
Customized network management based on applications requirements

Raul Oliveira, Dominique Sidou, Jacques Labetoulle
Corporate Communications Department

Eurécom Institute
06904 SOPHIA ANTIPOLIS CEDEX, France.
email: foliveira | sidou | labetoulg@eurecom.fr

Abstract

To manage current network environments we have to
change the existent network and systems management
paradigms, if we even can admit that one exists. Network
Management shouldnot be restricted to protocols, MIB def-
inition, and associated instrumentation. In the end, what
is really important is to satisfy user application require-
ments. One should note that blindly monitoring raw MIB
data values has not proven to be very useful to fix day to
day network management problems. The reason is seen
to be that the gap between raw MIB data values and root
causes of problems is in most cases too important to tackle.
Therefore, in order to drastically reduce the amount of root
causes analysis processing, some kind of heuristics must be
introduced. This paper proposes a framework based on the
integration of user application requirements into the NMS
process. From the architectural point of view, the frame-
work is based on intermediate management systems – the
so-called Intelligent Agents – which serve as management
front-ends to user applications.

Keywords : Network management automation, Applica-
tions requirements, Management architecture, Intelligent
Agents

1 Introduction

Network Management (NM) has been in some way an
activity apart from any other carried on the networks. Mon-
itoringnetworks and systems resources independently from
how users and applications are using them, has proven to
be an inadequate approach since in most of the situations
it is impossible to trace the relationship between network
or systems faults and the applications affected by them.
Furthermore, the degradation of network and systems re-
sources can be considered as a fault from an application
point of view, and there aren’t any form to be aware of
this degradation/fault, since applications requirements are
not known to the network management system (NMS), and

even when it happens the network can apparently still be
viewed as functioning.

The traditional approach entailed other consequences
namely for environments populated of critical applications.
Hence, over the years the fact that network management
systems (NMS) had not been efficient enough to prevent
faults, or able to alert critical applications of them, have
conduced developers to insert fault detection functional-
ities in several applications, especially for those running
in industrial environments. In our opinion, this results
in duplication of effort and spreading of vital information
concerning the same problems over different and non con-
nected processes, without any advantage from both sides.
As a consequence, applications still do not have complete
data about faults, whether in real time or not, and also they
can’t do anything more than prevent catastrophic behaviors
based on information they have obtained. From the NMS
side the problem is in some way similar, because with-
out application information concerning network inability
to accomplish its tasks properly, the NMS is not able to
react before the problems or symptoms become faults that
require human intervention.

This article claims that all activities of fault detection,
diagnosis and corrective actions should be completely del-
egated to the NMS. To make feasible this approach the
NMS obviously needs some more information than the one
it has at disposal currently. An application, as well as a
network user, must believe that the network and associ-
ated services will always operate reliably and consequently
does not need to perform any special effort to detect faults.
Hence, applications and users must provide the NMS with
precise requirements concerning their operation and behav-
ior over the network, from which the NMS should be able
to maintain the desired reliability.

Having an application believing that the network never
fails is a comfort from the application point of view but is
not a pragmatic approach, so we think that it should be an
NMS obligation to notify its users when the network is not
anymore able to ensure the required quality of service. As
a last possibility, which "theoretically" should not happen,

the applications that have not received an NMS alarm but
also does not have a service responding appropriately, can
issue a complain about the unsatisfactory quality of service
delivered by the network environment.

The proposed framework addresses several questions to
an NMS such as: precocious diagnosis of faults, individu-
alized diagnosis according to application critical needs, and
autonomous decision over which corrective actions should
be taken.

Precocious diagnosis

Current NMS does not have any mechanism that per-
mits such an approach, they are not prepared to perform
precocious diagnosis since they are mainly designed to dis-
tinguish between healthy or faulty services, which is not
enough. NMS should be endowed with capabilities to deal
with the lack of information between these two states, upon
which it will be possible to detect some symptoms of on-
coming faults.

Flexible management

NMS needs to be flexible, since management can not
be performed based on static procedures. Just because the
networking environment is inherently dynamic: users and
applications are entering the system unpredictively with
different data, performance and service requirements. So
an NMS must have mechanisms to specialize observations
dynamically accordingly to what is really important in the
network environment. This specialization depends obvi-
ously upon current network "users" and their critical re-
quirements. Thus the NMS must also be able to receive
application’s requirements from which it will determine the
subset of services/subsystems that should be monitored, as
well as to send alarms to the appropriate users in case of
inability to maintain a correct behavior of network services.

Proactiveness

Finally, and by far the most complex, the proactive side
of this framework, requires the NMS to be able to decide
which corrective actions to trigger to bring the network
services to their optimum state.

Problems with NMSs

Most of the issues raised here, even if we admitted they
could be done more or less in nowadays NMS (i.e. with-
out application intervention), will lead invariably to a high
consumption of NMS resources and a non negligible traffic
overhead. The number of services and associated subsys-
tems in the network environment is extremely high, and

one must remember that NMS network bandwidth utiliza-
tion under every circumstance should be reduced especially
during major network faults.

The proposed approach in our opinion should permit to
reduce the gap between applications or users and the NMS,
making network management an interactive and indispens-
able tool, on which a critical environment could strongly
rely on. The exploration of the proactive style of man-
agement will be in focus as a very strong requirement, but
it must integrated in a framework where the reactive and
the interactive are still present. We must be pragmatic and
assume that still are several cases which need the network
manager presence. Others where the reactive are the fastest
to recover from faults and reduces the unavailability time.

Before going through the solution that we propose for
this framework, we will review the state of the art in some
domains closely related to our work. For instance, our ob-
jectives are clearly situated under the umbrella of network
management automation. Then, in section 3 we discuss
how should look like an adapted management architecture.
In section 4, we will present what is for us an Intelligent
Agent (IA) and how it will be integrated in the overall man-
agement architecture. We conclude in section 5 where an
overview of the IA architecture is presented. Finally we go
through the conclusions, finishing with further issues.

2 Network management automation

Browsing MIBs is currently what most NMS are able
to do. However, determining when the monitored values
are within acceptable ranges is not so easy. For network
managers this will be a nightmare, and is completely out of
scope, so some kind of automation is therefore needed to
shift computational intensive repetitive tasks.

MBD shifting management processing

One important step to shift computational intensive tasks
was done with Management by Delegation (MBD) concept
[13] and elastic servers [5]. Enabling one to transfer man-
agement programs to an elastic server, these programs being
executed on behalf of a manager. These programs or scripts
composed of instructions carrying data queries, expression
calculations and actions to take upon the results of the pre-
vious analyses. Since these programs could be transfered at
any time it is possible to configure the network management
activities according to the current needs and network con-
figuration. Although the delegation of programs to elastic
servers it done aiming at decentralizing management and
avoiding micro management from a centralized manager
station, it also proves itself to be very useful towards net-
work management automation. Nevertheless, since MBD

rely on off-line programming it is difficult to deal with
dynamic network environment characteristics.

Automation difficulties

Network management automation is therefore a com-
plex task for several reasons. For instance, network con-
figurations are not standard at all, changing whether de-
pendently upon types of activities or from environment to
environment. Even inside the same corporation, network
configuration evolution can be faster than what one always
expected at their installation. The distribution of appli-
cations and their interactions with customer or network
servers is even worse from this point of view. Further-
more the creation of workgroups in network environments
is starting to be a reality, and we need to capture also this
type of organization since it brings very helpful informa-
tion concerning traffic patterns inside these workgroups
and between them. These among others might be seen as
the main reasons to justify, until now, the nonexistence of
tools, upon which it will be possible to build easily network
management automation solutions.

When talking about network management automation
it is straightforward to think about discovery tools, which
are to some extent a good example of automation. But
discovering network elements is much more easier than
discovering workgroups, running applications topologies
and conversations profiles. This seems to us to be a very
important information that must be feed to NMS in order to
be able to establish a realistic framework for network and
systems management automation.

It is well known that a user application requires only that
a subset of all the subsystems (service providers) to work
correctly among those existing in the network environment.
Thus maybe it does not make sense to demand to an NMS
to monitoreverything blindly. This leads to the idea that the
network and systems management could be only concerned,
for fine grain monitoring,on what is actually very important
to the applications (users). This approach however does not
exclude the monitoring of other resources on the network
that aren’t very critical at the moment. The idea is just to
concentrate the efforts for fine grain monitoring in what is
really necessary currently, and from where the faults have
higher probability to come from (user point of view).

Network management automation concerns, three ma-
jor tasks: monitoring, analyze and reaction (take actions).
From the beginning, most of the work done in network and
systems management have been directed to the instrumen-
tation and communications point of view. Although this
is very important, for network maintainers the most im-
portant is to develop strategies that permit them to provide
users with a network service which is the most reliable as
possible.

Accordingly to the reasons we presented so far it is
clearly impossible to design network management applica-
tions from factory that will be able to successfully: monitor
the appropriate data, analyze these data accordingly to en-
vironment characteristics and take the correct actions to fix
up the problems.

3 Management architecture

The management architecture that we propose to achieve
our goal of integrating users requirements in the network
management, and extend the level of automation, requires
a new type of entity with a dedicated role for that purpose.

In fact managing networks and systems taking into ac-
count applications requirements from quality of service
point of view appears to be an impossible task with the
existing architecture of network management for several
reasons :

� the managers are not provided with pertinent informa-
tion about application requirements,

� even with this information, the managers are located
too far from network resources and agents, and thus
the process of managing individual requirements of
applications may result in an excessive traffic load,

� dealing with this process may in any case result in an
overload of work for managers,

� the traditional agents cannot be modified to treat the
problem since they are designed in a very general
fashion and cannot be updated for the purpose of a
specific need.

It is thus necessary to create new concepts in term of
architecture and functionalities to deal with this problem.
Let us recall briefly the requirements this process implies:

� each (or carefully selected because of critical con-
straints) application must provide precise information
about its individual requirements to the Network Man-
agement System,

� the NMS should be able to execute specific observa-
tions (measurements, testings, ...) derived from the
application’s requirements, run adapted algorithms to
try to forecast and correct eventual future problems
and notify the managers and/or applications if the pro-
cess is not successful.

To be efficient, it is mandatory that the diagnosis is very
fast and takes place before the problem may appear at the
application level. This implies that the machine running

this process is close to the equipments (and thus to the
agents).

These processes can be considered in fact from the net-
work users point of view as management front ends. As
well, from the manager level they will be seen as au-
tonomous "agents" with delegated rights to perform net-
work management in an autonomous way, according to es-
tablished policies. As we justify, in section 4, management
front ends will be called Intelligent Agents (IA).

The proposed architecture (described in figure 1) tries
to provide a realistic solution, by adding the following
elements to the traditional management architecture:

A

NE

IA IA IA IA

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

A

NE

Management
Domain

Application context
Notification

Notification

MIB
values

Goals

Management context

Application Manager

System context

Figure 1:Enhanced management architecture.

� An information data structure, called the application
context, is added to the application. The context con-
tains all pertinent information about the application
requirements, i.e. identification of critical resources
or services it relies on and the quality of service (QoS)
profile the application is waiting from them.

� An information structure called system context, which
is provided by each host system. Systems contexts
contains information about applications acting as ser-
vice providers. These contexts types identify the re-
sources upon which services providers relies on, as
well as the QoS these services are able to offer to
customer (e.g. client) applications.

� Each management domain is provided with an IA,
whose layered architecture is described in figure 2.
The first component of the IA is a Context Manager
that translates the application requirements in terms of
goals1 the IA must achieve. The IA is also equipped
with an internal engine executing the tasks to satisfy
the goals. Executing these tasks may result in : per-
forming specific observations on existing MIBs [7] [8]

1declarative statements about what has to be achieved

(when corresponding agents are located in the same
management domain), performing specific observa-
tions on programmable MIBs (typically RMON [11]
MIBs), launching tests on resources (i.e. by sending
periodically test requests to critical resources or ser-
vices), defining and sending goals that other IAs must
perform.

� An information structure called management context
which must be provided by management applications
controlled by human operators (manager stations).
This structure is provided for main reasons: substi-
tute applications and services contexts from legacy
entities; specify high level management goals and
policies so the IAs can have a scoped role to avoid
overall conflicting behaviors, which might arise from
an automated management environment.

Figure 2 presents layered architecture of our intelligent
agent, showing the major functionalities that will be im-
plemented internally (left side). How these functionalities
are mapped to a layered management where we strength
end user participation, a middle-ware management, and the
instrumentation of services and resources. On the right
side of the figure we map our architecture to a hypothet-
ical hierarchical Knowledge Base of a layered Intelligent
Agent.

User Layer

Management
Layer

Service
&

Resource
Layer

World Model

Social Model

Observation
Diagnosis

&
Correction

Goal Manager Mental Model

Context Manager

Figure 2:Intelligent Agent (management front-end)
layered architecture. Three layers are showed accordingly

to the different points of view: internal structure,
management framework and intelligent behavior

Organizing the distribution of IAs

It is not clear until now how these agents can be dis-
tributed over a network environment. There are several ap-
proaches to consider for a domain, namely: groups of NEs,
segments, subnets, addressing space or any other approach
that reflects some type of organization within the global
network environment. In the same way the hosts for these
entities aren’t also determined currently. Dependently of
network configuration one can choose several possibilities

like for example: routers, switches, hubs, bridges, dedi-
cated hosts, network dedicated managers (field bus man-
agers), etc.

Figure 3 presents possible distributions of IAs (backbone
of our NMS), over a networked environment.

Agent
NE

Agent
NE

Agent
NE

Agent
NEManager

station

Router

Agent
NE

Agent
NE

Agent
NE

Hub

Agent
NE

Agent
NE

Agent
NE

Agent
NE

Agent
NE

Agent
NEAgent

Router

Agent

Agent
NE

Agent
NE

NE NE NEAgent
NE

Agent
NE

NE

Fieldbus
Manager

IA

IA

IAIA

Agent
NE

Figure 3:Intelligent Agents spread over a typical
management environment.

4 Intelligent Agents

Before starting to describe what should be the role of an
IA in the network environment it is worth to clarify why do
we have chosen IA instead of other entity type for a manage-
ment process at an intermediate level, between managers
and agents. The term Agent for the network management
community is an entity keeping managed objects as a set
of structured data known as a management information
base (MIB), which are an abstraction of network resources,
properties and states for the purpose of management [6].
However, a more general view of the agent concept would
point us to a broader definition. Hence, the agent concept
enjoys the following properties [12]:

� autonomy - agents operate without the direct of hu-
mans or others, and have some kind of control over

their actions and internal state.

� social ability - agents interact with other agents (and
possibly humans);

� reactivity - agents perceive their environment (which
may be the network environment, network segment,
domain, etc) and respond in a timely fashion to
changes that occur in it;

� pro-activeness - agents do not simply act in response
to their environment, they are able to exhibit goal
directed behavior by taking the initiative.

This type of agent is conceptually different from NMS
passive agents and so we decide to differentiate them from
the later ones by qualifying them as Intelligent.

As already claimed, NMS in general suffer from the
inability of human operators to process the huge quantity
of data available in current network environments. So the
delegation of some of their tasks to other entities seems to
be a natural step. It is easy to understand that the entities
that are in charge to substitute human beings should have
the properties mentioned above.

4.1 Application context

Before going through the role of an application context
it is worth-while to make clear some terminology used
hereafter.

� Application: A group of processes and services that
perform a defined business function (manufacturing
scheduling, shop-floor controller, video-on-demand,
etc)

� Service: A generalized function that is potentially
useful to a number of applications, and can be invoked
from a service provider (e.g a database, NFS server,
RPC,...). A service may rely on other services to help
complete its task.

� Client: A process that uses one or more services to
accomplish its task.

� Process: An instance of a client or single process
service provider. Any given client or service provider
may have multiple process instances active at any one
time, whether distributed or in the same local.

User requirements are delivered to an IA (NMS) through
application contexts in the same way as the ACSE [1] def-
inition for the establishment of peer to peer associations.
For the NMS an application is the smallest unit being con-
sidered to collect user requirements, no matter how many

processes are needed to build it. However, it is possible
that a distributed application could provide the NMS with
several contexts, all associated with the same application.

Applications contexts are the means through which user
applications specify their requirements. Figure 4 gives a
rough idea about what these contexts may include.

� Application context header

� Sequence of required Services

– Required Service QoS

� Sequence of QoS Dimensions

� Availability

� Timeliness

� Performance

� ...

– Service fault severity

– Sequence of resources offering the service

– ...

� List of global QoS parameters

� ...

Figure 4: Example of possible application context
attributes.

The application contexts can be either very detailed or
not, depending on the level of standardization of services
and resources mentioned in the context. So we admit that in
most cases an IA can find in the overall NMS the knowledge
to test or diagnose the service providers or resources. For
non standard cases the context should also include this
knowledge or point to where this knowledge can be found.
For instance, we can suppose that a user application is built
on top of non standard services, especially designed for the
current application. In that case the IA will be pointed to
where it can find information upon service decomposition
and dedicated test procedures for services or resources.
For example, to test network resources, like temperature
sensors on a field bus (non instrumented NEs), the IA will
be pointed to the appropriate testing procedure.

Context decomposition

Since application’s contexts can become very complex, we
opted to divide the global application context in several sub-
contexts. With smaller contexts it is easier for applications
to pass their requirements to the NMS, each application
accordingly to its features can pass either simple or very

detailed contexts. Figure 5 shows how the contexts are
organized.

Application
context
header

Service
context

Service
context

Service
context

Resource
or
NE
context

Resource
or
NE
context

Test
Proce-
dure

Test
Proce-
dure

Application name
* Hostname
* ASAP
* Priority
* List of services
* Global QoS parameters
*

Service name
* Service provider hostname
* Service QoS parameters
* Service fault severity

Figure 5:Application context organization in sub contexts.

The global context separation in several sub contexts
enables the application to update its context during run time
without need to do it for the overall context. This may be
used also to reduce the number of active goals in the IA. For
instance, one application can just update the context header
and in this way inactivate some of the service oriented sub
contexts.

QoS role in application contexts

So far, one may notice that quality of service is almost
what can be found in applications contexts. In fact, to have
an effective network and systems management, the critical
issue is to have a precise knowledge of applications QoS
profiles, otherwise every analyze made over monitored data
on the networked environment risks to be unrealistic. Thus
it is very important to introduce a view of the QoS in this
framework [4].

There are several aspects or dimensions to QoS in which
this framework should focus. We will present three of them
as a good starting point:

� Timeliness - This aspect is concerned with different
forms of timing constraints that may be found in ap-
plications, such as bounded response time, periodicity
of events, and temporal relationships between events.

� Availability - This aspect is concerned with maximiz-
ing the likelihood that a service is available for use
when a application attempts to use the service.

� High performance - This aspect is concerned with
performance features such as throughput.

It is convenient to make a clear distinction between QoS
issues relevant to computational or engineering viewpoints.
In our network management framework, we are only con-
cerned with the computational viewpoint, where QoS pa-
rameters (guarantees) required by applications (provided
by services) are stated declaratively as service attributes.

Each dimension of QoS has associated its own set of
parameters. We could also organize these parameters in
QoS domains which are the computational models for a
QoS dimension. A QoS domain is also specified by a set of
attributes, called QoS attributes. So the organization of ap-
plications contexts must reflect this organization, although
in figures 5 and 4 the presentation were more informal for
the sake of comprehension.

It is also important to make the distinction between QoS
offered and QoS expected (or required)2. So the NMS
should capture them in QoS specifications from either ser-
vices and applications.

4.2 Intelligent Agent goals

IA in spite of their "intelligence" must not widespread
their monitoring efforts, through all data available over
the network (in MIBs located on the NEs). This is the
major problem of a static approach where without dynamic
selection criterion the data monitoring activity will have to
preview all possible interesting scenarios. In our approach
the "heuristics or rules of thumb" to select these scenarios
are in fact coming from the network users requirements.
Based on this information the IA is able to determine where
to focus the monitoring effort.

As mentioned above the agents exhibit goal directed be-
havior, and in our case, their goals are constructed dynam-
ically according to user needs. Each time an application
enters the network environment, the IA will have a new set
of goals.

2Offering and expecting constitutes the basic difference between the
QoS specified on contexts either by customer or service applications

Cooperative behavior and goals delegation

Dependently of network organization in domains some of
the received application contexts could entail the cooper-
ation with others IAs. Thus as result the IA might create
goals to satisfy the contexts it is in charge of, and forward
some of these goals to others and more appropriate IAs.
Nevertheless, delegated goals responsibility still belong to
the goal creator. For instance, if the cooperating IA is not
able to guaranty the delegated goal, he must notify the goal
owner, which will notify the applications concerned.

Goals principle

The idea of controlling agents behavior, based on goals de-
rived from contexts, is not only supported by agents theory,
but also has as advantage to create an independence be-
tween goal semantics and low level operations that the IA
will perform to verify goal achievement. The homogeneity
of the goals representation yields a separation of user re-
quirements from distinct information models and heteroge-
neous management definitions, for services and resources
that have identical properties as viewed by users. In fact,
each IA on his domain of responsibility could have differ-
ent operations sets to achieve similar goals, dependently on
available instrumentation at the involved managed nodes.
Otherwise, if a goal is to be sent to another domain, it is up
to the local IA to decide by which means he will verify the
received goal. This option will prove to be more efficient
and open, since we can imagine that even IAs based on
distinct instrumentation technologies can still cooperate.

4.3 Communication issues

The proposed architecture besides the introduction of
two additional elements to traditional management archi-
tectures, also creates two new axes of communication,
nonexistent until now, between:

� applications and IAs (middle level management pro-
cess)

� IAs themselves, to share goals, goals results and
knowledge

The former communication axe is clearly the simpler
one, and we can propose naturally that the applications will
use existent protocols available for network management,
such as CMIP [3] or SNMP [2]. Other protocols or commu-
nication mechanisms such as RPC [9] are also eligible to
this communication axe. The approach sends the problem
to the formalization of information structures that will be
able to carry the contexts. The challenge is to design these
structures in a way that they could host all possible contexts

required by applications. From figure 4 and figure 5, we
can say that this does not seem to be the more complex
task.

For the communication axe between the IAs, neither of
the communication paradigms commonly used in network
management currently seems appropriate. In fact the IAs
will need to share goals among them, demand management
procedures to verify goals or fix misbehaving network ser-
vices or resources, as well as rules that will enable the IA
to identify faults or symptoms of oncoming faults. In fact
what IAs need are ways to communicate attitudes about in-
formation, such as querying, stating, believing, requiring,
achieving, subscribing and offering.

These information attitudes have not any means to be
carried on through protocols such as CMIP and SNMP.
Intelligent Agents research community have been dealing
for a long time now with these problems, and have enough
experience on Agents Communication Languages (ACL).
An example of an ACL is KQML (Knowledge Query and
Manipulation Language) [10] which uses KIF (Knowledge
Interchange Format) expressions appropriate to this type of
communication.

KQML provides agent designers with a standard syntax
for messages, and a number of performatives that define
the force of a message. KQML can be used in any environ-
ment where software agents need to communicate some-
thing more than pre-defined and fixed statements of facts
and provides dynamic run-time interaction, so that intelli-
gent agents can combine their efforts, or make use of other
agents abilities in order to achieve their goals[10].

We do not want to compromise ourselves with a choice
right now, but KQML is a strong possibility for this com-
munication axe.

5 The Intelligent Agent architecture

Research around the IA architecture is still being devel-
oped. Right now it is clear that an IA as an autonomous
entity able to perform its tasks alone will lead, of course,
to a complex architecture. We identify several major func-
tional blocks for IA architecture that actually seem to be of
major importance.

Figure 6 gives an overview of the IA architecture which
is divided in three main areas.

Context manager

Contexts manager (CM) is responsible for maintaining
a repository of application’s contexts. This DB aims at
storing instances of the different contexts types, as well
as their relationships either among themselves or with the
running applications on IA domain. CM is also in charge of
goals creation from the received application’s contexts, and

the forwarding of events to applications and management
stations when goals (associated with application’s contexts)
had not been successfully guaranteed (probably expressed
with distinct syntaxes).

Goal manager

The goal manager (GM) is the heart of an IA, since its
name will be mainly justified by this function. He has to
process the received goals either from CM or remote IAs,
and to survey their status so that the concerned entities
(applications and remote IAs) could be notified. If the
goals cannot be monitored locally they are forwarded to
other IAs better positioned to survey them. GM and CM
must share a real-time DB where are stored the relationships
between goals and contexts entries, so when notified of an
unsuccessful goal the CM could determine which context
parameter is affected.

Knowledge
Base

Observations

Diagnosis

Corrections

Context repository

Observer Analyst Corrector

Figure 6:Intelligent Agent internal architecture.

Engine

The engine is organized in three functional blocks:

� Observer is the process in charge of monitoring the
network resources in order to verify goals accom-
plishment. Several types of observations are possible:
monitoring MIB values, monitoring values on probe
MIBs (configured remotely by the observer), launch-
ing tests on network resources or service providers,
and reading systems logs in NEs. Since observations
are made according to goals, when one of them is not
anymore achieved the observer informs the analyst of
which goal is unsuccessful. Afterwards it is up to the
analyst to start a diagnosis process.

� Analyst is the process in charge to perform fault di-
agnosis and performance analysis upon observer re-
quests. The analyst at least knows exactly from where
starts the diagnosis, because it knows the failed goal
and its relation with services, subsystems or resources.
In case of success the analyst will provide the correc-
tor with the identified fault, so that the later could try
to fix it.

� Corrector is the process in charge to recover from
faults. Typically having a precise identification of
the faulty subsystem or resource, the corrector will
try to bring it to the normal state. The procedures
to fix the problems must be available internally on
some repository or KB. We should notice that several
services in LANs are dependent on remote processes
for which a simple reboot action, in most of the cases,
is enough to bring the service to normal state.

Both processes (corrector and analyst) in case of failure
are required to update goal status, which will give place
to the forwarding of event notifications to concerned ap-
plications and as well as to the manager station. We have
to refer that the IA is a management process, and conse-
quently all alarms generated by agents should be sent to the
IA instead of to a manager station. So the analyst beyond
alarms3 generated by the observer also has as input triggers
the alarms generated by agents.

The IA architecture intends also to solve some of the
problems a manager station is usually faced up, and which
constitutes an information bottleneck. Alarms handling
is one of these problems, first because the manager will
receive alarms coming from several domains, concerning
faults either on NEs or services. It is in fact too much to a
human being to process manually all these alarms, but also
for an automatic centralized process it is not an easy task

3Notification of unsuccessful goal achievement

accordingly to the multiple sources of alarms and their non
evident relationships and side effects between them.

In our approach a manager station instead of receiving
raw alarms or event notifications carrying dedicated at-
tributes (CMIP) or variables bindings (SNMP), will prefer-
ably receive notifications about failed goals. This con-
stitutes a clear enhancement for the message semantic re-
ceived by a network manager.

Knowledge sources

The IA must be endowed with enough knowledge to
translate goals in to management operations. Since goals
are independent from any particular SMI (Structure of Man-
agement Information) or MIM (Management Information
Model), there might exist several mappings for the same
management goal.

Like most of our framework, which is network service
oriented, so are the knowledge in the IA (ontology ori-
ented). This means that each time an IA is engaged with
the management of a determined service it will try to have
the knowledge about how to manage it.

IA knowledge is divided in three main areas: monitor-
ing, diagnosing and fixing. The knowledge can be stored
under different forms: management procedures (scripts,
management object classes4) and rules. The combination
of these types of knowledge is perhaps the best approach,
avoiding the storage of huge quantities of rules.

Any solution that intends to build an IA (or a general
management application) with all the management knowl-
edge or expertise needed to manage the surrounding envi-
ronment is not feasible to succeed. Usually leads to very
heavy solutions in which it is tried to preview all the future
misbehaviors, whether by storing locally all the expertise
available as well as all known problems.

On the contrary we think that an IA must be a light
management application with the minimum of knowledge
stored locally, and fully adapted to its surrounding environ-
ment. This means that the IA must have access to remote
knowledge sources. We can suppose that in a corporate
network the top level managers are a possibility. How-
ever, in a networked world such our world today it might
make sense to lookup for this knowledge also directly on
the service provider or resource implementor.

6 Conclusion

Customizing network and systems management is not
an easy task, but is in fact what is missing after several

4the likelihood between management object classes and scripts should
be noticed

years of work done at instrumentation, structures for man-
agement information and protocol levels. The framework
presented in this article tries to open new roads on network
and systems management supported in two major ideas: au-
tomated management and application requirements. This
article has presented a novel approach for network and sys-
tems management, in which user applications requirements
for can be taken in account. These requirements are passed
as application’s contexts to Intelligent Agents running in
scoped domain of operation. The approach entailed new
axes of communication for the management architecture,
whose characteristics and solutions were analyzed.

Further issues

As we stated before this framework must be extended
to the manager station level, which have an important role
to play in the interaction with the Intelligent Agents. Since
agents will perform management autonomously we will
put some care with the definition of domains. As well
as in order to avoid conflicts between IAs or bound the
IAs degree of freedom, management policies should be
considered carefully (defined and formalized) so the IAs
can use them to control its behavior. These two subjects
domains and policies might be an interesting contribution
to the Intelligent Agent research field from the network and
distributed systems management perspective.

References

[1] Association Control Service Element for Open Sys-
tems Interconnection for CCITT Applications, Rec-
ommendation X.217, CCITT, 1988.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin.
A Simple Network Management Protocol (SNMP),
RFC 1157, May 1990.

[3] Management Information Protocol Specification
- Common Management Information Protocol,
ISO/IEC 9596-1, ITU X.711.

[4] TINA Consortium. Quality of Service Framework,
Draft TINA Report, November 1994.

[5] G. Goldszmidt. Distributed systems management via
elastic servers. In Third International Symposium
on Integrated Network Management, pages 95–107,
1993.

[6] Kirk Shrewsbury J. TMN in a Nutshell, July 1994.

[7] M. Rose K. McCloghrie. Management Information
Base for Network Management TCP/IP-based Inter-
nets, RFC 1213, IAB, 1991.

[8] Structure of Management Information - Part 1: Man-
agement Information Model, ISO/IEC 10165-1, May
1992.

[9] Inc Sun Microsystems. RPC: Remote Procedure Call
Protocol specification version 2, RFC 1057, 1988.

[10] G. Wiederhold T. Finin. An overview of KQML: A
Knowledge query and manipulation language, 1991.
Available through the Standford University Computer
Science Dept.

[11] S. Waldbusser. Remote Network Monitoring MI Base,
RFC 1271, 1991.

[12] Michael Wooldridge and Nicholas R. Jennings. In-
telligent Agents: Theory and Practice. Knowledge
Engineering Review, 10(2):115–152, 1995.

[13] Y. Yemini, G. Goldszmidt, and S. Yemini. Net-
work management by delegation. In Second Inter-
national Symposium on Integrated Network Manage-
ment, pages 95–107, 1991.

