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Taming the Android AppStore: Lightweight
Characterization of Android Applications

Luigi Vigneri, Jaideep Chandrashekar, Ioannis Pefkianakis and Olivier Heen

Abstract

There are over 1.2 million applications on the Google Play store today
with a large number of competing applications for any given use or function.
This creates challenges for users in selecting the right application. Moreover,
some of the applications being of dubious origin, there are no mechanisms for
users to understand who the applications are talking to, and to what extent. In
our work, we first develop a lightweight characterization methodology that
can automatically extract descriptions of application network behavior, and
apply this to a large selection of applications from the Google App Store.
We find several instances of overly aggressive communication with tracking
websites, of excessive communication with ad related sites, and of commu-
nication with sites previously associated with malware activity. Our results
underscore the need for a tool to provide users more visibility into the com-
munication of apps installed on their mobile devices. To this end, we develop
an Android application to do just this; our application monitors outgoing traf-
fic, associates it with particular applications, and then identifies destinations
in particular categories that we believe suspicious or else important to reveal
to the end-user.

Index Terms
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1 Introduction

The two dominant mobile application ecosystems today, Apple iOS and An-
droid, reflect very contrasting philosophies. In the former, applications are vetted
against a defined set of acceptable use behaviors before being released on the store.
In contrast, the Android based app stores advocate a more libertarian approach and
apply a much looser set of guidelines (mainly focusing on keeping out malicious
applications). The Google Play Store, the largest and most prevalent Android mar-
ketplace today, contains over 1.2 million distinct applications, a number of which
are of dubious nature (even if not malicious). The average Android phone user
faces a daunting set of questions while installing an application. Which of the
many similarly named apps should I install? Does it report information to online
trackers? Does it have too many ads? and so on. A search for “weather” apps
returned well over 30 applications all of which contained weather in the name;
a large number of these are rated with 4 or more stars (out of 5). Having installed
the application, the user has no visibility into who the application is actually com-
municating with, and whether this complies with the app’s intended purpose.

Our goal is to build a system to characterize the network behavior of Android
applications. This characterization could inform users about how the application
is expected to behave when installed – useful information when selecting an ap-
plication. Given our focus on network behavior, we are interested in identifying
the kinds of destinations connected to, whether the application connects to a large
number of ad sites, how often it talks to online tracking sites, and whether it com-
municates with sites that have been deemed suspicious.

In this paper, we first develop a methodology that enables us to characterize a
large number of applications quickly. In gaining scale, we necessarily sacrifice a
small level of accuracy. Applications connecting to suspicious websites may not
actually be sending any private data over the connection. While methods based
on taint tracking and static program analysis [2, 4, 8, 12, 14, 15, 17] enable more
accurate characterization of actual data exfiltration, they are intrusive and hard to
scale. We view our own work as complementary to such methods, providing a first
level characterization that can enable applications to be selected for further, more
detailed inspection. We focus on 3 distinct characteristics, which we believe to
be undesirable to end-users, of the destinations being contacted: (i) if they are ad-
related, (ii) if they relate to tracking users, or (iii) if the domains have previously
been associated with malware or other suspicious activity.

We then apply this methodology to characterize a large sample of free appli-
cations from the Google Play Store, across different application categories. Our
results uncover a great deal of diversity in behavior: some applications connect to
almost 2000 different URLs in a few minutes of execution while others generate
almost no network traffic. Further, we also identify applications that involve an ex-
tensive level of tracking, and those that make an inordinate number of connections
to ad related sites. We also identify application instances that make connections to
websites that have previously been associated with malware activity. These results

1



underscore a crucial shortcoming, and this is a lack of effective tools and mech-
anisms to audit installed applications and to provide users’ greater visibility into
application behavior. To this end, we develop a monitoring application (NSA), that
identifies particular types of destinations being connected to by installed applica-
tions. We have made a version of the application available to reviewers through an
anonymous URL.

The rest of the paper is as follows: In Section 2, we provide some background
on the types of domains that we are interested in characterizing. In Section 3, we
describe related work in the area and put our own work in perspective. In Section 4,
we elaborate on the process used to collect our dataset and provide some high level
summaries. In Sections 5 and 6, we present a detailed analysis of the dataset.
Section 7 contains a high level description of the architecture and operation of the
monitoring application we developed, and we conclude in Section 8.

2 Background

This work focuses on the network behavior of Android applications. To this
end, we are interested in the types of destinations connected to by the application.
Our methodology, at a high level, consists of extracting network traces from short
executions of mobile applications, extracting URL endpoints from the network
traces, and categorizing these URLs. To this end, we focus on three distinct types
of URL categories which we describe below:

Advertising related sites: Much of todays online economy is driven by advertis-
ing revenue. Web publishers, and mobile app developers, auction space on their
websites, or screens, and the ads are delivered by so-called ad networks. Particu-
larly with (free) mobile applications, advertisements can support app development
and support costs, and is a very popular model in the Google Play marketplace.
However, most users view advertisements as intrusive and associate negative con-
notations to them [18]. In order to categorize a URL as being ad-related, we rely
on the EasyList1 set of filters that are available from AdBlock [1]. This set is
able to identify the vast majority of ad serving URLs and can also identify – based
on the URL pattern – banner ads and advertisements delivered by other means
(javascript, frames, etc.).

Tracking sites: These provide a mechanism for online web services and third
parties to “follow” users over multiple sessions, and over different websites. While
websites have traditionally used cookies, the app ecosystem uses more direct forms
of identification such as UDID or other device identifiers which are made available
through the OS APIs. The issue of online tracking has been vigorously debated in
the recent past, and privacy advocates argue that it allows for open ended profil-
ing of end-users. Importantly, users are rarely aware of the actual entities that are

1http://easylist.adblockplus.org
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tracking them, and to what degree and the tracking ecosystem today lacks trans-
parency.

To identify such URL endpoint, we rely on the EasyPrivacy set of filters,
which are also available through Adblock as an optional subscription. This set
covers a large variety of tracking mechanisms (web bugs, tracking code, beacons,
etc.).

Suspicious sites: We use this third category as a catch-all term for any sites that
are associated with any form of malware or illicit content, and we do this for the
following rationale. Typically, a mobile application is likely to connect to different
URLs to carry out the functionality related to the application, apart from the URLs
related to ads and tracking. If the application is benign and completely legitimate,
it is likely to connect only to destinations that are trusted and safe. However, if
the application does make connections to particular websites that, through other
channels, have been deemed suspicious or malicious, it is unlikely that the applica-
tion is completely benign. This likelihood grows larger as the connections to such
destinations increases. While not necessarily very accurate – false positives can
happen – we believe that this factor is one of many that must be considered while
vetting the application. Similarly, the mere fact of a connection to a “malicious”
website may not be evidence of private information being passed on; however, it
does arouse suspicion.

In our work, we rely extensively on the VirusTotal meta classification en-
gine [20], which acts as a front end for a large number of AntiVirus, Spam &
Phishing blacklist, and Malware analysis engines. For each URL identified in the
pcap trace, we issue a query to VirusTotal and obtain two types of information for
the URL: (i) an aggregate response from all the back-end engines indicating the
suspiciousness level of the URL domain, and (ii) a categorization of the URL do-
main into one of a set of 68 categories. Both of these are obtained from the query
responses returned by VirusTotal.

3 Related Work

Previous work in mobile application monitoring falls into three broad areas,
which we briefly discuss and further contrast them with our work.

Application profiling: Given the lack of insights associated with the Android
app store, a number of studies have focused on profiling mobile apps. In [21], au-
thors describe a multi-layer profiling approach that covers both system and network
aspects. While capable of obtaining detailed behavioral profiles, the methodology
is difficult to scale to a large number of applications, and cannot be implemented
as an Android app. In contrast, our (lightweight) approach can characterize a large
number of applications. Different from [21] our study focuses on many aspects of
the destinations being connected to by the app. In [6] the authors describe tech-
niques to fingerprint mobile apps based on their network behavior. Our work does
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not attempt to find application signatures, but to characterize and compare the net-
work behavior of different apps.

Privacy/security auditing: Several studies have looked at the issue of iden-
tifying privacy leaks in mobile applications. TaintDroid [9] applies taint tracking
mechanisms inside the Android Dalvik VM to identify instruction sequences where
a particular input leaves the system. The work revealed that roughly half of the
tested apps reported the user’s location to advertising servers. Apart from Taint-
Droid, there are several systems which seek to identify privacy leaks in iOS [8] and
Android smartphones [2,4,12,14,15,17], using the taint analysis approach. While
comprehensive, the above approaches often require significant changes in mobile
device OS, or phones to be rooted, which limits their applicability. Yet another
shortcoming with these approaches is that they potentially miss communication to
suspicious third party destinations (e.g., trackers) when they do not leak traffic.

Different from taint analysis approaches, SpanDex [5] extends the Android
Dalvik Virtual Machine to ensure that apps do not leak users’ passwords. SpanDex
analyzes implicit flows using techniques from symbolic execution to quantify the
amount of information a process control flow reveals about a secret. ipShield [3]
performs monitoring of every sensor accessed by an app, and uses this information
to perform privacy risk assessment. Both SpanDex and ipShield require modifi-
cations in the mobile device OS, while they are not focusing on suspicious des-
tinations. Finally, in [11] the authors study the privacy and security risks posed
by embedded or in-app advertisement libraries, used in current smartphones. Our
study is much more generic, seeking to identify various characteristics of the mo-
bile apps network behavior.

Traffic characterization: Existing work has been focused on analysing smart-
phone application usage (e.g., geographic coverage, mobility, traffic volume vs.
app category) [22] and traffic characteristics [10, 16] of mobile devices. None of
these studies seek to characterize app communication with third party websites.

4 Dataset

At a high level, our methodology involves selecting, downloading and execut-
ing an application on an unrooted Android phone, and capturing all the network
activity during its execution. The network activity is post-processed to extract all
the URLs contacted by the application, which are then categorized and classified
using a number of existing online engines. In the rest of this section, we describe
the methodology in detail.

4.1 Application Selection

The (roughly) 1.2 million applications in the Google App Store today span 25
different categories. The choice of category for an application is left to the app de-
veloper. As of July 2014, the available categories in the app store are enumerated
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Game News and magazines Comics
Libraries and demo Communication Entertainment

Education Finance Lifestyle
Books and reference Medical Weather

Media and video Music and audio Tools
Personalization Photography Productivity

Business Health and fitness Shopping
Social Sports

Transportation Travel and local

Table 1: App Store Categories (July 2014)

in Table 1. In each of the categories, the applications can be listed in various order-
ings – most popular, most highly rated, newest, etc., and these are accessible with a
number of third party APIs. For our characterization, we selected the top 100 most
popular applications and the top 100 newest applications in each of the categories
available, i.e. a total of 5000 applications. However applications can belong to
both newest and most popular sets, so the actual number of downloaded applica-
tions is smaller. While not exhaustive, our application set represents a reasonably
good sample of the app store (and its categories).

4.2 Application Execution

From the set of applications selected and downloaded, we filter out all the ap-
plications that do not have the INTERNET permission property set in the manifest
since these applications would not be able to generate any traffic. Each of the re-
maining applications is downloaded and executed on a Samsung Galaxy SIII Mini
GT-I8190 smartphone running Android version 4.1.2, which was configured with
a VPN client (OpenVPN for Android) connected to an external VPN server. All
traffic generated on the smartphone transits through the VPN server, where it is
captured using tcpdump. The manner of network traffic capture differentiates
our work from previous work in this field which captured traffic locally on the
smartphone; this is inherently restrictive. The smartphone is connected to a PC,
and the app is launched using the adb tool on the command line. In order to sim-
ulate user interaction with the launched and running application, we use monkey,
a command-line tool, to generate a series of 10000 user interaction events (screen
touches, scroll actions) in two phases, with a short gap of 50 seconds between.
This takes care of the situation that some applications have a start-up delay before
actuation. A tcpdump process is coordinated on the VPN server with each app
launch, and thus we obtain a pcap file for each app execution. It is important to
point out that while unlikely, there may be other background traffic that co-occurs
with application generated traffic. We exercised due diligence in removing all non-
essential applications from the smartphone. In addition, we recorded traffic for a
24 hour period without any apps installed on the phone and recorded all traffic gen-
erated. We filter out any URLs observed in this trace from each application trace,
if found.
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4.3 URL Analysis

We process each packet capture with tshark to extract the complete set of
HTTP URLs in the trace. Each of these URLs is classified along three different
dimensions, following the previous section (§2). Note that we filter out HTTPS
traffic (which has been shown to be small in Android apps [21]) and only consider
HTTP traffic; HTTPS traffic does not expose the headers that we analyze. For each
URL extracted, we carry out three different checks as follows:
1. We check the URL against the set of descriptors in EasyList and, if a match
is found, we classify the URL as being ad-related, since the connection most likely
was made to retrieve an ad-element to display on the smartphone screen.

2. We check the URL against the set of filters contained in EasyPrivacy and,
if a match is found, we mark the URL as being tracking related.

3. Finally, we issue a query to the VirusTotal service with the URL as a parameter
to obtain a reply that aggregates the findings of all of the backend engines supported
by VirusTotal. In addition, we also extract fully qualified domain names from the
URL and query VirusTotal for information about these. The results relevant to
domain names include things such as the Webutation safety score for a domain,
and so on.

Finally, our dataset consists of 2146 processed applications (1710 with traffic
activity), spanning 25 distinct application categories and which in the aggregate,
connect to almost 250k unique URLs and across 1985 top level domains.

5 Application Destination Characterization

While there is a considerable body of work in the area of profiling mobile apps,
the focus has been on detecting data leakage, or on developing behavioral finger-
prints of the applications. There has been relatively less work on characterizing
the applications in terms of the network destinations they visit, and the nature of
these destinations. We focus on analyzing the network end-points in depth and on
understanding similarities (or differences) in certain app categories in terms of this
behavior. We start by presenting some high level statistics of network end-points,
across the set of applications analyzed.

Apps URLs and domains: We see a tremendous range in application behav-
ior: a large number of applications generate no traffic at all while some applications
generate well in excess of 1000 HTTP requests. We find the app Music Volume
EQ connects to almost 2000 distinct URLs. Interestingly, Music Volume EQ is a
volume slider app, and not an app that would really require access to the network.
By all accounts, these numbers are large especially considering that our methodol-
ogy does not support authenticating against user accounts (such applications will
not progress beyond the login screen). Fig. 1(a) shows a distribution of the number
of URLs visited by each executed application. From the figure, about 10% of the
apps tested connect to more than 500 distinct URLs (recall that the execution of
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Application Name URLs
Music Volume EQ 1958
signal.booster.conchi... 1882
Entranements Quot. FREE 1827
simulateur laser 1657
The Weather Channel 1544
France TV Replay 1465
Gestion du budget 1415
Morandini Blog 1403
FR24 Premium 1350
cart.tabs.sw 1275

Application Name TLDs
Morandini Blog 113
com.issakol12i.myapp 104
Prof Orientation Test 103
Exercice Machines Gym 101
Motor Racing News 93
Le Tlgramme - Actualit 92
app20192.vinebre 82
Music Explorer 70
PowerAMP Music Player 69
Entrainements Quot. FREE 63

Table 2: Top 10 Applications, by URLs (left) and by Top Level Domains (right)

each application only lasts a few minutes). This level of “chattiness” significantly
impacts resource usage on the mobile device. Interestingly, we still identify apps
which do not engage in network activity, although they declare (in manifest file)
that they require network access.

In Table 2, we enumerate the top 10 applications seen in our dataset, ranked by
the number of URLs connected to (at least 25 applications connect to more than
1000 URLs during execution). These applications are very diverse, from weather
to music and budget. This confirms the need to consider broad and varied dataset
rather than focusing on specific categories.

Multiple URLs can correspond to the same domain. The number of distinct
domains, apps connect to, captures the different activities carried out inside the
application. Across the applications in our dataset, the median number of do-
mains connected to is 4, while some apps connect to more than 100. For example,
Morandini Blog, which is a blog reader application, communicates with 113
distinct domains. Interestingly, it connects with 6 different ad networks, along with
a number of analytics and tracking websites. In figure 1(b), we look across applica-
tions and plot the distribution of domains communicated with by each application.
About half of the apps connect to 4 or fewer domains, and we also see significant
variability across applications. Roughly 10% of the apps connect to 20 or more
domains over the execution window. Table 2 enumerates the top 10 apps ranked
by the number of distinct domains connected to. Rows marked in italics denote
apps that also happen to fall in the top 10 when ranked by the number of URLs
communicated with (cf. Table 2).

Looking across applications, Table 3 enumerates the 20 most frequently con-
tacted domains, which provides some insights about the nature of communica-
tion between the application and website. Unsurprisingly, 9 of the top 10 in this
set correspond to various web services run by Google. The most popular do-
main in the list, doubleclick.net, is an advertising platform that tracks end-
users, and also serves up advertisments. While Google.com is generally con-
sidered as the search engine portal, in our traces we found two predominant pat-
terns associated with this particular domain: (i) www.google.com/images/
cleardot.gif?zx=<str>, which correspond to 1x1 tracking pixels, and (ii)

7

www.google.com/images/cleardot.gif?zx=<str>
www.google.com/images/cleardot.gif?zx=<str>


0 500 1000 1500 2000
Number of URLs per App

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

(a) Number of URLs per app.

0 20 40 60 80 100
Number of Domains per App

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

(b) Number of domains per app.

Figure 1: URL and domain counts by application

doubleclick.net 0.415 ajax.googleapis.com 0.058
google.com 0.358 flurry.com 0.056
gstatic.com 0.354 nend.net 0.051
admob.com 0.266 xiti.com 0.048
googlesyndication.com 0.238 facebook.com 0.048
google-analytics.com 0.172 youtube.com 0.041
ggpht.com 0.170 scorecardresearch.com 0.041
fonts.googleapis.com 0.139 inmobi.com 0.037
googleusercontent.com 0.128 ytimg.com 0.034
samsungvideohub.com 0.088 twitter.com 0.033

Table 3: Top 20 popular domains (with fraction of applications connecting to them)

www.google.com/ads/user-lists/<id>/?script=<num>&random=
<num>, which seems to indicate some form of user tracking.

While enumerating the communicating domains can be quite instructive, it
does not reveal much about the nature of the communication between app and
domain. Understanding the type of domain (or category) of the domain can yield a
better sense of this communication. Typically, web domains are set up for well de-
fined functions (e.g., doubleclick.net as an ad platform, google-analytics
as a tracking and analytics service, etc.) and communication between the app and
domain is generally consistent with the service offered by the domain. We use
the following methodology to identify domain categories. First, we classify each
URL as a tracker URL, ad related or other. In the first two cases, the services are
obvious, and we consider them independent categories. In the latter case, other,
we extract the fully qualified domain name from the URL and rely on the service
provided by Websense.com to obtain a characterization (i.e., category) for the
domain in question. Specifically, we first examine each URL and extract the fully-
qualified domain name (FQDN) embedded in the URL. Then we gather all the
Websense categories corresponding to each of the FQDNS that correspond to the
same top level domain, and assign the majority class as the category for the top
level domain. Going back to the domains listed in Table 3, we find that the most
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Figure 2: Ad URLs and tracker distributions

Top Level Domain Popularity
doubleclick.net 37,153 (50.6%)
gstatic.com 16.532 (22.5%)
admob.com 3603 (4.9%)
smartadserver.com 3411 (4.6%)
inmobi.com 1399 (1.9%)

Table 4: Top 5 ad related Top Level Domains

of the 20 domains correspond to the category advertisements. In the rest of this
section, we examine various types of destinations based on their domain catego-
rization.

Ad related sites: Recall that we use AdBlock’s EasyList subscription to iden-
tify advertising related destinations. Figure 2 shows the distribution of the number
of ad URLs visited per app. We observe that 33% of the apps do not communicate
with any ad destinations. On the other hand, we also see apps that connect to a
very large number (>1000) of ad URLs. Overall, the average number of ad URLs
associated with an application is about 40. Examining the domains of ad URLs,
we find that the three most prominent ad related domains are all part of Google,
as listed in Table 4. Thus, while Google does not directly make any revenue from
Android itself (which is openly licensed to manufacturers), it is able to extract rev-
enue from the ads business around the ecosystem. We further investigate ad URLs
for particular apps, in Section 6.

User tracking related sites: We now look closely at the URLs in our dataset
that correspond to destinations that track end-users and devices, as encoded in
AdBlock’s EasyPrivacy subscription lists. Previous studies have reported that such
practices have largely negative connotations with users [13, 19]. Given this, it is
rather surprising that tracking is so widespread, and more important, completely
opaque to end-users. While the Do Not Track [7] policy has been proposed by
consumer advocates and has gained some acceptance, the mechanism is restricted
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Top Level Domain Popularity
google-analytics.com 11,247 (44.4%)
xiti.com 8174 (32.3%)
scorecardresearch.com 1046 (4.1%)
estat.com 736 (2.9%)
bluekai.com 500 (2.0%)

Table 5: Top 5 tracking related Top Level Domains

Domain category Popularity
information technology 453 (22.82%)
uncategorized 390 (19.65%)
dynamic content 171 (8.61%)
advertisements 164 (8.26%)
business and economy 110 (5.54%)
news and media 67 (3.38%)
shopping 61 (3.07%)
travel 48 (2.42%)
entertainment 41 (2.07%)
streaming media 41 (2.07%)
games 40 (2.02%)
sports 37 (1.86%)
search engines and portals 33 (1.66%)
reference materials 23 (1.16%)
internet radio and tv 23 (1.16%)
application and software download 20 (1.01%)
blogs and personal sites 17 (0.86%)
vehicles 17 (0.86%)
social networking 16 (0.81%)
personal network storage and backup 15 (0.76%)

Table 6: Popularity of Domain Categories

to web browsers, and does not extend to mobile apps in general.
In figure 2, we plot the distribution of tracking URLs associated with each

application. We observe that while the vast majority (73.2%) of apps do not involve
any communication with trackers, a small number of apps do indeed communicate
with them. The number of tracker URLs per app can be more than 800. In Table 5,
we enumerate the most popular domains associated with trackers, where popularity
is defined as the number of tracker URLs, seen across all the apps, associated with
a specific domain. In contrast to the results about ad-related destinations, we find
the mobile tracking ecosystem to be significantly more fragmented, with many
more players, even if the dominant player is associated with Google. We further
investigate tracker URLs for specific apps, in Section 6.

Other web categories: We now examine the aggregate set of URLs after hav-
ing removed those that correspond to the previous two categories. Table 6 enumer-
ates the 20 domain categories with the highest number of domains associated with
them. The most popular category, which covers about 22% of the total domains
observed, is denoted Information Technology and this appears to cover a number

10



Domain category Fraction of malicious domains
sex 33.33%

personals and dating 20%
ads 12.8%

business and economy 6.6%
reference materials 4.35%

Table 7: Malicious domains based on Webutation engine.

of miscellaneous web services. The next two identifiable categories correspond to
dynamic content and advertisements, and both of these are very likely related to the
online advertising ecosystem. Note that we see a large count for these even though
we filter out those described in EasyList previously; the remaining URLs not
filtered are likely due to new patterns not in EasyList or perhaps connections to
ad related websites that do not involve ad placement inside the mobile application.
Apart from these, we see small domain counts across a varied set of categories. In
the next section, we examine these domain categories in detail and relate them to
the category of the app itself.

URL badness: Finally, we explore an additional characteristic of the domains
being connected to – “badness”. Recall that VirusTotal aggregates results from
a number of engines; these relate to the “suspiciousness” of a URL. While this
term is somewhat ambiguous, the qualitative results can be explained thus: the en-
gines used by VirusTotal independently crawl the URLs and catalog the various ob-
jects on them. URLs that host executable content that is deemed malware-like, are
deemed suspicious. Note that reliably determining malicious intent is extremely
challenging and quite outside the scope of our work. For our purpose, we simply
quantify whether any engine marked the URL as such, and analyze this across the
set of domain categories. By suspicion score for a URL, we denote the fraction
of antivirus engines (VirusTotal uses 52 in all) that deem the URL suspicious (or
malicious). Our result show 94.4% of the URLs have a (suspicion) score of 0. In
the worst case, a URL was deemed suspicious by 3 (of 52) engines.

Suspicious domains: For classification of the suspicious domains, we use
Webutation engine. Webutation is an open community about Website Reputation.
It tests websites against spyware, spam and scams. Apart from collecting user
feedback, Webutation queries various trusted engines like Google Safebrowsing or
Norton Antivirus to check for malicious software and other dangerous elements.
Overall, our analysis shows that a small portion of the domains have been clas-
sified by Webutation as suspicious or malicious. Specifically, we observe 2.5%
suspicious, 2.9% malicious, 61% unsure (not a clear verdict) and 33.6% safe do-
mains. Table 7 further shows the domain categories with the highest fraction of
malicious domains. We observe that the top-3 malicious domain categories are
“sex”, “personals and dating” and “ads”. In the following section, we devise a
suspicion metric for mobile apps, and we investigate the most suspicious apps.
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Application Ads Rate Downloads
cart.tabs.sw 1174 - -
VidTrim - Video Trimmer 1065 4.2 10.000.000
Simulateur laser 1019 2.1 5.000.000
Music Volume EQ 999 4.2 10.000.000
signal.booster.conchi.amplificador 940 - -
com.HillieMelani.VideoEditor 720 - -
Football365 700 3.9 10.000
Decibel (Sonometre reactif) 671 4.8 1.000
Nail Art Tutorials 2014 630 3.7 100.000
Veilleuse en Couleurs 538 3.8 10.000

Table 8: Top 10 apps connecting to ad URLs

6 Detailed Apps Characterization

In this section, we focus on individual applications and obtain an understanding
of their behavior along the three axes discussed previously. Users’ value (or are
annoyed by) different things – some user’s value privacy (tend to avoid applications
with significant tracking), other’s value security (and wish to avoid applications
with suspicious or unreasonable behavior). To this end, we study the most prolific
applications along these axes and gain some insight into their behavior.

6.1 Advertising Intensity

The Internet ecosystem, along with the mobile app marketplace, is largely
driven by advertising revenue. The vast majority of mobile apps offer their services
to the user for free, and are directly monetized by selling “real estate” (smartphone
screen or website) on which ads are inserted. All of the applications in our dataset
are “free” and we expect that the majority of them will connect to ad sites. This
is confirmed in Fig.2, where more than 66% of the applications contact ad URLs.
Some of the advertising APIs and engines are very aggressive in downloading ads
into the mobile app screen. For example AirPush is one such infamous service
and is so aggressive that the PlayStore lists a number of applications whose sole
function is to detect this API and notify the user. Several mobile ad APIs collect
detailed device information (OS version, IMEI, location, IP address, etc.), some-
times unknown by users. In general, end users find that ads (esp. display ads which
are not targeted based on user interests) degrade the user experience of mobile apps
and services.

Table 8 lists the top 10 apps ordered by the number of ad related URLs con-
nected to. All the apps were executed for just a few minutes, and even in this brief
interval, we see some apps with a very large number of connections to ad sites.
With the exception of two applications – Music Volume EQ and VidTrim - Video
Trimmer – none of the others are frequently downloaded (popular), and rated posi-
tively by users. Note that this information is missing for some of the apps that were
removed from the PlayStore soon after we downloaded the APK for testing (and
no further information is available).
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Application Trackers Rate Downloads
Eurosport Player 810 3.2 500.000
RunKeeper 804 4.4 10.000.000
Gestion du budget 725 4.3 500.000
Logo Quiz 301 4.5 10.000.000
Expedia Hotels et Vols 266 4.0 5.000.000
Vos Droits Quotidien 264 4.3 100
France TV Replay 261 2.8 10.000
Iron Man 3 Live Wallpaper 250 4.0 5.000.000
beIN SPORTS 236 3.6 500.000
NipCast 235 4.7 100

Table 9: Top 10 apps connecting to tracker URLs (italics indicate Top Developer
status)

6.2 Tracking Intensity

We next examine the applications which connect to a large number of tracking
services. As we observed from Fig. 2 the vast majority of mobile apps (73.2%) do
not connect to tracker URLs. However, the ones that do connect to trackers tend
to connect to a large number. The top 16% of the apps connect to 100 or more
trackers. We note an interesting difference between the apps with prolific tracking
and those that contact several ad sites. The “high-tracker” apps as shown in Table 9,
tend to be overall more popular, highly rated and have not been removed fast from
Google Play store, compared with the “high-adveristising” apps. To help support
this argument, we note the incidence of the “Top Developer Badge” across these
sets; Google awards these to developers based on some (opaque) combination of
app design, trust and popularity. We find 4 of the 10 apps listed in Table 9 to be
associated with this badge, while not a single app listed in Table 8 has it2. We
surmise that this difference is mainly due to how the apps are monetized. The ad-
driven apps are directly monetized by the ads they are displaying – and this tends
to be intrusive to users. On the other hand, the apps with a high degree of targeting
tend to be more embedded into the online ads ecosystem, and generate revenue
indirectly by helping to construct profiles of the smartphone user, which can then
be leveraged by them and other apps and services. However this deep integration
with the ads ecosystem is difficult for an individual programmer, who has to resort
to direct monetization (and which is likely to push users away).

6.3 App Suspiciousness

Finally we examine the suspiciousness of each application by leveraging the
results from third party engines (as discussed previously). Intuitively, we would
like an app to be suspicious when contacting many URLs that are tagged as being
malicious (or at least, not benign), and more suspicious when these URLs are also

2Only 6% of the apps in our dataset are by developers with this certification.
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spread over several domains. To this end, we define the following metric:

suspicion score =
∑
i∈A

(pαi ) · dβ (1)

where A is the set of URLs contacted by the app during its execution, pi is the
(absolute) number of positive (suspicious) signals from VirusTotal for the URL
i ∈ A (recall that the result, for each URL query, from VirusTotal is a vec-
tor of boolean signals). Finally, d is the distinct number of domains associated
with URLs deemed suspicious by VirusTotal. The parameters α ≥ 1, β ≥ 1
control the “weights” contributed by the suspicious URLs, or domain cardinal-
ity, to the score of the application. In our case, we set α = 3, β = 1; while this
is somewhat arbitrary, we note that increasing one (or both) parameters simply
has the effect of affecting the relative scores between applications. In our ini-
tial effort, the suspiciousness score was found to be uniformly high across ap-
plications and this was attributed to connections made to very popular ad and
tracking sites which were flagged by VirusTotal- xiti.com, api.airpush.com, score-
cardresearch.com, bluekai.com, ad.leadboltapps.net. Whitelisting these popular
(also manually verified to be legitimate) domains significantly improved the sepa-
ration in scores across applications.

Table 10 shows the top 10 applications ordered by the suspiciousness score.
Immediately, we see that all of these apps are associated with a low download
count; in fact, we found several of these to have been since removed from the
PlayStore. Examining these apps in detail, we found several instances where the
app name is easily confused with a more well known app. We suspect that this
“app name squatting” is deliberately meant to lure customers looking for the bona-
fide application. We discuss two examples from our top 10 list in greater detail
– PowerAMP Music Player (BASS) and Music Explorer. The former is named
suspiciously similar to the well known PowerAMP application (which has two de-
veloper badge awards). In fact, even the package is named to mislead the end-user
(installer.com.maxmpz.audioplayer, vs. com.maxmpz.audioplayer for the bonafide
application). The name “Music Explorer” has been used by several applications
in the Google Play Store. Interestingly, the Music Explorer app listed as highly
suspicious in Table 10, has been removed from the Google Store. In conclusion,
using simple suspicion metrics (as the one in equation 1), we can easily blacklist
apps, which can potentially harm the mobile device user.

6.4 App Category Behavior

In the previous sections, we focused on the behavior of particular applications.
We next examine individual app categories with an aim to understand if there is
some commonality of behavior among apps of the same category. Such a charac-
terization is useful in understanding whether a certain application declared by its
developer to be in a particular category, behaves in a manner consistent with apps

14



Application Score Rate Downloads
PowerAMP Music Player 13203 4.0 10.000
Morandini Blog 9758 2.4 50.000
Exercice Machines Gym Demo 9464 4.0 10.000
Motor Racing News 7037 4.2 500
com.issakol12i.myapp 5825 - -
Exercices Quotidien Fessiers* 4956 4.4 1.000.000
apps.buffalo.kmu.android 3480 - -
Music Explorer 3366 4.4 50.000
biz.pompommanga.readcartoon 2920 - -
Notability Basic Guide 2820 2.3 500

Table 10: Top 10 apps per suspicion score

of that kind (not suspicious), or whether its behavior shows marked differences
compared to others (suspicious).

We start by looking at the overall number of HTTP connections made by dif-
ferent applications. Figure 3 shows a boxplot distribution of the number of URLs
for each application, organized by category. Note that the outliers are indicated by
‘+’ symbols in the graph. As seen in the figure, the one category that does stand
out is NEWS AND MAGAZINES, where the median number of URLs connected to
is about 150. At the other extreme, the median number of URLs connected to the
LIBRARIES AND DEMO category is 1. While this seems to suggest that the cate-
gory of an application strongly influences its chattiness, we do not find statistically
significant differences across the remaining categories. In fact, the intra- category
variation in this value seems to be higher than the inter- category variation. Specif-
ically, although the majority of applications in each category connect to very few
URLs, a significant number connect to a large number of URLs.

We extend our analysis, by further correlating the app categories with the type
of URLs (ads and trackers) and the distinct domains they are connected to. Overall,
we observe apps under NEWS AND MAGAZINES category to connect to higher
number of distinct domains, trackers and ad URLs. However, similar to our pre-
vious observation, the differences among the remaining categories are not statis-
tically significant, while the intra- category variations can be high. These results
show that current information (such as app category) exposed to users in the Google
Store is insufficient, and methods such as ours can provide valuable additional con-
text to users.

We finally look to whether there are strong associations between app categories
and the categories of domains communicated with. Table 11 presents the break-
down, in the domains being connected to, across various domain categories for
each application category. Each row summarizes a particular set of applications in
a category, and each column represents a particular domain category. Each table
element indicates the fraction of domains related to a particular app category that
belong to a specific domain category. For ease of representation, we only present
the top 10 categories across all destination domains. Overall, we find that the 3
most popular domains relate to (1) advertisements (or domains related to online
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Figure 3: Number of URLs for different app categories

advertising), (2) search engines, and (3) information technology3, (respectively).
These three together account for about 60% of all the domains connected to. Apart
from the above dominant domain categories, we observe other popular domain
categories for particular app categories. For example, for SHOPPING apps, the
third most popular domain category (with 10.3% of the domains) is SHOPPING.
For NEWS AND MAGAZINES apps, the third most popular domain category is
SOCIAL. However, apart from small exceptions, there is no sufficient correlation
between the app category and the domain category, to draw out a systematic fin-
gerprint of the application according to these criteria. From a user perspective, this
pleads for a systematic verification of applications, regardless of their categories.

7 Application Description

The results presented thus far clearly indicate that applications on the Google
Play Store often connect to destinations that are not essential for the operation of
the app itself. Furthermore, much of this communication is completely hidden
from users. In some cases, the end-user would benefit from an awareness of this
activity (e.g., for user-tracking communication). Our methodology so far uses of
a VPN server to intercept traffic; this is not practical on phones in active use (the
added delay would affect user experience).

To enable end-users to get this visibility into installed applications, we built
an Android application that monitors traffic, using a local proxy, from various in-
stalled applications and presents the mobile user additional context about the nature
of this traffic and the end points being connected to.

The high level architecture of our app, which we call NSA (NoSuchApp, in
honor of a similarly acronymed monitoring agency) is shown in Fig. 4. We use
SandroProxyLib to establish a local HTTP (and HTTPS) proxy. By installing
its own certificates, the proxy is able to emulate a man-in-the-middle for SSL traf-
fic, which it can then monitor. HTTP(S) requests that are routed through the proxy

3IT category is used as a catch-all term for technology-related websites, when a finer grained
characterization is unavailable.
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Figure 4: Application architecture: HTTP traffic is intercepted by a local proxy
service
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LIBRARIES/DEMO 4.9 1.6 26.2 6.6 31.2 19.5
LIFESTYLE 7.1 0.2 1.6 23.2 1.6 4.1 24.3 15.1 4.6
BUSINESS 7.9 17.0 0.6 31.5 13.9 9.1
ENTERTAINMENT 7.8 0.5 0.3 0.8 20.1 3.7 26.2 10.7 2.9
MEDIA/VIDEO 6.0 0.2 0.2 0.5 26.0 5.2 25.1 10.3 5.1
MEDICAL 8.1 29.6 5.9 27.4 9.1 3.2
GAMES 6.4 0.8 30.1 2.8 29.1 9.8 0.3
BOOKS/REFERENCE 6.3 0.3 0.6 29.8 5.8 24.2 13.2 2.5
MUSIC/AUDIO 8.8 2.6 0.8 21.5 3.2 24.0 9.7 5.2
TRANSPORTATION 5.1 0.4 0.4 24.3 6.4 3.8 27.2 17.0 0.4
SHOPPING 8.7 10.3 10.9 2.2 25.8 8.2 9.5
FINANCE 6.6 1.5 8.8 21.2 2.2 31.4 8.8 5.4
COMICS 4.4 31.9 5.4 20.1 13.2 3.9
PHOTOGRAPHY 4.9 0.3 0.3 30.5 4.9 20.1 15.2 0.9
WEATHER 4.8 0.3 0.3 26.8 1.3 9.1 25.0 14.4 3.0
PERSONALIZATION 8.2 0.7 21.0 6.1 28.4 17.3 0.4
HEALTH/FITNESS 5.7 0.4 27.8 0.4 3.6 25.8 15.2 4.9
PRODUCTIVITY 9.6 27.0 5.7 27.8 13.0 3.0
COMMUNICATION 3.5 1.3 28.0 6.1 25.3 17.0 2.6
TRAVEL/LOCAL 2.9 0.3 0.5 20.3 8.8 4.0 21.3 19.5 3.5
SPORTS 5.4 0.3 18.3 3.0 24.3 11.4 9.9
SOCIAL 4.8 0.4 16.7 1.1 3.7 30.1 14.5 5.2
EDUCATION 3.8 0.6 32.6 4.1 23.1 17.1 3.5
TOOLS 1.9 33.6 0.5 7.0 27.6 14.5 1.9
NEWS/MAGAZINES 3.0 0.2 0.2 0.8 19.5 0.2 8.4 30.6 10.3 11.2

Table 11: App categories vs. app domain categories. (Data is in percentage (%))
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(which is the case for most applications that use the default network settings) trig-
ger callbacks in our application, which then logs and classifies the HTTP(S) con-
nections. While designing NSA, we had to overcome two challenges – (i) attribut-
ing flows to applications correctly, and (ii) classifying the destination URLs with-
out too much overhead. To solve the first challenge, NSA periodically polls the
system structures in proc/net/tcp and proc/net/udp (also the structures supporting
IPV6), and extracts the mapping between application UID and the open sockets (ip
address and port). By correlating the socket information with the URLs seen by the
proxy, we correctly associate applications with the URLs being generated. To solve
the second challenge, we batch a number of URLs together before issues queries
to various online engines to amortize resource usage (CPU, network). Using our
application, users can view all the destination end-points associated with a partic-
ular application that correspond to one of three categories: (i) third party trackers,
(ii) suspicious websites4, and (iii) destination addresses for which the proxy is by-
passed (while there are valid reasons to do so, this is likely also the behavior of
malicious applications).

With this application, our goal is to provide a mechanism for end-users to be
aware of the network activity of their installed Android applications. All of the An-
droid users among the authors have been running the application for several weeks,
and on one phone (which was previously installed with a rootkit), the application
helped identify traffic from applications (that were automatically included with
the rootkit) to suspicious destinations (even though the applications were never
launched by the user in question). The application is available as an installable
package at https://db.tt/Cx8fB5Xz. We plan to make the app publicly
downloadable via the Google Play store in the near future.

Looking much further, we can envision a crowdsourced app reputation system
driven by NSA where individual users can inspect the traffic being generated by
applications tag is as being normal, or else unexpected, or suspicious. Such indi-
vidual signals could be aggregated at a backend and fed back into the application.
This would enable easy blacklisting of applications (and their traffic) based on what
other users have observed and reacted to. The exact design of such a crowdsourced
system is outside the scope of this paper, and we hope to realize it in future work.

8 Conclusion

The lack of oversight in Android Play Store makes it all too easy for end-users
to install applications of dubious origin, or those which silently carry out activity
that might not be seen favorably by the user. In this paper, we describe a lightweight
characterization methodology that can generate descriptions of application network
behavior in an automated manner. The descriptions shed light on the nature of the

4We currently rely on the characterization provided by the Google Safe Browsing API, but will
eventually use the analysis from VirusTotal.
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websites communicated with, focusing on those that may be undesirable to the
end-user (ad related, tracking, and malicious).

Using this methodology, we conduct a characterization study of a large num-
ber of applications from the Google Play Store. As a general comment we confirm
that applications in any domain may carry undesirable activity. This stresses the
need for using broad and diversified datasets rather than focussing on specific cat-
egories of applications. In addition, our results reveal several interesting insights:
(i) that a significant number of applications, some highly rated, download an ex-
cessive number of advertisements which indicate that users may not be as sensitive
to advertisements as anecdotally conjectured; (ii) a large number of applications
communicate with a multiplicity of online tracking entities, a fact to which users
may not be aware; and (iii) we find some applications communicating with web-
sites that have been deemed malicious by malware detection engines. Our results
underscore the need for greater transparency in the network interaction of mobile
applications on the Android App store(s). To this end, we also describe the design
of our own application that provides exactly this service. With our application,
end-users are able to understand the different domains the application is communi-
cating with which enables them to make informed decisions about the desirability
of the applications they install.
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