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Abstract

Let two independent sets Φ1 and Φ2 follow homogeneous PPP having different

densities in two dimensional space. Assuming that Voronoi Tessellations are gen-

erated with respect to Φ1. This technical report is an analytical calculation of the

probability distribution of Φ2 cardinality at an arbitrary tessellation of Φ1.
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1 Introduction

Voronoi Tessellation is a widely used mathematical framework for space sub-

division in random partitions. It is used in a variety of fields such us statistical

mechanics, quantum field theory, astrophysics, telecommunications, social net-

works, biology etc. On the other hand, Poisson Point Process (PPP) is one of the

most common tools at stochastic geometry, since it provides suitable mathematical

models and appropriate statistical methods to analyze macroscopic properties by

averaging all possible microstates. In this work we study and solve the following

problem: Let two independent sets Φ1 and Φ2 follow homogeneous PPP having

different densities in two dimensional space assuming that Voronoi Tessellations

are generated with respect to Φ1. What is the probability distribution of Φ2 cardi-

nality at an arbitrary tessellation of Φ1? Furthermore, we calculate the first and the

second moments of the aforementioned probability distribution. In our problem,

Φ1 represents the positions of telecommunication Base Stations (BSs) and Φ2 the

position of the Users.

2 Base Stations and Users topology

We model positions of the BSs and Users as a homogeneous Poisson Point

Process. So, if the density of users (or BSs) at a certain area A is λ then the

Number N of them is a random variable and it given from

P (N = k | A) =
(λA)ke−λA

k!
, k = 0, 1, . . . (1)

Homogeneous, means that after the chosen of the number of BSs at certain aria

A, their locations follows uniform distribution at 2D space.

3 Distribution of the Cell Size

A given set of centers can divide the space to specific regions, known as Voronoi

Tessellations (or Voronoi Regions). Each of them contains those points of space

that are closest to the same center. In our case, the centers is the location of the BSs
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so Voronoi tessellation represents the aria of coverage of each one of them (we as-

sume that all the BS have the same transmit power). At the particular case, where

the centers are randomly and uncorrelated distributed, is called Poisson Voronoi

Tessellation (PVT), see Figure 1.
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Figure 1: Voronoi Tessellation example, with 10 centers at an aria of 100m2

We are interested about the PDF of Voronoi cells size (2D), if the number BSs

follows homogeneous PPP. Unfortunately this is an open mathematical problem

and does not exist any close form solution until today. However there exist sev-

eral PDFs that provide an approximate numerical solution, based of the Gamma

distribution.

g(x; a, b, c) =
ab

c
axc−1e−bx

a

Γ( ca)
(2)

Note that x = S
〈S〉 , S is the specific size of a certain cell and 〈S〉 is the average

size of the all Voronoi Regions. For more compact notation for our problem we

can write x = SλBS , where now λBS is the density of the BS. a, b, c are fitting

parameters. At [1], we take the results of the fitting parameters a = 1.07950, b =

3.03226, c = 3.31122. In [2] the same author present us the best fitting results

if we fix a = 1, which is b = 3.52418 and c = 3.52440. We calculate the

difference between them δ3,2 = |g(x; a, b, c) − g(x; a = 1, b, c)|, the average
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absolute difference is δ3,2
av = 9.8977e− 04 and the maximum difference is δ3,2

max =

0.0103.To have an intuition about the result, means that the maximum difference if

roughly 1% of the 〈S〉. See Figure 2. The superscript 3,2 denotes the comparison

between models with 3 and 2 and fitting parameters respectively.
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Three parameters

Two parameters

Figure 2: difference between three and two parameters fitting models

At [3], a simpler distribution has been proposed taking into account only the

dimensions of the space.

f(x; d) =
[3d+1

2 ](3d+1)/2x
3d−1

2 e
−(3d+1)x

2

Γ(3d+1
2 )

(3)

Where d is number of dimensions of the space. In our case d = 2 and again

x = SλBS . So the result for our case is the same if you set at equation 2, a =

1, b = c = 3.5. So we get

f(S) =
343

15

√
7

2π
(λBSS)

5
2 e−

7
2
λBSSλBS (4)

Which is simpler than above. It is obvious that there is a trade off between ac-

curacy and complexity. We compute the difference δ3,1 = |g(x; a, b, c)− f(x; d =
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2)|. The average difference is δ3,1
av = 0.0011 and the maximum difference is

δ3,1
max = 0.0108, Figure 3. Which are almost the same as the case of tow pa-

rameters. For higher dimension spaces this accuracy does not hold.
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Figure 3: difference between three and one parameters fitting models

4 PDF of Number of users in a Cell

As the users are distributed as a homogeneous PPP (the following results holds

and for the non-homogeneous case), as we see above

P (Nu = k | S) =
(λuS)ke−λuS

k!
, k = 0, 1, . . . (5)

Thur P (Nu = k) is calculating from

P (Nu = k) =

∫ ∞
0

P (Nu = k | S)f(S)dS (6)
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P (Nu = k) =

∫ ∞
0

(λuS)ke−λuS

k!

343

15

√
7

2π
(λBSS)

5
2 e−

7
2
λBSSλBSdS (7)

P (Nu = k) =
λku
k!

343

15

√
7

2π
λ

7
2
BS

∫ ∞
0

Sk+ 5
2 e−(λu+ 7

2
λBS)SdS (8)

We set A(k) = λku
k!

343
15

√
7

2πλ
7
2
BS .

P (Nu = k) = A(k)

∫ ∞
0

Sk+ 5
2 e−(λu+ 7

2
λBS)SdS (9)

The calculation of the integral is not so trivial, so we will present the basic

steps. Which give us a better understanding of the solution. First of all we set

β = λu + 7
2λBS After k + 2 integrations by parts we get

∫ ∞
0

Sk+ 5
2 e−βSdS =

(
1
β

)k+2
Γ(k + 7

2)
√
π

∫ ∞
0

S
1
2 e−βSdS . (10)

We continue with the calculation of the new integral by set a new variable

u2 = S and dS = 2udu

∫ ∞
0

ue−βu
2
2udu = −2

∫ ∞
0
−u2e−βu

2
du , (11)

note that we can write the integral argument as derivative of constant β,−u2e−βu
2

=

∂
∂β e
−βu2 so we get

∫ ∞
0

ue−βu
2
2udu = −2

∫ ∞
0

∂

∂β
e−βu

2
du (12)

= −2
∂

∂β

∫ ∞
0

e−βu
2
du , (13)

where is a Gaussian integral so
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∫ ∞
0

S
1
2 e−βSdS = −2

∂

∂β

√
π

2
√
β

(14)

=
1

2

√
πβ−3/2 , (15)

finally, if we combine them

P (N = k) = A(k)

(
1

β

)k+ 7
2

Γ(k +
7

2
) . (16)

or

P (Nu = k) =
343

k!15

√
7

2π

λ
7
2
BSλ

k
u

(λu + 7
2λBS)k+ 7

2

Γ(k +
7

2
) (17)

If we derive both numerator and denominator by λ
k+ 7

2
BS , we take an expression

which depends only at the ratio between of the users and BS density ρ = λu
λBS

,

which is nice!

P (Nu = k) =
343

k!15

√
7

2π

ρk

(ρ+ 7
2)k+ 7

2

Γ(k +
7

2
) (18)

From ”reference of equation” and after some calculations, the probability of

having ”zero” points at one PVR is P (Nu = 0) = P0 = 343
8α7/2

√
7
2 . Thus we

re-write the last result in a more intuitive way. At the Figures 4 and 5 we see PDF

and CDF for different values of ratio ρ = λu
λBS

.

P (Nu = k) =

(
ρk

k!(ρ+ 7/2)k

k∏
n=1

(n+
5

2
)

)
P0 (19)

4.1 First and Second Moments of the Distribution

We calculate the Mean and the Variance of the Number of Poisson Points in

Poisson Voronoi Tessellation. By equation 17 we calculate the average number of

points and their variance in a random PVT by 〈k〉 =
∑inf

k=0 k · P (Nu = k) and

V ark = 〈k2〉 − 〈k〉2. Hopefully the series converge, so first and second moments
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Figure 4: PDF for different values of ratio ρ = λu
λBS
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Figure 5: CDF for different values of ratio ρ = λu
λBS

of the distribution are

〈k〉 = ρ and vark = ρ+
2

7
ρ2 . (20)

From equation 20, we observe that the variance of the number of users within

a cell drops quadratically w.r.t the density of deployed BSs, but the mean drops to.

The coefficient variation is greater than 1. So the relative variance of points in a

voronoi cell is not decreasing by the rising of BS density.
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5 Approximation of the result

If we take into account the asymptotic of gamma function limn→0
Γ(n+α)
Γ(n)nα = 1

and the definition Γ(k) = (k − 1)!, eq. 18 is significant simplified to

P (N = k) = Aρu
k
ρk

5/2 , (21)

where uρ = ρ
ρ+7/2 . Due to the asymptotic approach of gamma function the pdf

lost its normalization. So, Aρ is the new normalization factor which depends on

ρ. Fig. 6 provides an analytical fit to the normalization factor and Fig. 7 shows the

square error between the Approximation and the distribution of users cardinality

for ρ = 30.

The simpler analytical form eq. 21 allows not only further theoretical use of

the result but also provides much wider computing operability range instead of

eq. 18. e.x. eq. 18 in the process to calculate probability having k = 169 users in

a cell (independent of ρ) exceeds 1.7977e+ 308 digits (largest finite floating-point

number in IEEE double precision), at the same time eq. 21 for the worst case ρ = 1

does not exceed 4.0466e + 111 and for more reasonable values e.x. ρ = 20 the

needed floating-points is 7.9601e+ 09.
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