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Abstract—This paper presents and analyses two computation-
ally attractive Maximum Likelihood (ML) estimators for joint
Angle of Arrival (AoA) and Time of Arrival (ToA) using a Single
Input Multiple Output (SIMO) link in an OFDM communication
setting. We consider a rich multipath channel, which is the case
of an indoor environment, where the received signal is a sum
of scaled and delayed versions of the original transmit OFDM
symbol. The first algorithm is a modification of the two dimen-
sional Iterative Quadratic ML (2D-IQML) algorithm, where an
additional constraint is added for joint ToA and AoA estimation.
We show that 2D-IQML gives biased estimates of ToAs/AoAs and
performs poorly at low SNR due to noise induced bias. The 2D-
IQML cost function can be ”denoised” by eliminating the noise
contribution: the resulting algorithm, two dimensional Denoised
IQML (2D-DIQML), gives consistent estimates and outperforms
2D-IQML. Furthermore, 2D-DIQML is asymptotically globally
convergent and hence insensitive to the initialisation. Also, we
show that the 2D-DIQML algorithm behaves asymptotically at
any SNR as the 2D-IQML algorithm behaves at high SNR. A
simulation example has been presented to show the asymptotic
behaviour of both algorithms at low SNR. Finally, joint AoA/ToA
estimates could bring very useful information for localisation
purposes, especially in a rich multipath channel, that could allow
single anchor-based localisation.

I. INTRODUCTION

Localisation has been one challenging topic over the past
60 years. In fact, many techniques have been developed in
order to reliably position a wireless emitter. The first classi-
cal approach involves estimating the angle-of-arrival (AoA),
received signal strenth (RSS), time-of-arrival (ToA), time-
difference-of-arrival (TDoA), phase-of-arrival (PoA), etc.., of
an emitter with respect to multiple base stations, in order
to localise through triangulation or trilateration methods [1].
In favor of estimating signal parameters (ToA, AoA, etc..),
the Maximum Likelihood (ML) technique was one of the
first to be investigated [2]. However, it did not receive much
attention due to the high computational load of the multivariate
nonlinear minimisation problem involved, since it requires a
(pq + r)-dimensional search, where p is the number of signal
parameters of interest, q is the number of signals, and r are
additional parameters that are part of the model and have to
be estimated jointly with signal parameters. These r additional
parameters could be antenna calibration parameters (see [3]) or
synchronisation parameters (see [4]). To cope with this issue, a
tradeoff has been done between complexity and performance,
hence suboptimal techniques with reduced complexity have
dominated the field. The most famous ones are: Minimum
Variance Distortionless Response (MVDR) by Capon [5],

followed by Multiple Signal Classification (MUSIC) developed
in [6] and [7], independently. Also, less complex algorithms
were implemented to replace the 1-D search of MUSIC by a
polynomial root finding process [8], or a least squares fit [9].

The performance of the algorithms stated above are inferior
to the ML technique. In addition, these suboptimal algorithms
can not resolve coherent sources, which is the case of a
specular multipath channel. Therefore, if a single user was
transmitting a signal in such a channel, then all the above
techniques (except for ML) could not properly estimate the
signal parameters.

Many work has been done on presenting computationally
attractive solutions for computing the ML estimator, such as
ML by alternating projections [10]. This technique transforms
the q−dimensional ML search into multiple 1-dimensional
searches that terminate upon convergence. Another popular
technique is the Iterative Quadratic ML (IQML) developed by
Bresler and Macovski in [11], where the ML cost function at
each iteration is seen as quadratic in the vector of parameters
of interest, and thus closed form expressions could be derived,
instead of applying multiple 1-D searches as done in [10].
Performance and complexity analysis of IQML were provided
in the context of blind FIR channel estimation in [12]. Other
techniques, that involve joint angle and time of arrival estima-
tion for narrowband signals, are found in [13] and [14]. The
former, also, transforms the multidimensional problem into
sets of 1-D searches, whereas the latter is a two dimensional
IQML, i.e. closed form expressions could be derived due to
the quadratic nature of the cost function. As for UWB signals,
the reader is referred to [28].

In this paper, we revise 2D-IQML and introduce a con-
straint that was not mentioned in [14]. This constraint would
allow efficient joint estimation of AoAs/ToAs. The 2D-IQML
algorithm needs only 1 iteration to converge to the true
AoA/ToAs at high SNR, given a good initialisation, which is
also provided in this paper. However, 2D-IQML gives biased
estimates of the AoAs/ToAs and performs poorly at low SNR
due to noise induced bias. The 2D-IQML cost function can be
”denoised” by eliminating the noise contribution: the resulting
algorithm, Denoised 2D-IQML (2D-DIQML), gives consistent
estimates and outperforms 2D-IQML. Attempts of ”denoising”
the cost function of IQML were presented in [15] and [16]. We
introduce a more judicious choice of the denoising parameter
that leaves the Hessian of the problem positive semidefinite.
The 2D-DIQML is asymptotically globally convergent and
hence insensitive to the initialisation, as will be shown in this



paper. However, its asymptotic performance does not reach the
ML performance. The vast difference between 2D-IQML and
2D-DIQML could be seen at low SNR. We have shown that,
indeed, the 2D-DIQML algorithm behaves asymptotically at
any SNR as the 2D-IQML algorithm behaves at high SNR.

The algorithms considered here are generic and could also
be applied to frequency estimation for 2D sinusoids in noise
[14], joint AoA/ToA estimation [17] for multi-carrier signals
impinging on a uniform linear antenna array, joint AoA/AoD
(Angle of Departure) in a MIMO radar setting [18], joint
angle and frequency estimation of a SIMO or MISO link
[19], or even blind equalization of multiple FIR channels [20].
In this paper, we focus on joint AoA/ToA estimation of an
OFDM transmitted symbol using a SIMO link, in an indoor
environment (through a specular multipath channel), where
coherency of multiple paths is possible. Furthermore, joint
AoA/ToA estimates could bring very useful information for
localisation purposes, especially in a rich multipath channel
that could allow single anchor-based localisation [21]. This is
due to the fact that each location has a unique ToA/AoA vector
fingerprint, under a condition mentioned in [22]. Therefore, it
is possible to form a database that maps ToA/AoA information
to location, so that this database could be readily used in an
online phase, where ToA/AoA are estimated at an unknown
location, followed by a matching criteria to find the best
matching location of the estimated ToA/AoA [23].

This paper is organised as follows: Section 2 presents the
system model, general assumptions, and the problem formu-
lation. In Section 3, the deterministic Maximum Likelihood
(DML) estimator to our problem is derived. Parametrisation
of the noise subspace is presented in Section 4. In Section
5, we revise the 2D-IQML proposed in [14], where we
add an additional constraint for proper estimation of signal
parameters, and we show that asymptotically, the 2D-IQML
algorithm performs poorly at low SNR. An original ”denois-
ing” criteria is presented in Section 6, where we also show
that the 2D-DIQML algorithm behaves asymptotically at any
SNR as the 2D-IQML algorithm behaves at high SNR. This
aforementioned statement is also observed through simulations
in Section 7. Finally, we conclude our paper in Section 8.

Notations: Upper-case and lower-case boldface letters de-
note matrices and vectors, respectively. (.)T and (.)H represent
the transpose and the transpose-conjugate operators. E{.} is
the statistical expectation. ⊗ represents the Kronecker product.
For any N × M matrix X, vec(X) is the vector operator
which returns an NM × 1 vector by stacking the columns
of X, starting from the first to the last column, ‖X‖2 is the
Frobenius norm of X, and X〈i,j〉 is the (i, j)th entry of X.
|z| is the magnitude of z ∈ C. The vector e1 is a vector of
all-zeros except the first entry set to 1. The matrix J is the
backward identity matrix, i.e. a matrix of all-zeros except for
its anti-diagonal elements that are set to 1. The matrix IN is
the identity matrix of dimensions N ×N .

II. SYSTEM MODEL

A. Analytic Formulation

Consider an OFDM symbol s(t) composed of M subcar-
riers and centered at a carrier frequency fc, impinging an
antenna array of N antennas via q multipath components,

each arriving at different AoAs {θi}qi=1 and ToAs {τi}qi=1.
In baseband, we could write the lth received OFDM symbol
at the nth antenna as:

r(l)n (t) =

q∑
i=1

γ
(l)
i an(θi)s(t− τi) + n(l)n (t) (1)

where

s(t) =


M−1∑
m=0

bme
j2πmMf t if t ∈ [0, T ]

0 elsewhere
(2)

where T = 1
4f is the OFDM symbol duration, 4f is the

subcarrier spacing, bm is the modulated symbol onto the mth

subcarrier, an(θ) is the nth antenna response to an incoming
signal at angle θ. The form of an(θ) depends on the array
geometry. γ(l)i is the complex coefficient of the ith multipath
component. The term n

(l)
n (t) is background noise. Plugging (2)

in (1) and sampling r(l)n (t) at regular intervals of k , k TM , we
get r(l)n,k , r

(l)
n (k TM ) as:

r
(l)
n,k =

q∑
i=1

M−1∑
m=0

bme
j2π kmM e−j2πmMfτiγ

(l)
i an(θi) + n

(l)
n,k

(3)

Collecting M samples, we can apply an M -point DFT, so
observing the mth subcarrier at the nth antenna, we get:

R(l)
n,m =

M−1∑
k=0

r
(l)
n,ke

−j2πm k
M

= bm

q∑
i=1

γ
(l)
i an(θi)e

−j2πmMfτi +N (l)
n,m

(4)

We claim that the transmitted OFDM symbol s(t) is a pream-
ble field of the Wi-Fi 802.11 frame, thus prior knowledge of
the modulated symbols {bm}M−1m=0 is a valid assumption, since
this stream of symbols (each at its corresponding sub-carrier)
are repeated in each OFDM symbol placed at the beginning of
the Wi-Fi frame for channel estimation and frequency offset
purposes. Therefore, at each OFDM symbol reception, we
compensate for all such symbols (multiplying by b∗m

|bm|2 ) and
hence omit bm from (4). Re-writing (4) in a compact matrix
form, we have:

x(l) = Hγ(l) + n(l), l = 1 . . . L (5)

where x(l) and n(l) are MN × 1 vectors

x(l) = vec{R}, R〈m,n〉 = R(l)
n,m (6)

n(l) = vec{N}, N〈m,n〉 = N (l)
n,m (7)

H is an MN × q matrix given as

H = [a(θ1)⊗ c(τ1) . . .a(θq)⊗ c(τq)] (8)

where a(θ) and c(τ) are N×1 and M×1, respectively. The nth
entry of a(θ), denoted an(θ), is the response of the nth antenna
to a signal arriving at angle θ with respect to the antenna
array. We shall assume a Uniform Linear Array (ULA), thus
an(θ) = e−jd2πfc(n−1)sin(θ), where d is the distance between
2 adjacent antennas. Similarly, the mth entry of c(τ), denoted
cm(τ) = e−j2πτ(m−1)Mf , is the response of the mth subcarrier



to a signal arriving with time delay τ . The q × 1 vector γ(l)
is composed of the multipath coefficients

γ(l) = [γ
(l)
1 . . . γ(l)q ]T (9)

B. Assumptions and Problem Statement

We assume the following:

• A1: H is full column rank.

• A2: The multipath coefficients, γ(l), are fixed within a
snapshot, and may vary from one snapshot to another.

• A3: The number of multipath components q is known.

• A4: The vector n(l) is additive Gaussian noise of zero
mean and variance σ2I, assumed to be white over
space, frequencies, and symbols; we also assume that
the noise is independent from the multipath coeffi-
cients.

Condition A1 is valid as long as:

• A1.1: q < MN .

• A1.2: Let qτ be the number of distinct ToAs, i.e.
τ1, . . . , τ q

τ

; and let the following integers P1, . . . , Pqτ
denote their corresponding multiplicity.
Note that

∑qτ

i=1 Pi = q. This condition states that
maxi Pi < N .

• A1.3: Similarly as A1.2, let qθ be the number of
distinct AoAs, i.e. θ1, . . . , θq

θ

; and let the following
integers Q1, . . . , Qqθ denote their corresponding mul-
tiplicity.
Note that

∑qθ

i=1Qi = q. This condition states that
maxiQi < M .

Condition A2 is a valid assumption since the time it takes
for an indoor channel to change significantly is of the order
of milliseconds [24], whereas the OFDM symbol duration of
a snapshot T is of the order of microseconds.

Techniques for estimating the number of sources could
be done through hypothesis testing [25] or via information
theoretic criteria [26]. However, we assume knowledge of the
number of sources, i.e. q is known.

Any further assumptions will be mentioned. Now, we
address our problem: Given {x(l)}Ll=1 and q, estimate the
signal parameters {(θi, τi)}qi=1.

III. A DETERMINISTIC ML ESTIMATOR

In a deterministic approach, the signal parameters
{(θi, τi)}qi=1 and multipath components {γ(l)}Ll=1 are not
sample functions of random processes. Instead, these quantities
are modelled as unknown deterministic sequences, and are
jointly estimated through the criterion:

[Ĥ, γ̂(1), . . . , γ̂(L)] = argmin
H,γ(1),...,γ(L)

L∑
l=1

‖x(l)−Hγ(l)‖2

(10)
Minimising with respect to {γ(l)}Ll=1, we obtain:

γ̂(l) = (HHH)−1HHx(l), l = 1 . . . L (11)

Treating {γ(l)}Ll=1 as nuissance parameters, we substitute its
estimate obtained by (11) in (10) to get:

Ĥ = argmin
H

L∑
l=1

∥∥∥P⊥
Hx(l)

∥∥∥2 = argmin
H

tr
{

P⊥
HR̂xx

}
(12)

where P⊥
H = IMN −H(HHH)−1HH is the orthogonal pro-

jection onto the noise subspace. The matrix R̂xx is the sample
covariance matrix obtained by R̂xx = 1

L

∑L
l=1 x(l)x(l)

H .
Equation (12) represents the DML criteria.

IV. PARAMETERISATION OF THE NOISE SUBSPACE

The Determisitic ML (DML) criterion in (12) is highly
nonlinear, as it requires a 2q-dimensional search, and its direct
optimisation would require cumbersome optimisation tech-
niques. The key to a computationally attractive solution of the
DML problem is a parameterisation of the noise subspace, as
done in this section. Consider the two following polynomials:

A(z) =

q∑
i=0

aiz
q−i =

q∏
i=1

(z − zτi) (13a)

and

B(z) =

q−1∑
i=0

biz
q−1−i =

q∑
i=1

zθi

q∏
k=1,k 6=i

(z − zτk)
(zτi − zτk)

(13b)

where zτi = e−j2πτiMf and zθi = e−jd2πfcsin(θi). Note that
A(zτi) = 0 and B(zτi) = zθi . The coefficient a0 = 1 so that
A(z) is monic. Furthermore, W(f) is a

(
(2N − 1)(M − q) +

N − 1
)
×MN matrix given as

W(f) =

[
IN ⊗A

[IN−1|0]⊗B− [0|IN−1]⊗ IM,q−1

]
(14)

where A is (M − q)×M

A =

aq · · · a1 a0 0
. . . . . . . . .

0 aq · · · a1 a0

 (15a)

and B is (M − q + 1)×M

B =

bq−1 · · · b1 b0 0
. . . . . . . . .

0 bq−1 · · · b1 b0

 (15b)

Also, f is 2(q + 1)× 1 given as

fT =
[
aT bT 1

]
(15c)

aT = [a0 · · · aq] (15d)

bT = [b0 · · · bq−1] (15e)

Finally, IM,q−1 is (M − q + 1)×M defined by

IM,q−1 = [IM−q+1|
q−1︷ ︸︸ ︷

0 · · ·0] (15f)

Theorem: W(f) has row rank MN − q if q ≤ M+1
2 and

H has full column rank.



Proof: See [14].

Under assumption A1 and q ≤ M+1
2 , the rows of the matrix

W(f) (equivalently, the columns of WH(f)) span the noise
subspace, i.e. W(f)H = 0 and thus we can write P⊥

H =
PWH(f).

Note that this parameterisation resolves maximally M+1
2

paths. It is worth mentioning that if N > M , one would
want to resolve N+1

2 paths (and not M+1
2 paths), so a simple

modification of the model in (5) is done by interchanging
a(θ) and c(τ) in (8), then constructing matrices A and B
(equivalently, the polynomials A(z) and B(z)) of N and
N − 1 coefficients, respectively. In general, we could find
a noise parameterisation that could allow the resolvability of
max(M,N)+1

2 .

V. 2D-ITERATIVE QUADRATIC ML (2D-IQML)

We rewrite the DML cost function in (12) as follows

Ĥ = argmin
H

L∑
l=1

∥∥∥PWH(f)x(l)
∥∥∥2

= argmin
H

tr
{

P⊥
HR̂xx

}
= argmin

f

L∑
l=1

xH(l)WH(f)
(
W(f)WH(f)

)†
W(f)x(l)

(16)

where the Moore-Penrose pseudoinverse has to be introduced
since W(f)WH(f) is singular for q < M+1

2 , and non-singular
for q = M+1

2 if M is odd. Note that W(f)x(l) = Xlf , where
Xl is an ((2N −1)(M −q)+N −1)× (2q+2) matrix formed
of elements of x(l). Finally, (16) boils down to the following

f̂ = argmin
f

fHQf (17a)

where

Q =

L∑
l=1

XHl
(
W(f)WH(f)

)†
Xl (17b)

The cost function in (17) could be solved in an iterative fashion
as

f̂(n) = argmin
f

fHQ(n−1)f (18a)

where

Q(n−1) =

L∑
l=1

XHl
(
W(f̂(n−1))W

H(f̂(n−1))
)†
Xl (18b)

The vector f̂(n) is the estimated vector of f at iteration (n). A
good initialisation would be to set W(f̂(0))W

H(f̂(0)) = I. If
the constraint eT1 f = 1 was posed to solve (18a), then at any
iteration (n), the vector f̂(n) would estimate the coefficients
in a = [ao . . . aq]

T properly, but the rest of its entries
corresponding to the coefficients in b = [bo . . . bq−1]

T would
be zero because there is no constraint posed on f in order to
take the structure of b = [bo . . . bq−1]

T into account.
To cope with the aforementioned issue, we add the contraint
(Je1)

T f = 1. Note that this constraint is reasonable since,

indeed, the last entry of f is 1. In short, we aim to solve (18)
subject to:

eT1 f = 1 (19a)

and
eT1 Jf = 1 (19b)

We write the Lagrangian function as

L(f , µ1, µ2) = fHQ(n−1)f−µ1(e
T
1 f−1)−µ2(e

T
1 Jf−1) (20)

where µ1 and µ2 are constants. Setting the derivative of
L(f , µ1, µ2) with respect to f to 0, we get

∂

∂f
L(f , µ1, µ2) = 2Q(n−1)f − µ1e1 − µ2Je1 = 0 (21)

So, with some straightforward manipulations, we have

f = µ
′

1Q−1(n−1)e1 + µ
′

2Q−1(n−1)Je1 (22)

where µ
′

i =
µi
2 . Plugging (22) in (19a) and (19b), we have the

following set of equations[
α γ
γ∗ β

] [
µ
′

1

µ
′

2

]
=

[
1
1

]
(23)

where α, β, and γ are given as:

α = eT1Q−1(n−1)e1 (24a)

β = eT1 JQ−1(n−1)Je1 (24b)

γ = eT1Q−1(n−1)Je1 (24c)

Finally, solving (23) with respect to µ
′

1 and µ
′

2, we get the
following

f̂(n) =
(β − γ)Q−1(n−1)e1 + (α− γ∗)Q−1(n−1)Je1

αβ − |γ|2
(25)

The 2D-IQML could be summarised as follows:

• Step1. Given
{
x(l)

}L
l=1

, form
{
Xl
}L
l=1

.

• Step2. Initialise Q(0) =
∑L
l=1 XHl Xl.

• Step3. Iterate over (n) to compute f̂(n), using (24)
and (25). Stop when ‖f̂(n)− f̂(n−1)‖ < ξ (Pre-defined
Threshold).

• Step4. Form the polynomials A(z) and B(z) using
the estimate of f̂(n) obtained in the last iteration of
Step3 and equations (13), (15c), (15d), (15e).

• Step5. Find the q roots of A(zτ̂i) = 0, which give

estimates of the ToAs as
{
zτ̂i = e−j2πτ̂iMf

}q
i=1

.

• Step6. Compute B(zτ̂i) = zθ̂i , which give estimates

of the q AoAs as
{
zθ̂i = e−jd2πfcsin(θ̂i)

}q
i=1

.



The first iteration of 2D-IQML could be seen as a Subchannel
Response Matching (SRM) [27]. Note that, in a first iteration
of 2D-IQML, we minimise:

1

L

L∑
l=1

fHXHl Xlf ' El
{
fHXHl Xlf

}
= El

{
fHGHl Glf

}
+ σ2tr

{
WH(f)W(f)

}
(26)

where g(l) = Hγ(l) and W(f)g(l) = Glf , with Gl being
a matrix formed by elements of g(l). (26) tells us that
a balanced f yields asymptotically unbiased and consistent
estimates, whereas unbalanced f yield biased and inconsistent
estimates. One should also note that different parameterisations
of the noise subspace give different estimates of f . This
initialisation could be seen as a non-weighted version of 2D-
IQML. Furthermore, it is easy to see that the optimal value
of f , denoted hereby fo, is the one that nulls El{fHGHl Glf}.
Therefore, in a noiseless scenario, a first iteration of 2D-IQML
gives the true value fo. In general, at sufficiently high SNR,
2D-IQML performs well; however, at low SNR, the 2D-IQML
estimate is biased. Indeed, consider the asymptotic situation in
which the number of subcarriers M grow to infinity. By the law
of large numbers, the 2D-IQML criterion becomes essentially
equivalent to its expected value, viz.
1

M
fHXHl R†Xlf

= tr
{
WH(f)R†W(f)E

{
x(l)xH(l)

}}
+O( 1√

M
)

=
1

M
fHGHl R†Glf +

σ2

M
tr
{
WH(f)R†W(f)

}
+O( 1√

M
)

(27)

where R , R(f) = W(f)WH(f).
Recall that the minimiser of fHGHl R†Glf is fo. Therefore, at
high SNR, the 2D-IQML estimate f differs from the optimal
fo by an asymptotically vanishing estimation error, because
σ2

M tr{WH(f)R†W(f)} is negligible. However, this is not the
case at low SNR, simply because fo is not the minimiser of
σ2

M tr{WH(f)R†W(f)}, even if R , R(fo). More explicitely,

min
f

{
tr
{
WH(f)R(fo)†W(f)

}}
< tr

{
PWH(fo)

}
=MN − q

(28)

Finally, we can say from (28) that σ2

M tr
{
WH(f)R†W(f)

}
is

minimised at f1 6= fo, so the 2D-IQML criteria is minimised
at f2 6= fo. Hence, due to presence of noise, fo is not
asymptotically near a stationary point of the algorithm and
2D-IQML performs poorly for any initialisation.

We propose here a method to ”denoise” the 2D-IQML
criterion in a sense that it will correct the 2D-IQML bias and
provide a consistent esimate of the vector f .

VI. 2D-DENOISED IQML (2D-DIQML)

A. Asymptotic Number of Subcarriers (Large M )

The asymptotic noise contribution to the DML criterion
is σ2tr{PWH(f)} (see (27)). The denoising strategy consists

of removing this asymptotic noise term, or more precisely,
an estimate of it i.e. σ̂2tr{PWH(f)} from the DML criterion,
which becomes

min
f

L∑
l=1

{
tr
{

PWH(f)

(
x(l)xH(l)− σ̂2IMN

)}}
⇔

min
f

L∑
l=1

{
fHXHl R†(f)Xlf − σ̂2tr

{
WH(f)R†(f)W(f)

}}
(29)

subject to (19a) and (19b).
Note that this operation does not change the optimizer of the
DML criterion as σ̂2tr{PWH(f)} = σ̂2(MN − q) is constant
with respect to f . We take σ̂2 to be a consistent estimate of
the noise variance. The denoised DML criterion is now solved
in the 2D-IQML way, i.e.

f̂(n) = argmin
f

fH
{
Q(n−1) − σ̂2D

}
f (30)

subject to (19a) and (19b).
The matrix D is such that f

′′HDf ′ =
tr
{
WH(f

′′
)R†(f)W(f

′
)
}

. Asymptotically in the number
of subcarriers, 2D-DIQML is globally convergent. Indeed,
asymptotically it is essentially equivalent to the denoised
criterion

1

M
fH
{
Q(n−1) − σ̂2D

}
f =

1

M
fHGHl R†Glf +O(

1√
M

)

(31)

if σ2 − σ̂2 = O( 1√
M
). Notice, again, that the fo minimises

the first term on the right hand side of (31). Therefore, one
iteration of 2D-DIQML yields an estimate of the form f̂ =
ρfo +O( 1√

M
), for some scaling factor ρ. So, the 2D-DIQML

algorithm behaves asymptotically at any SNR as the 2D-IQML
algorithm behaves at high SNR.

B. Finite Number of Subcarriers

The choice of σ̂2 turns out to be crucial. In practice, with
large but finite number of subcarriers M , and the true noise
variance, the central matrix Q−σ2D in (30) is indefinite, thus
the minimisation problem is no longer well posed. Simulations
show that the performance of 2D-DIQML in that case is very
poor. The central matrix Q− σ̂2D should be constrained to be
positive semi-definite.

For the consistent estimate of σ2, we choose here a certain
λ that renders Q−λD exactly positive semi-definite with one
singularity. The 2D-DIQML criterion becomes

f̂(n) = argmin
f ,λ

fH
{
Q(n−1) − λD

}
f (32)

subject to (19a), (19b), and Q(n−1)−λD being positive semi-
definite.
The solution of λ is λ = λmin

(
Q(n−1),D

)
, the minimal

generalised eigenvalue of Q(n−1) and D. After solving for
λ, we get f at iteration (n) as

f̂(n) =
(β
′ − γ′)S−1(n−1)e1 + (α

′ − γ′∗)S−1(n−1)Je1

α′β′ − |γ′ |2
(33)
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Fig. 1. 2D-IQML vs. 2D-DIQML on AoA estimation of 1st Path, where true
AoA = 0 deg at SNR = -5dB

where
S(n−1) = Q(n−1) − λD (34a)

α
′
= eT1 S−1(n−1)e1 (34b)

β
′
= eT1 JS−1(n−1)Je1 (34c)

γ
′
= eT1 S−1(n−1)Je1 (34d)

Asymptotically, 2D-DIQML could becomes

1

M
fH
(
XHl R†Xl − λD

)
f

=
1

M
fHGHl R†Glf +

1

M

(
σ2 − λ

)
fHDf +O( 1√

M
)

(35)

Notice that, first, optimisation with repect to λ subject to
the non-negativity constraint would give λ = σ2 + O( 1√

M
),

regardless of any initialisation of f . Hence, λ asymptotically
nulls the noise contribution, and the optimal value of f is fo.
Therefore, global convergence applies for f (to fo) and λ (to
σ2).

VII. SIMULATION RESULTS

We have observed that, indeed, the 2D-DIQML algorithm
behaves asymptotically at any SNR as the 2D-IQML algorithm
behaves at high SNR. To that extent, we fix the following
simulation parameters:

• M = 64 (Large M ) subcarriers and N = 3 antennas.

• Mf= 0.3125MHz and d = λ
2

• q = 2 coherent paths with:
1) AoAs: θ1 = 0 and θ2 = 30 degrees.
2) ToAs: τ1 = 0 and τ2 = 100 nsecs.

• L = 10 snapshots.

• SNR = −5 dB (Low SNR).

At high SNR, both algorithms perform equally the same,
i.e. both give unbiased estimates of ToA/AoAs. Therefore, we
have excluded this case from simulations. Nevertheless, it is
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Fig. 3. 2D-IQML vs. 2D-DIQML on AoA estimation of 2nd Path, where
true AoA = 30 deg at SNR = -5dB
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of vast interest to see how both algorithms perform at low
SNR and with a large number of subcarriers. As one can see,
the estimated ToAs of both algorithms converge to the true
ToA value (see figures 2 and 4). However, 2D-IQML AoA
estimates are much more biased compared to 2D-DIQML AoA
estimates. Indeed, as one could observe in figure 1, the AoA of
the first path which was set to be 0 degrees, was estimated to
be 4 degrees by 2D-IQML and 0 degrees by 2D-DIQML. Also,
by taking a look at figure 3, the AoA of the second path which
was set to be 30 degrees, was estimated to be 15 degrees by
2D-IQML and 33 degrees by 2D-DIQML. Finally, we can say
that, at low SNR and high number of subcarriers, the 2D-IQML
estimates are biased compared to the 2D-DIQML estimates.

VIII. CONCLUSION

We have presented two techniques to solve the highly
nonlinear DML algorithm for joint times and angles of arrival:
2D-IQML and 2D-DIQML. Asymptotic performance analysis
of both techniques were provided. It has been shown that
2D-IQML gives biased estimates of ToA/AoA and performs
poorly at low SNR due to noise. An original ”denoising”
strategy is proposed, which constrains the Hessian of the cost
function to be positive semi-definite. This ”denoising” strategy
is called 2D-DIQML that has been shown to be globally
convergent. Furthermore, 2D-DIQML outperforms 2D-IQML
because the former behaves asymptotically at any SNR as the
latter behaves at high SNR. Finally, for localisation purposes,
joint AoA and ToA information could be used to form a
database, where a mapping is done between ToA/AoA vectors
and location. Then, this database could be used in an online
stage, where joint AoA/ToA estimation is done using the
proposed algorithms, followed by a matching criteria that finds
the best match in the database to obtain an estimate of the
location of a wireless transmitter.
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