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Abstract—This paper considers a Gaussian network where
N half-duplex multiple-antenna relays assist the communication
between a source and a destination. A novel antenna switching
policy is proposed, where each relays’ antenna can be configured
to either receive or transmit independently of the others. The
rate achieved by noisy network coding is shown to be to within a
constant gap from the cut-set bound, where the gap only depends
on the total number of antennas in the system. Moreover, the
optimal number of different relay antenna configurations needed
to attain the constant gap is proved to be at most N + 1, that
is, it only depends on the number of relays but not on the total
number of antennas. Such a relay scheduling policy is referred
to as simple. Through an example, it is shown that independently
switching the antennas at the relays not only achieves in general
strictly higher rates compared to using the antennas for the
same purpose, but can actually provide a strictly larger pre-log
factor. This implies that in broadband wireless networks with
half-duplex multiple-antenna relays, the relay antennas should
be dynamically configured to either transmit of receive depending
on the channel conditions.

Index Terms—Approximate capacity, half-duplex networks,
multiple-antenna nodes, relay scheduling policies.

I. INTRODUCTION

In this paper we study Gaussian networks where the com-
munication between a source and a destination is assisted by
N relays. It is assumed that each node in the network is
equipped with multiple antennas and that the relays operate
in Half-Duplex (HD) mode. The capacity of such a network
is not known in general. For single-antenna nodes, in [1] we
evaluated the cut-set outer bound by following the approach
first proposed in [2] and we showed that Noisy Network
Coding (NNC) [3] attains it to within 1.96(N + 2) bits per
channel use. In this work we prove that NNC is optimal to
within 1.96 bits per channel use per antenna uniformly over
all channel gains for the case of multiple-antenna nodes.

Finding the capacity of single-antenna Gaussian networks
with N HD relays is computationally expensive since the cut-
set upper bound has to be optimized over 2N bounds (one
for each possible cut in the network), each of which is a
linear combination of 2N relay states (since each relay can
either transmit or receive). In [4], for single-antenna Gaussian
HD diamond networks (where the source-destination link is
absent and where the N relays cannot communicate among
themselves) with N = 2 relays, the authors showed that at
most N + 1 = 3 states, out of the 2N = 4 possible ones,
suffice to characterize the capacity to within a constant gap;
the states with a strictly positive probability are referred to

as active. In [5], the authors numerically verified that for
single-antenna Gaussian HD diamond networks with N ≤ 7
relays at most N + 1 states are active and nicknamed these
policies simple schedules; they conjectured that approximately
optimal schedules are simple for any N . By using properties
of submodular functions and linear programming duality, in
[6] the authors proved the conjecture for N ≤ 6 relays.
In [7], by leveraging properties of the Lovász extension of
a submodular function and the optimality of basic feasible
solutions in linear programs, we proved the conjecture of
[5] for any memoryless HD N -relay network (not necessary
Gaussian or with a diamond topology) with independent noises
and for which independent inputs are approximately optimal in
the cut-set upper bound; Gaussian relay networks with single-
antenna nodes satisfy these assumptions and thus admit an
approximately optimal simple relay scheduling policy.

A. Contribution

In this work we show that the result of [7] applies to
Gaussian relay networks with multiple-antenna nodes as well.
In particular, we propose a novel antenna switching policy,
where each antenna can be configured to either receive or
transmit independently of the others as a function of the
channel gains. If the total number of antennas at the relays is
mtot, then 2mtot possible receive/transmit configurations are
possible. The main contribution of the paper is the proof that
simple relay scheduling policies exist with at most N+1 active
states, out of the 2mtot possible ones. This result, beyond being
quite surprising, can have important practical consequences for
the design of reduced complexity relay scheduling policies, as
the complexity of schedules is independent of the number of
antennas.

B. Paper Organization

Section II describes the channel model. Section III first
shows that the rate achieved by NNC is a constant number
of bits apart from the cut-set outer bound, where the gap only
depends on the total number of antennas; it then proves that an
approximately optimal schedule is simple and that the number
of active states only depends on the number of relays and
not on the total number of antennas. Section IV presents an
example to show that independently switching the antennas
at the relays not only achieves higher rates than using all the
antennas for the same purpose (either to receive or to transmit)



but it can also provide a strictly larger pre-log factor. Section
V concludes the paper.

C. Notation

With [n1 : n2] we indicate the set of integers from n1
to n2 ≥ n1. Lower and upper case letters indicate scalars,
boldface lower case letters denote vectors and boldface upper
case letters indicate matrices. 0i×j is the all-zero matrix of di-
mension i×j, 1j is a column vector of length j of all ones and
Ij is the identity matrix of dimension j. With A we indicate
an index set and with ∅ we denote the empty set. For a square
matrix A, Tr [A] is the trace. |a| is the absolute value of a, ‖a‖
is the norm of the vector a and AH is the Hermitian transpose

of the matrix A. The partitioned matrix A =

[
A1,1 A1,2

A2,1 A2,2

]
is indicated as A = [A1,1,A1,2;A2,1,A2,2]. For matrices
A1, . . . ,AN we let diag[A1, . . . ,AN ] be a block matrix with
the matrix Ai in position (i, i) for i ∈ [1 : N ]. X ∼ N

(
µ, σ2

)
indicates that X is a proper-complex Gaussian random variable
with mean µ and variance σ2. E [·] indicates the expected
value.

II. SYSTEM MODEL

A multi-relay network consists of N HD relay nodes
(numbered 1 through N ) assisting the communication between
a source (node 0) and a destination (node N + 1), through a
shared memoryless channel. We use standard definitions for
codes, achievable rates and capacity (see for example [1]).

A multiple-antenna complex-valued power-constrained
Gaussian HD relay network has input-output relationship

y = (IMtot
− S)HSx+ z, (1)

where: (i) mi is the number of antennas at node i ∈ [0 : N+1],
with mtot :=

∑N
k=1mk being the total number of antennas

at the relays and Mtot := m0 +mtot +mN+1 being the total
number of antennas in the system; (ii) y := [y0; . . . ;yN+1] ∈
CMtot×1 is the vector of the received signals with yi ∈ Cmi×1
being the received signal at node i ∈ [0 : N + 1]; (iii)
x := [x0; . . . ;xN+1] ∈ CMtot×1 is the vector of the trans-
mitted signals with xi ∈ Cmi×1 being the transmitted signal
by node i ∈ [0 : N + 1]; (iv) z := [z0; . . . ; zN+1] ∈ CMtot×1

is the Gaussian noise vector assumed to have i.i.d. N (0, 1)
components; (v) S := diag [S0, . . . ,SN+1] ∈ CMtot×Mtot

is the block diagonal matrix to account for the state (either
transmit or receive) of the different antennas, with Si :=
diag [Si,1, . . . , Si,mi ] ∈ Cmi×mi , i ∈ [0 : N+1]; in particular,
S0 := Im0

since all the m0 antennas at the source are always
used to transmit, SN+1 := 0mN+1×mN+1

since all the mN+1

antennas at the destination are always used to receive, and
Si,j = 1 if the j-th antenna of the i-th relay is transmitting
and Si,j = 0 if it is receiving; in this model the antennas
of each relay can be switched independently of one another
to either transmit or receive, for a total of 2mtot possible
states; (vi) H ∈ CMtot×Mtot is the constant (i.e., known to
all nodes) block channel matrix, where Hi,j ∈ Cmi×mj with
(i, j) ∈ [0 : N + 1]2 represents the channel matrix from node

j to node i. Without loss of generality, we assume that the
channel inputs are subject to the average power constraint
E
[
‖xk‖2

]
≤ 1, k ∈ [0 : N + 1].

The exact capacity C of the channel in (1) is not known.
C is said to be known to within GAP bits if one can show
an achievable rate R(in) and an outer bound R(out) such that
R(in) ≤ C ≤ R(out) ≤ R(in) + GAP, where GAP is a non-
negative constant that may depend on N and Mtot, but not on
the channel matrix H in (1).

III. MAIN RESULT

The main contributions of this paper are to first extend
the result in [1, Theorem 1] from single-antenna to multiple-
antenna nodes and then to prove that an approximately optimal
simple schedule exists. The main result of the paper is:

Theorem 1. For a multiple-antenna Gaussian HD N -relay
network the following holds: (i) under the assumption of
independent noises, NNC is optimal to within GAP ≤ 1.96
bits per channel use per antenna universally over all channel
gains; (ii) the approximately optimal schedule is simple, i.e.,
it has at most N + 1 non-zero entries independently of the
total number of antennas in the network.

The proof of the theorem is presented in the rest of this Sec-
tion and an example to show the advantages of independently
switching the relay antennas is reported in Section IV.

A. Proof of Theorem 1

1) Constant Gap: We argue here that [1, Theorem 1], valid
for Gaussian HD relay networks with single-antenna nodes,
gives a constant gap result also for the case of multiple-
antenna nodes. Actually [1, Theorem 1] holds for the more
general Multicast Gaussian Network (MGN) in which one has
K = N +2 HD nodes (N relays, 1 source and 1 destination);
thus, we shall argue that the gap result for the general single-
antenna MGN extends to the multiple-antenna case. The key
observation is to consider a MGN with multiple-antenna nodes
as a new MGN with single-antenna nodes, where: (i) each
node in the new MGN corresponds to a different antenna in
the original MGN model and (ii) in the new MGN, the links
connecting the nodes corresponding to different antennas at
the same node in the original MGN are of infinite capacity.
Now, since our original gap result applies to the new MGN
(as the gap result in [1, Theorem 1] holds uniformly over
all channel gains), then for the original MGN we have that
GAP ≤ 1.96Mtot bits per channel use, with Mtot being the
total number of nodes in the new MGN, i.e., the total number
of antennas in the original MGN.

2) Optimality of Simple Schedules: In [7, Theorem 1] we
proved that an approximately optimal simple relay scheduling
policy exists for any memoryless HD N -relay network under
certain assumptions. Gaussian relay networks with multiple-
antenna nodes satisfy all the conditions in [7, Theorem 1],
namely: (i) the NNC strategy uses independent inputs and
achieves the cut-set upper bound to within a constant gap;
(ii) in (1) the noises are independent; (iii) a constant power
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Fig. 1: Network with N = 1 relay with mr = 2 antennas,
and single-antenna source and destination.

allocation across the relay states is optimal to within a constant
gap (please refer to the example in Section IV). As remarked
in [7], the optimization of the cut-set bound involves a
minimization over all possible cuts in the network A ⊆ [1 : N ]
and then a maximization over all the possible 2mtot antenna
receive/transmit configurations. Under the conditions in [7,
Theorem 1], this problem is equivalent to solving N ! linear
programs, each of which has N +2 constraints and 2mtot +1
unknowns. An optimal basic feasible solution for each of these
problems has at most N +2 non-zero elements, of which one
is the objective function (rate) and the others N +1 non-zero
entries belong to the schedule. In other words, what dictates
the number of active states of the relay scheduling policy is
related to the minimization over A ⊆ [1 : N ] and not to
the maximization over the 2mtot possible relay configurations.
This proves that an approximately optimal schedule has at
most N + 1 active states regardless of the total number
of relay antennas. This result is rather surprising and can
have important implications in the design of practical low-
complexity and still approximately optimal relay scheduling
policies.

IV. EXAMPLE

We consider the network in Fig. 1, which consists of
a single-antenna source (Tx), a single-antenna destination
(Rx) and N = 1 relay (RN) equipped with two antennas.
For readability, we use here a different convention for the
subscripts compared to the rest of the paper and indicate the
input-output relationship as

yr =

[
(1− S1)hrs,1
(1− S2)hrs,2

]
x0 + zr, (2a)

yd =
[
hds hdr,1 hdr,2

]  x0
S1x1
S2x2

+ zd, (2b)

where: (i) x0 and xr = [x1; x2] are the signals transmitted
by the source and the relay, respectively; (ii) yr = [y1; y2]
and yd are the signals received at the relay and destination,
respectively; (iii) zr = [z1; z2] and zd are the noises at the
relay and destination, respectively; (iv) sr = [S1; S2] is the

state of the relay antennas; (v) the inputs are subject to the
power constraints

E[|x0|2] =
∑

s∈[0:1]2
λsE[|x0|2|sr=s]=

∑
s∈[0:1]2

λsP0|s≤1, (3a)

E
[
‖xr‖2

]
= Tr

 ∑
s∈[0:1]2

λsE
[
xrx

H
r |sr = s

]
= Tr

 ∑
s∈[0:1]2

λs

[
P1|s ρs

√
P1|sP2|s

ρ∗s
√
P1|sP2|s P2|s

] ≤ 1, (3b)

where ρs : |ρs| ∈ [0, 1] is the correlation coefficient among
the relay antennas in state s ∈ [0 : 1]2 and Pk|s is the power
allocated on xk, k ∈ [0 : 2], in state s ∈ [0 : 1]2.

In what follows we consider two different possible switch-
ing strategies at the relay: (i) sr ∈ [0 : 1]2: the mr = 2
antennas at the relay are switched independently of one
another, and (ii) sr = S12 : S ∈ [0 : 1]: the mr = 2 antennas
at the relay are used for the same purpose, either transmit or
receive.

A. Case (i): independent use of the relay antennas

For the cut-set upper bound, two cuts must be considered,
namely, A = ∅ (the relay is in the cut of the source) and
A = {1} (the relay is in the cut of the destination). In this
case the capacity Ccase (i) is upper bounded as

Ccase (i) ≤ max
Px0,xr,sr

min {I (x0,xr, sr; yd) , I (x0; yd,yr|xr, sr)}

≤H(sr)+ max
Px0,xr

min {I (x0,xr; yd|sr) , I (x0; yd,yr|xr, sr)} ,

where the last inequality follows since I (sr; yd) ≤ H (sr) ≤
2 bits. Note that, in general, Gaussian inputs are not optimal
for Gaussian networks with HD relays since useful information
can be conveyed to the destination through random switch
[2]. However, as seen above, to within a constant gap a
fixed switching policy between receive and transmit states
is optimal, in which case a Gaussian input for each state
is optimal. Moreover, the optimal choice of the correlation
coefficients is ρ00 = ρ01 = ρ10 = 0 and ρ11 = ej∠(hHdr,1hdr,2).
With this we have

I (x0,xr; yd|sr) ≤ I∅ (6)

:=md log(2) + λ00 log
(
1 + |hds|2P0|00

)
+ λ01 log

(
1 + |hds|2P0|01 + |hdr,2|2P2|01

)
+ λ10 log

(
1 + |hds|2P0|10 + |hdr,1|2P1|10

)
+

λ11log

(
1+|hds|2P0|11+

(√
|hdr,1|2P1|11+

√
|hdr,2|2P2|11

)2)
,

where the term md log(2) (with md being the number of
antennas at the destination) accounts for the loss of considering
independent inputs at Tx and at RN. Similarly, we have

I (x0; yd,yr|xr, sr) ≤ I{1} (7)

:=λ00 log
(
1 + (|hds|2 + |hrs,1|2 + |hrs,2|2)P0|00

)
+ λ01 log

(
1 + (|hds|2 + |hrs,1|2)P0|01

)



Rcase (i) = max
λs

min
{
λ00 log

(
1 + |hds|2

)
+ λ01 log

(
1 + |hds|2 + |hdr,2|2

)
+λ10 log

(
1 + |hds|2 + |hdr,1|2

)
+ λ11 log

(
1 + |hds|2 +

(√
|hdr,1|2 +

√
|hdr,2|2

)2
)
,

λ00 log
(
1 + |hds|2 + |hrs,1|2 + |hrs,2|2

)
+ λ01 log

(
1 + |hds|2 + |hrs,1|2

)
+λ10 log

(
1 + |hds|2 + |hrs,2|2

)
+ λ11 log

(
1 + |hds|2

)}
(4)

Rcase (ii) = log
(
1 + |hds|2

)
+

log

(
1 +

(√
|hdr,1|2+

√
|hdr,2|2

)2

1+|hds|2

)
log
(
1 +

|hrs,1|2+|hrs,2|2
1+|hds|2

)
log

(
1 +

(√
|hdr,1|2+

√
|hdr,2|2

)2

1+|hds|2

)
+ log

(
1 +

|hrs,1|2+|hrs,2|2
1+|hds|2

) (5)

+ λ10 log
(
1 + (|hds|2 + |hrs,2|2)P0|10

)
+ λ11 log

(
1 + |hds|2P0|11

)
.

Note that to determine the NNC achievable rate it suffices to
remove the term I (yr; ŷr|x0,xr, sr, yd) = mr log(1 + 1/σ2)
from I∅ and the term I (x0;yr|ŷr, yd,xr, sr) ≤ log(1 + σ2)
from I{1}, with σ2 being the variance of the quantization
noise. We let σ2 = 1 for simplicity. Note also that the
expressions for I∅ and I{1} should be optimized with respect
to the power allocation across the relay states, which makes
the optimization problem non-linear in λs, s ∈ [0 : 1]mr . In
order to apply [7, Theorem 1] and hence Theorem 1, we must
further bound the two expressions so that to obtain a new
optimization problem with constant powers across the relay
states, i.e., we need to obtain a linear program in {λs}. In
Appendix we show (see also [8, Appendix C] for more details)
Ccase (i) ≤ GAP+Rcase (i) where Rcase (i) is defined in (4) at the
top of this page and where GAP ≤ 8 bits to account for
deterministic switch, independent inputs at the source and at
the relay, constant power allocation across the states and NNC
transmission strategy.

B. Case (ii): same use of the relay antennas

In this case the mr = 2 antennas at the relay are used for
the same purpose so it suffices to set λ01 = λ10 = 0 in (4)
and optimize over λ00 = 1 − λ11 = λ ∈ [0, 1]. With this we
get that Ccase (ii) ≤ GAP + Rcase (ii) where Rcase (ii) is defined
in (5) at the top of this page and where again GAP ≤ 8 bits.
The optimal λ for Rcase (ii) in (5) was found by equating the
two expressions within the maxmin.

C. Specific comparisons

We now consider three different channel configurations for
the network in Fig. 1 to show that not only Rcase (i) ≥ Rcase (ii)
in general, but that independently switching the mr = 2
antennas at the relay can obtain a strictly larger pre-log factor
/ multiplexing gain.

Example 1: we let |hds| = 0, |hrs,2| = |hdr,1| = 0 and
|hrs,1|2 = |hdr,2|2 = γ > 0 in Fig. 1. With this choice of
the channel parameters we get Rcase (i) = log (1 + γ), with
the choice λ00 = λ10 = λ11 = 0 and λ01 = 1, i.e., there

is 1 < N + 1 = 2 active state, and Rcase (ii) = log(1+γ)
2 .

From the two expressions above not only we have Rcase (i) >
Rcase (ii),∀γ > 0, but independently switching the mr = 2
antennas also provides a pre-log factor that is twice the one
provided by using the antennas for the same purpose.

Example 2: we let |hds| = 0, |hrs,1|2 = |hrs,2|2 =
|hdr,1|2 = |hdr,2|2 = γ > 0 in Fig. 1. With this choice of
the channel parameters we get

Rcase (i) =

{
log (1 + γ) if γ ≥ 0.752
log(1+2γ) log(1+4γ)
log(1+2γ)+log(1+4γ) otherwise ,

with the choice λs = [0, 0, 1, 0] (1 < N+1 = 2 active state) if
γ ≥ 0.752 and λs = [λ, 0, 0, 1− λ] (2 = N +1 active states),
with λ = log(1+4γ)

log(1+2γ)+log(1+4γ) otherwise, and

Rcase (ii) =
log (1 + 2γ) log (1 + 4γ)

log (1 + 2γ) + log (1 + 4γ)
.

It hence follows that Rcase (i) > Rcase (ii),∀γ ≥ 0.752.
Moreover, in the high-SNR regime, the pre-log factor for
Rcase (i) = log (1 + γ) is again twice of the one of Rcase (ii) ≈
1
2 log (1 + γ). This example (as also Example 1) highlights the
importance of smartly switching the relay antennas in order
to fully exploit the available system resources.

Example 3: we consider the case of Rayleigh fading, where
hds ∼ N

(
0, σ2

ds

)
, hrs,i ∼ N

(
0, σ2

rs

)
and hdr,i ∼ N

(
0, σ2

dr

)
with i ∈ [1 : 2] are assumed to be constant over the whole
slot (block-fading model) and we let σ2

ds = E
[
|hds|2

]
= c

1α ,

σ2
rs = E

[
|hrs,i|2

]
= c

dα and σ2
dr = E

[
|hdr,i|2

]
= c

(1−d)α ,
where c is a constant, d ∈ [0, 1] is the distance between the
source and the relay and (1 − d) is the distance between the
relay and the destination, and α ≥ 2 is the path loss exponent.
Fig. 2 shows the average Rcase (i) in (4) (solid curve) and
the average Rcase (ii) in (5) (dashed curve) versus d ∈ [0, 1],
with fixed α = 3 and c = 1. The average was taken over
5 · 104 different realizations of the channel gains for each
value of d ∈ [0, 1]. From Fig. 2 we observe again that in
general E [Rcase (i)] > E [Rcase (ii)], with a maximum difference
of around 0.6 bits at d = 0.5. Note, in fact, that for d = 0.5
we have σ2

ds = 1 and σ2
rs = σ2

dr = 8. Under these channel
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Fig. 2: E [Rcase (i) in (4)] (solid curve) and E [Rcase (ii) in (5)]
(dashed curve) versus different values of d ∈ [0, 1].

conditions, by independently switching the mr = 2 antennas
at the relay we (approximately) achieve the full-duplex per-
formance, i.e., E [Rcase (i)] ≈ log

(
σ2
rs

)
= 3 bits/s/Hz, while

by using the mr = 2 antennas for the same purpose the rate
performance reduces to the capacity of a single-antenna HD
relay channel, i.e., from (5) we have E [Rcase (ii)] ≈ log

(
σ2
ds

)
+

log

(
4σ2dr
σ2
ds

)
log

(
2σ2rs
σ2
ds

)
log

(
4σ2

dr
σ2
ds

)
+log

(
2σ2rs
σ2
ds

) = log(32) log(16)
log(32)+log(16) ≈ 2.2 bits/s/Hz.

V. CONCLUSIONS

We studied Gaussian networks with multiple-antenna nodes
where the communication between a source and a destination
is assisted by N relays operating in half-duplex. We proposed
a novel antenna switching policy where the antennas at the re-
lays are switched between receive and transmit state depending
on the channel conditions but independently of one another.
For such networks, we showed that the rate achieved by the
noisy network coding strategy is a constant number of bits
away from the cut-set outer bound and that the gap depends
on the total number of antennas. Moreover, we proved that
an approximately optimal relay schedule is simple, where the
number of active states only depends on the number of relays
and not on the total number of antennas. Finally, through an
example we showed that the proposed scheme with a dynamic
switching of the antennas based on the channel conditions
can provide a strictly larger pre-log factor / multiplexing gain
compared to using the antennas for the same purpose.
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APPENDIX

In (3) we assume, without loss of optimality that P1|00 =
P1|01 = 0 (resp. P2|00 = P2|10 = 0), since for the HD
constraint when the first (resp. second) antenna at the relay
is receiving the relay’s transmit power on that antenna is zero.
With this, we let

P0|00 =
α0

λ00
, P0|01 =

β0
λ01

, P0|10 =
γ0
λ10

, P0|11 =
δ0
λ11

,

P2|01 =
α1

λ01
, P1|10 =

β1
λ10

, P1|11 =
γ1
λ11

, P2|11 =
δ1
λ11

,

where αi + βi + γi + δi ≤ 1, i ∈ [0 : 1] in order to meet the
power constraints in (3). In order to further upper bound I∅ in
(6) and I{1} in (7) we used the following steps: (i) we upper
bounded the entropy of the discrete state random variable by
the logarithm of the size of its support; (ii) we upper bounded
the power splits by setting αi = βi = γi = δi = 1, i ∈ [0 : 1];
(iii) we upper bounded all the λs, s ∈ [0 : 1]2 inside the
logarithms by one. With this we got

Ccase (i) ≤ Rcase (i) +md log(2) + 2 log(2),

where Rcase (i) is defined in (4). In order to further lower bound
I∅ in (6) and I{1} in (7) we used the following steps: (i)
we set α1 = λ01, β1 = λ10, γ1 = δ1 = λ11

2 , α0 = λ00,
β0 = λ01, γ0 = λ10 and δ0 = λ11 (note that with these
power splits the power constraints in (3) are satisfied) and
(ii) we used the further bound log

(
1 +

(√
a
2 +

√
c
2

)2) ≥
log
(
1 + (

√
a+
√
c)

2
)
− log(2). With this we got

Ccase (i) ≥ Rcase (i) − log(2),

where Rcase (i) is defined in (4). This concludes the proof.
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