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Abstract The study of crowd behavior in public areas or during some public events is re-

ceiving a lot of attention in security community to detect potential risk and to prevent over-

crowd. In this paper, we propose a novel approach for change detection, event recognition

and characterization in human crowds. It consists of modeling time-varying dynamics of

the crowd using local features. It also involves a feature tracking step which allows exclud-

ing feature points on the background and extracting long-term trajectories. This process is

favourable for the later crowd event detection and recognition since the influence of features

irrelevant to the underlying crowd is removed and the tracked features undergo an implicit

temporal filtering. These feature tracks are further employed to extract regular motion pat-

terns such as speed and flow direction. In addition, they are used as an observation of a

probabilistic crowd function to generate fully automatic crowd density maps. Finally, the

variation of these attributes (local density, speed, and flow direction) in time is employed to

determine the ongoing crowd behaviors. The experimental results on two different datasets

demonstrate the effectiveness of our proposed approach for early detection of crowd change

and accurate results for event recognition and characterization.
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1 Introduction

There is currently significant interest in visual surveillance systems for crowd analysis. In

particular, the study of crowd behavior in public areas or during some public events is re-

ceiving a lot of attention for crowd safety to detect potential dangerous situations and to

prevent overcrowd (e.g. in religious or sporting events). Many stadium tragedies could illus-

trate this problem, as well as the Love Parade stampede in Germany and the Water Festival

stampede in Colombia. The succession of such deadly accidents emphasizes the need for

analyzing crowd behaviors by providing high-level description of the actions and the inter-

actions of and among the objects in crowds. That is an extremely important information for

early detection of unusual situations in large scale crowd to ensure assistance and emergency

contingency plan.

In this paper, we propose a novel approach to automatically detect abnormal crowd

change and to recognize crowd events in video sequences. It is based on analyzing tempo-

ral and spatial distributions of persons using long-term trajectories within a sparse feature

tracking framework. The idea mainly consists of using low-level local features to represent

individuals in the scene. Also, a feature tracking step is involved in the process to alleviate

the effects of components irrelevant to the crowd using motion information. By following

this strategy, we avert typical problems encountered in detection and tracking of persons in

high density crowds, such as dynamic occlusions and extensive clutter.

In addition to the increasing need for automatic detection and recognition of crowd

events, our study is motivated by the necessity of implying density estimation in such high

level applications since the risk of dangerous events increases when a large number of per-

sons is involved. In the simplest forms, the used crowd density measure could be the number

of persons [13] or the level of the crowd [15]. However, these measures have the limitation

of giving a global information for the entire image and discarding local information about

the crowd. We therefore resort to another crowd measure, in which local information at pixel

level substitutes a global number of people or a crowd level by frame. The alternative so-
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lution [14] is indeed more appropriate as it enables both the detection and the location of

potentially crowded areas.

To achieve an improved overall performance, additional information about local den-

sity is employed together with regular motion patterns as crowd attributes. These attributes

which are first extracted from long-term trajectories, are modeled by histograms to describe

the event or the behavior state of a motion crowd. Then, their application to crowd behavior

analysis is demonstrated in two steps: First, the temporal stability of these attributes is used

for crowd change detection. Second, crowd event recognition is carried out by classifying

a feature vector concatenating these histograms. Also, for better video understanding, these

attributes are employed to characterize crowd events by providing rich information about

their variations in time, the localization of the event, and how many persons participate to a

detected event.

The remainder of the paper is organized as follows: The next Section revises the state-of-

the-art on crowd event detection and recognition. Section 3 presents our sparse feature track-

ing framework based on extracting long-term trajectories of local features. Details about

crowd attributes (local density and motion patterns) are given in Section 4. In Section 5, we

explain how to use these attributes in order to detect crowd change and to recognize crowd

events. The application of these attributes to crowd event characterization is presented in

Section 6. A detailed evaluation of our work follows in Section 7. Finally, we briefly con-

clude and give an outlook of possible future works.

2 Related Works

Crowd behavior analysis has recently attracted research attention. This problem covers dif-

ferent subproblems such as crowd change or anomaly detection [5,4,19,17,25,10], and

crowd event recognition or characterization [22,16,2,9,18,28,7], in which the goal is to

automatically detect changes or to alternatively recognize crowd events in video sequences.

In general, there are three main categories of crowd behavior analysis methods. The first

category is known as microscopic approaches where the crowd is considered as a collection

of individuals who have to be segmented, detected and/or tracked to analyze their crowd be-
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havior. This category includes the Social Force Model [19] which is based on local charac-

teristics of pedestrian motions and interactions, or trajectory-based methods [11,17]. These

methods face considerable difficulties to recognize activities inside the crowd because per-

son detection and tracking tasks are affected by occlusions.

In the second category known as macroscopic methods, the crowd is treated as a whole

and a global entity for analysis [8,5,7]. For this purpose, scene modeling techniques are

used to capture the main features of the crowd behavior. These methods focus on modeling

group behaviors instead of determining the motion of individuals which makes them less

complex compared to microscopic methods. Hence, they could be applied to analyze scenes

of medium to high crowd density. The third category known as hybrid methods studies the

crowd at a microscopic and macroscopic levels. They inherit both properties to handle the

limitations of each category of methods and to complement each others for better perfor-

mance [27,3,16,2].

Our proposed method is of hybrid nature since it incorporates optical flow information

into extracted local features and it examines long-term trajectories to capture both global

and local attributes. These attributes have the advantages of capturing the spatial and tem-

poral variations of feature tracks simultaneously. Consequently, they convey rich informa-

tion about the spatial distributions and mouvements of pedestrians in the scene which are

strongly related to the ongoing crowd behaviors.

While most of existing works rely on optical flow information between consecutive

frames, in our approach we extend this information to build trajectories in order to accurately

represent the motion with the video. Also, the generated feature tracks undergo an implicit

temporal filtering step which makes them smoother.

Another substantial contribution of this paper, is the use of local crowd density in addi-

tion to the commonly used crowd motion forms (speed and orientation). We consider it as

an important cue for early detection of crowd event and it could complement crowd dynam-

ics (motion) information. For example, walking/running events are typically recognized by

measuring the speed. However, it is also important to provide additional information about

the number or the density of individuals moving at high speed. Other crowd events such as
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crowd formation/splitting have been analyzed using the direction of optical flow, again this

information is not sufficient, because a large number of individuals has to be involved and to

participate to crowd formation. Another example that justifies the relevance of using crowd

density for event characterization is the blocking situations in large scale crowd, in this case

relying on motion information is not enough since there is no enough spaces to move, as a

result the speed slows down. These examples illustrate the need to use density as additional

cue for characterizing crowd events, also it helps to localize crowded regions.

3 Crowd Tracking

Although there are different approaches to the tracking problem, their applications are lim-

ited to scenes with few and easily perceptible constituents. Generally, the application of

conventional tracking algorithms on videos of high dense crowds is challenging and is en-

countered by many issues. Actually, crowded scenes exhibit some particular characteristics

rendering the problem of multi-target tracking more difficult than in scenes with few people:

Firstly, due to the large number of pedestrians within extremely crowded scenes, the size of

a target is usually small in crowds. Secondly, the number of pixels of an object decreases

with a higher density due to the occlusions caused by inter-object interactions. Thirdly, con-

stant interaction among individuals in the crowd makes it hard to discern them from each

others. Finally and as the most difficult problem, full target occlusions that may occur (often

for a long time) by other objects in the scene or by other targets.

All the aforementioned factors contribute to the loss of observation of target objects

in crowded videos. These challenges are added to the classical difficulties hampering any

tracking algorithm such as: changes in the appearance of targets related to the camera view

field, the discontinuity of trajectories when the target exits the field of view and re-appears

later again, cluttered background, and similar appearance of some objects in the scene. Given

all these difficulties, conventional human detection or tracking paradigms fail in such cases.

To overcome this problem, alternative solutions which consist of tracking particles [19,18,

28] or local features [17,10,22,2] instead of pedestrians have been proposed. Other methods
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operate on foreground masks and consider them as the regions of interest [4,8,5], called

activity area in [5].

In this paper, our proposed approach for crowd tracking is based on tracking local fea-

tures. First, to infer the contents of each frame under analysis we extract local features. Then,

we perform local features tracking using the Robust Local Optical Flow algorithm from [24]

and a point rejection step using forward-backward projection. An illustration of the crowd

tracking modules is shown in Figure 1. The remainder of this section describes each of these

system components.

(a) (b) (c)

Fig. 1 Illustration of the proposed crowd tracking using local features: (a) Exemplary frame, (b) Local fea-
tures extraction using FAST (c) Feature tracks over time using RLOF

3.1 Extraction of local features

One of the key aspects of crowd tracking is feature extraction. Under the assumption that

regions of low density crowd tend to present less dense local features compared to high-

density crowd, we propose to use local features as a description of the crowd by relating

dense or sparse local features to the crowd size. For local features, we assess Features from

Accelerated Segment Test (FAST) [21].

FAST is proposed for corner detection in a fast and a reliable way. It depends on a wedge

model style corner detection. Also, it uses machine learning techniques to find automatically

optimal segment test heuristics. The segment test criterion considers 16 surrounding pixels

of each corner candidate P (of intensity IP ). Then, P is labeled as corner if there exist n
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contiguous pixels in the circle (of 16 pixels) that are all brighter than (IP + t) or all darker

than (IP − t). In the experiments, n and t are set to 12 and 30, accordingly.

The reason behind selecting this feature for crowd measurement is as follows: FAST was

proposed for corner detection in a reliable way. It has the advantage of being able to find

small regions which are outstandingly different from their surrounding pixels. In addition,

FAST was used in [6] to detect dense crowds from aerial images and the derived results

demonstrate a reliable detection of crowded regions.

3.2 Local features tracking

Local features tracking is performed by assigning motion information to the detected fea-

tures. In our framework, we apply the Robust Local Optical Flow (RLOF) [24] [23], which

computes accurate sparse motion fields by means of a robust norm1. A common problem

in local optical flow estimation is the choice of feature points to be tracked. Depending on

texture and local gradient information, these points often do not lie on the center of an ob-

ject but rather at its borders and can thus be easily affected by other motion patterns or by

occlusion. While RLOF handles these noise effects better than the standard Kanade-Lucas-

Tomasi (KLT) feature tracker [26], it is still not prone against all errors. This is why we

establish a forward-backward verification scheme where the resulting position of a point is

used as input to the same motion estimation step from the second frame into the first one.

Points for which this “reverse motion” does not result in their respective initial position

are discarded. For all other points, motion information is aggregated to form trajectories

by connecting motion vectors computed on consecutive frames. This results a set Tk of nk

trajectories in every time step k:

Tk = {T k1 , ..., T knk
|

T ki = {Xi(k −∆tki ), Yi(k −∆tki ), ..., Xi(k), Yi(k)}} (1)

1 www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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where∆tki denotes temporal interval between the start and the current frames of a trajectory

T ki . (Xi(k − ∆tki ), Yi(k − ∆tki )), and (Xi(k), Yi(k)) are the coordinates of the feature

point at its start and current frames, respectively. The advantage of using trajectories in our

system instead of computing the motion vectors only between two consecutive frames is

that outliers can be filtered out and the overall motion information is more reliable and less

affected by noise, more details about processing these trajectories are presented in the next

section.

4 Crowd event attributes

For crowd event attributes, we simultaneously consider local density, speed and orienta-

tion. These attributes are extracted from our proposed sparse feature tracking framework

described in Section 3. For local density, a probability density function (pdf) on the posi-

tions of moving local features using a Gaussian kernel density is computed, whereas, speed

and orientation are estimated from motion vectors. An illustration of the modules of crowd

attributes extraction is shown in Figure 2.

Exemplary frame    Feature tracks 

Moving/Static features Density map 

Motion vectors 

Local Density 

Speed 

Direction 

Low level features 
Crowd Attributes 

Fig. 2 Illustration of the proposed crowd attributes: crowd tracking using local features, estimation of crowd
density map after distinction between moving (green) and static (red) features, estimation of speed and flow
direction from motion vectors.
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4.1 Local crowd density

Our proposed local crowd density is estimated by measuring how close local features are.

This is based on the observation the more local features come towards each other, the higher

crowd density is perceived. Since the extracted local features defined in Section 3.1 con-

tain components irrelevant to the crowd density, we need to add a separation step between

foreground and background entities to our system. This feature selection process can be

optimally done by computing the overall motion Γ ki of each trajectory T ki (tracks of an ex-

tracted local feature). Γ ki , which denotes the average displacement between (k−∆tki )th and

the current frame k, is compared to a small constant ζ (set to 1). Moving features are then

identified by the relation Γ ki > ζ while others are considered as part of static background.

After filtering out static features, the crowd density map is defined as a kernel density

estimate based on the positions of moving local features. For a given video sequence of N

frames {I1, I2, ..., IN}, if we consider a set of mk moving local features extracted from a

frame Ik at their respective locations {(xi, yi), 1 ≤ i ≤ mk}, the corresponding density

map Ck is defined at a pixel position (x, y) as follows:

Ck(x, y) =
1√
2πσ

mk∑
i=1

exp−( (x− xi)
2 + (y − yi)2

2σ2
) (2)

where σ is the bandwidth of the 2D Gaussian kernel which defines the effect of each local

feature on the density calculation. σ has to be large enough to guarantee the involvement

of local features which are close to (x, y) in the calculation of the density at this position.

However, there are some rules to properly choose σ for different situations within the same

video and for different videos as well. First, within the same video, σ is adaptively set

according to a perspective map, in order to deal with the effects of perspective distortions.

For this problem, the distance between (x, y) and the other local features has to be updated

as well by the same criteria. Second, σ has to be also proportional to the resolution of the

video. This setting strategy of σ guarantees its invariance to scale and to resolution changes.
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The resulting crowd density map characterizes the spatial variation of the crowd thanks

to the probability density function involved in the process. This spatial variation that arises

across the frame conveys rich information about the distributions of pedestrians in the scene.

4.2 Crowd motion: Speed and Orientation

The feature tracks defined in Section 3 are first used to show the spatial distributions of

the crowd by estimating crowd density maps based on the positions of moving local fea-

tures. Second, they are used to extract crowd motion information. It proceeds as follows:

after filtering out static features (of zero trajectory lengths because they are stationary along

frames, or of small trajectory lengths because of the noise in video acquisition, or dynamic

background), for the remaining local features, we restrict the history of each 2D trajectory

over last few frames (set experimentally to 50 frames) because otherwise by considering

the whole trajectory an augmentation in the speed will not be detected early, also the flow

direction could be less precise. Then, the overall motion Γ ki of a trajectory T ki is compared

to a certain threshold β which is empirically set to 1/3 of average motion at each frame k.

The trajectory is considered for further processing only if Γ ki > β, while other short-term

trajectories of small length (occur because of tiny movement of crowd) are filtered out to

not affect the computation of speed and orientation.

Once the set of useful trajectories is determined, we compute the speed as the quotient

of the trajectory length divided by the number of frames being tracked. For flow direction,

we consider the orientation of motion vector formed by the start and the current position of

each trajectory.

5 Abnormal change detection and event recognition

Overall, the spatio-temporal crowd measures introduced by density maps and motion vectors

convey rich information about the spatial distributions and the movements of pedestrians in

the scene which are strongly related to their behaviors. For this goal, we first model the

crowd attributes by histograms, see paragraph 5.1. Then, the application of these attributes
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for crowd behavior analysis is demonstrated in two steps: First, the variation of a stability

measure (using the histograms) in time is employed to detect change or abnormal event,

see paragraph 5.2. Second, a feature vector concatenating these histograms is used for event

recognition, see paragraph 5.3.

5.1 Crowd modeling

Each crowd attribute is encoded by 1D-histogram. Given the crowd density map Ck at a

frame k, the local density information is quantized into Nd bins. We have chosen Nd = 5

according to Polus definition [20] of crowd levels (free, restricted, dense, very dense and

jammed flow). Then, to group together motion vectors of the same direction, we quantize

the orientation Θ into NΘ bins. NΘ is set to 8 bins, which results orientation bin size

∆Θ = 45 degrees. As proposed in [4], the speed is quantized into Ns = 5 classes: very

slow, walking, walking fast, running, and running fast. Since the speed is computed in the

image coordinates, its changes can be affected by the perspective distortions, due to the fact

that when people are moving away from the camera, their motion vectors are becoming of

small lengths. That is why, we need to rectify these effects on the speed. To achieve this goal,

we weight the lengths of trajectories according to a perspective map, which is approximated

by linearly interpolating the perceived height of a reference person in the two extreme lines

of the scene [13].

5.2 Crowd Change Detection

According to the procedure described so far, at each frame k, we obtain three histograms

Hd(k), HΘ(k), and Hs(k) which denote, respectively, the histograms of density, orienta-

tion, and speed. If the motion patterns and the density of the crowd remain similar within

a period of time, the corresponding histograms are similar as well. Whereas, if a change

occurs in the crowd behavior, that would generate dissimilarities between the histograms.

For histogram comparison in time, we adapt the same strategy as in [4]: we compare the

density and the motion patterns at each frame with the those of a set of previous frames. For
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each histogram Hi(k) at time k, a similarity vector Si(k) is defined as:

Si(k) = (C(Hi(k), Hi(k −∆t1)),

C(Hi(k), Hi(k −∆t2)), ..., C(Hi(k), Hi(k −∆tn))) (3)

n is the number of frames used in the comparison (n is experimentally set to 25), ∆tj are

the frame steps, and C is the histogram correlation defined between H1 and H2 as:

C(H1, H2) =

∑
p (H1(p)−H1)(H2(p)−H2)√∑

p (H1(p)−H1)2
∑
p (H2(p)−H2)2

(4)

where H is the mean value of H , and p is the histogram bin.

Similar to [4], we define the temporal stability σi(k) of each histogramHi(k) as the weighted

average of Si(k):

σi(k) = ωTSi(k),

ω =
1∑n

j=1 e
λ∆tj

(e−λ∆t1 , e−λ∆t2 , ..., e−λ∆tn) (5)

λ denotes the decay constant, ∆tj = j∆t (∆t is a constant). λ and ∆t are set to 0.52 and

0.25, respectively.

In our approach, a change is detected if the similarity between the current frame and the

previous frames for one of the crowd attributes (local density, speed, or orientation) is low.

For this, we compare each temporal stability σi(k), 1 ≤ i ≤ 3 to an adaptive threshold

τi(k) computed as the half average of the temporal stability values σi between (k −∆t1)

and (k −∆tn):

τi(k) =
1

2n

n∑
j=1

σi(k −∆tj) (6)

5.3 Event Recognition

The proposed crowd attributes are also used to recognize crowd events. In particular, 6

crowd events are modeled namely, walking, running, evacuation, local dispersion, crowd

formation and crowd splitting. In our approach, we propose to perform event recognition
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by classification. For testing, given a new frame x, we aim at classifying it into one of the

events y∗ ∈ Y , which maximizes the conditional probability:

y∗ = argmax
y∈Y

P (y|x, θ∗) (7)

where θ∗ are learned from the training data. This can be performed by SVM classification,

and for the feature vector, we concatenate the 3 histograms Hd(k), HΘ(k), and Hs(k) into

Hk. For classification, we use Chi-Square kernel:

K(Hi,Hj) =
∑
I

(Hi(I)−Hj(I))2

Hi(I) +Hj(I)
(8)

6 Crowd event characterization

We consider that the local density is an important cue to characterize crowd events. In addi-

tion, it provides helpful information about the density of people that participate to a detected

event, also it is useful to localize the event since it is estimated at local level. The character-

ization of crowd events is as follows:

6.1 Walking/Running:

Walking event corresponds to a number of persons moving at low speed. If the speed is high,

running event is detected. This can be recognized by computing the average of magnitudes

of motion vectors at each frame.

6.2 Evacuation:

Evacuation is defined as a sudden dispersion of the crowd in different directions. To recog-

nize this event, direction, speed, and crowd density attributes can be used. This event can be

characterized by detecting more than 4 principal directions which have to be distant from

each others. Also, a degradation in the crowd density and an increase in the speed and in the

motion area have to be detected to recognize this event.
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6.3 Crowd Formation/Splitting:

Crowd formation (or merging) event is recognized when we detect a merge of many individ-

uals coming from different directions towards the same location. For this purpose, distance

between main directions can be used. Also, this event is characterized by an increase in the

crowd density and a decrease in the motion area. The opposite of crowd formation is crowd

splitting event.

6.4 Local Dispersion

This event is recognized when people moves locally away from a threat. The same attributes

of crowd formation and splitting can be used.

7 Experimental Results

7.1 Datasets

To evaluate our proposed approach for crowd change detection, event recognition, and crowd

characterization, we use two public datasets: PETS. S3 dataset [12] and the dataset of the

University of Minnesota (UMN) [1]. The publicly available UMN dataset has been widely

used to distinguish between normal and abnormal crowd activities. This dataset comprises

11 videos in three indoor and outdoor scenes organized as follows: Videos 1:2 belong to

scene 1, Videos 3:8 belong to scene 2, and the scene 3 consists of Videos 9:11. Each of these

videos can be divided into normal and abnormal parts. Precisely, they illustrate different

scenarios of escape event such as crowds running in one direction, or people dispersing

from a central point.

For the ground truth, as noticed in some previous works [4,10], the labels of abnormal

events shown in the videos are not accurate. There are some time lags in the ground truth

labels, for instance in Video1, according to the labels of the ground truth, it is shown that

an abnormal event occurs from frame 526, however people started running at frame 484. To
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overcome this problem, we use the labels of change detection of some videos provided in

[4,10], for the other videos we follow the same annotation strategy; we manually label the

frame in which the crowd change happens (in particular, in UMN dataset as soon as people

start running).

The Section S3. Event Recognition of PETS dataset has been employed to assess crowd

event detection and recognition algorithms. This dataset comprises 4 video sequences with

the following time-stamps 14:16, 14:27, 14:31 and 14:33. As noticed in [16], some se-

quences are composed of 2 video clips, this is the case of 14:16, 14:27, and 14:33, which

results 7 videos in general. More details about these 7 videos are given in Table 1.

sequence name first frame last frame
14:16-a 0 107
14:16-b 108 222
14:27-a 0 184
14:27-b 185 333
14:33-a 0 310
14:33-b 311 377
14:31 0 130

Table 1 Videos from PETS. S3 used for testing crowd events recognition and characterization algorithms:
the first and the last frames of each video sequence.

These videos depict 6 classes of crowd events: walking, running, formation (merging), split-

ting, evacuation, and dispersion. We annotate these videos with the 6 classes as it is shown

in the following Table 2.

events video [frames]
walking seq.14:16-a [0-40], seq.14:16-b [0-56]
running seq.14:16-a [41-107], seq.14:16-b [57-114]
evacuation seq.14:33-b [24:66]
dispersion seq.14:27-a [96:144], seq.14:27-b [86:134]
formation seq.14:33-a [0:180]
splitting seq.14:31 [58:130]

Table 2 The time intervals indicate when a specific event is recognized (from its first frame to the last one)
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7.2 Experiments and Analysis

7.2.1 Crowd Change detection

For evaluating crowd change detections, accurate detection means early detection as soon

as the change occurs. For quantitive evaluation, we employ the relative mean frame error

metric proposed in [18]. It is defined as:

eF = Ne/Nfr (9)

whereNfr,Ne denote the total number of frames in the video, and the error frames, respec-

tively, see Table 3.

Seq. Nb Frames Ground Truth Our Det.
changes

eF

UMN.Video1 625 484 493 0.0144
UMN.Video2 828 665 669 0.0048
UMN.Video3 549 303 319 0.0291
UMN.Video4 685 563 582 0.0277
UMN.Video5 769 492 512 0.0260
UMN.Video6 579 450 466 0.0276
UMN.Video7 895 734 754 0.0223
UMN.Video8 667 454 471 0.0255
UMN.Video9 658 551 551 0
UMN.Video10 677 570 577 0.0103
UMN.Video11 807 717 722 0.0062

Table 3 Comparison of our detection results to the ground truth labels using error frame metric

In this Table, we show the results of change detection for videos from UMN dataset. The

comparison of our detection results to the ground truth labels shows satisfactory perfor-

mances and rather accurate in most videos. In terms of eF metric (the last column in the

Table), the error is small in most cases. In our approach, the delay in the detection of some

frames after the event occurs is because of our strategy of detection, in which an abnormal

event is detected if the temporal stability is becoming below the dynamic threshold (defined

as half the average of temporal stabilities of previous frames). This requires some times to
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be detected, which justifies the delay. At the same time, this strategy is suitable to avoid

false alarms.

To demonstrate the effectiveness of our proposed approach, we compare our results

to adjacency-matrix based clustering (AMC) method [10], spatial temporal co-occurrence

Gaussian mixture models (STCOG) method [25], and to the method proposed in [18], which

is based on dense optical flow and particle advection. The precision and recall of all these

methods are listed in Table 4. The comparison shows that our method achieves comparable

results to [10] in terms of recall. 100% is achieved in terms of precision which means zero

false alarms for all videos, however, the evaluation in terms of precision is not provided

for the compared method [10]. For recall we get worse results, but of small margin. The

comparison2 to STCOG method [25] shows better performance for our proposed method.

Finally, the results of [18], demonstrate that, similar to our approach, this method succeeds

to avoid false alarms, however the delay in the detection is bigger than in our approach.

To conclude, the effectiveness of our proposed approach for crowd change detection

has been validated by showing excellent performance in terms of false detections ( 100%

as precision) . For the recall, our approach achieves comparable results regarding the other

existing methods. These results are explained by the same reason mentioned before, about

the time lags in the detection until the similarity metric becomes less than the dynamic

threshold. Also, it is important to mention that UMN dataset does not include events such

as crowd formation/splitting, that could justifies that methods based only on motion infor-

mation (speed and orientation) could achieve satisfactory results.

Approach Recall (%) Precision (%)
Proposed approach 92.45 100
AMC approach [10] 94 n/a

STCOG approach [25] 92.28 94.47
Approach in [18] 84.75 100

Table 4 Performance of our proposed crowd change detection method in terms of recall and precision using
UMN dataset compared to [10,25,18]

2 These results have to be considered carefully, because in [25] according to the number of frames, we
noticed that the authors used one frame out of each three frames. Also, the original ground truths have been
used in these results. These two factors may boost the results reported in the compared paper.
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7.2.2 Crowd Event Recognition

For crowd event recognition, we use PETS.S3 dataset from view 1 and view 2 in order to

increase the available frames. We randomly split this dataset into (75%) for training and

(25%) for testing. For each test sample, the feature vector using the concatenation of the

three histograms is identified as one of the six classes following one-vs-one strategy. We ob-

tain 98.25% as classification accuracy, when we used the three crowd attributes, and 92.28%

when the histogram of density is not included in the feature vector. These results demon-

strate good performance for both cases, which proves the relevance of our proposed crowd

tracking framework. A significant improvement (around 6% in the classification accuracy)

using local density as additional crowd attribute is noticed as well. Also, we evaluate the

recognition performance with confusion matrix, see Table 5.

walking running splitting dispersion evacuation formation
walking 97.96 0 0 0 2.04 0
running 4.17 95.83 0 0 0 0
splitting 2.78 0 97.22 0 0 0

dispersion 0 0 0 100 0 0
evacuation 0 0 0 0 96.88 3.12
formation 0 0 0 0 0 100

Table 5 Confusion matrix for event recognition on PETS 2009. S3 dataset

As it is shown in this Table, we achieve excellent results for all crowd events including

crowd formation/splitting, which justifies again the relevance of our proposed attributes.

For comparisons3, we report the classification accuracy on the test set for each class

separately, following one-vs-rest strategy, see Table 6. In this table we compare our results

to [7], in which the recognition is performed using color, texture and shaped features. Also,

we add a comparison to [27], based on Lucas-Kanade optical flow method [26].

For the first compared method, the tests has been done for view 1 and 2 separately. In most

cases, we have better results. Also, in [7], some difficulties to recognize the events from view

3 Again, these comparisons have to be considered carefully, even though we mostly agree with the com-
pared methods on the ground truth labels, and on the evaluation strategy, we cannot ensure that the algorithms
run on the same dataset because of the random selection of training/testing samples
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Methods Views Walking Running Splitting Dispersion Evacuation Formation
Proposed (view 1
method and 2) 98.25 99.30 100.00 100.00 98.25 98.60
Cermeno et al.
method [7] view 1 98.87 97.62 98.77 92.16 100 99.25
Cermeno et al.
method [7] view 2 95.87 95.94 96.30 88.24 95.83 93.99
Xu et al.
method [27] view 1 97.00 98.00 98.00 94.00 99.00 99.00

Table 6 Classification accuracy of our proposed crowd event recognition method compared to Cermeno et
al. method [7] and to Xu et al. [27] on test set from PETS.S3 dataset following one-vs-rest strategy

2 have been reported, which justifies the incapability of this method to deal with different

point of view. By comparing our method to [27], we notice that our method has better results

in most cases, even though the compared method runs on samples from the same view.

This demonstrates that our proposed approach achieves good results independently from the

camera point of view.

Overall, these results demonstrate that our proposed approach achieves better perfor-

mance compared to the other existing methods. These results justify the effectiveness of the

proposed sparse feature tracking framework, which accurately represents the motion in the

video. In particular, they justify the advantage of using trajectories instead of motion vec-

tors by filtering out outliers and removing noisy information. In addition, the use of crowd

density as additional attribute with motion patterns has shown substantial improvement in

the classification accuracy. That demonstrates the relevance of this attribute to complement

motion information, and consequently to identify crowd behaviors.

7.2.3 Crowd Characterization

For evaluating our proposed crowd event characterization, we use PETS. S3 dataset. By

following up some measures extracted from the crowd attributes, we are able to monitor the

variation of crowd attributes in time, to interpret what is happening in the scene, to localize

the event, and to have a clear idea about the density of people participating to each event.

Figure 3 illustrates some examples of event characterization.

In the first row of this figure, we show a sample frame of crowd formation. This event

is characterized by people coming from different directions and they are moving towards
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a) Motion Vectors (b) Density map (c) Recognized event

Fig. 3 Results of event characterization from PETS dataset.

the same location (as it is depicted in the first column, showing the direction of motion

vectors). Also, this event is characterized by a decrease of motion area ratio in time, in this

frame it is equal to 40.72%. In the second column, we show the estimated density map,

which localizes where the crowd is formed. The area of dense regions is augmenting in

time, it reaches 6.10% at this frame. Given all the characteristics, crowd formation event is

recognized and localized as it is shown in the third column.

In the second row, we show an example of evacuation. This event is characterized by

the divergence of motion vectors as it is shown in the first column, because people are

moving away from each others in different directions. In addition this event is characterized

by a sudden increase in the speed; the average of magnitude of all motion vectors at this

frame is equal to 12.05 pixels (the effects of perspective distortions are considered in the

computation). This event is also characterized by in an increase in the motion area ratio

(54.66%) and a decrease in time of dense areas (as it is shown in the second column).

8 Conclusion

In this paper, we proposed a novel approach to automatically detect abnormal crowd change

and to recognize crowd events in video sequences based on analyzing some attributes of
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feature tracks. In addition to the increasing need for automatic detection and characterization

of crowd events, our study is motivated by the necessity to imply density estimation in the

process because the risk of dangerous events increases when a large number of persons

is involved. The effectiveness of using local density together with motion information has

been experimentally validated using videos from different crowd datasets. The results show

good performance for early detection of crowd change, accurate event recognition and better

video understanding.

There are several extensions of this work: First, because crowd events have temporal

structure, Hidden Markov Models (HMM) can tackle this classification better than SVM

(classification per-frame which disregards temporal order) by capturing temporal patterns in

the data. The small size of PETS. S3 dataset impeded us to investigate more this method,

since HMM requires extensive training data. Another future direction of this work could

be the use of the same input (local features tracking) to study group behaviors by applying

trajectory clustering. Also, for change detection, our proposed method succeeds to achieve

accurate results for early detection once the change occurs, however, it important to investi-

gate event prediction before it happens.
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