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Abstract. With the continuous increase of cloud storage adopters, data
deduplication has become a necessity for cloud providers. By storing a
unique copy of duplicate data, cloud providers greatly reduce their stor-
age and data transfer costs. Unfortunately, deduplication introduces a
number of new security challenges. We propose PerfectDedup, a novel
scheme for secure data deduplication, which takes into account the pop-
ularity of the data segments and leverages the properties of Perfect Hash-
ing in order to assure block-level deduplication and data confidentiality
at the same time. We show that the client-side overhead is minimal and
the main computational load is outsourced to the cloud storage provider.
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1 Introduction

Cloud storage providers constantly look for techniques aimed to minimize re-
dundant data and maximize space savings. We focus on deduplication, which
is one of the most popular techniques and has been adopted by many major
providers such as Dropbox3. The idea behind deduplication is to store dupli-
cate data only once. Thanks to such a mechanism, space savings can reach 70%
[7] and even more in backup applications. On the other hand, along with low
costs, users also require the confidentiality of their data through encryption.
Unfortunately, deduplication and encryption are two conflicting techniques. A
solution which has been proposed to meet these two conflicting requirements
is Convergent Encryption (CE) [4] whereby the encryption key is the result of
the hash of the data segment. However, CE unfortunately suffers from various

2 Partially supported by the TREDISEC project (G.A. no 644412), funded by the Eu-
ropean Union (EU) under the Information and Communication Technologies (ICT)
theme of the Horizon 2020 (H2020) research and innovation programme.

3 https://www.dropbox.com
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well-known weaknesses [9] including dictionary attacks. We propose to counter
the weaknesses due to CE by taking into account the popularity [10] of the data
segments. Data segments stored by several users, that is, popular ones, are only
protected under the weak CE mechanism whereas unpopular data segments that
are unique in storage are protected under semantically-secure encryption. This
declination of encryption mechanisms lends itself perfectly to efficient deduplica-
tion since popular data segments that are encrypted under CE are also the ones
that need to be deduplicated. This scheme also assures proper security of stored
data since sensitive thus unpopular data segments enjoy the strong protection
thanks to the semantically-secure encryption whereas the popular data segments
do not actually suffer from the weaknesses of CE since the former are much less
sensitive because they are shared by several users. Nevertheless, this approach
raises a new challenge: the users need to decide about the popularity of each
data segment before storing it and the mechanism through which the decision is
taken paves the way for a series of exposures very similar to the ones with CE.
The focus of schemes based on popularity then becomes the design of a secure
mechanism to detect the popularity of data segments.

In this paper we suggest a new scheme for the secure deduplication of en-
crypted data, based on the aforementioned popularity principle. The main build-
ing block of this scheme is an original mechanism for detecting the popularity of
data segments in a perfectly secure way. Users can lookup for data segments in
a list of popular segments stored by the Cloud Storage Provider (CSP) based on
data segment identifiers computed with a Perfect Hash Function (PHF). Thanks
to this technique, there is no information leakage about unpopular data segments
and popular data segments are very efficiently identified. Based on this new pop-
ularity detection technique, our scheme achieves deduplication of encrypted data
at block level in a perfectly secure manner. The advantages of our scheme can
be summarized as follows:

– our scheme allows for storage size reduction by deduplication of popular
data;

– our scheme relies on symmetric encryption algorithms, which are known to
be very efficient even when dealing with large data;

– our scheme achieves deduplication at the level of blocks, which leads to higher
storage space savings compared to file-level deduplication [7];

– our scheme does not require any coordination or initialization among users;
– our scheme does not incur any storage overhead for unpopular data blocks;

2 Secure Deduplication Based on Popularity

Given the inherent incompatibility between encryption and deduplication, exist-
ing solutions suffer from different drawbacks. CE was considered to be the most
convenient solution for secure deduplication but it has been proved that is is vul-
nerable to various types of attacks [9]. Hence, CE cannot be employed to protect
data confidentiality and thus stronger encryption mechanisms are required.
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We point out that data may need different levels of protection depending on
its popularity [10] a data segment becomes ”popular” whenever it belongs to
more than t users (where t is the popularity threshold). The ”popularity” of a
block is viewed as a trigger for its deduplication. Similarly, a data segment is
considered to be unpopular if it belongs to less than t users. This is the case for
all highly sensitive data, which are likely to be unique and thus unlikely to be
duplicated.

Given this simple distinction, we observe that popular data do not require
the same level of protection as unpopular data and therefore propose different
forms of encryption for popular and unpopular data. For instance, if a file is
easily accessible by anyone on the Internet, then it is reasonable to consider a
less secure protection. On the other hand, a confidential file containing sensitive
information, such as a list of usernames and passwords, needs much stronger
protection. Popular data can be protected with CE in order to enable source-
based deduplication, whereas unpopular data must be protected with a stronger
encryption. Whenever an unpopular data segment becomes popular, that is, the
threshold t is reached, the encrypted data segment is converted to its convergent
encrypted form in order to enable deduplication.

We propose to encrypt unique and thus unpopular data blocks (which can-
not be deduplicated) with a symmetric encryption scheme using a random key,
which provides the highest level of protection while improving the computational
cost at the client. Whenever a client wishes to upload a data segment, we pro-
pose that she should first discover its popularity degree in order to perform the
appropriate encryption operation. The client may first lookup for a convergent
encrypted version of the data stored at the CSP. If such data segment already
exists, then the client discovers that this data segment is popular and hence can
be deduplicated. If such data segment does not exist, the client will encrypt it
with a symmetric encryption scheme. Such a solution would greatly optimize the
encryption cost and the upload cost at the client. However, a standard lookup
solution for the convergent encrypted data segment would reveal the convergent
encrypted data segment ID, that is the digest of the data computed under an un-
keyed hash function like SHA-3, which would be a serious breach. Secure lookup
for a data segment is thus a delicate problem since the ID used as the input
to the lookup query can lead to severe data leakage as explained in [17] and
[9]. Therefore, in such a scenario the main challenge becomes how to enable the
client to securely determine the popularity of a data segment without leaking
any exploitable information to the CSP. Also, the client needs to securely handle
the ”popularity transition”, that is the phase triggered by a data segment that
has just reached the popularity threshold t. More formally, the popularity detec-
tion problem can be defined as follows: given a data segment D and its ID IDD,
the client wants to determine whether IDD belongs to the set P of popular data
segment IDs stored at an untrusted CSP. It is crucial that if IDD /∈ P , no infor-
mation must be leaked to the CSP. More generally, this problem can be seen as
an instance of the Private Set Intersection (PSI) problem [26]. However, existing
solutions are known to be costly in terms of computation and communication,
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especially when dealing with very large sets. Private Information Retrieval (PIR)
[25] may also be a solution to this problem. However, using PIR raises two main
issues: first, it would incur a significant communication overhead; second, PIR
is designed to retrieve a single element per query, whereas an efficient protocol
for the popularity check should allow to check the existence of multiple data
segment IDs at once. Hence instead of complex cryptographic primitives like
PSI and PIR we suggest a secure mechanism for popularity detection based on
a lightweight building block called Perfect Hashing [11]. We aim at solving this
problem by designing a novel secure lookup protocol, which is defined in next
section, based on Perfect Hashing [11].

3 Basic Idea: Popularity Detection Based on Perfect
Hashing

The popularity detection solution we propose makes use of the Perfect Hashing
process which, given an input set of n data segments, finds a collision-free hash
function, called the perfect hash function (PHF), that maps the input set to
a set of m integers (m being larger than n by a given load factor). The CSP
can run this process in order to generate the PHF matching the IDs of the
convergent encrypted popular blocks that are currently stored at the CSP. The
resulting PHF can be efficiently encoded into a file and sent to the client. Using
the PHF received from the CSP, the client can lookup for new blocks in the
set of encrypted popular block IDs stored at the CSP, as illustrated in Figure
1. For each new block D, the client first encrypts the block to get CE(D), he
then computes the ID thereof using an unkeyed hash function h like SHA-3.
Finally, by evaluating the PHF over ID, the client gets the lookup index i for
the new block. The integer i will be the input of the lookup query issued by
the client. Once the CSP has received the lookup query containing i, he will
return to the client the convergent encrypted popular block ID stored under i.
At this point, the client can easily detect the popularity of his data segment by
comparing the ID he computed with the one received from the CSP: if the two
IDs match, then D is popular. As mentioned above, it is a crucial requirement
to prevent the CSP from discovering the content of the block D when it is yet
unpopular. We achieve so by introducing an enhanced and secure version of
Perfect Hashing, which makes the generated PHF one-way, meaning that the
CSP cannot efficiently derive the input of the PHF from its output i. This also
implies that the PHF must yield well-distributed collisions for unpopular blocks.

However, even though the client is now able to securely detect the popularity
of a block, he still needs to handle the popularity transition, that is the phase in
which a block reaches the threshold t and the convergent encrypted block needs
to be uploaded to the CSP. Since the client cannot be aware of other copies of
the same block previously uploaded by other users, a mechanism to keep track
of the unpopular data blocks is needed. Clearly, the client cannot rely on the
CSP for this task, as the CSP is not a trusted component. Therefore, we pro-
pose to introduce a semi-trusted component called Index Service (IS), which is
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responsible for keeping track of unpopular blocks. If the result of a popularity
check is negative, then the client updates the IS accordingly by sending the pop-
ular convergent encrypted block ID and the ID of the symmetrically encrypted
block. As soon as a block becomes popular, that is reaches the threshold t, the
popularity transition is triggered and the client is notified in order to let him
upload the convergent encrypted block, which from now on will be deduplicated
by the CSP. Upon a popularity transition, the IS will delete from its storage
any information related to the newly popular block. Regarding the popularity
threshold, we point out that users do not have to be aware of its value, since the
popularity transition is entirely managed by the IS, that is responsible for deter-
mining the current value for t. For instance, the value of t may be either static
or dynamic, as proposed in [15]. Indeed, our scheme is completely independent
of the strategy used for determining the value of the popularity threshold.

Fig. 1. The secure PHF allows users to detect popular blocks while preventing the
CSP from discovering unpopular blocks

4 Background

4.1 Convergent Encryption

The idea of convergent encryption (CE) [4] is to derive the encryption key from
the hash of the plaintext. A basic implementation of convergent encryption can
be defined as follows: a user computes the encryption key using the message
by applying a secure hash function H over M : K = H(M); the message can
then be encrypted with this key using a block cipher E: hence, C = E(K,M) =
E(H(M),M). Thanks to this technique, two users with two identical plaintexts
will obtain two identical ciphertexts since the encryption key is the same and the
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encryption algorithm is deterministic. Despite its practicality, CE is known to
be vulnerable to several weaknesses which undermine its capability of protecting
confidential data and allow an attacker who has access to the storage server
to perform offline dictionary attacks and discover predictable files. As shown in
[9], CE is unfortunately exposed to the two following attacks: confirmation-of-
a-file (COF) and learn-the-remaining-information (LRI). These attacks exploit
the deterministic relationship between the plaintext and the encryption key and
therefore can be successful in the verification whether a given plaintext has
already been stored.

4.2 Perfect Hashing

A Perfect Hash Function (PHF) maps a set of arbitrary entries into a set of
integers without collisions. Authors in [11] proposed a new algorithm that al-
lows finding a perfect mapping for very large sets in a very efficient way. This
algorithm, which is called CHD (Compress, Hash and Displace), achieves linear
space and computational complexities (with respect to the size of the set). The
main idea behind this algorithm is to split the input set into several buckets
(subsets) with a few elements and find a collision-free mapping for each of these
buckets separately. This approach has proved to be much more scalable than
previous approaches. The mean number of elements per bucket is a parameter
that can be tuned upon executing the generation algorithm. CHD also allows
choosing a load factor, which is the fraction of non-empty positions in the hash
table.

Although perfect hashing is widely adopted for efficient indexing in the field
of relational databases [19], it has some desirable properties which make it an
appropriate building block for our scheme. First, the computational complexity
to build the PHF is linear and the PHF can be evaluated in constant time.
Thanks to these properties, the system is scalable since the PHF generation
remains feasible when dealing with very large datasets. In addition to that,
the main computational load is outsourced to the CSP, while the client only
has to perform very simple and lightweight operations such as evaluating the
PHF on block IDs and symmetrically encrypting data blocks. Second, thanks
to a special encoding and compression mechanism, the size of the PHF file is
small and therefore it can easily be transferred to the client. Therefore, the
performance impact is minimal and this approach can easily scale up to sets of
millions of elements. Third, the resulting hash table is collision-free with respect
to the elements of the input set (popular block IDs), meaning that any index is
associated to at most one element of the input set. On the other hand, if the PHF
is evaluated over the rest of the domain (unpopular block IDs) then collisions
are well-distributed. This property is an important starting point to build our
secure lookup protocol which must guarantee that an attacker is not able to
determine on what input the PHF has been evaluated. Indeed, while an index
in the hash table corresponds to a unique popular block ID, many unpopular
block IDs are mapped to the same index. Therefore, given an index in the hash
table, the CSP cannot determine the corresponding block ID. In our solution we
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propose to extend the existing PHF by replacing the underlying hash function
with a one-way secure hash function such as SHA-3 [24]. Indeed, for the security
of the scheme, it is crucial that the hash function used by the algorithm is one-
way, meaning that it is easy to compute on a given input, but hard to invert
given the image of a random input.

5 Our solution

5.1 Overview

We consider a scenario where users want to store their data (files) on a potentially
untrusted Cloud Storage Provider (CSP) while taking advantage of source-based
block-level deduplication and protecting the confidentiality of their data at the
same time. Users run a client C which is a lightweight component with respect
to both storage and computational capacity. CSP is assumed to be honest-but-
curious and thus correctly stores users’ data while trying to disclose the content
thereof. Prior to uploading its data, C runs a secure lookup protocol to check
whether the data are popular. The CSP is responsible for the generation of the
PHF over the popular blocks and the storage of the resulting collision-free hash
table. The proposed protocol introduces a trusted third party called Index Ser-
vice (IS) which helps the client to discover the actual number of copies of a yet
unpopular block. We stress the fact that IS only stores information on unpop-
ular blocks and once a block becomes popular, all corresponding information
are removed from its database, hence this component does not need to have a
significant storage capacity.

The proposed solution is described under three different scenarios:

– Unpopular data upload (Scenario 1): if C finds out that the data is yet
unpopular, it performs the upload to the CSP and updates the IS;

– Popularity transition (Scenario 2): if C finds out that the popularity degree
of the data is t − 1 (where t is the popularity threshold), then it performs
the appropriate operations to upload the newly popular data. IS removes
all information with respect to this specific data and CSP deletes all the
encrypted copies previously stored;

– Popular data upload (Scenario 3): C only uploads metadata since it has
detected that the requested data is popular, therefore deduplication can
take place.

CSP stores a hash table for popular block IDs which is constructed with the
previously introduced PHF. Each element of the hash table is defined by the
couple (PHF (h(CE(bi))), h(CE(bi))) where h(CE(bi)) is the unkeyed secure
hash of the convergent encrypted block. Before any operation, given the current
set of popular blocks, CSP creates a corresponding secure PHF. This PHF is
updated only when CSP needs to store new popular blocks. In the next sections,
we first present the popularity check phase which is common to all three scenarios
and then explain the following phases.
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5.2 Popularity Check (Scenarios 1, 2 and 3)

Before uploading a file F , C splits F into blocks F = {bi}, encrypts each of them
with CE and computes their IDs. We point out that our scheme is completely
independent of the underlying data-chunking strategy used for determining block
boundaries, which is a problem that is out of the scope of this paper. The client
fetches the PHF from the CSP and evaluates it over {h(CE(bi))}. The result
of this operation is a set of indices I = {PHF (h(CE(bi)))}, where each index
represents the position of the potentially popular block ID in the hash table
stored at the CSP. These indices can be used to perform the popularity check
without revealing the content of the blocks to the CSP. Indeed, given a set of
indices obtained as above, the client can retrieve the corresponding block IDs
stored in the hash table and then compare them with his own block IDs. Any
block bi such that h(CE(bi)) is equal to the popular block ID retrieved from the
CSP, is considered as popular, hence will be deduplicated. The index does not
reveal any exploitable information on the block.

5.3 Popularity Transition (Scenarios 1 and 2)

If the popularity check reveals that a block is not popular, C needs to check
whether it is going to trigger a popularity transition. A block becomes popular
as soon as it has been uploaded by t users. In order to enable C to be aware of the
change of the popularity status and perform the transition, C sends an update to
the IS whenever the popularity check has returned a negative result for a given
block ID. IS stores a list of block IDs and owners corresponding to each encrypted
copy of the yet unpopular block. When the number of data owners for a particular
block reaches t, the popularity transition protocol is triggered and IS returns to
C the list of block IDs. In order to complete this transition phase, CSP stores
the convergent-encrypted copy, removes the corresponding encrypted copies and
updates the PHF. From now on, the block will be considered popular, therefore
it will be deduplicated. We point out that this operation is totally transparent
to the other users who uploaded the same block as unpopular. Indeed, during
their upload phase, users also keep encrypted information about the convergent
encryption key. This allows them decrypting the block when it becomes popular.

5.4 Data Upload (Scenarios 1, 2 and 3)

Once the client has determined the popularity of each block, he can send the
actual upload request. The content of the request varies depending on the block
status. If the block is unpopular, C uploads the block symmetrically encrypted
with a random key. If the block is popular, C only uploads the block ID, so that
the CSP can update his data structures. Optionally, in order to avoid to manage
the storage of the encryption keys, C may rely on the CSP for the storage of the
random encryption key and the convergent encryption key, both encrypted with
a secret key known only by the client.
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6 Security Analysis

In this section, we analyze the security of the proposed scheme, the CSP being
considered the main adversary. The CSP is ”honest-but-curious”, meaning that
it correctly performs all operations but it may try to discover the original con-
tent of unpopular data. We do not consider scenarios where the CSP behaves
in a byzantine way. We assume that CSP cannot collude with the IS since this
component is trusted. Since the goal of the malicious CSP is to discover the
content of unpopular blocks, we analyze in detail whether (and how) confiden-
tiality is guaranteed for unpopular data in all phases of the protocol. However, if
the user wants to keep a file confidential even when it becomes popular, he may
encrypt the file with a standard encryption solution and upload it to the cloud
without following the protocol steps. Finally, we also analyze some attacks that
may be perpetrated by users themselves and propose simple countermeasures
against them.

Security of blocks stored at the CSP By definition, an unpopular block is
encrypted using a semantically-secure symmetric encryption. The confidentiality
of unpopular data segments thus is guaranteed thanks to the security of the
underlying encryption mechanism.

Security during Popularity Check The information exchanged during the
Popularity Check must not reveal any information that may leak the identity of
an unpopular block owned by the user. The identity of an unpopular block is
protected thanks to the one-wayness of the secure PHF: the query generated by
the client does not include the actual unpopular block ID but an integer i that
is calculated by evaluating the secure PHF on the block ID. Simple guessing by
exploring the results of the secure hash function embedded in the PHF is not
feasible thanks to the one-wayness of the underlying secure hash function (SHA-
3 [24]). In addition to that, when the PHF is evaluated over an unpopular block
ID, there is definitely a collision between the ID of the unpopular block and
the ID of a popular block stored at the CSP. These collisions serve as the main
countermeasure to the disclosure of the unpopular block ID sent to the CSP
during the lookup. With a reasonable assumption, we can also consider that the
output of the underlying secure hash function (SHA-3) is random. In case of a
collision between an unpopular block ID and the ID of a popular block stored at
the CSP, thanks to the randomness of the underlying secure hash function, the
output of a PHF based on such a hash function is uniformly distributed between
0 and m. In the case of such a collision, the probability that the CSP guesses
the unpopular block ID used as input to the PHF by the client thus is:

m∣∣P̄ ∣∣ =
|P |∣∣P̄ ∣∣ ∗ α (1)

where P is the set of popular block IDs stored at the CSP, P̄ is the rest of
the block ID domain including all possible unpopular block IDs, α is the load

factor of the PHF such that m = |P |
α .
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Assuming that the cardinality of the entire domain is much larger than the
cardinality of the set of popular block IDs (which is the case if popular block
IDs are the result of a secure hash function), we can state that the number of
collisions per index is large enough to prevent a malicious CSP from inferring
the actual block ID used as input to the PHF. In a typical scenario using a
PHF based on a secure hash function like SHA-3, whereby the complexity of a
collision attack would be 2256, and a popular block ID set with 109 elements,
this probability will be (α = 0.81):

109

(2256 − 109) ∗ 0.81
≈ 1.06 ∗ 10−68 (2)

Hence collisions can effectively hide the identity of unpopular blocks from an
untrusted cloud provider while keeping the lookup protocol extremely efficient
and lightweight for the users.

Security against potential protocol vulnerabilities We now consider a
few additional attacks that may be perpetrated by the CSP. For each of them,
we propose simple but effective countermeasures, which are easy to implement
and do not significantly increase the computational and network overhead. First,
we consider that the CSP may pre-build a PHF based on some specific data (de-
rived for example from a dictionary) which have not been yet uploaded by users.
Within such a scenario, clients would detect their requested block to be popu-
lar although it has never actually been uploaded by any user; such a block will
then be stored with a lower level of protection. As a countermeasure to such an
attack, we propose that the IS attaches a signature to each popular block ID
upon the Popularity Transition. Therefore, the IS will sign popular block IDs be-
fore being stored at the CSP, enabling clients to verify the authenticity of these
blocks when running the popularity check. Such a countermeasure would have a
minimal impact on the performance of the system. Another attack we consider
is related to the confirmation-of-file attack to which convergent encryption is
also vulnerable [9]. Indeed, upon a Popularity Check, the CSP may compare the
sequence of indices sent by the client with the sequence produced by a given pop-
ular file F. If the two sequences match, then there is a chance that the client is
actually uploading F. In order to hide this information from the CSP, the client
may add a number of random indices to the list of indices being sent upon the
Popularity Check. Thanks to the resulting noise included in the index list, the
identification of the target file by the CSP will be prevented. This countermea-
sure also prevents the CSP from running the learn-the-remaining-information
attack. Moreover, the overhead due to this countermeasure is negligible both in
terms of bandwidth and computation.

Security against users Users may force a popularity transition by repeat-
edly uploading random or targeted blocks. As a countermeasure, the popularity
threshold may be set to a value t′ = t + u, where u is the expectation of the
maximum number of malicious users. As opposed to the proposal of [10], the
threshold can be dynamically updated at any time of the system life. Indeed,
this parameter is transparent to both users and the CSP, hence the Index Ser-
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vice can update it depending on the security needs. Users may also perpetrate
a DoS attack by deleting random blocks stored at the cloud. This may happen
upon a popularity transition: the client is asked to attach a list of block IDs
that may not be the actual encrypted copies of the block being uploaded. We
suggest making the Index Service sign the list of block IDs to be deleted so that
the cloud can verify whether the request is authentic. This signature does not
significantly increase the overhead since several schemes for short signatures [22]
have been proposed in the literature.

7 Performance Evaluation

7.1 Prototype Implementation

In order to prove the feasibility of our approach, we implemented a proof-of-
concept prototype consisting of the three main components, namely, the Client,
the IS and the CSP. All components have been implemented in Python. Cryp-
tographic functions have been implemented using the pycrypto library4. Both
the Client and the IS run on an Ubuntu VM hosted on our OpenStack platform,
while the CSP runs on an Ubuntu VM hosted on Amazon EC2 (EU Region). The
IS uses REDIS5 in order to store the information on unpopular blocks, which
are encoded as lists. Metadata (block IDs, file IDs, files structures, encrypted
keys) are stored in a MySQL database. Perfect Hashing has been implemented
using the CMPH library6 at both the Client and the CSP. In order to achieve
one-wayness, we customized CMPH by replacing the internal hash function with
SHA256 [20]. We stress the fact that this is a proof-of-concept implementation,
therefore for the sake of simplicity the CSP has been deployed on a VM where
data blocks are stored locally. In a production environment, the CSP service
may be deployed on a larger scale and any storage provider such as Amazon S37

may be employed to physically store blocks.

We consider a scenario where the client uploads a 10MB file to the CSP pre-
filled with 106 random blocks. We propose to first evaluate the computational
overhead of each single component and measure the total time a client needs
to wait during each phase until the data upload has been completed. We then
analyze the network overhead of the proposed solution. Our analysis considers
the three previously described scenarios:

– Scenario 1 (Unpopular File): the file to be uploaded is still unpopular;

– Scenario 2 (Popularity Transition): the file has triggered a popularity tran-
sition hence is going to become popular;

– Scenario 3 (Popular File): the file to be uploaded is already popular.
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Fig. 2. Portion of the total computation time spent at each component in each scenario

7.2 Computational Overhead

In this section we present our measurements of the computational overhead at
each component and then show the total time a client takes to upload a file.
Figure 2 shows an aggregate measure of all computation-intensive operations
each component performs. The results prove that, as expected, the computa-
tional overhead introduced in the CSP is much higher than the one affecting the
client. Also, since the operations performed by the IS are extremely simple, its
computational overhead is negligible.

Figure 3 shows more detailed results by highlighting which operations intro-
duce a higher computational overhead. The results prove that:

– Symmetric encryption introduces a negligible computational overhead, hence
it does not affect the system performance;

– The client-side Popularity Check is extremely lightweight and thus intro-
duces a negligible computational overhead;

– The most computation-intensive operations (PHF generation, hash table
storage, upload processing) are performed by the CSP, hence a big fraction
of the computational overhead is outsourced to the CSP.

Figures 4 and 5 show the results of an in-depth study on the performance of
the Perfect Hashing algorithm, both in terms of storage space and computation
time for the generation of the PHF. The generation time also includes the time
needed to store the hash table. We measured these quantities on a dataset of
106 random block IDs while varying the load factor and the bucket size. The
former is a coefficient indicating the fraction of non-empty positions in the final
collision-free hash table; the latter is the mean number of elements in each subset
of the input set (see [11] for further details). As we can observe from Figures 4
and 5, the optimal bucket size is between 3 and 4 and the load factor should not

4 https://pypi.python.org/pypi/pycrypto
5 http://redis.io
6 http://cmph.sourceforge.net/
7 https://aws.amazon.com/s3
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Fig. 3. Total time spent during each phase of the protocol in each scenario

be greater than 0.8. These parameters can be tuned depending on the scenario
(e.g. bandwidth) in order to achieve the best performance.

Fig. 4. Analysis of PHF generation time with varying parameters for a set containing
106 elements

Furthermore, as mentioned earlier, in order to improve the security of our
novel lookup protocol, we replaced the default hash function employed by the
CMPH library (Jenkins [21]) with SHA-3. This improvement is required for the
following reason: using a non-secure hash function would allow an adversary such
as the CSP to easily enumerate all block IDs mapped to a given index of the
hash table. Such a threat may compromise the security of the whole system and
make the popularity check protocol insecure.

Conclusion Figure 6 summarizes all measurements by showing the total time
spent during each phase of the upload protocol within the three scenarios. These
results show that despite the delay introduced by the Popularity Check phase,
the user achieves a throughput of approximately 1MB per second even when a
file does not contain any popular block.
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Fig. 5. Analysis of PHF size with varying parameters for a set containing 106 elements

Fig. 6. Total time spent by all components when uploading a file (including Popularity
Check) in each scenario

7.3 Communication Overhead

In this section we analyze the communication overhead of our scheme consider-
ing the same scenarios. The upload has been split into multiple sub-operations:
PHF Download, Popularity Check, Index Service Update (not performed in Sce-
nario 2) and the Upload. For each of these operations we analyze the size of
all messages exchanged (both requests and responses). Table 1 regroups all the
results expressed in MB. The PHF Download response size is linear with respect
to the set of popular block IDs. The larger the set, the larger the response will
be. However, as shown in [11], the size of PHF file is about 1.4 bits per popular
block ID; hence this operation does not introduce a significant delay even when
dealing with very large datasets. We point out that the PHF file does not have
to be downloaded at every request, since the user can cache it. Furthermore, the
size of the Popularity Check request and response is linear with respect to the
number of blocks in the file that is being uploaded. The Popularity Check request
contains a list of indices (one integer per block), while the response contains a
list of block IDs (one per index) of 32 bytes each. The Index Service Update
request is only sent for unpopular blocks. The request consists of two block IDs
(32 bytes each) per block. The response size varies depending on whether the
popularity transition occurs. If the file has triggered a popularity transition, then
the response includes a list of block IDs, otherwise it is empty. As we can see
from Table 1, requests and responses of the Popularity Check and the Index



PerfectDedup: Secure Data Deduplication 15

Service Update operations have a negligible size with respect to the file size.
Finally, the size of the Upload request varies depending on the block status. If
a block is popular, the request only consists of the block ID and one key (32
bytes). If a block is not popular, the request contains the encrypted data, two
keys (32 bytes each) and a few fields: the file ID (32 bytes), the user ID and
the block status (1 byte). As shown in Table 1, the overhead introduced by the
Upload is minimal and mainly depends on the encoding method used to transfer
the encrypted binary data. For simplicity, we used JSON objects to pack en-
crypted blocks and keys and Base64 to encode binary data, which increases the
size of the data by 1/3. To summarize, the preliminary operations performed in
our scheme before the Upload introduce a negligible communication overhead.
In addition, the scheme does not affect the gains in terms of storage space and
bandwidth achieved thanks to deduplication.

SCENARIO 1 SCENARIO 2 SCENARIO 3

PHF DOWNLOAD IN 0.67 0.67 0.67

POPULARITY CHECK REQUEST 0.004 0.004 0.004

POPULARITY CHECK RESPONSE 0.02 0.02 0.02

INDEX SERVICE UPDATE REQUEST 0.1 0.1 -

INDEX SERVICE UPDATE RESPONSE 0.009 0.04 -

UPLOAD REQUEST 13.51 13.47 0.09

Table 1. Communication overhead (in MB) introduced by each operation

8 Related Work

Secure deduplication for cloud storage has been widely investigated both in the
literature and in the industry. Convergent encryption, has been proposed as a
simple but effective solution to achieve both confidentiality and deduplication
[1, 3, 4]. However, it is vulnerable to well-known attacks which put data confi-
dentiality at risk [3, 4]. A relevant work on this topic is DupLESS [8], which is
based on a privacy-preserving protocol running between the user and a trusted
key server. If an attacker learns the secret stored at the key server, confiden-
tiality can no longer be guaranteed. Recently, a system called ClouDedup [9]
has been proposed, which achieves secure and efficient block-level deduplication
while providing transparency for end users. However, the system relies on a
complex architecture in which users have to trust an encryption gateway which
takes care of encrypting/decrypting data. Similarly to DupLESS, the leakage of
the secret key compromises confidentiality.Another relevant work is iMLE [2],
which proposes an elegant scheme for secure data deduplication. However, the
scheme is purely theoretical, hence cannot be adopted in real scenarios. In fact, it
makes an extensive use of fully homomorphic encryption [23]. To the best of our
knowledge, one of the most recent and relevant works in the field of secure data
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deduplication is [10], which is based on the idea of differentiating data protection
depending on its popularity and makes use of a mixed cryptosystem combining
convergent encryption and a threshold encryption scheme. However, this work
suffers from a few drawbacks which we aim to solve. First, the system suffers
from a significant storage and bandwidth overhead. Indeed, for each unpopular
file the user uploads two encrypted copies, one encrypted with a random sym-
metric key and one encrypted with the mixed encryption scheme. In scenarios
with a high percentage of unpopular files, the storage overhead will be signif-
icant and nullify the savings achieved thanks to deduplication. We propose to
eliminate the storage overhead by storing one single copy for each data segment
at a time, encrypted with either a random symmetric key or a convergent key.
Second, the system proposed in [10] relies on a trusted component which pro-
vides an indexing service for all data, both popular and unpopular. We propose
to limit the usage of this trusted component to unpopular data. In our scheme,
popular data can be detected thanks to the secure lookup protocol, whereby
[10] relies on the trusted component. Third, the effectiveness of the system pro-
posed in [10] is limited to file-level deduplication, which is known to achieve
lower space savings than block-level deduplication. Fourth, both the client and
the CSP have to perform complex cryptographic operations based on threshold
cryptography on potentially very large data. As opposed to this, our proposed
scheme has been designed to perform only simple and lightweight cryptographic
operations, which significantly lowers the cost for the client. Fifth, our scheme
does not require any coordination or initialization among users as opposed to
[10]’s requirement to setup and distribute key shares among users.

9 Conclusion and Future Work

We designed a system which guarantees full confidentiality for confidential files
while enabling source-based block-level deduplication for popular files. The main
building block of our system is our novel secure lookup protocol built on top of
an enhanced version of Perfect Hashing. To the best of our knowledge, this is the
first work that uses Perfect Hashing for a different purpose other than database
indexing. Our system is not based on any key-management protocol, hence it
does not require users to agree on a shared secret or trust a third party for
storing encryption keys. A semi-trusted component is employed for the purpose
of storing metadata concerning unpopular data and providing a support for
detecting popularity transitions, meaning that a data block has just reached the
popularity threshold. We also implemented a prototype of the proposed solution.
Our measurements show that the storage, network and computational overhead
is affordable and does not affect the advantage of deduplication. Also, we showed
that the computational overhead is moved to the CSP, while the client has to
perform very lightweight operations. As part of future work, PerfectDedup may
be optimized in order to reduce the overhead due to the PHF generation and
transmission.
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