots. The first only simulate services, and thus can
observe incoming attacks but cannot be really exploited.

These honeypots usually have limited capabilities, but are
very useful to gather information about network probes and
automated attack activities. Examples of these are hon-
eyd [21], Leurre.com [20] and SGNET [16], which are able
to emulate several operating systems and services. High-
interaction honeypots [19], on the other hand, present to
the attacker a fully functional environment that can be ex-
ploited. This kind of honeypot is much more useful to get
insights into the modus operandi of attackers, but usually
comes with high setup and maintenance costs. Due to the
fact that they can be exploited, high-interaction honeypots
are usually deployed as virtual machines, allowing their
original state to be restored after a compromise.

The study of attacks against web applications is often
done through the deployment of web honeypots. Exam-
ples of low-interaction web honeypots are the Google Hack
Honeypot [3] (designed to attract attackers that use search
engines to find vulnerable web applications), Glastopf [24]
and the DShield Web Honeypot project [4], all based on the
idea of using templates or patterns in order to mimic several
vulnerable web applications. Another interesting approach
for creating low interaction web honeypots has been pro-
posed by John et al. [14]: with the aid of search engines’
logs, this system is able to identify malicious queries from
attackers and automatically generate and deploy honeypot
pages responding to the observed search criteria. Unfortu-
nately, the results that can be collected by low-interaction
solutions are limited to visits from crawlers and automated
scripts. Any manual interaction with the system will be
missed, because humans can quickly realize the system is
a trap and not a real functional application. Apart from this,
the study presented in [14] collected some interesting in-
sights about automated attacks. For example, the authors
found that the median time for honeypot pages to be at-
tacked after they have been crawled by a search engine spi-
der is 12 days, and that local file disclosure vulnerabilities
seem to be the most sought after by attackers, accounting
to more than 40% of the malicious requests received by
their heat-seeking honeypots. Other very common attack
patterns were trying to access specific files (e.g., web ap-
plication installation scripts), and looking for remote file
inclusion vulnerabilities. A common characteristic of all
these patterns is that they are very suitable for an automatic
attack, as they only require to access some fixed paths or
trying to inject precomputed data in URL query strings.
The authors also proposed a setup that is similar to the one
adopted in this paper, but they decided to not implement it
due to the their concerns about the possibility for attackers
to use infected honeypot machines as a stepping stone for
other attacks. We explain how we deal with this aspect in
Section 3.1.

If interested in studying the real behavior of attackers,
one has to take a different approach based on high interac-

tion honeypots. A first attempt in this direction was done
by the HIHAT toolkit [18]. Unfortunately, the evaluation
of the tool did not contain any interesting finding, as it was
run for few days only and the honeypot received only 8000
hits, mostly from benign crawlers. To the best of our knowl-
edge, our study is the first large scale evaluation of the post-
exploitation behavior of attackers on the web.

However, some similar work has been done on catego-
rizing the attackers’ behavior on interactive shells of high-
interaction honeypots running SSH [19, 23]. Some inter-
esting findings of these studies are that attackers seem to
specialize their machines for some specific tasks (i.e., scans
and SSH bruteforce attacks are run from machines that are
different from the ones used for intrusion), and that many
of them do not act as knowledgeable users, using very simi-
lar attack methods and sequences of commands, suggesting
that most attackers are actually following cookbooks that
can be found on the Internet. Also, the commands issued
on these SSH honeypots highlight that the main activities
performed on the systems were checking the software con-
figuration, and trying to install malicious software, such as
botnet scripts. As we describe in Section 6, we also ob-
served similar behaviors in our study.

Finally, part of our study concerns the categorization of
files uploaded to our honeypots. Several papers have been
published on how to detect similarities between source code
files, especially for plagiarism detection [6, 26]. Other sim-
ilarity frameworks have been proposed for the detection
of similarities between images and other multimedia for-
mats, mostly for the same purpose. Unfortunately, we saw
a great variety of files uploaded to our honeypots, and many
of them consisted in obfuscated source code (that renders
most plagiarism detection methods useless), binary data or
archives. Also, many of the proposed plagiarism detection
tools and algorithms are very resource-demanding, and dif-
ficult to apply to large datasets. These reasons make the
plagiarism detection approaches unsuitable for our needs.
The problem of classifying and fingerprinting files of any
type has, however, been studied in the area of forensics.
In particular, some studies based on the idea of similarity
digest have been published in the last few years [15, 25].
These approaches have been proven to be reliable and fast
with regard to the detection of similarities between files of
any kind, being based on the byte-stream representation of
data. We chose to follow this approach, and use the two
tools proposed in [15, 25], for our work.

3 HoneyProxy

Our honeypot system is composed of a number of web-
sites (500 in our experiments), each containing the instal-
lation of five among the most common - and notoriously
vulnerable - content management systems, 17 pre-installed

PHP web shells, and a static web site.
We mitigated the problem of managing a large number

of independent installations by hosting all the web appli-
cations in our facilities, in seven isolated virtual machines
running on a VMWare Server. On the hosting provider side
we installed only an ad-hoc proxy script (HoneyProxy) in
charge of forwarding all the received traffic to the right VM
on our server. This allowed us to centralize the data collec-
tion while still being able to distinguish the requests from
distinct hosts. A high-level overview of the system is shown
in Figure 1.

The PHP proxy adds two custom headers to each request
it receives from a visitor:

• X-Forwarded-For: this standard header, which is used
in general by proxies, is set to the real IP address of
the client. In case the client arrives with this header
already set, the final X-Forwarded-For will list all the
previous IPs seen, keeping thus track of all the proxies
traversed by the client.

• X-Server-Path: this custom header is set by the PHP
proxy in order to make it possible, for us, to under-
stand the domain of provenance of the request when
analyzing the request logs on the virtual machines.
An example of such an entry is: X-Server-Path:
http://sub1.site.com/

These two headers are transmitted for tracking purposes
only between the hosting provider’s webserver and the hon-
eypot VM’s webserver, and thus are not visible to the users
of the HoneyProxy.

3.1 Containment

Each virtual machine was properly set up to contain the
attackers and prevent them from causing any harm outside
our honeypot. In particular, we blocked outgoing connec-
tions (which could otherwise result in attacks to external
hosts), patched the source code of the vulnerable blog and
forum applications to hide messages posted by spammers
(that could result in advertising malicious links), and tuned
the filesystem privileges to allow attackers to perpetrate
their attacks, but not to take control of the machine or to
modify the main source files of each application. Still, the
danger of hosting malicious files uploaded by attackers ex-
ists, and we tackle this problem by restoring every virtual
machine to its pristine state at regular time intervals.

In the following lines, we briefly explain the possible
abuses that can be perpetrated on a honeypot machine and
present our way to prevent or mitigate them.

• Gaining high privileges on the machine. We tackle
this problem by using virtual machines with up-to-
date software and security patches. In each virtual

http://www.site.com

www.site.com Link 1

Link 2

(a) Architecture of the system - high level. (b) Architecture of the system - detail.

Figure 1. High-level architecture of the system.

machine, the web server and all exposed services
run as non privileged user. Of course, this solu-
tion does not guarantee a protection against new 0-
day attacks, but we did our best to limit the attack
surface, having only 3 services running on the ma-
chine (apache,sshd,mysqld), among which only the
web server is exposed to the Internet. We considered
the possibility of a 0-day attack against apache fairly
remote, and, may it happen, a vast majority of the In-
ternet will be exposed to it as well.

• Using the honeypot machine as a stepping stone to
launch attacks or email campaigns. This is probably
the most important concern that has to be addressed
before deploying a fully functional honeypot machine.
In our case, we used regular iptables rules to block
(and log) all outgoing traffic from the virtual machines,
except for already established connections. One ex-
ception to this rule is the IRC port (6667). We will
explain this in more detail in sections 4 and 6.

• Hosting and distributing illegal content(e.g., phishing
pages). It is difficult to prevent this threat when appli-
cations have remote file upload vulnerabilities. How-
ever, it is possible to mitigate the risk of distributing il-
legal content by limiting the privileges of directories in
which files can be uploaded and preventing the modifi-
cation of all the existing HTML and PHP files. In addi-
tion, we also monitor every change on the VM file sys-
tems, and whenever a file change is detected, the sys-
tem takes a snapshot of it. The virtual machine is then
restored, at regular intervals, to its original snapshot,
thus preventing potentially harmful content from be-
ing delivered to victims or indexed by search engines.

• Illegally promoting goods or services (e.g., spam
links). Another issue is raised by applications that, as
part of their basic way of working, allow users to write
and publish comments or posts. This is the case for
any blog or forum CMS. These applications are often
an easy target for spammers, as we will show in sec-

tion 5.3.1, and when hosting an honeypot it is impor-
tant to make sure that links and posts that are posted
by bots do not reach any end user or do not get in-
dexed by search engines. We solved this problem by
modifying the source code of the blog and forum ap-
plications (namely, Wordpress and Simple Machines
Forum), commenting out the snippets of code respon-
sible of showing the content of posts. With this modi-
fication, it was still possible for attackers to post mes-
sages (and for us to collect them), but navigating the
posts or comments will only show blank messages.

These countermeasures are limiting the information we
can collect with our honeypot (e.g., in the case in which
an attacker uploads a back-connect script that is blocked by
our firewall), but we believe they are necessary to prevent
our infrastructure to be misused for malicious purposes.

3.2 Data Collection and Analysis

Our analysis of the attackers’ behavior is based on two
sources of information: the logs of the incoming HTTP re-
quests, and the files that are modified or generated by the
attackers after they obtain access to the compromised ma-
chines.

We built some tools for the analysis of HTTP request
logs, allowing us to identify known benign crawlers, known
attacks on our web applications, as well as obtaining de-
tailed statistics (number and type of requests received, User-
Agent, IP address and geolocalization of every visitor, anal-
ysis of the ’Referer’ header, and analysis of the inter-arrival
time between requests). Our analysis tools also allow us to
normalize the time of attack relatively to the timezone of the
attacker, and to detect possible correlations between attacks
(e.g., an automated script infecting a web application up-
loading a file, followed by another IP visiting the uploaded
file from another IP address). We also developed a parser
for the HTTP request logs of the most commonly used PHP
web shells, allowing us to extract the requested commands
and understand what the attacker was doing on our systems.

We employed two sources of uploaded or modified files:
webserver logs and file snapshots from monitored directo-
ries. Webserver logs are the primary source of uploaded
files, as every file upload processed by our honeypots is
fully logged on the apache mod security logs. File snap-
shots from monitored directories on the virtual machines,
instead, are the primary source for files that are modified or
generated on the machine, or about archives or encrypted
files that are decompressed on the system. The total num-
ber of files we were able to extract from these sources was
85,567, of which 34,259 unique.

Given the high number of unique files we collected, a
manual file analysis was practically infeasible. Therefore,
in order to ease the analysis of the collected data, we first
separate files according to their types, and then apply sim-
ilarity clustering to see how many of them actually dif-
fer from each other in a substantial way. This allows us
to identify common practices in the underground commu-
nities, such as redistributing the same attack or phishing
scripts after changing the owner’s name, the login creden-
tials, or after inserting a backdoor.

First of all we employed the file Linux utility to cate-
gorize files and group them in 10 macro-categories: source
code, picture, executable, data, archive, text, HTML docu-
ment, link, multimedia, and other.

We then observed that many files in the same cate-
gory only differ for few bytes (often whitespaces due to
cut&paste) or to different text included in source code com-
ments. Therefore, to improve the results of our compari-
son, we first pre-processed each file and transformed it to a
normalized form. As part of the normalization process, we
removed all double spaces, tabs and new line characters,
we removed all comments (both C-style and bash-style),
and we normalized new lines and stripped out email ad-
dresses appearing in the code. For HTML files, we used
the html2text utility to strip out all HTML tags as well.

PHP files underwent an additional pre-processing step.
We noticed that a large amount of PHP files that were up-
loaded to our honeypots as result of an exploitation were
obfuscated. For files in this form it is very difficult, even
with automated tools, to detect similarities among similar
files encoded in different ways. In order to overcome this
issue, we built an automatic PHP deobfuscation tool based
on the evalhook PHP extension [10], a module that hooks
every call to dynamic code evaluation functions, allowing
for step-by-step deobfuscation of PHP code. We deployed
our tool on a virtual machine with no network access (to
avoid launching attacks or scans against remote machines,
as some obfuscated scripts could start remote connections
or attacks upon execution) and, for each file with at least
one level of deobfuscation (i.e., nested call to eval()), we
saved its deobfuscated code.

Our approach allowed us to deobfuscate almost all the

PHP files that were obfuscated using regular built-in fea-
tures of the language (e.g., gzip and base64 encoding and
decoding, dynamic code evaluation using the eval() func-
tion). The only obfuscated PHP files we were not able to
decode were those terminating with an error (often because
of syntax errors) and those encoded with specialized com-
mercial tools, such as Zend Optimizer or ionCube PHP En-
coder. However, we observed only three samples encoded
with these tools.

In total, we successfully deobfuscated 1,217 distinct
files, accounting for 24% of the source code we collected.
Interestingly, each file was normally encoded multiple times
and required an average of 9 rounds of de-obfuscation to re-
trieve the original PHP code (with few samples that required
a stunning 101 rounds).

3.2.1 Similarity Clustering. Once the normalization
step was completed, we computed two similarity measures
between any given couple of files in the same category, us-
ing two state-of-the-art tools for (binary data) similarity de-
tection: ssdeep [15] and sdhash [25]. We then applied a
simple agglomerative clustering algorithm to cluster all files
whose similarity score was greater than 0.5 into the same
group.

We discarded files for which our analysis was not able
to find any similar element. For the remaining part, we per-
formed a manual analysis to categorize each cluster accord-
ing to its purpose. Since files had already been grouped
by similarity, only the analysis (i.e., opening and inspecting
the content) of one file per group was necessary. During this
phase, we were able to define several file categories, allow-
ing us to better understand the intentions of the attackers.
Moreover, this step allowed us to gain some insights on a
number of interesting attack cases, some of which are re-
ported in the following sections as short in-depth examples.

4 System Deployment

The 500 honeyproxy have been deployed on shared host-
ing plans1 chosen from eight of the most popular interna-
tional web hosting providers on the Internet (from USA,
France, Germany, and the Netherlands). In order for our
HoneyProxy to work properly, each provider had to support
the use of the cURL libraries through PHP, and allow out-
going connections to ports other than 80 and 443.

To make our honeypots reachable from web users, we
purchased 100 bulk domain names on GoDaddy.com with
privacy protection. The domains were equally distributed
among the .com, .org, and .net TLDs, and assigned
evenly across the hosting providers. On each hosting

1This is usually the most economical hosting option, and consists in
having a website hosted on a web server where many other websites reside
and share the machine’s resources.

provider, we configured 4 additional subdomains for ev-
ery domain, thus having 5 distinct websites (to preserve
the anonymity of our honeypot, hereinafter we will sim-
ply call them www.site.com, sub1.site.com, sub2.site.com,
sub3.site.com, sub4.site.com) Finally, we advertised the
500 domains on the home page of the authors and on the
research group’s website by means of transparent links, as
already proposed by Müter et al. [18] for a similar purpose.

We used a modified version of the ftp-deploy script [11]
to upload, in batch, a customized PHP proxy to each of the
500 websites in our possession. This simplified the deploy-
ment and update of the PHP proxy, and uniformed the way
in which we upload files to each hosting service2, Thanks
to a combination of .htaccess, ModRewrite, and cURL,
we were able to transparently forward the user requests to
the appropriate URL on the corresponding virtual machine.
Any attempt to read a non-existing resource, or to access the
proxy page itself would result in a blank error page shown
to the user. Not taking into account possible timing attacks
or intrusions on the web hosting provider’s servers, there
was no way for a visitor to understand that he was talking
to a proxy.

The HoneyProxy system installed on every website is
composed of an index file, the PHP proxy script itself and
a configuration file. The index file is the home page of the
website, and it links to the vulnerable web applications and
to other honeypot websites, based on the contents of the
configuration file.

The linking structure is not the same for every subdo-
main, as can be noticed taking a closer look at Figure 1(a).
Indeed, each subdomain links to at most 2 different subdo-
mains under its same domain. We put in place this small
linking graph with the aim of detecting possible malicious
traffic from systems that automatically follow links and per-
form automated attacks or scans.

4.1 Installed Web Applications

We installed a total of 5 vulnerable CMSs on 7 distinct
Virtual Machines. The Content Management Systems were
chosen among the most known and vulnerable ones at the
time we started our deployment. For each CMS, we chose a
version with a high number of reported vulnerabilities, or at
least with a critical one that would allow the attacker to take
full control of the application. We also limited our choice
to version no more than 5 years old in order to ensure our
websites are still of interest to attackers.

Our choice was guided by the belief that attackers are
always looking for low-hanging fruits. On the other hand,

2Shared web hosting services from different providers usually come
with their own custom administrative web interface and directory structure,
and very few of them offer ssh access or other ’advanced’ management
options. Thus, the only possible way to automate the deployment of the
websites was to use FTP, the only protocol supported by every provider.

our honeypots will probably miss sophisticated and uncon-
ventional attacks, mostly targeted to high profile organiza-
tions or well known websites. However, these attacks are
not easy to study with simple honeypot infrastructures and
are therefore outside the scope of our study.

Table 1 describes the vulnerable applications installed on
the 7 virtual machines, along with their publication date
and the list of their known and exploitable vulnerabilities.
We have installed two instances of WordPress 2.8, one
with CAPTCHA protection on comments, and one without
CAPTCHA protection, in order to see if there are attack-
ers that register fake accounts by hand, or systems that are
capable of automatically solve CAPTCHAs. This does not
seem to be the case, since we did not receive any post on the
CAPTCHA-protected blog. Therefore, we will not discuss
it any further in the rest of the paper.

4.2 Data Collection

We collected 100 days of logs on our virtual machines,
starting December 23rd, 2011. All the results presented in
our work derive from the analysis of the logs of these 7
machines.

Overall, we collected 9.5 Gb of raw HTTP requests, con-
sisting in approximately 11.0M GET and 1.9M POST. Our
honeypots were visited by more than 73,000 different IP ad-
dresses, spanning 178 countries and presenting themselves
with more than 11,000 distinct User-Agents. This is over
one order of magnitude larger than what has been observed
in the previous study by John et al. on low interaction web-
application honeypots [14]. Moreover, we also extracted
over 85,000 files that were uploaded or modified during at-
tacks against our web sites.

There are two different ways to look at the data we col-
lected: one is to identify and study the attacks looking at
the web server logs, and the other one is to try to associate
a goal to each of them by analyzing the uploaded and mod-
ified files. These two views are described in more detail in
the next two Sections.

5 Exploitation and Post-Exploitation Behav-
iors

In order to better analyze the behavior of attackers lured
by our honeypots, we decided to divide each attack in four
different phases: discovery, reconnaissance, exploitation,
and post-exploitation. The Discovery phase describes how
attackers find their targets, e.g. by querying a search engine
or by simply scanning IP addresses. The Reconnaissance
phase contains information related to the way in which
the pages were visited, for instance by using automated
crawlers or by manual access through an anonymization
proxy. In the Exploitation phase we describe the number

VM # CMS, version Plugins Description Vulnerabilities

1 phpMyAdmin, 3.0.1.1 - MySQL database PHP code injectionmanager

2 osCommerce, 2.2-RC2a - Online shop 2 remote file upload, arbitrary
admin password modification

3 Joomla, 1.5.0 com graphics,
tinymce

Generic/multipurpose
portal

XSS, arbitrary admin password
modification, remote file

upload, local file inclusion

4 Wordpress, 2.8 kino, Blog (non moderated Remote file include,
amphion lite theme comments) admin password reset

5 Simple Machines - Forum (non moderated
posts)

HTML injection in posts, stored

Forum (SMF), 1.1.3 XSS, blind SQL injection, local
file include (partially working)

6
PHP web shells,

static site -
Static site and 17 PHP shells allow to run any

kind of commands on the hostPHP shells (reachable
through hidden links)

7 Wordpress, 2.8 kino, Blog (captcha-protected Remote file include,
amphion lite theme comments) admin password reset

Table 1. Applications installed on the honeypot virtual machines, together with a brief description
and a list of their known and exploitable vulnerabilities.

and types of actual attacks performed against our web ap-
plications. Some of the attacks reach their final goal them-
selves (for instance by changing a page to redirect to a ma-
licious website), while others are only uploading a second
stage. In this case, the uploaded file is often a web shell that
is later used by the attacker to manually log in to the com-
promised system and continue the attack. We refer to this
later stage as the Post-Exploitation phase.

It is hard to present all possible combinations of behav-
iors. Not all phases are always present in each attack (e.g.,
reconnaissance and exploitation can be performed in a sin-
gle monolithic step), some of the visits never lead to any
actual attack, and sometimes it is just impossible to link to-
gether different actions performed by the same attacker with
different IP addresses. However, by extracting the most
common patterns from the data collected at each stage, we
can identify the “typical attack profile” observed in our ex-
periment. Such profile can be summarized as follows:

1. 69.8% of the attacks start with a scout bot visiting the
page. The scout often tries to hide its User Agent
or disguise as a legitimate browser or search engine
crawler.

2. Few seconds after the scout has identified the page as
an interesting target, a second automated system (here-
inafter exploitation bot) visits the page and executes
the real exploit. This is often a separate script that does
not fake the user agent, therefore often appearing with
strings such as libwww/perl.

3. If the vulnerability allows the attacker to upload a file,
in 46% of the cases the exploitation bot uploads a web
shell. Moreover, the majority of the attacks upload the
same file multiple times (in average 9, and sometimes
up to 30), probably to be sure that the attack was suc-
cessful.

4. After an average of 3 hours and 26 minutes, the at-
tacker logs into the machine using the previously up-
loaded shell. The average login time for an attacker
interactive session is 5 minutes and 37 seconds.

While this represents the most common behavior ex-
tracted from our dataset, many other combinations were ob-
served as well - some of which are described in the rest of
the section. Finally, it is important to mention that the attack
behavior may change depending on the application and on
the vulnerability that is exploited. Therefore, we should say
that the previous description summarizes the most common
behavior of attacks against osCommerce 2.2 (the web ap-
plication that received by far the largest number of attacks
among our honeypots).

Figure 2 shows a quick summary of some of the charac-
teristics of each phase.3 More information and statistics are
reported in the rest of the section. Then, based on the anal-
ysis of the files uploaded or modified during the exploita-
tion and post-exploitation phases, in Section 6 we will try

3The picture does not count the traffic towards the open forum, because
its extremely large number of connections compared with other attacks
would have completely dominated the statistics.

Figure 2. Overview of the four phases of an attack

Figure 3. Volume of HTTP requests received
by out honeypots during the study.

to summarize the different goals and motivations behind the
attacks we observed in our experiments.

5.1 Discovery

The very first HTTP request hit our honeypot proxies
only 10 minutes after the deployment, from Googlebot. The
first direct request on one IP address of our virtual machines
(running on port 8002) came after 1 hour and 50 minutes.

During the first few days, most of the traffic was caused
by benign web crawlers. Therefore, we designed a sim-
ple solution to filter out benign crawler-generated traffic
from the remaining traffic. Since HTTP headers alone are
not trustable (e.g., attackers often use User Agents such
as ’Googlebot’ in their scripts) we collected public infor-
mation available on bots [2, 1] and we combined them

Figure 4. Amount of requests, by issuing
country.

with information extracted from our logs and validated with
WHOIS results in order to identify crawlers from known
companies. By combining UserAgent strings and the IP ad-
dress ranges associated to known companies, we were able
to identify with certainty 14 different crawlers, originating
from 1965 different IPs. Even though this is not a complete
list (e.g, John et al. [14] used a more complex technique to
identify 16 web crawlers), it was able to successfully filter
out most of the traffic generated by benign crawlers.

Some statistics about the origin of the requests is shown
in Figure 3. The amount of legitimate crawler requests is
more or less stable in time, while, as time goes by and the
honeypot websites get indexed by search engines and linked
on hacking forums or on link farming networks, the number
of requests by malicious bots or non-crawlers has an almost

linear increase.
When plotting these general statistics we also identified

a number of suspicious spikes in the access patterns. In sev-
eral cases, one of our web applications was visited, in few
hours, by several thousands of unique IP addresses (com-
pared with an average of 192 per day), a clear indication
that a botnet was used to scan our sites.

Interestingly, we observed the first suspicious activity
only 2 hours and 10 minutes after the deployment of our
system, when our forum web application started receiving
few automated registrations. However, the first posts on the
forum appeared only four days later, on December 27th.
Even more surprising was the fact that the first visit from a
non-crawler coincided with the first attack: 4 hours 30 min-
utes after the deployment of the honeypots, a browser with
Polish locale visited our osCommerce web application 4 and
exploited a file upload vulnerability to upload a malicious
PHP script to the honeypot. Figure 4 summarizes the vis-
its received by our honeypot (benign crawlers excluded),
grouped by their geolocalization.

5.1.1 Referer Analysis. The analysis of the Referer
HTTP header (whenever available) helped us identify how
visitors were able to find our honeypots on the web. Based
on the results, we can distinguish two main categories of
users: criminals using search engines to find vulnerable ap-
plications, and victims of phishing attacks following links
posted in emails and public forums (an example of this phe-
nomenon is discussed in Section 6.8).

A total of 66,449 visitors reached our honeypot pages
with the Referer header set. The domains that appear most
frequently as referrers are search engines, followed by web
mails and public forums. Google is leading with 17,156 en-
tries. Other important search engines used by the attackers
to locate our websites, were Yandex (1,016), Bing (263),
and Yahoo (98). A total of 7,325 visitors arrived from web
mail services (4,776 from SFR, 972 from Facebook, 944
were from Yahoo!Mail, 493 from Live.com, 407 from AOL
Mail, and 108 from comcast.net). Finally, 15,746 requests
originated from several public web forums, partially be-
longing to hacking communities, and partially just targeted
by spam bots.

Finally, we extracted search queries (also known as
‘dorks’, when used for malicious purposes) from Referer
headers set by the most common web search engines. Our
analysis shows that the search terms used by attackers
highly depend on the application deployed on the honeypot.
For example, the most common dork that was used to reach
our Joomla web application contained the words ’joomla
allows you’, while the Simple Machines Forum was often

4Since UserAgent information can be easily spoofed, we cannot prove
our assumptions about the browser and tools run by the attacker, and his or
her locale, are correct.

reached by searching ’powered by smf’. Our machine con-
taining public web shells was often reached via dorks like
’inurl:c99.php’, ’[cyber anarchy shell]’ or even ’[ftp bute-
forcer] [security info] [processes] [mysql] [php-code] [en-
coder] [backdoor] [back-connection] [home] [enumerate]
[md5-lookup] [word-lists] [milw0rm it!] [search] [self-
kill] [about]’. The latter query, even though very long,
was used more than 150 times to reach our machine with
web shells. It was probably preferred to searching via
’intitle:’ or ’inurl:’ because script names and
titles are often customized by attackers and as such search-
ing for their textual content may return more results than
searching for fixed url patterns or page titles. Some special-
ized search engines appear to be used as well, such as dev-
ilfinder.com, which was adopted in 141 cases to reach some
of the shells on our machines. This search engine claims
to show more low-ranking results than common search en-
gines, not to store any search data, and to return up to 300
results on the same web page, making it very suitable for
attackers willing to search for dorks and collect long lists of
vulnerable websites.

5.2 Reconnaissance

After removing the legitimate crawlers, the largest part
of the traffic received by our honeypots was from uniden-
tified sources, many of which were responsible of sending
automated HTTP requests. We found these sources to be
responsible for the majority of attacks and spam messages
targeting our honeypots during the study.

However, distinguishing attackers that manually visited
our applications from the ones that employed automated
scout bots is not easy. We applied the following three rules
to flag the automated requests:

• Inter-arrival time. If requests from the same IP address
arrive at a frequency higher than a certain threshold,
we consider the traffic as originated from a possible
malicious bot.

• Request of images. Automated systems, and especially
those having to optimize their speed, almost never
request images or other presentation-related content
from websites. Scanning web logs for visitors that
never request images or CSS content is thus an easy
way of spotting possible automated scanners.

• Subdomain visit pattern. As described in Section 4,
each web site we deployed consisted in a number of
sub-domains linked together according to a predeter-
mined pattern. If the same IP accesses them in a short
time frame, following our patterns, then it is likely to
be an automated crawler.

For example, after removing the benign crawlers, a to-
tal of 9.5M hits were received by systems who did not re-
quest any image, against 1.8M from system that also re-
quested images and presentation content. On the contrary,
only 641 IP addresses (responsible for 13.4K hits) visited
our websites by following our links in a precise access pat-
tern. Among them, 60% followed a breadth first approach.

85% of the automated requests were directed to our fo-
rum web application, and were responsible for registering
fake user profiles and posting spam messages. Of the re-
maining 1.4M requests directed to the six remaining hon-
eypot applications, 95K were mimicking the User-Agent of
known search engines, and 264K switched between mul-
tiple User-Agents over time. The remaining requests did
not contain any suspicious User-Agent string, did not fol-
low paths between domains, neither requested images. As
such, we classified them as unknown (possibly benign) bots.

5.3 Exploitation

The first important activity to do in order to detect ex-
ploitation attempts was parsing the log files in search of
attack traces. Luckily, knowing already the vulnerabilities
affecting our web applications allowed us to quickly and
reliably scan for attacks in our logs using a set of regular
expressions.

Overall, we logged 444 distinct exploitation sessions.
An interesting finding is that 310 of them adopted two or
more different User-Agent strings, appearing in short se-
quence from the same IP address. As explained in the
beginning of Section 5, this often happens when attackers
employ a combination of scout bots and automatic attack
scripts in order to speed up attacks and quickly find new
targets. In particular, in two thirds (294) of the total ex-
ploitation sessions we observed, the User-Agent used for
the exploitation was the one associated to the LibWWW
Perl library (libwww/perl).

In some of these exploitation sessions, the attacker tried
to disguise her tools and browser as known benign bots.
Some crawler User-Agent strings that were often used
during exploitation sessions were: FreeWebMonitoring,
Gigabot/3.0, gsa-crawler, IlTrovatore-Setaccio/1.2, bing-
bot/2.0;, and Googlebot/2.1.

The most remarkable side effect of every exploitation
session is the upload or modification of files on the vic-
tim machine. Quite surprisingly, we noticed that when an
exploitation session uploads a file, the file is uploaded in
average 9.75 times. This strange behavior can be explained
by the fact that most of the exploitation tools are automated,
and since the attacker does not check in real-time whether
each exploit succeeded or not, uploading the same file mul-
tiple times can increase the chance for the file to be success-
fully uploaded at least once.

Figure 5. Normalized times distribution for at-
tack sessions

Using the approach presented in Section 3.2, we auto-
matically categorized the files uploaded to our honeypots as
a result of exploiting vulnerable services. We then corre-
lated information about each attack session with the catego-
rization results for the collected files. Results of this phase
show that the files uploaded during attack sessions consist,
in 45.75% of the cases, in web shells, in 17.25% of the cases
in phishing files (single HTML pages or complete phishing
kits), in 1.75% of the cases in scripts that automatically try
to download and execute files from remote URLs, and in
1.5% of the cases in scripts for local information gather-
ing. Finally, 32.75% of the uploaded files were not catego-
rized by our system, either because they were not similar to
anything else that we observed, or because they were mul-
timedia files and pictures (e.g., images or soundtracks for
defacement pages) that were not relevant for our study.

Figure 5 shows the normalized times of the attacks re-
ceived by our honeypots. The values were computed by
adjusting the actual time of the attack with the timezone
extracted from the IP geolocalization. As such, our normal-
ization does not reflect the correct value in case the attacker
is proxying its connection through an IP in a different part
of the world. However, the graph shows a clear daylight
trend for both the exploitation and post-exploitation phases.
In particular, for the interactive sessions we observed fewer
attacks performed between 4am and 10am, when probably
also the criminals need to get some sleep. Interestingly, also
the exploitation phase, that is mostly automated, shows a
similar trend (even though not as clear). This could be the
consequence of scans performed through botnet infected

machines, some of which are probably turned off by their
users during the night.

Searching our attack logs for information about attack-
ers reaching directly our virtual machines, without passing
through the honeypot proxies, we found that a small, but
still significant number of attacks were carried out directly
against the ip:port of our honeypots. In particular, we found
25 of such attack sessions against our e-commerce web hon-
eypot and 19 against our machine hosting the web shells
and the static website. In both cases, the attacker may have
used a previous exploit to extract the IP of our machines
(stored in a osCommerce configuration file that was often
downloaded by many attackers, or by inspecting the ma-
chine through an interactive shell) and use this information
in the following attacks.

5.3.1 Posts. Since the 1st day of operation, our forum ap-
plication received a very large amount of traffic. Most of it
was from automated spamming bots that kept flooding the
forum with fake registrations and spam messages. We ana-
lyzed every snapshot of the machine’s database in order to
extract information about the forum’s posts and the URLs
that were embedded in each of them. This allowed us to
identify and categorize several spam and link farming cam-
paigns, as well as finding some rogue practices such as sell-
ing forum accounts.

A total of 68,201 unique messages were posted on the
forum during our study, by 15,753 users using 3,144 unique
IP addresses. Daily statistics on the forum show trends that
are typical of medium to high traffic message boards: an
average of 604 posts per day (with a max of 3085), with an
average of 232 online users during peak hours (max 403).

Even more surprising than the number of posts is the
number of new users registered to the forum: 1907 per day
in average, and reaching a peak of 14,400 on March 23,
2012. This phenomenon was so common that 33.8% of the
IP addresses that performed actions on our forum were re-
sponsible of creating at least one fake account, but never
posted any message. This finding suggests there are some
incentives for criminals to perform automatic user registra-
tions, perhaps making this task even more profitable than
the spamming activity itself. Our hypothesis is that, in some
cases, forum accounts can be sold in bulk to other actors
in the black market. We indeed found 1,260 fake accounts
that were created from an IP address and then used few days
later by other, different IPs, to post messages. This does not
necessarily validate our hypothesis, but shows at least that
forum spamming has become a complex ecosystem and it
is difficult, nowadays, to find only a single actor behind a
spam or link farming campaign.

A closer look at the geolocation of IP addresses responsi-
ble for registering users and posting to the forum shows that
most of them are from the United States or Eastern Europe

countries (mostly Russia, Ukraine, Poland, Latvia, Roma-
nia). A total of 6687 distinct IP addresses were active on our
forum (that is, posted at least one message or registered one
or more accounts). Among these, 36.8% were associated to
locations in the US, while 24.6% came from Eastern Euro-
pean countries. The country coverage drastically changes if
we consider only IP addresses that posted at least one mes-
sage to the forum. In this case, IPs from the United States
represent, alone, 62.3% of all the IP addresses responsible
for posting messages (Eastern Europe IPs in this case rep-
resent 21.2% of the total).

Finally, we performed a simple categorization on all the
messages posted on the forum, based on the presence of
certain keywords. This allowed us to quickly identify com-
mon spam topics and campaigns. Thanks to this method,
we were able to automatically categorize 63,763 messages
(93.5% of the total).

The trends we extracted from message topics show
clearly that the most common category is drugs (55% of the
categorized messages, and showing peaks of 2000 messages
per day), followed by search engine optimization (SEO) and
electronics (11%), adult content (8%), health care and home
safety (6%).

All the links inserted in the forum posts underwent an in-
depth analysis using two automated, state-of-the-art tools
for the detection of malicious web pages, namely Google
Safe Browsing [22] and Wepawet [8]. The detection results
of these two tools show that, on the 221,423 URLs we ex-
tracted from the forum posts, a small but not insignificant
fraction (2248, roughly 1 out of 100) consisted in malicious
or possibly harmful links.

5.4 Post-Exploitation

The post-exploitation phase includes the analysis of the
interaction between the attackers and the compromised ma-
chines. In our case, this is done through the web shells in-
stalled during the exploitation phase or, to increase the col-
lected data, through the access to the public shells that we
already pre-installed in our virtual machines.

The analysis of the post-exploitation phase deserves spe-
cial attention since it is made of interactive sessions in
which the attackers can issue arbitrary commands. How-
ever, these web shells do not have any notion of session:
they just receive commands via HTTP requests and provide
the responses in a state-less fashion.

During our experiments we received a total of 74,497
shell commands. These varied from simple file system nav-
igation commands, to file inspection and editing, up to com-
plex tasks as uploading new files or performing network
scans.

To better understand what this number represents, we de-
cided to group together individual commands in virtual “in-

teractive sessions” every time they are issued from the same
IP, and the idle time between consecutive commands is less
than 5 minutes.

According to this definition, we registered 232 interac-
tive sessions as a consequence of one of the exploited ser-
vices, and 8268 in our pre-installed shells5. The average
session duration was of 5 minutes and 37 seconds, however,
we registered 9 sessions lasting more than one hour each.
The longest, in terms of commands issued to the system,
was from a user in Saudi Arabia that sent 663 commands to
the shell, including the manual editing of several files.

Interestingly, one of the most common actions per-
formed by users during an attack is the upload of a cus-
tom shell, even if the attacker broke into the system using
a shell that was already available on the website. The rea-
son for this is that attackers know that, with a high proba-
bility, shells installed by others will contain backdoors and
most likely leak information to their owner. In addition to
the 17 web shells supported by our tools, we also identified
the HTTP patterns associated to the most common custom
shells uploaded by the attackers, so that we could parse the
majority of commands issued to them.

In 83% of the cases, attackers tried to use at least one
active command (uploading or editing a file, changing file
permissions, creating files or directories, scanning hosts,
killing a process, connecting to a database, sending emails,
etc.). The remaining sessions were purely passive, with the
attackers only browsing our system and downloading source
and configuration files.

Finally, in 61% of the sessions the attackers uploaded a
new file, and in 50% of them they tried to modify a file al-
ready on the machine (in 13% of the cases to perform a de-
facement). Regarding individual commands, the most com-
monly executed were the ones related to listing and read-
ing files and directories, followed by editing files, uploading
files, running commands on the system, listing the processes
running on the system, and downloading files.

6 Attackers Goals

In this section we shift the focus from the way the at-
tacks are performed to the motivation behind them. In other
words, we try to understand what criminals do after they
compromise a web application. Do they install a botnet?
Do they try to gain administrator privileges on the host? Do
they modify the code of the application and insert backdoors
or malicious iFrames?

5For the pre-installed shells, we also removed sessions that contained
very fast sequences of commands or that did not fetch images on the pages,
because they could have been the result of crawlers visiting our public
pages. Since shells uploaded by attackers were not linked from any page,
we did not apply this filtering to them.

File Type Clustered Not Clustered Clusters
Archive 335 (82.6%) 71 (17.4%) 159
Data 221 (62.5%) 133 (37.5%) 87
Executable 102 (82.3%) 22 (17.7%) 41
HTML doc 4341 (100.0%) 0 (0%) 822
Image 1703 (81.9%) 374 (18.1%) 811
Source code 3791 (100.0%) 0 (0%) 482
Text 886 (43.8%) 1138 (56.2%) 219
Various 118 (65.9%) 61 (34.1%) 42
Total 11,497 (86.5%) 1799 (13.5%) 2663

Table 2. Results of clustering

Figure 6. Attack behavior, based on unique
files uploaded

To answer these questions, we analyzed the files up-
loaded during the exploitation phase, and the ones created
or modified during the post-exploitation phase. We normal-
ized each file content as explained in Section 3, and we clus-
tered them together according to their similarity. Finally, we
manually labeled each cluster, to identify the “purpose” of
the files. The results of the clustering are summarized in
table 2 and cover, in total, 86.4% of the unique files col-
lected by our honeypots. For them, Figure 6 shows the dis-
tribution of the file categories6. For example, 1.7% of the
unique files we observed in our experiments were used to
try to escalate the privileges on the compromised machine.
This is different from saying that 1.7% of the attackers tried
to escalate the privileges of the machine. Unfortunately,
linking the files to the attacks in which they were used is
not always possible. Therefore, we computed an estimation
of the attackers that performed a certain action by identi-
fying each unique IP that uploaded a certain file during an

6We removed from the graph the irrelevant and damaged documents,
that accounted in total for 10% of the files.

attack. Identifying an attacker only based on his or her IP
address is not always correct, but still provides a reasonable
approximation. Thus, if we say that a certain category has
an estimated attackers ratio of 20%, it means that 1 attacker
out of 5 uploaded at least one file of that category during his
or her operation.

Only 14% of the attackers uploaded multiple files be-
longing at least to two separate categories. This means that
most of the attacks have a precise goal, or that attackers of-
ten change their IP addresses, making it very hard for us to
track them.

In the rest of the section, we briefly introduce each of the
13 categories.

6.1 Information gathering

Unique files ratio 1.8%
Estimated attackers ratio 2.2%

These files consist mainly in automated scripts for the
analysis of the compromised system, and are often used as
a first stage of a manual attack, in which the attacker tries to
gather information on the attacked system before proceed-
ing with other malicious actions. In general, we observed
a number of attackers using scripts to search, archive, and
download several system configuration files.

For example, an attack using such tools hit our honey-
pots on April 7, 2012. The attacker, using a normal browser
and coming from a Malaysian IP address, uploaded a script
called allsoft.pl. Once executed, the script scans the
system for a list of directories containing configuration files
of known CMSs (e.g., Wordpress, Joomla, WHM, phpBB,
vBulletin, . . .), creates a tar archive containing all the files
it was able to find, and returns to the attacker a link to the
created archive, that can thus be easily downloaded. The
script iterates on both the users and the possible multiple
home directories in the system trying to gather information
from as many accounts as possible on the attacked machine.

6.2 Drive-by Downloads

Unique files ratio 1.2%
Estimated attackers ratio 1.1%

We have witnessed few attacks that aimed at creating
drive-by download webpages, by inserting custom exploit
code in the HTML source of the web pages of our hon-
eypots, or by uploading documents that contain exploits
for known browser vulnerabilities. This kind of activity is
aimed at exploiting users visiting the website, typically to
convert their machines in bots that can be later used for a
large spectrum of illicit activity.

An example of such attacks was the intu.html web page
uploaded to one of our honeypots on February 28th, 2012.

When opened, the page shows ’Intuit Market. Loading
your order, please wait...’. Behind the scenes, a malicious
javascript loads an iframe pointing to a document hosted at
twistedtarts.net. This document is malicious and
contains two exploits, for CVE-2010-0188 and CVE-2010-
1885. Wepawet [8] reported the document as malicious on
the same day this webpage was uploaded to our honeypots.

6.3 Second Stages

Unique files ratio 37.2%
Estimated attackers ratio 49.4%

This category includes downloaders (programs designed
to download and execute another file), uploaders (web
pages that can be used to remotely upload other files), web
shells, and backdoors included in already existing docu-
ments. These are the tools of choice for attackers to per-
form manual web-based attacks. The reason is that such
tools allow either to upload any file to the victim machine,
or to issue arbitrary commands as if the attacker was logged
in to one of the server’s terminals. The majority of the at-
tacks logged by our honeypot adopted a mix of web shells
and custom scripts to try to hack the machine and install
malicious software on it.

An example of this behavior is the attack that started
at 6:50 am (GMT) on January 1st, 2012. An IP address
from Englewood, Colorado, with an User-Agent set to
’blackberry8520 ver1 subvodafone’ connected directly to
our honeypot virtual machine running osCommerce and ex-
ploited a file upload vulnerability, uploading several differ-
ent PHP scripts, all of them launching IRC bots connecting
to different IRC servers. The same person also uploaded a
PHP shell, and used it to download the configuration file of
the CMS installed on the machine.

The fact that the attacker was not connecting through
our HoneyProxy infrastructure but directly to our IP ad-
dress was unusual, and attracted our attention. Searching
backwards in our logs starting the date of the attack, we
found out that less than 24 hours before, an automated sys-
tem with an User-Agent set to ’bingbot/2.0’ connected to
one of our websites from another IP address from Engle-
wood, Colorado, exploited a vulnerability and downloaded
the osCommerce configuration file, which contains the real
IP of our virtual machine hosting the e-commerce web ap-
plication.

6.4 Privilege Escalation

Unique files ratio 1.7%
Estimated attackers ratio 2.2%

Privilege escalation exploits are among the oldest types
of exploits in the computer security history, but are still

among the most sought after, as they allow an attacker to
gain administrator privileges and thus full control of vul-
nerable machines. Successfully executing a privilege esca-
lation exploit on server machines used in a shared web host-
ing environment would make the attacker in the position to
modify the files of every website hosted on the server, pos-
sibly allowing for mass exploitations of hundreds or even
thousands of websites at the same time.

An example of such kind of attack hit our honeypots on
February 9, 2012. An attacker with an Hungarian IP ad-
dress uploaded a file called mempodipper.c to our ma-
chine hosting the web shells, and used one of the shells
to try to compile its source code with gcc. The machine
had no available compiler, thus, less than 5 minutes later,
the attacker uploaded a pre-compiled ELF binary named
mempodipper, and tried to execute it through one of the
shells. We found this exploit to be for a very recent vul-
nerability, the CVE-2012-0056, published less than 20 days
before this attack. At the time of the attack, the exploit for
this vulnerability, titled Linux Local Privilege Escalation
via SUID /proc/pid/mem Write was already publicly avail-
able [27]. However, the kernel of our virtual machines was
not vulnerable to it.

6.5 Scanners

Unique files ratio 2.3%
Estimated attackers ratio 2.8%

This kind of activity is performed to find other local or
remote vulnerable target websites that could possibly be ex-
ploited by the attacker. For example, FTP scanning, query-
ing search engines using ’dorks’, or trying to list all the do-
main names being hosted on the machine belong to this cat-
egory.

A concrete example is the trdomain.php page, uploaded
to one of our honeypots on December 26th, from a Turkish
IP address. It contains a local domain name scanner, that
pulls the domain names configured on the machine from
the local configuration files (such as named.conf), gets their
PageRank from Google, as well as their document root and
their owner’s username, and returns a web page with a list
containing all this information. The title of the page is ’Do-
main ve User ListeLiyici — by W£ßRooT ’; as of today,
searching such title on the web still yields many results,
showing that this kind of attack is very common and wide
spread.

6.6 Defacements

Unique files ratio 28.1%
Estimated attackers ratio 27.7%

Attacks of this kind are among the most frequent ones on

our honeypots. In this kind of attack, the attackers modify
existing web pages on the honeypot, or upload new pages
with the purpose of claiming their responsibility for hack-
ing the website. Usually, but not always, the claims are ac-
companied by religious or politic propaganda, or by funny
or shocking images. Many of the attackers performing such
attacks even insert links to their personal website or Face-
book page, where one can see they are mainly teenagers
looking for fame and bragging in front of their friends.

One of the many defacements attacks that hit our hon-
eypots happened around 8 pm GMT on the 6th of March.
Somebody connecting from a German IP address found one
of the hidden shells in our machine hosting the static web-
site, and used it to edit one of the static html pages hosted
on the machine. The code of the page was thus uploaded
using copy-and-paste in a textarea provided by the web
shell. The defacement page contained a short slogan from
the author, an animated javascript text slowly unveiling a
Portuguese quote, and a set of links to the personal Twitter
pages of each member of the hacking crew, some of which
had more than 1000 tweets and several hundred followers.
Quickly looking at these Twitter profiles, we found out that
all the members are actively posting their defacements on
their profile pages. Apparently, they do so in order to build
some sort of reputation. This is confirmed by the URL they
posted as a personal webpage on Twitter, a web page from
the zone-h.org website, reporting statistics about previ-
ous defacements of the crew. The statistics are quite impres-
sive: at the time of writing the whole crew has claimed more
than 41,600 defacements starting July 20, 2011, of which
almost 500 are on important websites with high reputation
(governative websites, universities, multinational corpora-
tions, etc.).

Thanks to attacks like this we found out that it is com-
mon practice among attackers to advertise their deface-
ments on publicly accessible ’defacement’ showcases, such
as the one on the zone-h.orgwebsite. It seems that some
of these people are really in a sort of competition in order
to show off their presumed skills at hacking websites, and
our honeypot domains were often reported as trophies by
several groups.

6.7 Botnets

Unique files ratio 28.1%
Estimated attackers ratio 27.7%

Several attackers, after exploiting our honeypots, tried to
make our servers join an IRC botnet by uploading dedicated
PHP or Perl scripts.

Two of the honeypot virtual machines, and specifically
those with the most severe vulnerabilities, allowing attack-
ers to upload and run arbitrary files on the server, have been
set up to allow outgoing connections to port 6667 (IRC). We

did so in order to monitor IRC botnet activity launched by
an eventual attacker on our machines. We allowed connec-
tions only to port 6667, allowing thus only botnets running
on the standard IRC port to connect to their management
chat rooms. To avoid being tracked down by bot masters,
every connection to the IRC port was tunneled through a
privacy-protected VPN that anonymized our real IP address.
No other outgoing connections were allowed from the ma-
chines, in order to avoid the possibility for our machines to
launch attacks or scans against other hosts.

Our expectations proved to be correct, and we indeed
logged several connections from our two machines to IRC
command and control servers. The analysis of the packet
traces showed some interesting information.

First of all, we were expecting IRC botnets to be quite
rare nowadays, given the relatively high number of web-
based exploit packs circulating on the black market. How-
ever, the analysis of the files that were uploaded on our hon-
eypots showed an opposite trend, with about 200 distinct
scripts launching IRC bots.

Another interesting observation is that, apparently, most
of these IRC botnets are operated by young teenagers, as
some IRC logs show. Some of the bot masters even put links
to their Facebook or Twitter profiles in order to show off
with their friends. Despite being run by youngsters, how-
ever, most of our connection logs show IRC rooms with
hundreds to thousands of bots (the biggest IRC botnet we
observed was comprised of 11900 bots).

While some logs showed us some of the bot masters at-
tacking rivals on other IRC servers (which we considered
a typical script-kiddie behavior), we were interested to see
that these young people already deal with money and are
able to use (and probably develop themselves) automated
tools for searching on search engines and exploiting web
vulnerabilities. We received a number of commands to per-
form DoS attacks, search engines scans using dorks, au-
tomatic mass exploitations, and instructions to report back
usernames and passwords, as well as credit card credentials,
stolen from exploited websites.

A final interesting finding, supported by the language
used in the IRC logs and by an analysis of the IP addresses
used for the upload of the IRC script, was that the majority
of these IRC botnets were installed by users from South-
Eastern asian countries (mostly Malaysia and Indonesia).

6.8 Phishing

Unique files ratio 7.3%
Estimated attackers ratio 6.3%

Phishing is one of the most dangerous activities that on-
line criminals perform nowadays. We found proof of many
attempts to install phishing pages or phishing kits on our
honeypots. This kind of activity is always profit-driven;

the vast majority of phishing websites are replicas of on-
line banking websites, but we also collected few examples
of online email portal phishing and even a handful of web
pages mimicking ISPs and airline companies’ websites.

During the 100 days of operation, our honeypots col-
lected a total of 470 phishing-related files, 129 of which
were complete phishing packages (archives often contain-
ing a full phishing website installation, including images,
CSS files, and the phishing scripts themselves). Suspris-
ingly, Nigeria seems to be a very active country for this
kind of attacks, with Nigerian IP addresses responsible for
approximately 45% of the phishing attacks logged by our
honeypots.

An interesting case was logged by our honeypots start-
ing on March 27th. Analyzing the Referer header of the
requests received by our websites, we found 4776 requests,
from 1762 different IP addresses, reaching our pages with
the referer set to the mail servers of sfr.fr, one of the ma-
jor French ISPs. Inspecting the webserver logs, we found
out that all the HTTP requests having a Referer from sfr.fr
requested only two png images. Both files had been up-
loaded to our honeypots on the 24th of March; when the
first hit from SFR arrived, the virtual machines had already
been cleaned up several times, but we found the original
version of the pictures in our snapshots of uploaded files.
Surprisingly, the pictures showed a message resembling a
regular communication from SFR’s customer service. All
the users that hit our honeypots with a Referer from sfr.fr
had thus received a phishing email containing links to the
two png files, and their web client was only trying to down-
load and show them the contents of the email.

6.9 Spamming and message flooding

Unique files ratio 7.8%
Estimated attackers ratio 9.3%

Many users still seem to use spam as a technique to make
profit on the Internet. Some of the scripts we found are in-
deed mailers, i.e., scripts used to send out spam to a large
number of recipients in an automated way. Some other
scripts were email or SMS flooders, that are instead used
for launching DoS attacks.

Our honeypots collected around 600 such scripts. As an
example, on February 21st, a script called a1.php was up-
loaded from a Nigerian IP address. This script is a highly
customizable mailer, and allows sending spam to a list of
recipients in plain text or HTML format, with many op-
tions. It can also be configured to log in to a remote SMTP
server in order to send spam through an authenticated ac-
count, and to disconnect and reconnect to the server after
a certain threshold of sent emails is reached, probably with
the purpose of avoiding bans.

6.10 Link Farming & Black Hat SEO

Unique files ratio 2.7%
Estimated attackers ratio 1.0%

Link farms are groups of web sites linking to each other,
usually creating web pages with a very dense link structure,
whose aim is to boost the search engine ranking of the web
sites of the group. Black-hat SEO, instead, refers to using
illicit or unethical techniques, such as cloaking, to boost the
search engine ranking of a website, or to manipulate the way
in which search engines and their spiders see and categorize
a web pages. If we exclude automated posts on the forum
web application, where a high percentage of posts contained
links to link farming networks, this kind of behavior has not
been observed very frequently on our honeypots.

An interesting attack that created a big amount of web
pages on our honeypots was launched on March 19th.
Somebody installed an fully functional CMS, comprising
hundreds of static html pages, to one of our honeypots. All
the generated pages were installed on the images/rf/ subdi-
rectory of our e-commerce web application, and contained
russian text, along with images, CSS and JavaScript files
used for presentation purposes. This page structure seems
to be generated through a blog or CMS creation engine, as
all the pages have a very dense link structure and point one
another using absolute links (that had been customized and
contained our honeypot website’s domain name). We ex-
pect this to be part of an attempt to create a link farming
network, or simply to be a marketing campaign for some
counterfeit goods, as most of the pages we analyzed were
actually advertising the sale of replica watches.

Finally, on a smaller scale, we also saw some attackers
creating pages with ads or inserting links to partner sites
on their uploaded pages. The reason for this is still mak-
ing profit out of ads, or improving their or their partners’
ranking on search engines.

6.11 Proxying and traffic redirection

Unique files ratio 0.6%
Estimated attackers ratio 0.6%

Online criminals always look for reliable ways to hide
their tracks, and as time goes by, it becomes more and more
difficult to rely only on open proxy networks, the TOR net-
work, or open redirection web pages to conduct malicious
activities. In fact, these services are often overloaded with
(malicious) traffic and as such have very bad average per-
formances and are very likely to be monitored by the au-
thorities. In this scenario, the possibility of tunneling traffic
on infected hosts seems idyllic, as it is quite easy to turn
a webserver into a proxy, and often webservers running on
hosting providers premises have high bandwidths, making

them a very valuable target. We saw some attackers up-
loading proxy scripts or traffic redirection systems (TDS) to
our honeypots, for the purpose of redirecting traffic anony-
mously (proxies) or redirecting users to malicious sources
or affiliate websites (TDSs).

As an example, an archive of 504KB was uploaded on
one of our honeypots on February 22, 2012. The archive
contained a proxy tool called VPSProxy, publicly available
at http://wonted.ru/programms/vpsproxy/ ; it is a PHP proxy
fully controllable through a GUI client. Apparently, among
all its features, if installed on more than one server, the tool
makes it easy for the person using it to bounce between dif-
ferent connections. We believe tools like this can be very
useful to criminals trying to hide their traces on the Inter-
net.

6.12 Custom attacks

Unique files ratio 1.9%
Estimated attackers ratio 2.6%

This category groups all attacks that were either built on
purpose for exploiting specific services, or that had no other
matching category. For example, attacks in this category in-
clude programs whose aim is to scan and exploit vulnerable
web services running on the server, such as the config.php
script that was uploaded to one of our websites on April
the 9th. This PHP script presents a panel for finding and
attacking 9 of the most known Content Management Sys-
tems: if any of these is found on the machine, the attacker
can automatically tamper with its configuration. The tool
also contained other scripts to launch local and remote ex-
ploits.

6.13 DOS & Bruteforcing tools

Unique files ratio 4.6%
Estimated attackers ratio 2.9%

This category includes programs that launch Denial of
Service or bruteforce attacks against specific applications
and services (e.g., bruteforcing tools for FTP or web ser-
vices, UDP and TCP flooding scripts).

An interesting example of this kind of behavior was the
email bruteforce script that was uploaded to one of our hon-
eypots on April 7, 2012. An IP address from Azerbaijan
used a web shell to upload a file called n.php and a wordlist
containing 1508 words, called word.txt. The n.php file, once
executed, uses the cURL PHP libraries to connect to the
box.az email portal and the uses the wordlist to brute-
force the password for a specific username that was hard-
coded in the program. Our honeypots actually logged the
upload of n.php several times, to three different domains.
The attacker tried multiple times to execute the script (10

times in 16 minutes) and to edit it (4 times) as if looking for
an error in the code. In reality, the script traffic was simply
blocked by our firewall.

7 Conclusions

In this paper we described the implementation and de-
ployment of a honeypot network based on a number of real,
vulnerable web applications. Using the collected data, we
studied the behavior of the attackers before, during, and af-
ter they compromise their targets.

The results of our study provide interesting insights on
the current state of exploitation behaviors on the web. On
one side, we were able to confirm known trends for certain
classes of attacks, such as the prevalence of eastern Euro-
pean countries in comment spamming activity, and the fact
that many of the scam and phishing campaigns are still op-
erated by criminals in African countries [12]. Pharmaceuti-
cal ads appear to be the most common subject among spam
and comment spamming activities, as found by other recent
studies [9].

On the other hand, we were also able to observe and
study a large number of manual attacks, as well as many
infections aimed at turning webservers into IRC bots. This
suggests that some of the threats that are often considered
outdated are actually still very popular (in particular be-
tween young criminals) and are still responsible for a large
fraction of the attacks against vulnerable websites.

We are currently working toward a completely auto-
mated system that can monitor the honeypot in realtime,
identify and categorize each attack, and update a dashboard
with the most recent trends and exploitation goals.

8 Acknowledgements

The research leading to these results was partially funded
from the EU Seventh Framework Programme (FP7/2007-
2013) under grant agreement n◦257007.

References

[1] IP Addresses of Search Engine Spiders. http://www.
iplists.com/.

[2] Robots IP Address Ranges. http://chceme.info/
ips/.

[3] Google Hack Honeypot. http://ghh.sourceforge.
net/, 2005.

[4] Dshield web honeypot project. https://sites.
google.com/site/webhoneypotsite/, 2009.

[5] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measur-
ing pay-per-install: The commoditization of malware distri-
bution. In Proceedings of the USENIX Security Symposium,
2011.

[6] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker.
Shared information and program plagiarism detection. In-
formation Theory, IEEE Transactions on, 50(7):1545–1551,
2004.

[7] s. Commtouch. Compromised Websites: An Owner’s
Perspective. http://stopbadware.org/
pdfs/compromised-websites-an-owners-
perspective.pdf, february 2012.

[8] M. Cova, C. Kruegel, and G. Vigna. Detection and Analy-
sis of Drive-by-Download Attacks and Malicious JavaScript
Code. In Proceedings of the International World Wide Web
Conference (WWW), 2010.

[9] Cyberoam Technologies and Commtouch. In-
ternet Threats Trend Report October 2012.
http://www.cyberoam.com/downloads/
ThreatReports/Q32012InternetThreats.pdf,
october 2012.

[10] S. Esser. evalhook. http://www.php-security.
org/downloads/evalhook-0.1.tar.gz, may
2010.

[11] M. Hofer and S. Hofer. ftp-deploy. http://
bitgarten.ch/projects/ftp-deploy/, 2007.

[12] Imperva Inc. Imperva’s Web Application Attack Re-
port. http://www.imperva.com/docs/HII_Web_
Application_Attack_Report_Ed2.pdf, january
2012.

[13] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
deSEO: Combating Search-Result Poisoning. In Proceed-
ings of the USENIX Security Symposium, 2011.

[14] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi.
Heat-seeking honeypots: design and experience. In Pro-
ceedings of the International World Wide Web Conference
(WWW), 2011.

[15] J. Kornblum. Identifying almost identical files using con-
text triggered piecewise hashing. Digital Investigation, 3,
Supplement(0):91 – 97, 2006.

[16] C. Leita and M. Dacier. Sgnet: A worldwide deployable
framework to support the analysis of malware threat models.
In Dependable Computing Conference, 2008. EDCC 2008.
Seventh European, may 2008.

[17] T. Moore and R. Clayton. Evil searching: Compromise and
recompromise of internet hosts for phishing. In Financial
Cryptography, pages 256–272, 2009.

[18] M. Müter, F. Freiling, T. Holz, and J. Matthews. A generic
toolkit for converting web applications into high-interaction
honeypots, 2007.

[19] V. Nicomette, M. Kaâniche, E. Alata, and M. Herrb. Set-up
and deployment of a high-interaction honeypot: experiment
and lessons learned. Journal in Computer Virology, june
2010.

[20] F. Pouget, M. Dacier, and V. H. Pham. V.h.: Leurre.com: on
the advantages of deploying a large scale distributed honey-
pot platform. In In: ECCE 2005, E-Crime and Computer
Conference, pages 29–30, 2005.

[21] N. Provos. A virtual honeypot framework. In Proceedings
of the USENIX Security Symposium, pages 1–14, 2004.

[22] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose.
All Your iFrames Point to Us. In Proceedings of the USENIX
Security Symposium, 2008.

[23] D. Ramsbrock, R. Berthier, and M. Cukier. Profiling attacker
behavior following ssh compromises. In in Proceedings of
the 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, 2007.

[24] L. Rist, S. Vetsch, M. Koßin, and M. Mauer. Glastopf.
http://honeynet.org/files/KYT-Glastopf-
Final_v1.pdf, november 2010.

[25] V. Roussev. Data fingerprinting with similarity digests. In
K.-P. Chow and S. Shenoi, editors, Advances in Digital
Forensics VI, volume 337 of IFIP Advances in Information
and Communication Technology, pages 207–226. Springer
Boston, 2010.

[26] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su. Detecting code clones in binary executables. In
Proceedings of the eighteenth international symposium on
Software testing and analysis, ISSTA ’09, pages 117–128.
ACM, 2009.

[27] zx2c4. Linux Local Privilege Escalation via SUID
/proc/pid/mem Write. http://blog.zx2c4.com/
749, january 2012.

120

12
Conclusion and Future Directions

12.1 The Past

The collection of papers I presented in this document were chosen not because they
were the best, because they are my favorite, or because they are published in the
most prestigious venues. Instead, they were chosen because I believe they provide
some sort of “coverage” of web application security – at least regarding my work
in this field.

These articles cover a variety of topics, ranging from black to white-box analy-
sis, from large Internet measurements to small code analysis experiments, and from
classic to new types of web vulnerabilities. They also include research for which I
was the main developer and the first author, and research that I later supervised as
a professor. Despite being so different, they all fit together as little pieces of a big
puzzle.

By looking at the general picture that emerges from this puzzle, I can summa-
rize my main contributions to the field of web application security (unfortunately
only partially presented in this manuscript) around the following points:

• A new approach to study input validation routines not as a binary problem
(sanitized vs not sanitized) but my measuring the quality and the limitations
of the code responsible to perform the sanitization.

• A new line of research that goes beyond traditional code injection and in-
put validation vulnerabilities and tackle more subtle bugs in the logic of a
web application. I approached the problem of automatically detecting logic
vulnerabilities both by looking at the source code and by inferring the appli-
cation model from a black box communication. I also proposed a detection

121

12.2. The Future

methodology, based on state invariants, to protect PHP applications against
this class of attacks [1].

• A number of practical tools and services to measure the prevalence of web
attacks and vulnerabilities on the Internet [2][3][4]. In particular, over the
past ten years, my research resulted in many new CVEs, many discussions
with developers and security teams of large organizations, and overall in
hundreds of problems fixed in very popular services. This shows that my
research had a tangible impact on the security of many real web applications
that are used every day by millions of users.

• The use of specially designed honeypots to capture and study the behavior
of the attackers on compromised web applications. Now operating for more
than three years, this project allowed us to collect a large amount of data that
we can use to study the evolution and motivations behind online crimes.

12.2 The Future

Forecasting the future in system security is often a futile exercise. Everything
evolves very fast, starting from the technologies and protocols, all the way to the
threat model and the motivations of the attackers. The challenge in the system
security field is that there is always a large number of severe and urgent problems
that need a solution – and no one can tell what these problems will be in five years
from now. This motivate people to look only as far as the next paper, and focus
their forecast only to identify emerging topics.

Despite this general “unpredictability”, researchers strive to find some order in
this chaos and try to identify clear directions that, abstracting from individual prob-
lems, can push the community towards a measurable improvement of the security
of both system and services.

In the following, I present three ideas I currently start to investigate and that I
hope will keep me busy for the next few years.

• In the first idea, I would like to put aside for a moment the existing con-
cept of “vulnerability” and look more broadly at popular features that, if not

[1] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, Giovanni Vigna “Swaddler: An Approach
for the Anomaly-based Detection of State Violations in Web Applications” – 10th International
Symposium on Recent Advances in Intrusion Detection (RAID)

[2]L. Bruno, M. Graziano, D. Balzarotti, A. Francillon “Through the Looking-Glass, and What Eve
Found There” USENIX Workshop on Offensive Technologies (WOOT) 2014

[3]A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti, A. Francillon “Optical Delusions: A Study of
Malicious QR Codes in the Wild” International Conference on Dependable Systems and Networks
(DSN 2014

[4]M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, C. Kruegel “A Solution for the Automated De-
tection of Clickjacking Attacks” ACM Symposium on Information, Computer and Communications
Security (ASIACCS) 2010

122

Chapter 12. Conclusion and Future Directions

properly implemented, can be abused by an attacker to perform malicious ac-
tions. Examples of this kind that I discovered in the past are the friend finder
functionality in online social networks [5], and the use of data compression
in web protocols [6]. While these were isolated cases, I plan to work in this
direction to generalize the concept and identify more examples. The goal is
not only to discover problems that are often overlooked, but also to propose
guidelines and security recommendations to help developers to implement
security-relevant services.

• The abundance of web applications vulnerabilities is a known issue. While
this is a very serious problem (one that I also discussed multiple times in
this document) it is not the only reason that makes the Web vulnerable to
so many unskilled attackers. The current approach and methodology used to
secure web applications has been copied by what the security community de-
veloped for normal computers. But the Web works in a completely different
way, starting from how the attackers reach their victims. Search engines and
Google dorks allow criminals to pro-actively locate the vulnerable applica-
tions, making web vulnerabilities much easier to exploit than a vulnerability
in a web browser or an office suite. This reduces the exploitation time and
calls for a new approach to web security. Re-thinking the way we look at
this problem requires a precise understanding of the role of all the compo-
nents and actors involved in web attacks. This is part of my current research,
but it will also affect my future work as I already started some long-lasting
projects in this direction for the next few years.

• A third research direction I want to investigate is to study how to use the
data collected by web application honeypots more effectively. Today, these
systems are used to collect signatures of (mostly automated) attacks. This in-
formation can then be used as a source of intelligence or as a way to improve
the detection of web application firewalls. However, this is only scratching
the surface of what we can do in this area. For instance, by studying the
tools and the components used by attackers on compromised machine, we
can build models to detect similar signs of compromise - also used in differ-
ent context and against different web applications. I believe that modeling
the attackers, and not jut the attacks, can be an interesting future direction.

[5]Marco Balduzzi, Christian Platzer, Thorsten Holz, Engin Kirda, Davide Balzarotti, Christopher
Kruegel “busing Social Networks for Automated User Profiling” Symposium on Recent Advances in
Intrusion Detection (RAID) 2010

[6] Giancarlo Pellegrino, Davide Balzarotti, Stefan Winter, Neeraj Suri “In the Compression Hor-
net’s Nest: A Security Study of Data Compression in Network Services” 24rd USENIX Security
Symposium 2014

123

	Introduction
	Part I: Input Validation Vulnerabilities
	The Evergreens
	ARTICLEheightwidthwidthheight Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applications
	ARTICLEheightwidthwidthheight Quo Vadis? A Study of the Evolution of Input Validation Vulnerabilities in Web Applications
	ARTICLEheightwidthwidthheight Automated discovery of parameter pollution vulnerabilities in web applications

	Part II: Logic Vulnerabilities
	From Traditional Flaws to Logic Flows
	ARTICLEheightwidthwidthheight Multi-Module Vulnerability Analysis of Web-based Applications
	ARTICLEheightwidthwidthheight Toward Black-Box Detection of Logic Flaws in Web Applications

	Part III: A Play with Many Actors
	A Change of Perspective
	ARTICLEheightwidthwidthheight The Role of Web Hosting Providers in Detecting Compromised Websites
	ARTICLEheightwidthwidthheight Behind the Scenes of Online Attacks: an Analysis of Exploitation Behaviors on the Web
	Conclusion and Future Directions
	The Past
	The Future

