

Communication Technologies and the Internet of Things in ITS

Prof. Jérôme Härri EURECOM

ITS-EduNet Short Course: **The Essentials of ITS** TU Munich, June 29th 2015

VS.

EURECOM

ТШП

A"

Academia

Industry

57

Symantec.

IABG

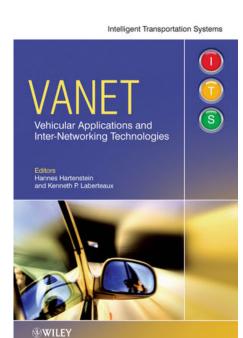
Founding Member

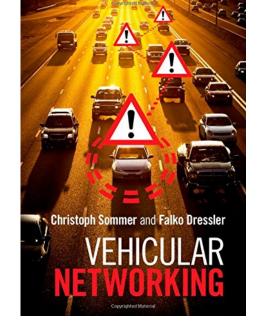
- 'Grande École' for Communication Systems
 - Member of the Elite Cluster SCS
 - Architect and co-founder of Com4Innov

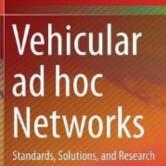
Research:

- Mobile & Network Communication Massive MIMO, connected vehicles, IoT, WiFi, 5G, M2M, SDN
- Data & Security Big Data, Cloud computing, cryptography
- Multimedia Web Semantics, Open Data, Speech/video recognition

Teaching:


- Engineering Track Telecom ParisTech
- International Master Track Mobile Communication, Data & Securitty, Multimedia
- Post-Master Track
 - Cooperative Communications for ITS
 - Security of Computer Systems




Related Books and References

http://www.amazon.co.uk/dp/1107046718

Claudia Campolo - Antonella Molinaro Riccardo Scopigno Editors

Springer

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470740566.html

http://link.springer.com/book/10.1007/978-3-319-15497-8

Related Books and References

- IEEE 802.11-2012 standard
- IEEE 1609.x trial standard
- ETSI Intelligent Transport Systems (ITS); European profile standard for the physical and medium access control layer of Intelligent Transport Systems operating in the 5 GHz frequency band
- ETSI ; Intelligent Transport Systems (ITS); Cross Layer DCC Management Entity for operation in the ITS G5A and ITS G5B medium
- C2CCC Manifesto, 2008
- C2CCC Profile Document, 2013
- 3GPP TR 36.843 Study on LTE Device to Device Proximity Services; Radio Aspects
- 3GPP TR 22.885 study on LTE support for V2X services
- 3GPP V2X Communications in 3GPP S1-144 374
- Hartenstein, Laberteaux, "A tutorial survey on vehicular ad hoc networks" *Communications Magazine, IEEE*, vol.46, no.6, pp.164,171, June 2008
- Hartenstein, Labertaux (Eds), Vehicular Applications and Inter-Networking Technologies (VANET), Wiley & Sons, 2010.
- Laurent Gallo, Jérôme Härri, "A LTE-Direct Broadcast Mechanism for Periodic Vehicular Safety Communications", in Proc. if IEEE Vehicular Networking Conference (VNC), 2013.

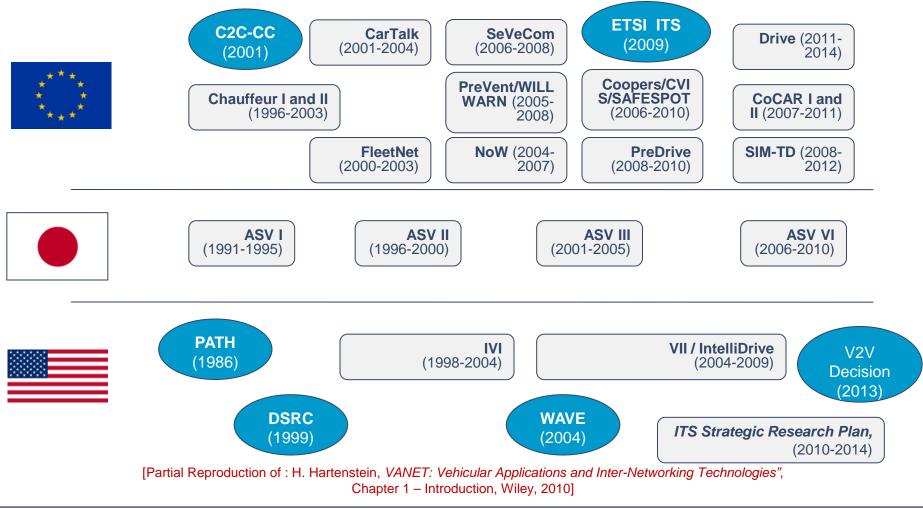
V2X Communication – Back to the Future !!

• GM Futurama - 1939

https://www.youtube.com/watch?v=1cRoaPLvQx0 (time code: 14:27)

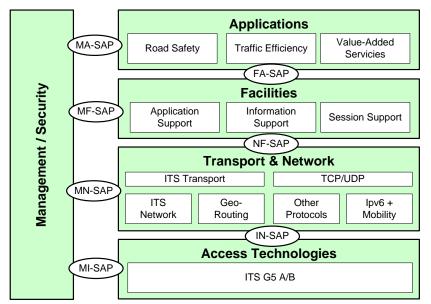
From the early steps to current achievements

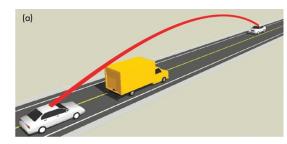
- Visionary aspect: GM Futurama in 1939 and 1964 !!
- 1970-1987: Electronic Route Guidance System (ERGS) USA
 - Deployment stopped due to expensive roadside infrastructure
- 1973-1979: Comprehensible Automobile Traffic Control (CACS) Japan
- 1988 1994 EUREKA PROMETHEUS EU
- 1997: Cooperative autonomous driving demo: PATH, USA
- From the mid 1990:
 - Game Changer: 5.9 DSRC 802.11p, later known as IEEE 802.11-2012 OCB / ITS G5


Game Changer: IEEE 802.11-2012 OCB @ 5.9 GHz

- In 1994, the US Federal Communication Commission (FCC) allocated a 16 MHz band (unlicensed) at 902 MHz for ETC called Dedicated Short Range Communication (DSRC)
 - In Europe, DSRC has been introduced solely for ETC at 5.8 GHz
- In 1999, the FCC allocated a second DSRC frequency band at 5.9 GHz to be used specifically for inter-vehicular communication.
 - **Primary Application**:
 - Saving lives by avoiding accident
 - Saving money by reducing traffic congestion
 - Secondary Application:
 - Comfort (infotainment) application to ease the early deployment of this technology.
- Since 2001 Japan has developed, implemented and **deployed** DSRC applications under the name ARIB STD T-75 & 88.
- The European Commission allocated a 30 MHz frequency band at 5.9 GHz for safety applications in **August 2008**

Non-exhaustive Overview of Projects





V2X Communication – Day 1 Architecture, Technologies & Applications

• ETSI Technical Committee on ITS

Source: C2C-CC

- Applications
 - Active Road Safety
 - Cooperative awareness
 - Hazard warning
 - Cooperative Traffic Efficiency
 - Adaptive speed management
 - Cooperative navigation
- Technology
 - DSRC
 - IEEE 802.11 for vehicular environment
 - a.k.a: 802.11p, ITS-G5

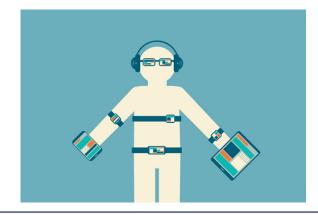
V2X Communication - DAY 2 Objective: **Highly Autonomous Driving**

Not such a new idea

• ...yet a very **ambitious** idea

• A very marketized idea...

Source: google



V2X Communication - DAY 2 Objective: **Vulnerable Road Users**

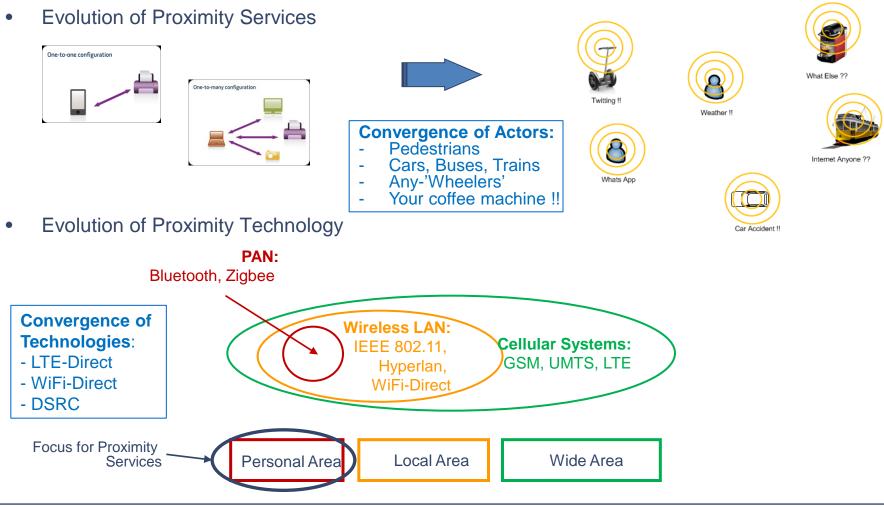
• V2X not only between Vehicles


• V2X connects to wearable devices

Intelligent Transport Systems Education Network

 V2X is part of the Internet-ofthings (IoT)

- From Connected 'Vehicles' to Connected 'Things'
- A Change in the Eco-System
- Connected vehicle
 - driven by car industry


- Connected things
 - driven Internet & wireless industry

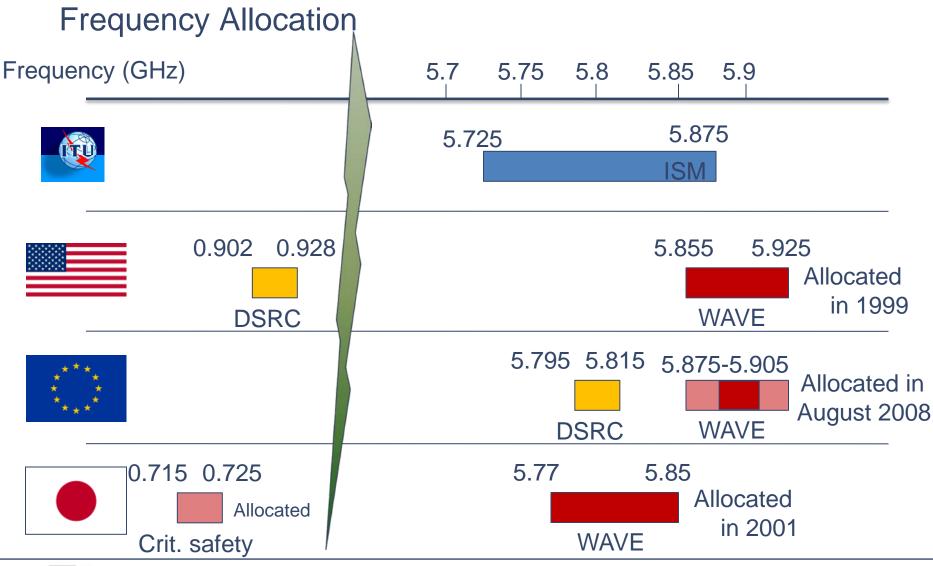
Towards a Connection-of-Everything

Communication Technologies and the Internet of Things in ITS

DEDICATED SHORT RANGE COMMUNICATION (DSRC)

DSRC: Key Messages for Safety-related ITS Applications

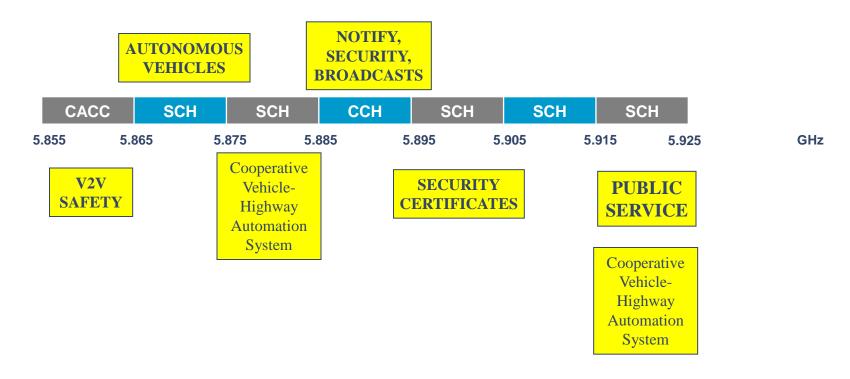
- One-Hop broadcast
- Transmit the status and position of a vehicle.


- Multi-Hop **broadcast**
- Transmit emergency or application-based messages

Three Frequency Bands in 5 GHz Band

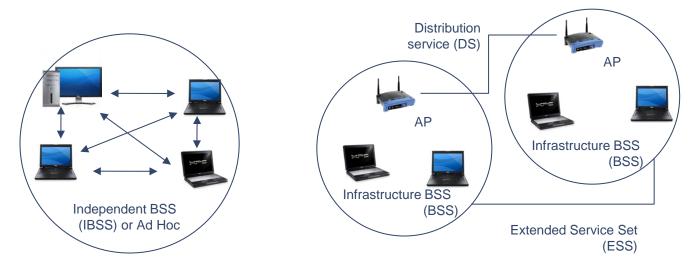
RLAN bands (U-NII2, WLAN, BRAN, HiperLAN2)

	RLAN Bands – ITS		ITS non safety	ITS Safety	F-ITS	
5.50	5.7	5.8	55 5.	875 5.	905 5.925 GHz	
	Power: 1W EIRP					
ITS G5 C Shared Spectrum Dynamic Channel Selection & Power Control		п	ITS G5 B ITS G5 A ITS G5 D ITS Dedicated Spectrum ITS Dedicated Spectrum Future Usage			
EIRF	P : Effective Isotropic Radiated Power					


Dedicated ITS bands

Channel Usage in the US

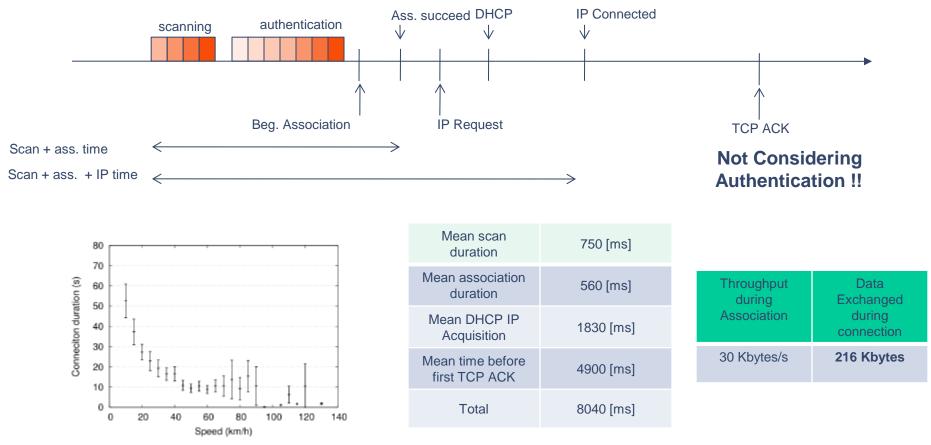
Dedicated ITS bands - US



Forming a Wireless Network: Architecture

- Basic Service Set (BSS)
 - A station must join a BSS and an AP before being allowed to communicate

- Communicating Outside of the Context of a BSS
 - Vehicular-specific extension of the IEEE 802.11 not requiring a BSS to communicate



Connecting to a WLAN

• Connecting to WI-FI Access Points:

[Source: Bychkovsky et al., "A Measurement Study of Vehicular Internet Access Using In Situ WiFi Networks, ACM Mobicom, 2006]

Communication outside of a BSS – OCB mode

- Nodes should form network spontaneously
 - Always varying due to mobility
 - Not existent over longer time intervals
- <u>No time</u> should be lost to establish the network

Classic 802.11 WLAN

DSRC / ITS-G5

Synchronization

Scanning

Authentication

Association

Communication

HIGHER LAYER Synchronization NO Scanning HIGHER LAYER Authentication IMPLICIT Association DIRECT Communication

Concept of Basic Service Sets (BSS)

"Communication outside of a BSS" (OCB)

Communication outside of a BSS

- For BSS:
 - A station can only respond to an AP communication
 - once it joined the BSS of the AP

OR

- if the message is a wildcard BSSID AND it is a broadcast message
- OCB:
 - A STA MUST accept and respond to communication from other STAs
 - Broadcast AND Unicast
 - A STA in OCB does not have a valid BSSID
 - Use the wildcard BSSID : 0xFFFFF

To DS	From DS	Addr 1	Addr 2	Addr 3	Addr 4
0	0	DA	SA	BSSID	

802.11 - MAC management functions

• Synchronization

- try to find a LAN, try to stay within a LAN
- timer etc.

• Association/Re-association

- integration into a LAN
- roaming, i.e. change networks by changing access points
- scanning, i.e. active search for a network

• Power management

- sleep-mode without missing a message
- periodic sleep, frame buffering, traffic measurements

Coordination Function (CF) Mode

- Distributed Coordination Function (DCF) Contention Phase
- Polling Coordination Function (PCF) Contention-free Phase

• MIB - Management Information Base

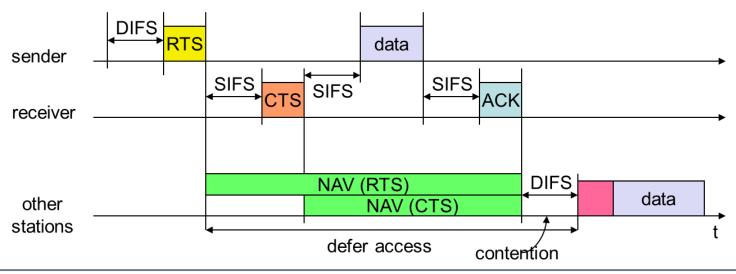
managing, read, write

J. Härri, Communication Technologies for ITS, ITS-EduNeT - The Essentials of ITS, Munich, 29.06.2015

Beacon messages

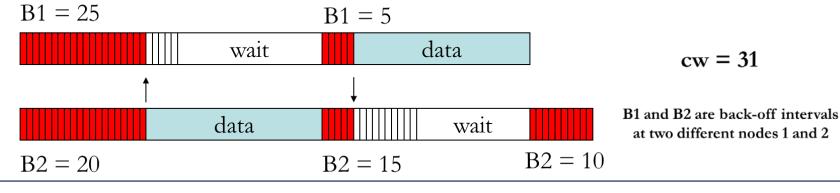
- Used to coordinate the various management functions between AP and STA
 - BSS
- Contains information to
 - Synch
 - Communication Quality
 - Sleep mode
 - DCF/PCF modes

DSRC/ITS-G5 OCB mode – Synchronization and Scanning


- Management Frames:
 - Beacon frames are <u>not</u> used in DSRC/ITS-G5
 - Beacons include information related to a BSS and are mostly not required in OCB
 - New Frame:
 - Timing Advertisement (TA) frame
 - Kind of replacement for a beacon for transmission of higher layer data (vendor specific)
 - TSF function can be sent in such frame
 - Other beacon related information are transmitted by higher layers (Wave Service Announcements (WSA) for instance)
- Synchronizing
 - 802.11p OCB does not require to be synchronized
 - Power management not supported
 - High mobility / topology changes
 - Yet, a synchronization between stations may be provided by higher layers (1609.x, GPS) is required
 - Multi-channel operation (only supported by US IEEE WAVE so far)
- Scanning
 - Scanning is not required, as the <u>CCH</u> is the reference channel.

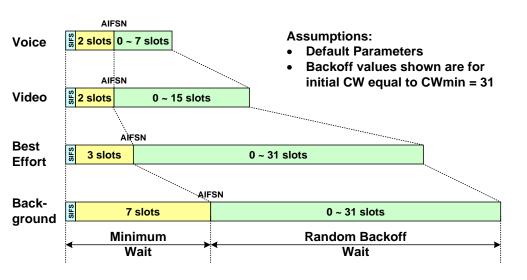
IEEE 802.11 Distributed Coordination Function (DCF)

- Listen before Talk Principle
 - If medium is free for a DIFS time, station sends data or control packet
 - receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors
- Contention-based Access
 - Contend for the channel access, back-off if you loose

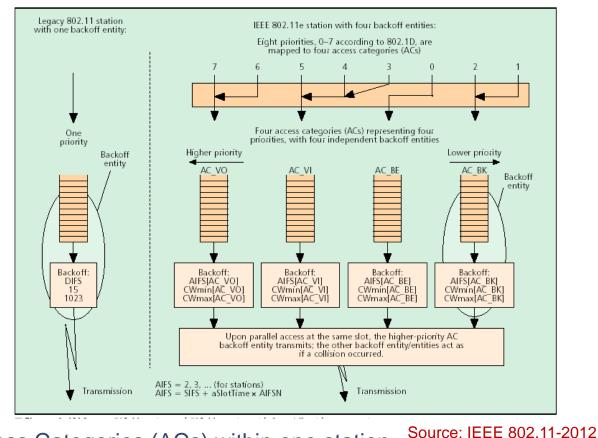


IEEE 802.11 DCF – Back-off Strategy

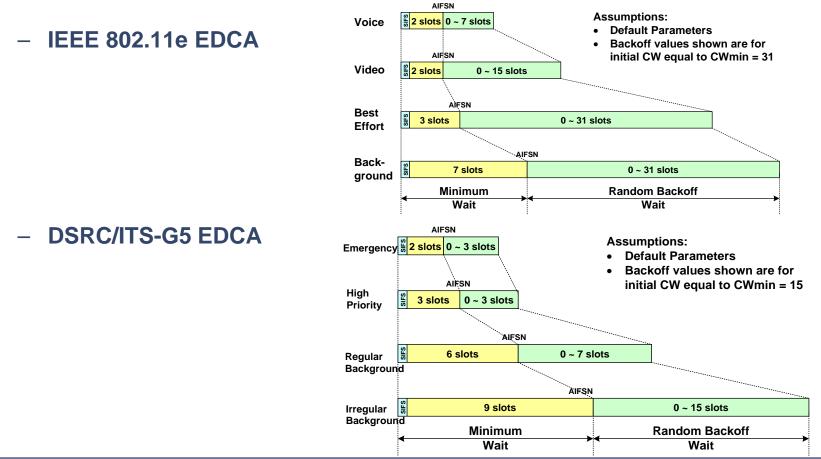
- Back-off Algorithm
 - Defer time = DIFS + Random Time Period
 - Random Time Period = Int (CW* random()) * aSlot time
- CW is the Contention Window: Its initial value is 31 (size 32) and can take the following values:
 - 31, 63, 127, 255, 1023
- Back-off decrementation strategy:
 - Back-off counter should be decremented when medium is free
 - Back-off counter is never decremented when medium is busy



IEEE Enhanced Distributed Coordination Access (DCA) - WiFi QoS (Traffic Differentiation)


- The QoS support in EDCA is provided by the introduction of Access Categories (ACs)
- 4 different ACs within one station
 - AC_VO: voice
 - AC_VI: video
 - AC_BE: best effort
 - AC_BK: background
- Each AC has its own parameter set defined by the EDCA:
 - Inter-frame spacing : Arbitration Inter-Frame Space (AIFS)
 - Contention windows : CWmin, Cwmax

IEEE EDCA – Access Categories


- 4 Access Categories (ACs) within one station
 - AIFS: Arbitration Inter-Frame Space

EDCA Parameter Results – DSRC/ITS-G5 OCB

• The IEEE EDCA is modified to improve the prioritization of messages

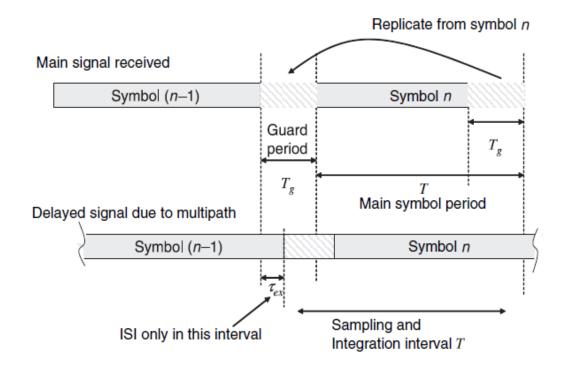
DSRC/ITS-G5 Channel Characterization

• How does the channel characteristic at 5.9 GHz for 802.11p look like?

Delay spread	~ 0.8 µs
Coherence Bandwidth	~ 1.25 MHz
Coherence Time	~ 1.02 ms
Doppler spread	~ 2 kHz

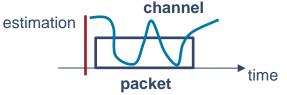
• What does it tell us?

Source: Measurement and Analysis of Wireless Channel Impairments in DSRC Vehicular Communications, Laberteaux et al, 2008


- We have a time- and frequency-selective channel
- We have a doppler spread which needs to be considered
- Actions:
 - We have to use narrow-band communication to mitigate frequency-selective channel
 - We have to make sure that successive OFDM symbols are sufficiently separated in time to avoid ISI
 - We have to make sure that the 52 OFDM sub-carriers are have an inter-carrier distance of at least 2 kHz to avoid ICI

DSRC/ITS-G5 PHY Countermeasures

- Mitigating Inter-Symbol Interference
 - OFDM introduces a guard period after each OFDM symbol to protect symbols from ISI


Source: Antennas and Propagation for Wireless Communication Systems, Simon R. Saunders and Alejandro Aragón-Zavala, 2007, John Wiley & Sons, Ltd

DSRC/ITS-G5 PHY Countermeasures

- Mitigating Inter-Carrier Interference
 - 802.11p OFDM uses a carrier spacing of 156.25 kHz
 - The Doppler Spread of 2 kHz is easily covered by this spacing
- Mitigating Time-selectivity (or narrowband fast fading)
 - Problem: the channel estimation at the beginning of a packet may be invalid at the end of the packet

- This results in an increased Bit error rate and decreased Packet reception rate
- Several solutions:
 - Increase data-rate to reduce transmission time below channel coherence time
 - Estimate the channel several times during the transmission
 - Use modulation schemes which overcome the channel fading, e.g. differential BPSK

DSRC/ITS-G5 - Summary

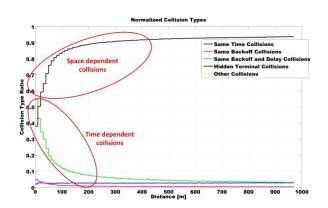
• Key PHY characteristics

- 5.9 GHz frequency domain
- Based on IEEE 802.11a (OFDM PHY)
- 10 MHz channel bandwidth
- Rates: 3, 4.5, 6, 9, 12, 18, 24, 27 Mbps
- Symbol time: 8µs (1.6µs guard interval + 6.4µs data symbol)

Key MAC characteristics

- EDCA QoS Provisioning
- Multi-channel Operation (1 CCH, several SCHs) (not discussed here..)
- Congestion Control (adaptive TX power, TX rate, multi-channel)

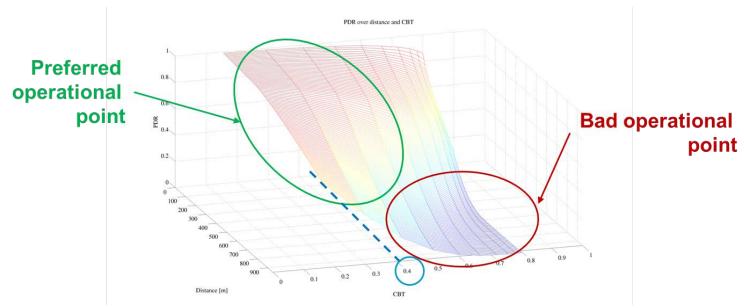
Classic 802.11 WLANDSRC/ITS-G5SynchronizingOPTIONAL HIGHER LAYER SynchronizationScanningNO ScanningAuthenticationHIGHER LAYER AuthenticationAssociationIMPLICIT AssociationCommunicationDIRECT CommunicationConcept of Basic Service Sets
(BSS)"Communication outside of the context of the BSS"



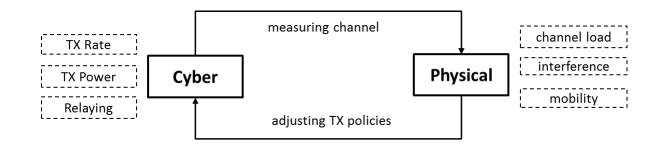
Enhancing the Reliability of DSRC

- Vehicular Communication on DSRC are challenging for the following reasons:
 - Safety-critical application require 'periodic TX'
 - DSRC has been optimized for busty traffic
 - Unacknowledged broadcast traffic reliable for low traffic density
 - All cars TX at 10Hz up to 500m congested channel
 - Hidden Terminal DSRC cannot detect a transmission on the channel
 - Solutions exist for Unicast; not for Broadcast
 - Low mutual mobility & Similar transmit range
 - Recurring hidden terminal on same nodes
- The underlying challenge:
 - Reliable 1-hop broadcast !!
 - In space & in time

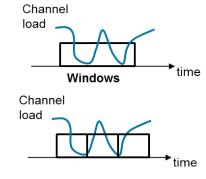
© Mark Parisi, Permission required for use

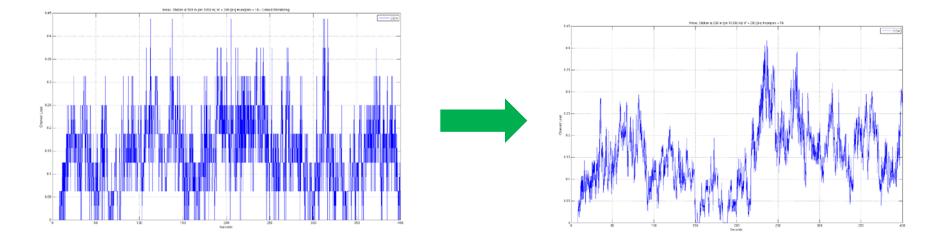


Dependable 1-Hop Broadcast


- <u>Reminder</u>: WLAN does not provide real QoS services
 - Using broadcast: not any feedback on correct transmission !
 - Need to 'trust' WLAN
- Rule of thumb:
 - The IEEE 802.11p system works fine at 'low' channel load
 - How low??

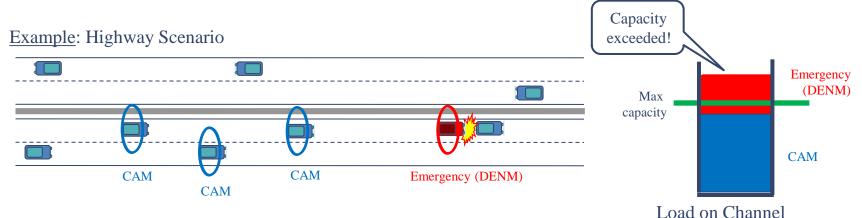
Controlling Congestion on Wireless Channel


- Sensing:
 - Channel load representing the quality of the wireless channel
- Control:
 - Adjusting transmit power, transmit rate or relay selections
- Methodology:
 - Efficient and stable evaluation of channel congestion:
 - Provide close-to-reality channel quality estimation
 - Provide stable values
 - Oscillations must be avoided Control influences the channel in return !!
 - Trend: Sacrifice accuracy over stability
 - Mitigation of channel congestion
 - Reducing number of bits transmitted on the channel

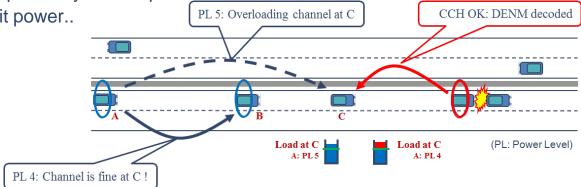


Measuring Channel Load

- Channel Load metric:
 - Channel Busy Time (CBT) ratio of CCA busy/idle over time
- Measuring mechanisms:
 - Adjusting window measurement
 - Adjusting sampling rate (CCA samples)
- Optimization:
 - Filtering the CBT over several measurement windows



Controlling Congestion on Wireless Channel

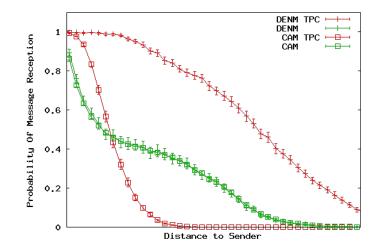

- Load on Channel:
 - Per node: bits transmitted by neighbors load a node's Channel
 - CAM periodically transmitted: major contributor to the load on the Channel
 - The higher the load from CAM: the harder it is for DENM to be decoded
- Need to regulate the load generated on Channel
 - <u>Topology Control</u>: controlling the number of transmitters
 - <u>Congestion Control</u>: all transmitters transmit
 - Temporal Influence: number of bits transmitted
 - Spatial influence: distance reached by transmitted bits

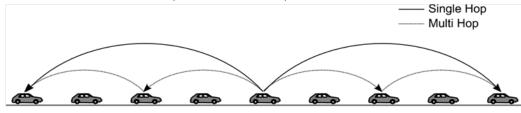
Transmit Power Control (TPC) to mitigate Channel Load

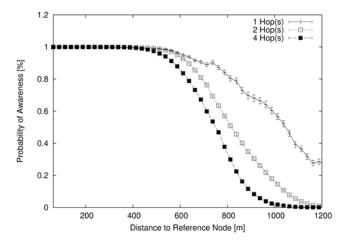
- TPC: Locally measure channel load
 - If too high, reduce transmit power by one step..
 - If too low, increase transmit power..

- Observations:
 - Channel Sensing requires remote knowledge
 - Information must be exchanged between nodes !
 - Transmit power adjustments only impact neighbors
 - Cooperative strategies to gain local benefits !

- Conclusion:
 - TPC power adjustments are a good option. But:
 - Must obtain a networked channel sensing
 - <u>Challenge</u>: delayed and inconsistent values
 - Must cooperate with other devices
 - <u>Challenge</u>: selfishness !!

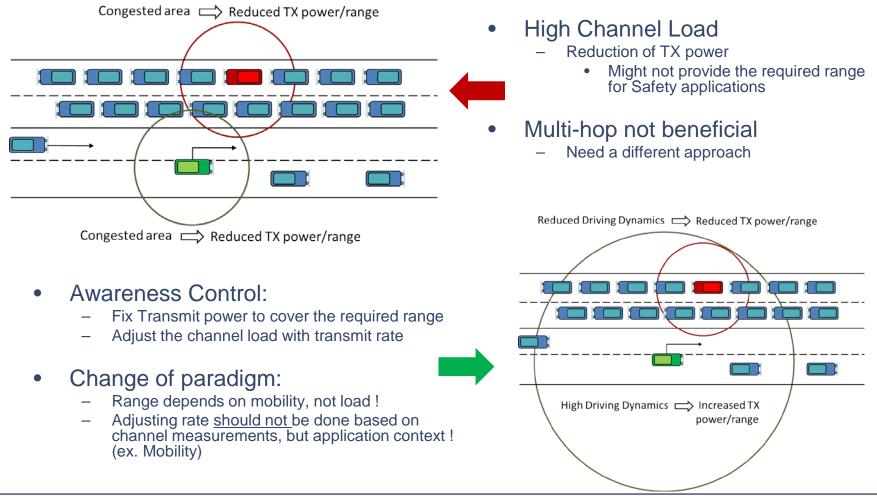



Transmit Power Control - Example


- Fair Transmit Power Adjustment (DFPAV/SPAV)
 - Analysis and Design of Effective and Low-Overhead Transmission Power Control for VANETs, J. Mittag, F. Schmidt-Eisenlohr, M. Killat, J. Härri and H. Hartenstein, ACM VANET 2008.

• Alternative approach:

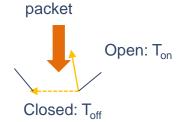
- Reduce power and rely on multi-hop relaying to cover same distance
- A Comparison of Single- and Multi-hop Beaconing in VANETs, J. Mittag, F. Thomas, J. Härri, H. Hartenstein, ACM VANET 2009



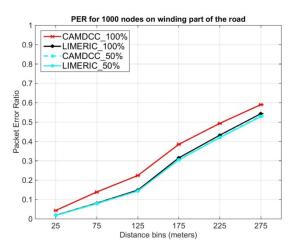
Limitation of TPC for C-ITS Applications

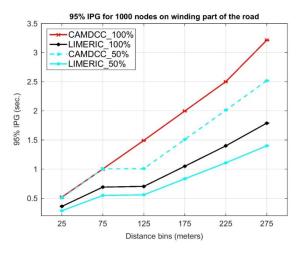
Transmit Power Control (TPC) to mitigate Channel Load

- Transmit Rate Control (TRC)
 - Keep TX power fixed, adapt TX rate
- In the US and in EU, TRC is considered as a best option to efficiently control congestions
 - But they do not share the methodology to reach that target
- Need 10Hz, Can 20Hz, Strategies: Need 10Hz, Tx 10Hz Tx 20Hz **US CAMP** Transmit as much as you can ! Target Target capacity capacity EU C2C-CC BSM CAM Transmit as much as you need ! US CAMP C2C-CC Two Algorithms: Target capacity **Table-driven Rate Control** Channel Load • TX rate is restricted per channel load step EU C2C-CC TX rate is adapted to the remaining load available High Vehicles Low Vehicles


Transmit Rate Control Examples

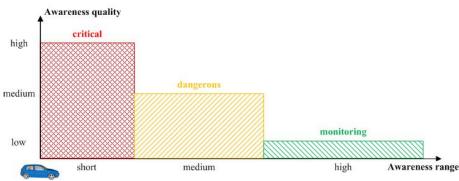
- LIMERICS:
 - Algorithm

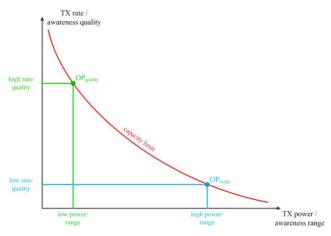

$$T_{on} (t + 1) = (1 - \alpha) \times T_{on} (t) + \beta \times (CBR^{target} - CBR(t)),$$

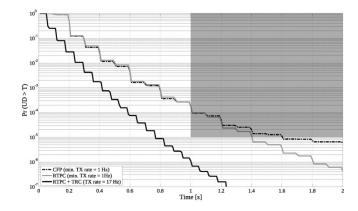

Parameters	Value
CBP _{Target}	79%
α	0,1
β	0,033
δ	200 ms

- C2C-CC
 - Algorithm: Leaky-Bucket
 - Look-up Table

Channel Load	State	Packet Tx Interval	Packet Rate
< 30 %	RELAXED	100 ms	10 Hz
30-39%	ACTIVE 1	200 ms	5 Hz
40-49%	ACTIVE 2	300 ms	3,33 Hz
50-59%	ACTIVE 3	400 ms	2,5 Hz
≥60%	RESTRICTED	500 ms	2 Hz




Reliable DSRC in Space & Time – Getting the Cake and eating it too !


- Considering reliable DSRC communication tradeoff
 - High reliability in space but not in time
 - High reliability in time, but not in space
- Need smart Transmit Strategies
 - Safety-critical applications do not need both space and time high reliability !

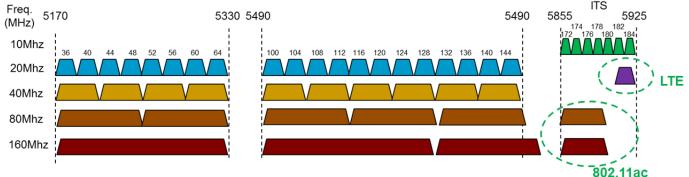
- Random TX Power and Spatial Awareness
 - Showed we could have a higher reliability & a lower congestion
 - We could get the cake AND eat it too !!

Communication Technologies and the Internet of Things in ITS

COMPETING VEHICULAR COMMUNICATION TECHNOLOGIES

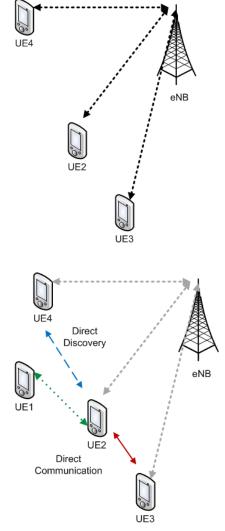
DSRC is challenged by 3GPP

Penetration rate


- **Device Market Penetration:**
 - **DSRC**: Enabled cars → 50% in 15 years
 - LTE: Smartphones/things \rightarrow 50% in 2 years

- Network:
 - DSRC: Road Side Units will be deployed in the next years
 - LTE: Network already available and in expansion
- Ubiquity

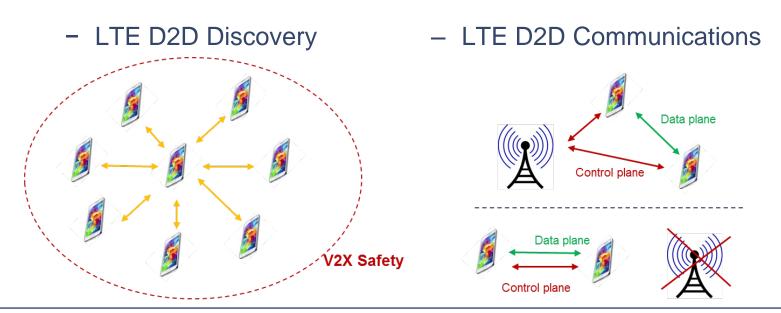
Frequency bands



3GPP LTE technology for Connected Things

- 3GPP Long Term Evolution (LTE)
 - Successor of the cellular 3G networks
 - LTE provides Vertical Services
- LTE is a living project...
 - enhancements based on releases
 - Current LTE networks:
 - ~Release 8 (Rel.8)

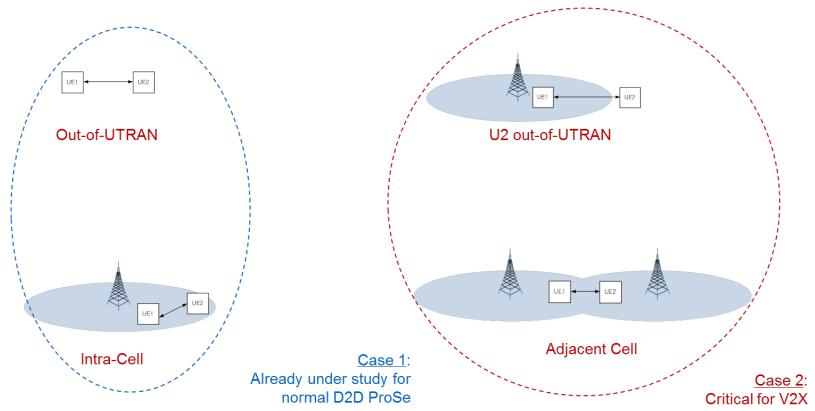
- Since Rel. 12, LTE has a new application domain:
 - Proximity Services (LTE ProSe)
 - ProSe aims at creating Horizontal Services



LTE D2D ProSe Rel. 12 Strategy

- LTE D2D ProSe aims at competing other proximity technologies
 - WiFi-Direct, Bluetooth, etc..

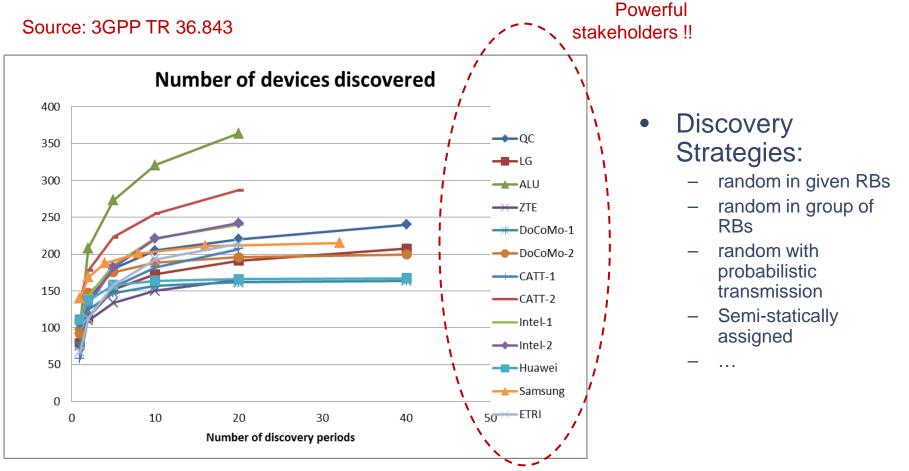
• LTE D2D ProSe has two functions:



ITS-EduNet

Intelligent Transport Systems Education Network

LTE ProSe D2D Service Discovery for V2X (Rel. 12 ++)


• Four Scenarios under study

LTE ProSe Discovery – 3GPP First Evaluations

QPSK, packet size: 102 bytes, discovery period: 1 – 10s

LTE D2D V2X vs. DSRC

80

100

Vehicles density [Vehicles/km]

PRR

120

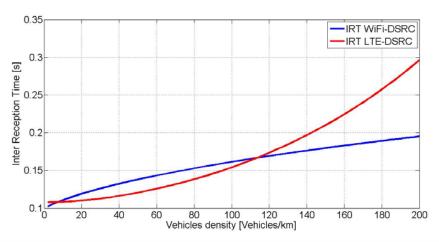
140

Transmission rate = 10 CAMs per second

DSRC

LTE-D OOC w = 2, lambda = 1

160


180

Intelligent Transport Systems Education Network

Packet type	CAM
Packet size	300 bytes
DSRC Channel	CCH – 5.9 GHz
Transmission period	1, 5, 10 Hz
Channel rate	6 Mbps
Modulation	QPSK
Bandwidth	10MHz

Packet Delivery Ratio

0.2

oL

20

40

60

J. Härri, Communication Technologies for ITS, ITS-EduNeT - The Essentials of ITS, Munich, 29.06.2015

200

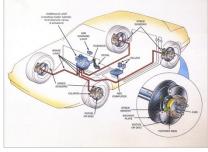
Any Future for DSRC ?

- LTE D2D V2X
 - Strong market and industrial support
 - Faster market penetration
 - LTE D2D community very active
 - Huawei wants it 'now' (rel. 13)
 - LTE D2D currently also at the ETSI ITS !!
 - Performance at least similar to DSRC
 - If not better !!

- So, what is the fate of DSRC?
 - Wireless ATM like fate?
 - Bound to WiFi fate?

Communication Technologies and the Internet of Things in ITS

C-ITS STANDARDS



Standards in Automotive Industry

Motor Vehicle Safety Standards (~500 standards)

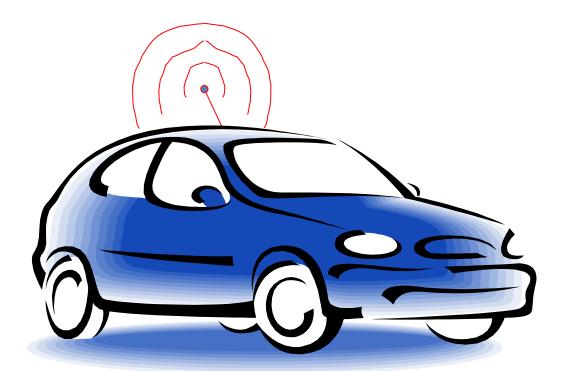
Hydraulic and electric brake systems.

Controls and displays.

Side and Read Impact

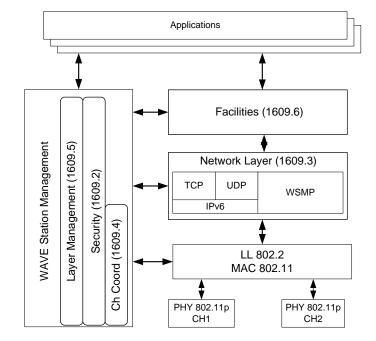
Protection

Safety Belt


Driver License

J2735 Message Set Dictionary BSM/CAM Message

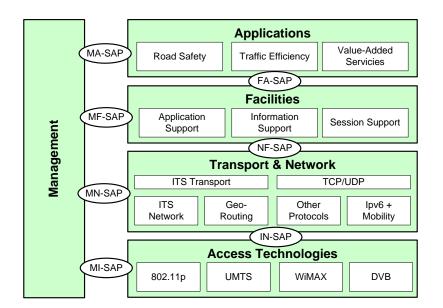
Major Attributes	
Temporary ID	
Time	
Latitude	
Longitude	
Elevation	
Speed	
Heading	
Acceleration	
Brake System Status	
Vehicle Size	


Vehicle safety applications envisioned require the frequent transmission of "heartbeat" messages to enable the vehicle's expanded situational awareness to complement autonomous vehicle sensors

IEEE Wireless Access for Vehicular Environment (WAVE)

- Protocol stack:
 - DSRC: Medium Access
 - 1609.0: Architecture Description
 - 1609.1: Resource manager Withdrawn Communication between road side units (RSU) and on board units (OBU) to run remote applications on the OBU
 - 1609.2-2013: Security Services
 Security services for the network stack (authentication and message encryption)
 - 1609.3-2012: Networking Services Network stack (both TCP/IP and WSMP (WAVE Short Message Protocol))
 - 1609.4-2010: Multi channel management Coordination of control channel and service channels
 - 1609.5: Communication Manager Management parts of 1609.3 and 1609.4
 - 1609.11-2010: Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Transportation Systems (ITS)
 - 1609.12: Identifier Allocations

Source: IEEE 1609 Trial Use Standards and http://vii.path.berkeley.edu/1609_wave



ITS Standardization at the ETSI

- ETSI: European Telecommunication Standardization Institute
- Vehicular Communication and ITS is being standardized in Europe jointly by the
 - CAR 2 CAR Communication Consortium
 - The ETSI TC ITS
- The ETSI ITS Protocol Stack
 - WG 1: Applications
 - Basic Set of Applications
 - WG 2: Architecture
 - WG 3: Network and Transport
 - IP and non-IP
 - WG 4: Medium Access
 - Multichannel and Heterogeneous access
 - WG 5: Security

W3C - Automotive and Web Platform Business Group

• Objectives:

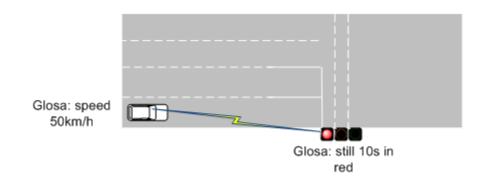
- influence the Open Web Platform on the unique needs of the automotive industry
- determine what vehicle data should be exposed through a Web API(s).
- reducing driver distraction and improving safety

Automotive Grade Linux Workgroup

<u>http://automotive.linuxfoundation.org/</u>

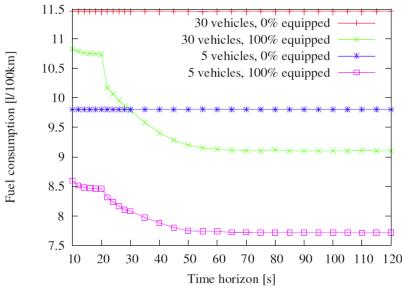
• HTML5-based vehicle APIs

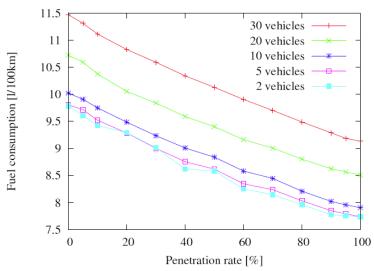
- Tizen
- Webinos
- GENIVI
- QNX


Communication Technologies and the Internet of Things in ITS **EXEMPLARY APPLICATIONS**

Green Light Optimized Speed Advisory (GLOSA)

- Scenario:
 - A vehicle approaches a traffic light
 - The vehicle receives Car2X message from the traffic light with transition times
 - If green:
 - The vehicle computes the speed to reach the intersection before it is red
 - Can it make it?
 - If red:
 - The vehicle computes its deceleration to reach a minimum speed at the traffic light when it turns back green
 - Can it make it?





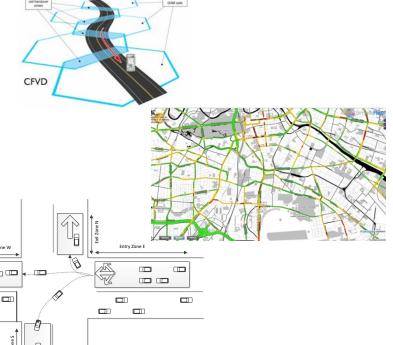
Green Light Optimized Speed Advisory (GLOSA)

• Results:

(a) Influence on fuel consumption for changing time horizon.

(b) Influence on fuel consumptions for changing traffic density (60s time horizon, averaged green phase).

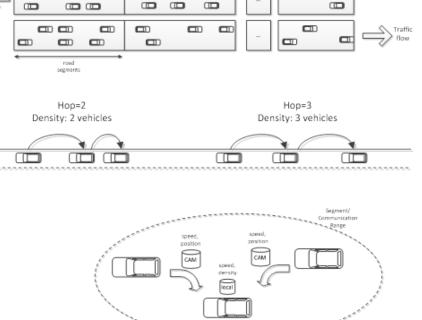
[Source: Axel Wegener, Horst Hellbrück, Christian Wewetzer, "VANET Simulation Environment with Feedback Loop and its Application to Traffic Light Assistance"]



Traffic Density Estimation in Smart Cities

- Traffic Density Estimation
 - <u>Static Sensors</u>: induction loops, pressure sensors, cameras
 - Small scale, real-time traffic estimation
 - <u>Floating (cellular) Car Data (FCD)</u>: vehicles/smartphones periodically send their GPS position to the cloud
 - Large scale (city/area wide), 'soft' real time traffic estimation

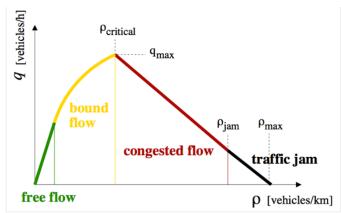
- Applications:
 - Dynamic route planning, road traffic information
 - FCD very efficient and widely used
 - <u>Smart Traffic Lights</u>:
 - FCD not adapted
 - Static Sensors not always reliable / too expensive

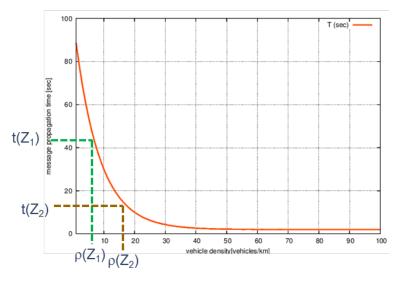

J. Härri, Communication Technologies for ITS, ITS-EduNeT - The Essentials of ITS, Munich, 29.06.2015

Aggregated Traffic data

Smart Vehicles - Distributed Traffic Density Estimation

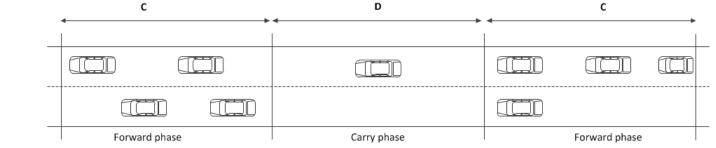
- Distributed Floating Car Data (DFCD)
 - A leader is in charge of the local state to the local sta
 - <u>Assets</u>:
 - Local and distributed state estimation
 - <u>Challenges</u>:
 - Zones need not to overlap
 - Zones should have similar traffic samples (density)
 - Sensitive to low V2X penetration
 - Sensitive to GPS estimates

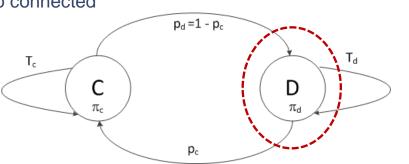




Traffic Estimation - Conceptual Description

- Fundamental Traffic Diagrams
 - Speed / Flow / Density related

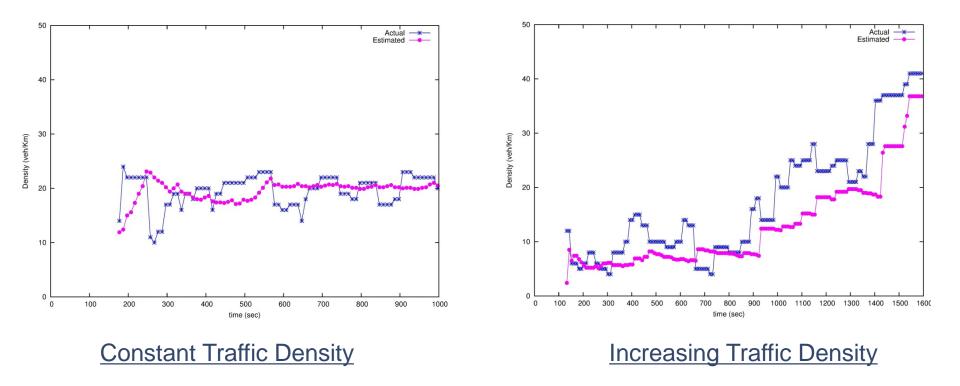

- Fundamental Communication Diagram
 - Dissemination Delay / Traffic Density related



Delay - Density Model

Data Dissemination goes over 'connected' an 'disconnected' phases
 c

- Modelled as a Renewal Process
 - p_c probability to move from connected to disconnected
 - p_d probability to move from disconnected to connected

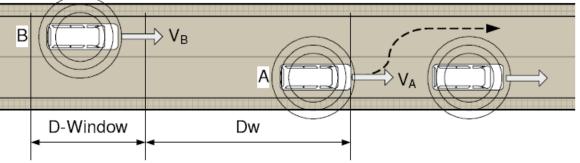


J. Härri, Communication Technologies for ITS, ITS-EduNeT - The Essentials of ITS, Munich, 29.06.2015 Absorbing state
 if all vehicles

have same speed

Traffic Density Estimation – Exemplary Results

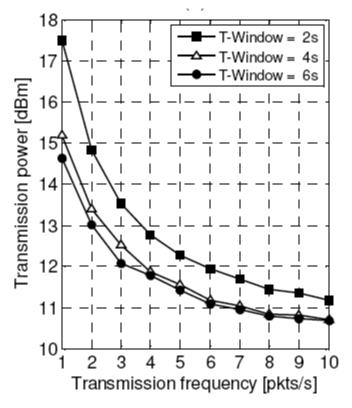
- Overhead:
 - 30bytes/second/vehicle (1/50 of CAM overhead)



Lane Change Warning (LCW)

- Scenario:
 - Highway Mobility:
 - Vehicle moving between 120km/h and 60km/h

[Source: Miguel Sepulcre, Javier Gozalvez, Jérôme Härri and Hannes Hartenstein, " Application-based Congestion Control Policy for the Communication Channel in VANETs"]

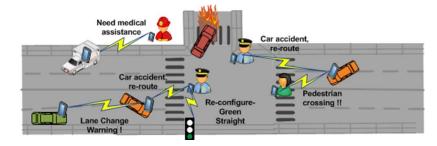

- T-Window: time duration during which CAM messages are transmitted for the purpose of LCW
- D-Window: distance covered by vehicle B in a time window T-Window
- Dw: safety distance before which CAMs must be received by A and B

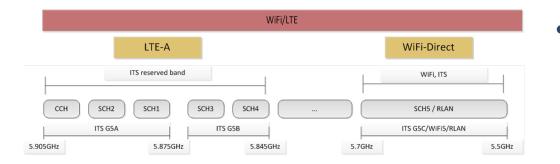
Lane Change Warning (LCW)

- Results:
 - Application safety requirements:
 - Probability that at least 1 CAM is received
 - before **Dw**
 - in a time window **T-Windows** (time travelle by car in D-Window)
 - p= 99%
 - System works if "at least" one of both vehicles receives such packet:
 - Application reliability: p= 99.99%

[Source: Miguel Sepulcre, Javier Gozalvez, Jérôme Härri and Hannes Hartenstein, " Application-based Congestion Control Policy for the Communication Channel in VANETs"] [Reference: N. An, T. Gaugel, H. Hartenstein, "VANET: Is 95% Probability of Packet Reception safe?, ITST 2011, Saint Petersburg, 2011]

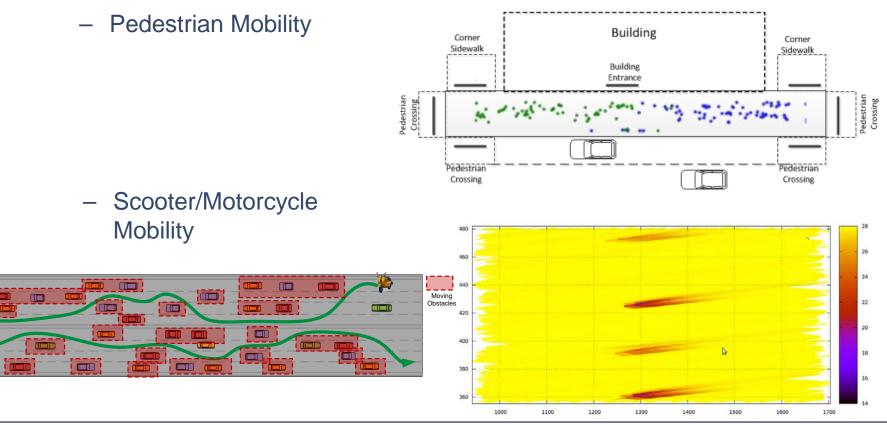
Communication Technologies and the Internet of Things in ITS


PERSPECTIVES – VEHICULAR COMMUNICATION FOR IOT



Perspectives – Dependable D2D communication for Internet-of-Things & Smart Mobility

- Heterogeneous Device-to-Device Communications
 - More than Cars
 - Pedestrians, motorcycles, police..
 - More than DSRC
 - LTE-Direct, WiF-Direct, Bluetooth...



- Co-existence
 - WiFi-Giga / Direct on DSRC frequency band
 - LTE-A/5G on DSRC frequency

Perspectives – Dependable D2D communication for Internet-of-Things & Smart Mobility

• Heterogeneous D2D: Safety of vulnerable traffic users

Perspectives – Dependable D2D communication for Internet-of-Things & Smart Mobility

- Heterogeneous D2D: Highly Autonomous Driving Vehicles
 - Critical building block: precise localization below 2cm

Price to get it: 80k euros

Price OEM willing to pay: 1.50 euro

- Cooperative Localization and positioning from Dependable D2D
 - Cooperative exchange range estimate (radars, DSRC...)
 - Cooperative exchange of local dynamic maps
- Challenge: High precision positioning service
 - Affordable
 - Transparent to cooperative ITS applications

Discussions & Perspectives

- Connected Vehicles are expected to change how ITS applications will operate
 - Cooperative Communication to provide direct exchange of traffic data
 - Safe Mobility see what the eyes can't see
 - Sustainable Mobility help drivers adapt their driving 'style' to reduce congestion

• Challenge – providing dependable vehicular communications

- Wireless Vehicular Communications make this objective difficult
 - 1-hop broadcast, no feedback mechanism
 - quickly changing vehicular wireless channel
 - Safety-of-live information & ITS stringent requirements in time and space
- Competing Technologies
 - DSRC first standardized technology
 - Suboptimal, but optimized by congestion control mechanisms
 - Alternate Technologies in the pipe
 - LTE-D2D, WiFi-Direct will mostly face similar challenges

Discussions & Perspectives

- Challenge gradual penetration of vehicular communication
 - Only expect ~20% penetration by 2030
 - How can C-ITS application still work?
 - Cooperation & Interoperability between different standards, different technologies
 - Not a single technology will be sufficient

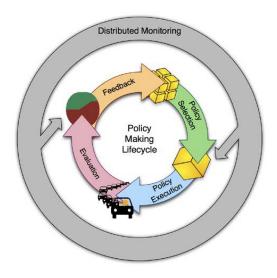
Cooperative Vehicular Communications

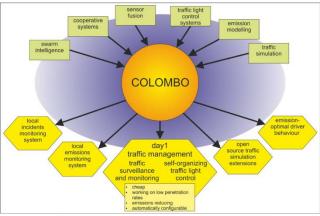
- 10 years of R&D targeting Day 1 C-ITS applications
- Starting 2015 beginning of work on Day 2 applications
 - Highly Autonomous Driving
 - Vulnerable Road Users
 - Drone & Train Communications
- Stakes are high and competition between DSRC and 5G will be tough

Jérôme Härri Jerome.Haerri@eurecom.fr

FP7 COLOMBO Project – Smart Traffic Lights

- COLOMBO: Cooperative Self-Organizing System for low Carbon Mobility at low Penetration Rates
 - To start: 1 November 2012


• Topic:


- Dynamic Traffic Light Systems
- Using traffic Information from users/drivers for Distributed monitoring

• Situation:

- Car2X monitoring could help, but..
- For the next 10-15 years, not enough penetration
- Objective: distributed monitoring at Low Penetration Rate
 - Use other type of communication devices (PDA, sensors..)

