
Troubleshooting web sessions with CUSUM

Christian Callegari1, Marco Milanesio2, and Pietro Michiardi2
1Dept. of Information Engineering, University of Pisa, Pisa, Italy

2Eurecom, Sophia-Antipolis, France
E-mail: c.callegari@iet.unipi.it, Marco.Milanesio@eurecom.fr, Pietro.Michiardi@eurecom.fr

Abstract—A variety of factors may lead users to a poor quality
of experience in a web browsing session, experiencing a high page
load time. Without a clear explanation this can be annoying. In
this paper, we present a novel algorithm and a whole redesigned
architecture to provide an answer to the question “what’s wrong
with this web site?”.

In more detail, we propose the design and the implementation
of a probe, running a novel diagnosis algorithm based on the
original use of “classical” troubleshooting techniques merged
together with statistical change point detection tools. Our pro-
posed probe is able to correctly determine the root cause of
poor web navigation experience, distinguishing, among the several
portions of the network, the one responsible for the problem. The
presented experimental results demonstrate the effectiveness of
the proposed method.

Keywords—Quality of Experience; Web session troubleshooting;
Change point detection; CUSUM; Anomaly Detection.

I. INTRODUCTION

The 2014 Akamai State of the Internet report [1] shows
more than 788 million unique IP4 addresses, exchanging re-
quests and responses with an average connection speed greater
than 4Mbps with peaks of 73Mbps. Web browsing occupies
the vast majority of the described traffic load, with averages
in page load time ranging from 1 to 8 seconds worldwide on
broadband. With the increase of the average connection speed,
it may become difficult to understand for an end user a slow
page load time during a browsing session. Hence, it becomes
relevant to develop automatic ways to provide an explanation
for it, as many distinct, unrelated, and independent factors can
cause a poor quality of experience (QoE) in a web browsing
session: an overloaded client, a misconfigured router, a server
outage, or a failure somewhere in the path between the user
and the server providing the web page.

Diagnosing the quality of experience in web browsing for
end users can be achieved following two different approaches:
(i) exploiting network performance degradation measurements
collected by different tools deployed in different parts of the
network, or (ii) involving explicit users’ feedback in a partic-
ular time window. Note that network performance degradation
measures deal more with quality of service (QoS) metrics (e.g.,
RTT or packet loss) rather than QoE ones (e.g., page load
time): in our approach we combine the two, providing a unified
view of the browsing experience.

Most of the current approaches in web browsing trou-
bleshooting (e.g., [2]) are based only on browser level measure-
ments, while we believe that also active measurements (e.g.,
ICMP messages) taken at the time of browsing are relevant to

perform a root cause analysis of a degraded user experience.
To this aim, we present here a new probe design that, after
performing both active and passive measurements, provides
insights of possible root causes for a high page load time.

In this paper we address the following question: “How
to diagnose a poor QoE in a web browsing session?”. The
research question is split into different sub-questions, namely
(a) how to define a poor QoE; (b) what measurements to take;
(c) how to tell apart the different causes.

Starting from the work in [3], we present here a new
design of the Firelog probe, as well as an improved version
of the diagnosis algorithm, covering a wider number of cases.
More in details: (a) we design and develop a new, lightweight
probe suitable for being executed on embedded devices; (b)
we enrich the collected data exploiting a network sniffer and
active measurements; (c) we improve the diagnosis algorithm
introducing the CUSUM methodology for distinguishing the
different cases; and (d) we run experiments on a controlled
testbed to validate the diagnosis scheme.

It is worth highlighting that the rationale behind the use of
CUSUM is to detect the root cause of an anomalously slow
browsing session, while automatically adapting to changing
network conditions. Indeed, with respect to the use of a stan-
dard threshold mechanisms, the main characteristic of CUSUM
(i.e., a change point detection technique) is the ability to adapt
to slow changes in the network performance, still being able to
detect abrupt changes. This feature makes this method strongly
suitable for QoE monitoring, where user dissatisfaction is more
related to a sudden worsening of the browsing performance
(e.g., a web page that is slow with respect to the previously
browsed URLs) than to the absolute browsing time (indeed,
in that case we could suppose that the QoE level is mainly
dependent on the access network performance).

The paper is organized as follows. In Section II we present
the related works as well as a summary on the CUSUM
methodology. Then we present the new probe design in Section
III, giving a description of the overall architecture. We present
the diagnosis algorithm in Section IV, while in Section V
we describe the test-bed used to validate our proposal and
discuss the preliminary experimental results, obtained in such
a controlled environment. Section VI concludes the paper with
some future directions.

II. RELATED WORK

Page load time is widely considered the main QoE metric
to be investigated. In addition, network performance metrics
can be used to drill down on the perceived QoE: in [4] authors
point out the QoS metrics (e.g., packet loss) can influence978-1-4799-5344-8/15/$31.00 c© 2015 IEEE

QoE, even if they are strongly related to two distinct views:
the network centric (QoS) and the user centric (QoE).

There exist many tools for debugging or monitoring web
sessions (e.g., Firebug [5] or Fiddler [2]) that actually lack a
systematic troubleshooting model, as well as well-defined trou-
bleshooting techniques. Furthermore, they use only browser
level metrics (e.g. HTTP headers, web page size and so on).
Other works are aimed at correlating bad browsing perfor-
mance with web page properties (e.g., number of objects, use
of CDNs [6]), or to include user participation in performance
evaluation, simply indicating “satisfaction” thresholds [7][8].
User dissatisfaction prediction is the goal of the work in [9]:
exploiting explicit users’ feedback, authors develop a classifier
for supervised learning, based on network metrics (e.g., RTT,
jitter, retransmissions).

Fathom [10] introduces a Firefox browser plugin for net-
work troubleshooting. Fathom broadly measures a wide spec-
trum of metrics that characterize a particular Internet access
such as access bandwidth, bottleneck buffer size, and DNS be-
havior. It can also enable additional active measurement tasks.
Similarly, we exploit browser events and active measurements,
but we couple them with the corresponding TCP flows captured
by the network interface, and we provide a fast diagnosis on
the current web browsing session.

As stated in the introduction, the basis of our work is the
one described in [3], where the authors propose a browser
plugin able to diagnose the cause of slow web browsing
performance. Our proposal significantly advances this design
both from the probe architecture and the diagnosis points of
view, including a more comprehensive algorithm. Moreover, to
the best of our knowledge, our proposal is the first to introduce
statistical anomaly detection techniques, able to dynamically
adapt to network conditions, in a troubleshooting tool.

Given that a review of the state of the art of anomaly
detection techniques is out of the scope of this work, we refer
the reader to the survey [11] and references therein for the most
widely used techniques used to detect anomalous behaviors in
network traffic.

A. Theoretical Background: CUSUM

The CUSUM (or cumulative sum control chart) is a sequen-
tial analysis technique, typically used for solving the change
detection problem. Let us suppose to have a time series, given
by the samples xn from a process: the goal of the algorithm
is to detect with the smallest possible delay a change in the
distribution of the data. The assumption of the method is
that the distribution before and after the change (fθ1(x) and
fθ2(x)) are known. As its name implies, CUSUM involves the
calculation of a cumulative sum, as follows:

S0 = x0

Sn+1 =
(
Sn + log

(fθ2 (x)
fθ1 (x)

)) (1)

The rationale behind the CUSUM algorithm is that, before
the change, the quantity log

(fθ2 (x)
fθ1 (x)

)
is negative, whereas after

the change it is positive: as a consequence, the test statistics Sn
decreases before the change, and it increases linearly with a
positive slope after the change, until it reaches the threshold ξ

when the alarm is raised. Figure 1 shows an intuitive derivation
of the method.

Fig. 1. Intuitive derivation of the CUSUM: time-series (upper graph) and
CUSUM statistics (lower graph)

Note that the assumption about the knowledge of the two
distributions fθ1(x) and fθ2(x), implies that CUSUM is only
able to decide between two simple hypotheses. But, in case of
network problems we cannot suppose that the distribution after
the change is known (usually neither the distribution before
the change is known). This implies the need of using the non
parametric version of the algorithm [12], which leads to a
different definition of the cumulative sum Sn. In more detail
in this work we have used the non parametric CUSUM (NP-
CUSUM), in which the quantity Sn is defined as:

S0 = x0
Sn+1 = (Sn + xn − (µn + c · σn))+

(2)

where µn and σn are the mean value and the standard deviation
until step n, c is a tunable parameter of the algorithm, and the
operator (x)+ = max(0, x) is introduced for making the
implementation simpler, as Sn+1 may become negative, as in
the example pictured in Figure 1.

As far as the estimations of µ and σ are concerned, we
can use the Exponential Weighted Moving Average (EWMA)
algorithm defined as:

µn = α · µn−1 + (1 − α) · xn
σn = α · σn−1 + (1 − α) · (xn − µn)2

(3)

where α is a tunable parameter of the algorithm.

III. PROBE DESCRIPTION

Firelog1 is a hybrid probe capable of performing both ac-
tive and passive measurements over web browsing sessions. At

1http://firelog.eurecom.fr/mplane/ Last Visited: Feb. 2015

its origin, Firelog was a full browser-based probe [3], namely
a Firefox plugin collecting browser metrics. We changed the
architecture of the probe, by developing part of its logic into
a standalone application: we enhanced it by using well known
Ping and Traceroute tools to perform active measurements,
and by having two sets of passive measurements: timings
of browser events, and captured network traffic dumps. We
lightened the overhead due to a full browser by exploiting an
instrumented headless browser (i.e., phantomJS2), and we use
a modified version of Tstat3 for capturing the network traffic.

The collected metrics (see Section III-A) are stored in a
local database and in the form of a HTTP archive format file4,
helpful to visualize the overall browsing process (e.g., objects,
size and time elapsed to fetch it) for a specific web page. These
results are processed to produce a first evaluation on the last
browsing session and sent to a central repository for further
analysis and diagnosis for troubleshooting.

Note that, as the probe is targeted to diagnose poor QoE in
a web browsing session, users are given the ability to explicitly
signal a poor QoE.

A. Collected Metrics

Firelog collects both active and passive measurements, as
follows.

Given a URL, the probe browses the URL. That is, it
performs a DNS query to resolve the name and downloads
the web page as usual, by contacting also all the possible
secondary servers5 needed to retrieve all the objects. We collect
at this stage a number of metrics regarding browser events
(e.g., IP addresses, page load time, request time, time for DNS
resolving, number of objects loaded, time between the HTTP
GET message and first byte of data received, and many others).
We call this a session, and we collect also information on the
status of the probe itself (namely, CPU and memory usage).

For each object in the session, a unique identifier is
generated and attached to the TCP level streams incoming
and outgoing from the probe via the Tstat network sniffer.
By doing so, we couple the TCP stream measurements (e.g.,
the TCP handshake time) to the corresponding object. For
each collected IP address, we send ICMP messages (Ping and
Traceroute) to compute the path and the RTTs towards the
destinations. Ultimately, each URL is associated to a complete
set of metrics coming from the browser, the ICMP messages
and the passive sniffing, giving us a snapshot of what happened
in the session. All the raw data are then stored, processed and
sent directly to the central repository.

The relevant metrics which are used by the diagnosis
algorithm presented in Section IV are summarized in Table
I. In brief, active measurements are ICMP messages and the
passive ones are collected as browser events or through the
network sniffer (i.e., Ttcp). Tidle is the sum of “gaps” in which
no browser activity is performed (i.e., small fractions of time

2http://phantomjs.org/ Last Visited: Feb. 2015
3http://tstat.polito.it/ Last Visited: Feb. 2015
4https://code.google.com/p/harviewer, Last visited: Feb. 2015.
5For example, consider a news web site: several objects may be retrieved

either by other servers in the same domain or from different servers on different
domains (e.g., video, advertisements and so on)

Internet

Local Client

Gateway

Middle box

DNS

Local Network

Web Server?

?

?

?

?

?

?

Fig. 2. Network scenario: question marks point to the possible source of a
poor QoE.

elapsed between the last byte received of an object and the
sending of the GET message for the next object).

Symbol Metric Source
Tnhop RTT to the nth hop Active
Tp RTT to probe p on the same LAN Active
∆n T(n+1)hop − Tnhop Computation
Tidle Client idle time Computation
Ttot Total web page downloading time Passive
TDNS DNS response time Passive
Ttcp TCP handshake time Passive
Thttp HTTP response time Passive
TABLE I. METRICS COLLECTED BY THE PROBE AND EXPLOITED BY

THE DIAGNOSIS ALGORITHM.

More measurements are available at the probe side, and
more tools can be easily integrated for enriching the Firelog
measurements (e.g., Tracebox [13], to detect the presence of
middle boxes in the network). For sake of generality and clarity
in the explanation, however, we do not include all of them here.

IV. DIAGNOSIS ALGORITHM

The proposed algorithm aims at identifying the portion
of the connection that is responsible for the anomalously
long web page loading time. Hence, we can mainly identify
seven different segments, where the problem could be located
(indicated with a question mark in Fig. 2): (1) the local client;
(2) the local network; (3) the gateway; (4) middle boxes (if
any); (5) the DNS sever; (6) the backbone network; and (7)
the remote web server.

The algorithm is run whether: 1) the user requests a
diagnosis on a URL; or 2) a threshold on the page load time
is crossed. See Section V for more details.

Let us analyze in details how the algorithm works.

The first check is made on the local device, by checking
the status (e.g., memory and CPU consumption) of the probe
itself. If the test passes (i.e., the considered metric exceeds a
threshold), then the algorithm concludes that the problem is at
the probe side. Otherwise, if the local host does not present

any problem, the algorithm performs a check on Thttp (average
value over all the values corresponding to the different objects
of the loaded web page), by verifying if the CUSUM applied
to that metric has exceeded a given threshold. Note that this
metric can be considered as a rough approximation of the time
required for getting the first data packet from the remote web
server, thus in case it is normal we can easily conclude that
the problem is neither in the network (local or backbone) nor
at the remote server side. Hence, the algorithm performs a
check, at first, on the web page size (verifying if the number
of objects/bytes of the page exceeds a threshold) and then, in
case the web page size is not responsible for the problem, it
checks Ttcp and TDNS possibly concluding that the problem is
generated by the long distance towards the remote web server
or in the DNS server, respectively.

Instead, in case Thttp is normal, the algorithm automati-
cally excludes the DNS and the page size cases and proceeds
by checking if other devices in the same local network have
problems.

At this point, there can be three distinct cases: (1) all the
other devices are experiencing some problems; (2) none of the
other devices is experiencing any problem, and (3) just some
of the other devices are experiencing some problems. Let us
analyze how the algorithm behaves in the three distinct cases.

First case. In the first case the algorithm can directly exclude
that the problem is due to the remote server (assuming that not
all the devices are browsing the same page). Moreover, among
the remaining causes (in order: gateway, local network, middle
boxes, and backbone network), the algorithm assumes that with
high probability the problem is located close to the devices
(otherwise not all the devices would experience problems). The
algorithm checks thus the remaining causes in the mentioned
order. If the tests on gateway, local network and middle boxes
fail, it concludes that the problem is in the closest portion
of the backbone network, given that all the local devices are
traversing it (e.g., same ISP).

Let us see, into details, how the different phases of this part
of the algorithm are performed, by beginning with the gateway
and local network verification. First of all, the algorithm
verifies if the CUSUM applied to the RTT to the first hop (i.e.,
the gateway) exceeds a given threshold. If this is the case, this
can be justified by either the fact that the local network is
congested or by the fact that the gateway is overloaded and
the Ping response time is high (i.e., the CUSUM statistics
exceeds the threshold). To discriminate between this two cases
the algorithm checks the status of other devices in the network
(if any) by applying the CUSUM to the RTT from the initial
probe and another device in the local network and if it is high
too, it concludes that the problem resides in the local network,
which is probably congested, otherwise it concludes that the
problem is in the gateway, which is probably overloaded. Else,
if T1hop is “normal” (i.e., the CUSUM statistics does not
exceed the threshold), the algorithm cannot yet exclude the
overloaded gateway case (because the dependence between
the ping response time and the machine load is not always
significant), and performs a check on the CUSUM applied to
∆1 (i.e., T2hop − T1hop).

This metric, from a practical point of view roughly repre-
sents the sum of the time needed to traverse the gateway, the

time needed to go through the first link outside the gateway,
and the time required by the second hop to process the ping
request. Thus, if it results anomalous, the algorithm also checks
the CUSUM applied to ∆2 (i.e., (T3hop−T2hop) and, in case it
is anomalous too, it concludes that there is congestion on the
first link outside the gateway, which is reported as backbone
network problem (note that if there are middle boxes the
algorithm instead proceeds to the next phase), otherwise it
concludes that the problem is in the gateway that is overloaded
(given that the problem is associated to the time required to
traverse the gateway).

It is worth noticing that the quantities Tnhop are not
required to be collected towards the nodes that are in the
path to the contacted web server, but they can be measured on
every path outside the local network: in our case we choose
these nodes by performing a Traceroute towards the resolved
IP address in a session.

In case ∆1 results are normal, the algorithm can exclude
the overloaded gateway case, and proceeds by checking each
middle box detected, if any (e.g., exploiting tools like Tracebox
[13]).

The verification of the middle box is based on a process
that is very similar to the one used to check the gateway, indeed
the algorithm checks the CUSUM applied to Tnhop (where n
is the middle box). If this is anomalous, it can conclude that
the problem is in the middle box, otherwise it checks if any
anomaly is present in ∆n: if not, it excludes the middle box
and goes to the next middle box (if present), otherwise it also
check ∆n+1 and concludes that the problem is in the middle
box if the latter is normal, or in the congested network if ∆n+1

is anomalous.

This phase can exploit all the information already obtained
from the previous phases: if the algorithm cannot locate the
problem neither in the gateway and local network, nor in the
middle boxes, it concludes that the problem resides in the
portion of the backbone network closest to the probe.

Second case. Let us analyze now the case in which none of
the other devices of the local network is experiencing any
problem. In this case, we can easily exclude the gateway, the
local network, and the middle boxes, restricting the causes
to either the remote server or the backbone network. Hence,
the first check is performed on the remote server (that is
assumed to be more probable than the backbone network,
given that the only device that is experiencing problems is
the one navigating that remote server). To perform such a
check, the algorithm verifies if the CUSUM applied to the
metric Thttp − Ttcp is anomalous or not: this metric roughly
represents the time needed by the remote server to process
the http GET request, being Ttcp almost independent on the
server load. In case it is anomalous the algorithm concludes
that the problem is located in the remote server, otherwise that
it is located in the backbone network. In fact, given that an
anomalous return value on the CUSUM could also be due to
the loss and consequent retransmission of the GET packet, the
algorithm, before returning that the problem is located in the
remote server, “asks” the client to reload the web page and
performs that check once again, minimizing the probability of
producing a wrong output. It is also important to highlight
that, in case we do not want to require the page reload, the

only confusion can be between the remote server and the far
portion of the backbone network, that can be still acceptable
in most cases.

Third case. The last case still to be analyzed is the one in
which some of the local network devices are experiencing
some problems and some are not. This case results to be
straightforward, given that we can directly exclude all the cases
apart from the backbone network problem, hence the algorithm
directly concludes that the problem is in the backbone network
(probably in a portion of the network close to the local
network, given that it is traversed by several local devices).

The number and the type of the operations made by the
probe, make it suitable for being used as a background process,
without significantly affecting the system performance. Indeed
all the checks are just performed by either comparing some
passive measurements to a threshold or computing the CUSUM
statistics (CUSUM is well-known for being suitable for all
kind of real-time applications) and comparing them with a
threshold.

Finally, it is also important to highlight that in the case
there is not any other device in the local network apart from the
one that raised the alarm, the algorithm can still be applied, by
checking all the possible locations of the problem (following
the order: local host, page size, server too far, DNS, gateway,
local network, middle boxes, and remote server).

V. EXPERIMENTAL RESULTS

In this section we describe the experiments carried out to
validate the proposed algorithm, by analyzing at first the tuning
of the system parameters and then describing the network
test-bed considered in the validation process and the obtained
results.

A. Tuning of the System Parameters

The proposed algorithm presents several parameters that
have to be tuned before launching the probe. Nonetheless,
this phase is not so critical: we design the algorithm so that
small changes in the different parameters values result in the
same diagnosis result. In more detail, we have to determine
the following quantities:

• EWMA parameter α: in our settings we have used the
value α = 0.9, which is “classical” in many network
applications (e.g., [14])

• CUSUM parameter c: we have set c = 0.5, as in other
previous works on CUSUM (e.g., [15])

• Algorithm thresholds: the choice of these thresholds,
that usually represents a critical aspect in the applica-
tion of CUSUM based methods6 in other fields (e.g.,
network anomaly detection), has resulted not to be that
critical in this application scenario.

6Thresholds regarding page sizes are of course domain-dependent, and vary
from page to page when browsing real web sites.

Fig. 3. Schematics of the used test bed.

B. Experimental Results

To validate and verify the behavior of the diagnosis algo-
rithm and the performances of the proposed probe, we have
taken into considerations two distinct experimental scenarios: a
controlled laboratory testbed to validate the proposed diagnosis
algorithm, and a set of browsing sessions into the “wild”
Internet, to verify the suitability of the developed probe for
real-world applications.

At first, an exhaustive set of experiments has been con-
ducted in a testbed composed of four distinct PCs, configured
as depicted in the figure 3, so as to verify the effectiveness of
our proposal.

Given the setup of the testbed we have been able to emulate
three distinct cases:

• “normal” functioning

• congestion on the local network

• congestion the backbone network

The three cases have been realized by using netem [16], which
providing us with the ability of automatically adding variable
losses and delays on the network, has allowed the realization
of a labeled dataset (ground truth).

Note that in this testbed we have not involved any human
interaction, meaning that the diagnosis algorithms has been
used over all the sessions and not only when a “dissatisfaction
signal” was generated. It is important to highlight that this
fact could bias the results, in terms of a bigger number of
false positives (that could be not relevant in the “real-world”
scenario, where the user not necessarily raise an alarm), but
not in terms of false negatives. Indeed, the problem normally
connected to the choice of the algorithm thresholds is that
it has a direct impact on the number of detected anomalies,
but also on the number of false positives (events signaled as
anomalous that are, in fact, normal events). Nonetheless, in
our application scenarios, we can accept a certain number of
false positives, without affecting the system performance. This
is due to the fact that having a false positive, without the
signaling of the problem, does not lead to any conclusion.
Hence, from a practical point of view, we have tuned these
thresholds to a value that is equal to the mean value of the
CUSUM obtained during a normal session plus a corrective
factor computed as a function of the CUSUM variance (i.e.,
scaling). For this reason, in this tests we have also performed
a preliminary training phase aimed at computing the threshold
values.

Table II shows the obtained results. In more detail, over a
total of about 1800 distinct browsing sessions, the algorithm
has not produced any false negative, and it has introduced 11

Considered Case Algorithm Output
- “Normal” Functioning Local Network Congestion Backbone Network Congestion

“Normal” Functioning 1617 9 2
Local Network Congestion 0 112 0

Backbone Network Congestion 0 0 159
TABLE II. EXPERIMENTAL RESULTS

false positives. Moreover, in case of really anomalous sessions
(i.e., very high latencies and packet loss ingested) the algorithm
has always correctly identified the cause.

Finally, to conduct a preliminary performance evaluation
of the probe, verifying its suitability for real world use, we
have conducted experiments into the “wild” Internet. This last
scenario is not used to validate the diagnosis algorithm, as we
do not have any control on the full path between the probe and
the web server, but to verify if the developed system is able to
deal with a real operative network scenario. The overall process
of browsing a URL and running the diagnosis algorithm for a
single session spans from 1 to 3.5 minutes, that we think it is a
reasonable time for providing the end user with a diagnosis for
a poor QoE. This time span is due to the browsing timing itself,
which differentiates between small web sites (e.g., Google
front page) and complex web sites (e.g., news web sites with
a high number of servers to contact to fetch different objects).
Most of the time is spent performing the active measurements:
we have to wait for Ping messages and Traceroutes to return
their results. As previously mentioned, all the results are stored
locally and sent to a central repository for further analysis. We
store all the collected data and the diagnosis result in JSON
files, growing from less than 20 kB (small sites) to a maximum
of 800 kB (very big sites).

VI. CONCLUSION AND FUTURE WORK

We presented in this paper a new probe architecture that
makes use of a novel algorithm to perform root cause analysis
over poor QoE in web browsing sessions. We described the
algorithm in details, underlining the rationale behind it, and
presented experimental results from a controlled testbed, for
validating the approach.

The obtained results give us further questions to be an-
swered and investigated. Future works include to perform addi-
tional experimental tests in the “wild” Internet, a more detailed
analysis of the loss rate impact at different steps in the path,
and the exploitation of multiple vantage points geographically
distributed, to drill down in the “generic network” result case
(e.g., investigate at the autonomous system level). Furthermore,
we are currently applying the ITU QoE model G.1030 [17] to
increase the accuracy in our diagnosis algorithm and we are
defining a methodology to overcome the domain knowledge
requisites in setting the parameters of the algorithm, and to
compute and adjust the thresholds in a dynamic way.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union under the FP7 Grant Agreement n.
318627 (Integrated Project “mPlane”) and under the FP7 Grant
Agreement n. 607019 (Collaborative Project “SCOUT”).

REFERENCES

[1] A. Corporation, “The state of the internet, q2, 2014.” http://www.
akamai.com/dl/whitepapers/akamai-soti-a4-q214.pdf. Accessed: 2014-
12-3.

[2] “Fiddler.” http://www.telerik.com/fiddler. Accessed: 2015-02-18.
[3] H. Cui and E. W. Biersack, “Troubleshooting slow webpage down-

loads,” in TMA 2013, 5th IEEE International Traffic Monitoring and
Analysis Workshop, in conjunction with INFOCOM 2013, 14-19 April
2013, Turin, Italy, (Turin, ITALY), 04 2013.

[4] O. Hohlfeld, E. Pujol, F. Ciucu, A. Feldmann, and P. Barford, “A qoe
perspective on sizing network buffers,” in Proceedings of the 2014
Conference on Internet Measurement Conference, IMC ’14, (New York,
NY, USA), pp. 333–346, ACM, 2014.

[5] “Firebug.” http://getfirebug.com/. Accessed: 2015-02-18.
[6] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding web-

site complexity: Measurements, metrics, and implications,” in Proceed-
ings of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference, IMC ’11, (New York, NY, USA), pp. 313–328, ACM, 2011.

[7] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,”
in Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’11, (New York, NY, USA), pp. 295–
312, ACM, 2011.

[8] H. Cui and E. W. Biersack, “On the relationship between QoS and QoE
for web sessions,” Tech. Rep. EURECOM+3608, Eurecom, 01 2012.

[9] D. Joumblatt, J. Chandrashekar, B. Kveton, N. Taft, and R. Teixeira,
“Predicting user dissatisfaction with internet application performance at
end-hosts,” in INFOCOM, 2013 Proceedings IEEE, pp. 235–239, April
2013.

[10] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver,
and V. Paxson, “Fathom: a browser-based network measurement plat-
form.,” in Internet Measurement Conference (J. W. Byers, J. Kurose,
R. Mahajan, and A. C. Snoeren, eds.), pp. 73–86, ACM, 2012.

[11] C. Callegari, A. Coluccia, A. D’Alconzo, W. Ellens, S. Giordano,
M. Mandjes, M. Pagano, T. Pepe, F. Ricciato, and P. Zuraniewski,
“A methodological overview on anomaly detection,” in Data Traffic
Monitoring and Analysis, pp. 148–183, Springer Berlin Heidelberg,
2013.

[12] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blaek, and H. Kim,
“Detection of intrusions in information systems by sequential change-
point methods,” Statistical Methodology, vol. 3, no. 3, pp. 252 – 293,
2006.

[13] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proceedings of the
2013 ACM SIGCOMM conference on Internet measurement conference,
ACM, October 2013.

[14] O. Salem, S. Vaton, and A. Gravey, “A scalable, efficient and infor-
mative approach for anomaly-based intrusion detection systems: theory
and practice,” Int. J. Netw. Manag., vol. 20, pp. 271–293, September
2010.

[15] C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “Detecting anoma-
lies in backbone network traffic: a performance comparison among
several change detection methods.,” IJSNet, vol. 11, no. 4, pp. 205–
214, 2012.

[16] S. Hemminger, “Network emulation with NetEm,” in LCA 2005, Aus-
tralia’s 6th national Linux conference (linux.conf.au) (M. Pool, ed.),
(Sydney NSW, Australia), Linux Australia, Linux Australia, Apr. 2005.

[17] ITU-T, “Estimating end-to-end performance in ip networks for data
application. g.1030.”

