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Abstract—We determine the achievable distortion region when
the correlated source samples are transmitted by two energy
harvesting (EH) sensor nodes to the destination over orthogonal
fading channels. A time slotted system is considered in which the
energy and the source samples arrive at the beginning of each
time slot (TS), and both the correlation between source samples
at the two nodes and fading coefficients change over time but
remain constant in each TS. Assuming non-causal knowledge
of these time-varying source statistics, energy arrivals and the
channel gains, i.e., under the offline optimization framework, we
obtain the optimal transmission and coding schemes that achieve
the points on the Pareto boundary of the total distortion region.
An iterative directional 2D waterfilling algorithm is proposed to
obtain two specific points on this boundary.

I. I NTRODUCTION

A wireless sensor node collects samples of a physical
phenomenon in its surrounding environment, processes, and
communicates these samples to a fusion center over a wireless
radio channel. A network of such nodes can be used to gather
information about a time varying process that is possibly
correlated across space and time. The main bottleneck in tra-
ditional or battery run sensor networks is the limited available
energy, which constraints the lifetime of the sensor network.
EH technology offers an attractive solution to the network
lifetime problem [1]. EH nodes can scavenge energy from
the environment (typical sources are solar, wind, vibration,
thermal, etc.) [2], therefore, in principle, one can guarantee
infinite lifetime without the need of replacing batteries.

However, the ambient energy is typically sporadic and
random, thus making the harvested energy time-varying in
addition to the underlying source processes and the channels.
Given these variations, the nodes should coordinate their
coding and transmission schemes to intelligently manage the
energy across the network and achieve the best performance.

Recently, significant research effort has been invested in
studying the optimal transmission schemes for EH commu-
nication systems [3]–[6]. The classical offline optimization
framework deals with systems which assume the non-causal
knowledge of the parameters involved, such as energy arrivals,
channel gains, etc. See [7] for an overview of different
frameworks used in studying EH communication systems.

This work has been performed within the framework of the European
research project E-CROPS, funded by CHIST-ERA.

Different from the above mentioned works which deal
with throughput optimization, the works [8]–[10] considerthe
aspects of source sample acquisition, compression rate and
transmission with EH constraints in a point-to-point setting.
In [9], the problem of distortion minimization in a fading
channel with an EH transmitter is considered. Taking into
account the variation in energy arrivals, source variances
and channel gains, the optimal compression and transmission
rates are found using the offline optimization framework. A
simple directional 2D waterfillingalgorithm is proved to be
optimal under a strict delay constraint. In [10], the distortion
performance is studied using a stochastic EH model.

In this paper, we extend the distortion minimization problem
to a network setting. To the best of our knowledge, distributed
source coding with EH nodes from a rate-distortion perspective
is not studied before. Probably [11] is the closest work that
considered distributed compressive sensing in an EH sensor
network, however, it ignores transmission and coding aspects.
We consider a system of two sensor nodes which observe
correlated source samples, and wish to communicate their
samples to the destination over orthogonal fading channels
with the minimum average end-to-end distortion. The goal is
to see how the correlation and the EH affect the coordination
among the nodes in compression and transmission schemes.
The main contribution of this paper is to characterize the
Pareto boundary of the distortion region of the quadratic
Gaussian two-encoder source coding problem [12] under EH
constraints. As we shall see, the resource allocation policy that
optimizes the distortion outperforms the throughput optimiza-
tion schemes which ignore the variation in source statistics.

II. SYSTEM MODEL

We consider a system consisting of two sensor nodes
where each node observes and samples a common physical
phenomenon locally, and hence the samples are correlated.
Then the nodes send their information to the destination over
orthogonal wireless channels as shown in Fig. 1. Both nodes
harvest energy from the environment, and are equipped with
individual energy buffers for storage.

A. Energy Harvesting Model

A time slotted system withK unit duration TSs is consid-
ered. At the beginning of thek-th TS,k ∈ [1 : K], new energy
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Figure 1. Distributed sensing and transmission with EH nodes.

packets of sizese1,k and e2,k units arrive at node1 and 2,
respectively. At each node the harvested energy is stored in
an infinite size battery and it is used only for communication
purposes, i.e., the energy consumed in sampling, compression,
etc., is ignored here, and will be studied in a future work.

B. Sensing and Communication Model

The observed physical phenomena at the two nodes are
modeled as correlated Gaussian random processes. In the
k-th TS, node 1 and node 2 collect samplesxnk =
[x1,k, x2,k, . . . , xn,k] and y

n
k = [y1,k y2,k, . . . , yn,k], respec-

tively. The elements ofxnk , ynk are independent copies of the
random variable{(Xk, Yk)}, which is modeled as a bi-variate
Gaussian random variable with the following probability den-
sity function (PDF):

fXk,Yk
(xk, yk) =

1

2π|Λk|1/2
exp

{

−1

2
vk

TΛk
−1

vk

}

,

wherevk = [xk yk]
T and the covariance matrixΛk is given

by

Λk =

(

σ2
Xk

ρkσXk
σYk

ρkσXk
σYk

σ2
Yk

)

, −1 < ρk < 1.

We assume that the duration of each TS is large enough (i.e.,
large n) to invoke the information theoretic arguments. We
consider strict delay constraints, and assume that all samples
collected in the beginning of TSk must be sent to the
destination within the same TS.

The sensed data is sent to the destination over orthogonal
channels. Each TS consists ofn channel uses. The channel
between thei-th node (i ∈ {1, 2}) and the destination in the
k-th TS is modeled as a memoryless additive white Gaussian
noise (AWGN) channel with unit noise variance and a fixed
channel gaingi,k. Due to the largen assumption, the maximum
transmission rate of thei-th node in thek-th TS is given by
ri,k , 1

2 log2 (1 + gi,kpi,k) bits/channel use, wherepi,k is the
average transmission power of nodei in k-th TS.

Some comments on the general characteristics of the opti-
mal transmission strategies are in order. First, since the energy
packets are available only at the beginning of a TS, and the
channel gain remains constant throughout a TS, it is not hard
to see that constant power transmission is optimal in each
TS, while the transmission power may change from one TS

to another. Additionally, since the channels are orthogonal,
source-channel separation is optimal in this setting [13].

For a given power/rate allocation, the achievable distortion
region in thek-th TS is given by [12]

Dk = D1,k ∩D2,k ∩D12,k, (1)

where the sets describingDk are defined as:

D1,k =

{

(d1,k, d2,k) : d1,k ≥
σ2
Xk

22r1,k

(

1− ρ2k + ρ2k2
−2r2,k

)

}

,

D2,k =

{

(d1,k, d2,k) : d2,k ≥
σ2
Yk

22r2,k

(

1− ρ2k + ρ2k2
−2r1,k

)

}

,

and finally,

D12,k =
{

(d1,k, d2,k) : d1,kd2,k ≥ σ2
Xk
σ2
Yk
β (r1,k, r2,k)

}

,

where

β (r1,k, r2,k) = ρ2k2
−4(r1,k+r2,k) +

1− ρ2k
22(r1,k+r2,k)

,

di,k and ri,k are the achievable distortion and transmis-
sion/compression rate of nodei in TS k, respectively.

C. Problem Formulation

The distortion achievable for the data transmitted by thei-th
sensor node overK TSs is denoted byDi =

1
K

∑K
k=1 di,k.

We define the distortion regionD⋆ as

D
⋆ = {(D1, D2) : (d1,k, d2,k) ∈ Dk ∀k, (p1,p2) ∈ F} ,

wherepi = [pi,1, pi,2, . . . , pi,K ], i ∈ {1, 2} andF is given by

F =







(p1,p2) :
k
∑

j=1

pi,j ≤
k
∑

j=1

ei,j , pi,j ≥ 0, ∀i, ∀k







. (2)

The above set represents theenergy neutralityof the system,
i.e., at each node, energy consumed can not be more than the
energy harvested till that time.

Our goal is to characterize thePareto boundaryof the region
D
⋆. This boundary consists of operating points(D1, D2) such

that it is impossible to improve the distortion of one node,
without simultaneously increasing the other node’s distortion.

III. C HARACTERIZING THE PARETO BOUNDARY OFD⋆

We start by investigating the convexity ofD⋆, which will
be useful in the characterization of its Pareto boundary. The
distortion region in thek-th TS in terms of the transmission
powerspi,k can be written as

Dk =

{

(d1,k, d2,k) : d1,k ≥ f1,k, d2,k ≥ f2,k, d2,k ≥ f12,k
d1,k

}

,

(3)
where the functionsf1,k , f1,k(p1,k, p2,k), f2,k ,

f2,k(p1,k, p2,k) and f12,k , f12,k(p1,k, p2,k) are obtained
by substitutingri,k , 1

2 log2 (1 + gi,kpi,k) in the three sets
describingDk in (1).
Proposition 1 The functionsf1,k(p1,k, p2,k), f2,k(p1,k, p2,k)
and f12,k(p1,k,p2,k)

d1,k
are jointly convex inp1,k, p2,k and d1,k.



Proof: See Appendix.

Proposition 2 D
⋆ is a convex region.

Proof: Let two distinct distortion pairs achieved by the
power allocation policies(p1,p2) and (p̃1, p̃2) belonging to
the setF be denoted by(D1, D2) and(D̃1, D̃2), respectively.
Every point on the line segment joining the points(D1, D2)
and(D̃1, D̃2) can be represented by(D̂1, D̂2) = α(D1, D2)+
(1 − α)(D̃1, D̃2), 0 ≤ α ≤ 1. By finding a feasible power
allocation policy that achieves the distortion pair(D̂1, D̂2),
we prove thatD⋆ is a convex set. We can write

(D̂1, D̂2) =

(

1

K

K
∑

k=1

d̂1,k,
1

K

K
∑

k=1

d̂2,k

)

, (4)

where d̂i,k , αdi,k + (1 − α)d̃i,k, i ∈ {1, 2}. Using the
conditions inD1,k we have

d̂1,k ≥ αf1,k (p1,k, p2,k) + (1− α)f1,k (p̃1,k, p̃2,k)

(a)

≥ f1,k (p̂1,k, p̂2,k) ,
(5)

where (a) follows from the convexity off1,k, and the def-
inition p̂i,k , αpi,k + (1 − α)p̃i,k. Similarly, we can show
that

d̂2,k ≥ f2,k (p̂1,k, p̂2,k) . (6)

Finally, considering the constraint inD12,k,

d̂2,k ≥ α
f12,k (p1,k, p2,k)

d1,k
+ (1− α)

f12,k (p̃1,k, p̃2,k)

d̃1,k
(b)

≥ f12,k (p̂1,k, p̂2,k)

d̂1,k
,

(7)

where(b) follows from the convexity off12,k/d1,k.
Since(p1,p2) ∈ F and (p̃1, p̃2) ∈ F, it can be easily seen

that(p̂1, p̂2) ∈ F. From (5), (6) and (7), we have(d̂1,k, d̂2,k) ∈
Dk. Using (4) and the definition ofD⋆, we conclude that
(D̂1, D̂2) ∈ D

⋆, and hence the proof.
SinceD

⋆ is a convex region, the Pareto boundary is the
closure of all the points(D⋆1,D

⋆
2), where (D⋆1,D

⋆
2) is the

solution to the following optimization problem

min
(D1,D2)

µ1D1 + µ2D2 s.t (D1, D2) ∈ D
⋆ (8)

for someµ = [µ1 µ2]
T ∈ R

2
+. We examine two different cases

of (8) depending on the choice ofµ.

A. Source coding with a helper node (µ1 = 0 or µ2 = 0)

In this subsection, we focus on the scenario in which the
decoder is interested in minimizing the distortion of one
of the source component, and treats the other component
information as side information. Without loss of generality,
we consider minimizing the distortionD1. Since the decoder
is only interested in decodingXk, the distortion incurred in
decodingYk, d2,k, is ignored. Thus, in this case the distortion
region is given by [14]

Dk =

{

(d1,k, d2,k) : d1,k ≥ f1,k(p1,k, p2,k)

}

. (9)

The power allocation policy that minimizesD1 is obtained
by solving the following optimization problem

min
pi,k,d1,k

K
∑

k=1

d1,k (10a)

f1,k(p1,k, p2,k)− d1,k ≤ 0, k ∈ [1 : K] (10b)
l
∑

j=1

pi,j ≤
l
∑

j=1

ei,j , i ∈ {1, 2}, l ∈ [1 : K] , (10c)

pi,k ≥ 0 i ∈ {1, 2}, k ∈ [1 : K] . (10d)

Since the distortion is minimized, the constraint (10b) is
satisfied with equality for the optimal solution. Using Proposi-
tion 1, we can see that (10) is a convex optimization problem,
and the Karush-Kuhn-Tucker (KKT) conditions provide the
necessary and sufficient conditions for optimality [15]. The
Lagrangian of (10) can be defined as

L ,

K
∑

k=1

f1,k(p1,k, p2,k) +
K
∑

j=1

λj

(

j
∑

k=1

p1,k −
j
∑

k=1

e1,k

)

+
K
∑

j=1

ψj

(

j
∑

k=1

p2,k −
j
∑

k=1

e2,k

)

+
K
∑

k=1

ηkp1,k +
K
∑

k=1

φkp2,k,

(11)
where λj ≥ 0, ψj ≥ 0, ηk ≥ 0 and φk ≥ 0 are the
Lagrange multipliers corresponding to (10c) and (10d). Taking
the derivative of (11) with respect top1,k, and using the
complimentary slackness conditions, we obtain

p1,k =Wk [ϑk −Hk]
+
, (12)

whereWk ,

√

σ2

Xk

g1,k

(

1− ρ2k +
ρ2
k

(1+p2,kg2,k)

)

, Hk , 1
Wkg1,k

and the water levelϑk , 1
(√

∑

K
j=k

λj

) . Similarly,

p2,k = Bk [γk − Lk]
+
, (13)

whereBk ,
σYk

ρk√
g2,k(1+p1,kg1,k)

, Lk , 1
Bkg2,k

and the water

level γk , 1
√

∑

K
j=k

ψj

, From (12) and (13) we can see that

optimal pi,k ’s are dependent, and it is difficult to obtain a
closed form expression, however, an iterative directional2D
waterfilling algorithm to obtain the optimal policy is provided.

Given the optimal power allocation of the second node,
denoted asp∗

2, the optimalp∗

1 is obtained by solving

min
p1,k

K
∑

k=1

f1,k(p1,k, p
∗

2,k) s.t (p1,p
∗

2) ∈ F. (14)

By using KKT conditions, it can be easily seen thatp∗1,k is
obtained by pluggingp∗2,k into the expression in (12). This
solution can be interpreted as directional 2D water-filling[9].
A graphical illustration of the solution forp∗1,k is given in Fig.
2, forK = 3 TSs. Precisely, in thek-th TS we have rectangles
of width Wk and heightHk. The harvested energy is poured
over the levelHk up to the water levelϑk. The shaded area
below the water levelϑk and aboveHk represents the power
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Figure 2. 2D waterfilling interpretation.

allocated in TSk. The directional taps in Fig. 2 represents the
fact that the energy can be flown only in forward direction.
We refer the reader to [9] for the details of the algorithm.

Since (10) is a convex optimization problem, and the con-
straint set can be written as the Cartesian product of two sets,
it can be shown that an alternating minimization algorithm,
alternating between vectorsp1 andp2, converges to the global
optimum [16]. Therefore, we use directional 2D water-filling
in an alternating fashion until the solution converges. We
denote(D1,m,D2,h) as the optimal distortion tuple obtained
whenµ2 = 0. Similarly, we obtain(D1,h,D2,m) whenµ1 = 0.

B. Weighted sum distortion (µ1 > 0, µ2 > 0)

The points in between(D1,m,D2,h) and (D1,h,D2,m) that
lie on the Pareto boundary are obtained by solving (8) for
µ > 0. The optimization problem is given by

min
pi,k,di,k

Ds = µ1

K
∑

k=1

d1,k + µ2

K
∑

k=1

d2,k (15a)

(d1,k, d2,k) ∈ Dk, k ∈ [1 : K] (15b)

(p1,p2) ∈ F. (15c)

SinceDk is a convex set (by Proposition 2), and the other
constraints are linear, (15) is a convex optimization problem.
To further understand the structure of the optimal solution, the
optimization is performed in two steps. First, consider

D̃s (p1,p2) = min
di,k

Ds s.t (d1,k, d2,k) ∈ Dk ∀k. (16)

We now illustrate the solution of (16) graphically in Fig.
3. Since there is no dependency among the distortion sets
Di,Dj , i 6= j, the optimization can be performed separately
for each TS. In thek-th TS, depending on the slope of the line
µ1d1,k+µ2d2,k, it is not hard to see that the optimal solution
must occur at one the following three points:

(

d∗1,k, d
∗

2,k

)

=



















A ,

(

f1,k,
f12,k
f1,k

)

,

B ,

(

f12,k
f2,k

, f2,k

)

, or

C ,

(
√

µ2

µ1

f12,k,
√

µ1

µ2

f12,k

)

,

(17)

as shown in Fig. 3. Since (15) is a convex optimiza-
tion problem, the functionD̃s is convex with domain
{(p1,p2) : (p1,p2) ∈ F, (d1,k, d2,k) ∈ Dk∀k} [15, 3.2.5].
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Using (16) and (17), the second step of the optimization is
given by

min
pi,k

D̃s (p1,p2) = µ1

K
∑

k=1

d∗1,k + µ2

K
∑

k=1

d∗2,k (18a)

(p1,p2) ∈ F. (18b)

Using the above analysis, we now provide a simplified way
of obtaining the Pareto optimal points ofD∗ in a static setting.

1) Static setting: In the static setting, we haveσ2
Xk

=
σ2
X , σ

2
Yk

= σ2
Y , ρk = ρ, gi,k = gi, ∀i, k, and the EH pro-

files are similar. The EH profiles are said to be similar if
the most majorized1 feasible vectors(p∗

1,p
∗

2), wherep
∗

1 �
p1,p

∗

2 � p2, ∀(p1,p2) ∈ F, have same structure i.e.,∀k, if
p∗1,k = p∗1,k+1 then p∗2,k = p∗2,k+1, and if p∗1,k 6= p∗1,k+1 then
p∗2,k 6= p∗2,k+1. More details can be found in [17, Sec. V-A].

Proposition 3 In the static setting, all points on the Pareto
boundary ofD∗are obtained by the power allocation(p∗

1,p
∗

2),
wherep∗

1 � p1,p
∗

2 � p2 ∀ (p1,p2) ∈ F.

Proof: In the static case, we havefi,k(p1,k, p2,k) =
fi(p1,k, p2,k)∀i, k and f12,k(p1,k, p2,k) = f12(p1,k, p2,k)∀k.
Therefore, using (17) in the static setting, we can write
d∗i,k(p1,k, p2,k) = d∗i (p1,k, p2,k)∀i, k. Sinced∗i,k = d∗i ∀k, we
can see that the functioñDs (p1,p2) is symmetric. Using the
convexity and symmetry of̃Ds, and by [17, Proposition 4], we
can prove that(p∗

1,p
∗

2) is optimal. Once(p∗

1,p
∗

2) is obtained,
the optimal distortion regionD∗

k for TS k is given by (1).
Depending onµ, usingD

∗

k and (17), we obtain(d∗1,k, d
∗

2,k)
and then(D⋆1,D

⋆
2).

We could not find a simple algorithm to solve (15) in a
non-static setting, therefore we resort to numerical methods.

IV. N UMERICAL RESULTS

In this section, numerical simulations are used to illustrate
the Pareto boundary of the distortion region. We consider
K = 6 TSs. The harvested energy vectors are chosen as

1
x � y denotes that the vectorx is majorizedby the vectory. Please

refer to [17] for details.
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Figure 4. Pareto boundary ofD∗.

e1 = [4, 2, 5, 4, 3, 10] ande2 = [4, 0.5, 3.5, 2.5, 3, 4]. The vari-
ance of the sources are given byσ2

X = [3, 0.2, 2, 0.4, 1.4, 0.3]
and σ

2
Y = [0.8, 2, 3.6, 4.8, 1.2, 2.3]. The correlation co-

efficient among the observed source samples isρ =
[0.95, 0.4, 0.5, 0.3, 0.8, 0.1]. Fig. 3 shows the Pareto bound-
ary of D

⋆ when the channel gains are chosen asg1 =
[0, 0.9, 0.2, 0, 0.8, 0.3] andg2 = [0.5, 0, 0.8, 0.9, 0.1, 0.9]. The
points (D1,m,D2,h) and (D1,h,D2,m) correspond to the dis-
tortion pairs when node2 or node 1 acts as the helper
node, respectively. The remaining boundary, shown in green
in Fig. 4, is obtained by numerically solving (15) for different
µ ∈ R

2
+ pairs. The points B1 and B2 are obtained when each

node greedily maximizes the total number of bits transmitted
till the end ofK-th TS irrespective of the source statistics. In
each TS, at each node, the compression rate is equal to the
transmission rate. The power allocation ati-th node is obtained
by using directional waterfilling withei andgi [4].

V. CONCLUSION

We have determined the Pareto boundary of the the distor-
tion region of the quadratic Gaussian two-encoder source cod-
ing problem with EH nodes. Specific points on this boundary
are obtained by using an iterative directional 2D waterfilling
algorithm. In the static case, we have shown that all points
on the Pareto boundary are obtained by the most majorized
feasible power allocation policies.

APPENDIX

A. Proof of Proposition 1

Sinceri,k is concave inpi,k, it can be easily seen that2−r1,k

and2−(r1,k+r2,k) are convex. Since the summation of convex
functions is convex,f1 (p1,k, p2,k) is convex. Similarly, we can
show thatf2 (p1,k, p2,k) is also convex. To show that the final
function is convex as well, consider the following functions:

h (x) =
√

ρ2k2
−4x + (1− ρ2k)2

−2x,

andg(x, d1,k) = x2

d1,k
. The derivative ofh is given by

h
′

(x) = − loge 2

[

h (x) +
ρ2k

√

ρ2k16
x + (1− ρ2k)64

x

]

.

It can be seen thath
′

(x) is monotonically increasing, and
thereforeh(x) is convex. The functiong(x, d1,k) is convex
for d1,k > 0 [15]. Using the above defined functions we can
write

f12(p1,k, p2,k)

d1,k
= g (h (p1,k, p2,k) , d1,k) , (19)

whereh (p1,k, p2,k) = h (r1,k + r2,k).
The functionh (p1,k, p2,k) is convex sinceh(x) is convex

and non-increasing, andri,k is concave. Using the fact that
h (p1,k, p2,k) and g(x, d1,k) are convex, and monotonicity of
g in the first argument, we can easily prove thatf12(p1,k,p2,k)

d1,k
is convex.

REFERENCES

[1] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Powermanagement
in energy harvesting sensor networks,”ACM Trans. Embed. Comput.
Syst., vol. 6, no. 4, Sep. 2007.

[2] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
survey and implications,”IEEE Communications Surveys Tutorials,
vol. 13, no. 3, pp. 443–461, Mar. 2011.

[3] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy
harvesting communication system,”IEEE Trans on Comm., vol. 60,
no. 1, pp. 220–230, Jan. 2012.

[4] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener,“Transmis-
sion with energy harvesting nodes in fading wireless channels: optimal
policies,” IEEE JSAC, vol. 29, no. 8, pp. 1732–1743, Sep. 2011.

[5] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless
communications with energy harvesting constraints,”IEEE Transactions
on Signal Processing, vol. 60, no. 9, pp. 4808–4818, Sep. 2012.

[6] O. Orhan, D. Gunduz, and E. Erkip, “Energy harvesting broadband com-
munication systems with processing energy cost,”IEEE Transactions on
Wireless Communications, vol. 13, no. 11, pp. 6095–6107, Nov. 2014.

[7] D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing
intelligent energy harvesting communication systems,”IEEE Commu-
nications Magazine, vol. 52, no. 1, pp. 210–216, Jan. 2014.

[8] P. Castiglione, O. Simeone, E. Erkip, and T. Zemen, “Energymanage-
ment policies for energy-neutral source-channel coding,”IEEE Trans on
Communications, vol. 60, no. 9, pp. 2668–2678, Sep. 2012.

[9] O. Orhan, D. Gunduz, and E. Erkip, “Source-channel coding under
energy, delay and buffer constraints,” 2014. [Online]. Available:
http://arxiv.org/abs/1501.01858

[10] M. Motlagh, M. Khuzani, and P. Mitran, “On lossy source-channel
transmission in energy harvesting communication systems,” inIEEE
ISIT, June 2014.

[11] W. Chen, Y. Andreopoulos, I. Wassell, and M. Rodrigues,“Towards
energy neutrality in energy harvesting wireless sensor networks: A case
for distributed compressive sensing?” inIEEE GLOBECOM, Dec 2013.

[12] A. Wagner, S. Tavildar, and P. Viswanath, “Rate region of the quadratic
Gaussian two-encoder source-coding problem,”IEEE Transactions on
Information Theory, vol. 54, no. 5, pp. 1938–1961, May. 2008.

[13] J.-J. Xiao and Z.-Q. Luo, “Multiterminal source-channel communication
over an orthogonal Multiple-access channel,”IEEE Transactions on
Information Theory, vol. 53, no. 9, pp. 3255–3264, Sep. 2007.

[14] Y. Oohama, “Gaussian multiterminal source coding,”IEEE Trans on
Info Theory, vol. 43, no. 6, pp. 1912–1923, Nov. 1997.

[15] S. Boyd and L. Vandenberghe,Convex optimization. New York, NY,
USA: Cambridge University Press, 2004.

[16] D. Bertsekas,Nonlinear programming. Athena Scientific, 1999.
[17] R. Gangula, D. Gesbert, and D. Gunduz, “Optimization of energy

harvesting MISO communication system with feedback,”IEEE JSAC,
vol. 33, no. 3, pp. 396–406, Mar 2015.


