
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
Hypervisor-based malware protection with
AccessMiner
Aristide Fattori a,*, Andrea Lanzi a, Davide Balzarotti b, Engin Kirda c

a Dipartimento di Informatica, Universit�a degli Studi di Milano, Milan, Italy
b EURECOM, Sophia Antipolis, France
c Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
a r t i c l e i n f o

Article history:

Received 24 October 2014

Received in revised form

19 February 2015

Accepted 26 March 2015

Available online 9 April 2015

Keywords:

Malware detection

OS protection

Behavioral-based detection

Hypervisor
* Corresponding author. Dipartimento di Inf
E-mail addresses: aristide@security.di.un

ek@ccs.neu.edu (E. Kirda).
http://dx.doi.org/10.1016/j.cose.2015.03.007
0167-4048/© 2015 Elsevier Ltd. All rights rese
a b s t r a c t

In this paper we discuss the design and implementation of AccessMiner, a system-centric

behavioral malware detector. Our system is designed to model the general interactions

between benign programs and the underlying operating system (OS). In this way,

AccessMiner is able to capture which, and how, OS resources are used by normal appli-

cations and detect anomalous behavior in real-time.

The advantage of our approach is that it does not require to be trained on malicious

samples, and therefore it is able to provide a general detection solution that can be used to

protect against both known and unknown malware. To make the system more resilient

against tampering from sophisticated attackers, AccessMiner is implemented as a custom

hypervisor that sits below the operating system. In this paper we discuss the imple-

mentation details and the technical solutions we adopted to optimize the performances

and reduce the impact of the system.

Our experiments show that in a stable environment AccessMiner can provide a high

level of protection (around 90% detection rate with zero false positives) with an acceptable

overhead e similar to the one that can be experienced in a state of the art virtual machine

environment.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of detecting attacks and malicious applications

at the host level has been largely studied by both the research

and the industrial communities. The most common solutions

are based either on matching static signatures or on using

behavioral models to specify allowed or forbidden behaviors.

Signatures work well to identify single malware instance but

they quickly become ineffective when the attacker adopts
ormatica, Via Comelico 3
imi.it (A. Fattori), andrea

rved.
obfuscated or polymorphic code. At the same time, most

behavior-based detection techniques follow a program-centric

approach that focuses on modeling the execution of indi-

vidual programs. These models often lack the context to

capture how generic benign and malicious programs interact

with their environment and with the underlying operating

system. As a result, detectors based on program-centric

behavioral techniques tend to raise alerts whenever a new

program is encountered or an existing program is used in a
9, 20135, Milano, Italy. Tel.: þ39 0250316362.
.lanzi@unimi.it (A. Lanzi), balzarotti@eurecom.fr (D. Balzarotti),

mailto:aristide@security.di.unimi.it
mailto:andrea.lanzi@unimi.it
mailto:balzarotti@eurecom.fr
mailto:ek@ccs.neu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.03.007&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 034
different way. This typically leads to unacceptably high false

positive rates e thus limiting the practical applicability of

these approaches.

AccessMiner (Lanzi et al., 2010) introduced a novel system-

centric technique to model the activity of benign programs.

Themain idea behind the AccessMiner approach is that, given

enough training, it is possible to identify common patterns in

the way benign applications interact with the operating sys-

tem resources. For instance, while normal programs typically

write only to their own directories (and to temporary di-

rectories), malware often attempt to tamper with other ap-

plications and critical system settings, often residing outside

the normal application “scope”. As a result, special access ac-

tivity models can be derived by AccessMiner only by looking at

the execution of a broad set of benign applications. Therefore,

traces ofmalware execution, often problematic to collect from

a coverage and diversity point of view, are not required to

train our classifiers.

While our experiments showed that a system-centric

approach was successful in identifying a large amount of

diverse malware samples with very few false positives, a

number of important points were not addressed in the

original paper. In particular, the original approach was

designed to be implemented as part of the Windows oper-

ating system kernel. However, the threat scenario rapidly

changed in the last years with the creation of new attacks

techniques (i.e., Rootkits) which aim is to protect user-space

malware from detection models and disable security

mechanisms (i.e., Reference Monitors). Rootkits has always

been shipped with two main components: a kernel-level

component and user-space component. The goal of the

former is to disable security mechanism and hide informa-

tion from the system, while the aim of the second is to

perform malicious actions. Both components are essential

for successful, simple and general attack design. Moreover

the rise of targeted attacks also poses new challenges that

are not fully addressed by current methodologies. For

example, by carefully combining a mix of social engineering,

zero days exploits for unknown Windows vulnerabilities,

and stolen certificates to sign kernel modules e motivated

and well-funded attackers can quickly subvert the target OS

and remain undetected for long period of times (as the

Stuxnet, Symantec, 2011a; Duqu, Symantec, 2011b; and

Flame Symantec, 2012 incidents have shown).

Since a successful targeted attack could easily tamper with

OS-based detection mechanisms, in this paper we re-design

AccessMiner and we describe how the same approach can

be implemented as a custom hypervisor. This new solution

makes the detector much more resilient to sophisticated at-

tacks (Rootkits that tries to disable the Reference Monitors),

but it also introduces several technical problems and chal-

lenges. First, in order to collect the same information and

monitor the system calls issued by each process, a hypervisor

has to solve the so-called semantic gap and it has to provide a

trusted path related to the system call invocation. Even

though many solutions exists for this problem, current

hypervisor-based detection countermeasures do not scale

well to several scenarios (e.g., critical infrastructures), due to

their high computational requirements that conflict with the

strict timing constraints of the running applications. The
challenge here is to use a light-weight approach that does not

impact the performance of the system in a prohibitive way.To

summarize, the new contributions of this paper are the

following:

� We extend and complement the original AccessMiner

paper by presenting a real implementation as a custom

hypervisor. In particular we design a system that protect

itself from sophisticated attacks techniques (i.e., Rootkits)

and provide at the same time a trusted path for the system

call invocation as a main source of information for our

detection system.We describe the problemswe had to face

and the solutions we developed to adapt the original al-

gorithm to this setup.

� We extensively tested the new detector, in particular to

show to which extent it affects the performance of the

system. Our experiments show that the high protection

provided by AccessMiner can be obtained at the price that

is normally paid by running a system inside a state-of-the-

art virtual environment, such as the ones normally adop-

ted in the cloud.
2. System-centric models and detection

Several studies, such as Canali et al. (2012) and Lanzi et al.

(2010), have shown that models based on system call se-

quences (n-grams) have difficulties in distinguishing normal

and malicious behaviors. One of the main problems is that

while n-grams might capture well the execution of individual

programs, they poorly generalize to other applications. The

reason is that the model is closely tied to the execution(s) of

particular applications; we refer to this as a program-centric

detection approach.

In this section, we propose a model that attempts to ab-

stract from individual program runs and that generalizes how

benign programs generally interact with the operating sys-

tem. For capturing these interactions, we focus on the file

system and the registry activity of Microsoft Windows pro-

cesses. More precisely, we record the files and the registry

entries that Windows processes read, write, and execute (in

case of files only).

Our model is based on a large number of runs of a diverse

set of applications, and it combines the observations into a

singlemodel that reflects the activities of all programs that are

observed. For this to work, we leverage the fact that we see

“convergence.” That is, even when we build a model from a

subset of the observed processes, the activity of the remaining

processes fits this model very well. Thus, by looking at pro-

gram activity from a system-centric view e that is, by

analyzing how benign programs interact with the OSewe can

build a model that captures well the activity of these pro-

grams. Of course, this would not be sufficient by itself. To be

useful, our model must also be able to identify a reasonably

large fraction of malware. To demonstrate that this is indeed

the case, we have performed a number of experiments that

are described in more detail in Section 5.

Fig. 1 captures the creation of the access activity model. All

the steps that are required for the creation are explained in the

following of this section.

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Fig. 1 e Creation of system-centric models.

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 35
2.1. Creating access activity models

To capture normal (benign) interactions with the file system

and the Windows registry, we propose the creation of access

activitymodels. An access activitymodel specifies a set of labels

for operating system resources. In our case, the OS resources

are directories in the file system and sub-keys in the registry

(sub-keys are the equivalent of directories in the file system).

For simplicity, in the following we refer to directories and sub-

keys as “folders”.

Note that we do not specify labels directly on files or reg-

istry entries. The reason for this was that the resultingmodels

are significantly smaller when looking at folders only. As a

result, the model generation process is faster and “converges”

quicker (i.e., less training data is required to build stable

models). Moreover, in almost all cases, the labels for the folder

entries (files or registry keys) would be similar to the label for

that folder itself. Thus, the sacrifice in precision is minimal.

A label L is a set of access tokens {t0, t1,…, tn}. Each token t is

a pair 〈a, op〉. The first component a represents the application

that has performed the access, the second component op

represents the operation itself (that is, the type of access).

In our current system, we refer to applications by name. In

principle, this could be exploited by a malware process that

decides to reuse the name of an existing application (that has

certain privileges). In the future, we could replace application

names by names that include the full path, the hash of the

code that is being executed, or any other mechanism that al-

lows us to determine the identity of the application that a

process belongs to. Such techniques are already described in

different papers (Litty et al., 2008), and its implementation is

out of the scope of this paper. In addition to specific applica-

tion names, we use the star character (*) as a wildcard to

match any application.

The possible values for the operation component of an

access token are read, write, and execute for file-system re-

sources (directories), and read and write for registry sub-keys.

2.2. Initial access activity model

An initial access activity model precisely reflects all resource

accesses that appear in the system-call traces of all benign
processes that wemonitored (we call this data set the training

data). Note that for this, we merge accesses to resources that

are found in different traces and even on different Windows

installations. In other words, we build a “virtual” file system

and registry that contains the union of the resources accessed

in all traces.

Whenever an application proc opens or reads from an

existing file foo in directory C:ypathydir, we insert the

directory dir into our “virtual” file system, including all di-

rectories on the path to dir. When a prefix of the directories

along path already exist in our virtual file system, then these

directories are re-used. All directories that are not already

present (including dir) are added to the virtual file system tree.

Then, we add the access token 〈proc, read〉 to the label asso-

ciated with dir.

When a process creates or deletes a file in a directory dir, or

when it writes to a file, thenwe use the operation write for the

access token. Similar considerations apply for read and write

operations that are performed on the registry. Finally, when-

ever a binary is executed (loaded by the OS loader), then we

add a token with execute to the directory that stores this

binary.

For example, consider that file C:ydiryfoo is read by pA on

machine A, and that file C:ydirysubybar is written by pB on

another machine B. Then, the resulting virtual file system tree

would have C:y as its root node. From there, we have a link to

the directory dir, which in turn has a link to sub. The label

associated with dir is {〈pA,read〉}, and the label associated with

sub is {〈pB,write〉}.

2.3. Pre-processing

Before the model generation can proceed, there are two

additional pre-processing steps that are necessary. First, we

need to remove a small set of benign processes that either

read or execute files in many folders. The problem is that

these applications appear in many labels and could lead to an

access activity model that is less tight (restrictive) than

desirable. We found that such applications fall into three

categories: Microsoft Windows services (such as Windows

Explorer or the command shell) that are used to browse the file

system and launch applications; desktop indexing programs;

and anti-virus software. The number of different applications

that belong to these categories is likely small enough so that a

manually created white list could cover them. In our system,

we remove all applications that read or execute files in more

than 10% of the directories.We found a total of 15 applications

that fit this profile: nine Windows core services, two desktop

indexing applications, and six anti-virus (AV) programs.

Identifying such applications automatically is reasonable,

because we assume that our training data does not contain

malicious code. However, the number of white-listed appli-

cations is so small that the entries can be easily verified

manually.

The second pre-processing step is needed to identify ap-

plications that start processes with different names. We

consider that two processes with different names belong to

the same application when their executables are located in

the same directory. We have found 14 applications that start

multiple processes with different names. These include well-

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 036
known applications such as MS Office, Messenger, Skype, and

RealPlayer. Of course, all Windows programs that are located

in C:yWindowsysystem32 are also aggregated (into a single

meta-application that we refer to as win_core). Merging pro-

cesses that have different names but that ultimately belong to

the same application is useful to create tighter access activity

models.
2.4. Model generalization

Based on the initial access activity model, we perform a

generalization step. This is needed because we clearly cannot

assume that the training data contains all possible programs

that can be installed on aWindows system, nor do we want to

assume that we see all possible resource accesses of the ap-

plications that we observed. Also, the initial model does not

contain labels for all folders (recall that the access is only

recorded for the folder that contains the accessed entity).

The generalization step performs a post-order traversal of

both the virtual file system tree and the virtual registry tree.

Whenever the algorithm visits a node, it performs the

following four steps:

Step 1: First, the algorithm checks the children of the cur-

rent node to determine whether access tokens can be

propagated upward in the tree. Intuitively, the idea is that

whenever we inspect a folder (node) and observe that all its

sub-folders are accessed by a single application only, we

assume that the current folder also belongs to this

application.

More formally, the upward propagation rule works as fol-

lows: For each operation op, we examine the labels of all child

nodes and extract the access tokens that are related to op.

This yields a set of access tokens {t1, …, tn}. We then inspect

the applications involved in these accesses (i.e., the first

component of each token ti). When we find that all accesses

were performed by a single application proc, we add the access

token 〈proc, op〉 to the current label.

Step 2: The upward propagation rule of Step 1 is used to

identify parts of the file system or the registry that belong

to a single application. However, this is problematic when

considering container folders. A container is typically a

directory that holds many “private” folders of different

applications. A private folder is a folder that is accessed by

a single application only (including all its sub-folders). A

well-known example of a container is the directory

C:yProgram Files, which stores the directories of many

Windows programs.

Since a container holds folders owned by many different

applications, its label would deny access to all sub-folders that

were not seen during training. This might be more restrictive

than necessary. In particular, we would like to ensure that

whenever an application accesses a previously unseen folder

in a container, this should be allowed. Intuitively, the reason is

that this access follows an expected “pattern,” but the specific

folder has not been seen during training. To handle these
cases, we introduce a special flag that can be set to mark a

folder as a container.

The following rule is used to mark a folder as a container:

Similar to before, we examine the labels of all child nodes and

extract the access tokens that are related to each operation op.

We then inspect the set of access tokens that is extracted {t1,

…, tn}. When the applications in these accesses are different,

but there is no wildcard present in any access token, then the

folder ismarked as container.We explain the implications of a

container flag for detection in Section 2.5.

Step 3: Next, the access tokens in the label associated with

the current node aremerged. To this end, the algorithmfirst

finds all access tokens that share the same operation op

(second component). Then, it checks their application

names (first components). When all tokens share the same

application name, they are all identical, and we keep a

single copy. When the application names are different, or

one token contains the wildcard, then the tokens are

replaced by a single token in the form {〈*, op〉}. Merging is

useful to generalize cases in which we have seen multiple

applications that perform identical operations in a partic-

ular folder, and we assume that other applications (which

we have not seen) are also permitted similar access.

Step 4: Finally, the algorithm adds access tokens that were

likely missed because of the fact that the training data is

not complete. More precisely, for each access token that is

related to a write operation, we check whether there exists

a corresponding read token. That is, for all applications that

have written to a folder, we check whether they have also

performed read operations. If no such token can be found,

we add it to the label. The rationale for this step is that an

application that can write to resources in a folder can very

likely also perform read operations. While it is possible to

configure files and directories for write-only access, this is

very rare. On the other hand, adding read tokens allows us

to avoid false positives in themore frequent case where we

have simply not seen (legitimate) read operations in the

training data.

When the generalization algorithm completes, all nodes in

the virtual file system and the registry tree have a (possibly

empty) label associated with them.

Note that, for building the access activity model, we do not

require any knowledge aboutmalicious processes. That is, the

model is solely built from generalizing observed, good

behavior.

2.5. Model enforcement and detection

Once an access activity model M is built, we can deploy it in a

detector. More precisely, a detector can use M to check pro-

cesses that attempt to read, write, or execute files in di-

rectories or that read or write keys from the registry.

The basic detection algorithm is simple. Assume that an

application proc attempts to performoperation op on resource

r located in ypathydir. We first find the longest prefix P

shared between the path to the resource (i.e.,ypathydir) and

the folders in the virtual tree stored by M. For example, when

the virtual file system tree contains the directory

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 37
C:ydirysubyfoo and the accessed resource is located in

C:ydirysubybar, the longest common prefix P would be

C:ydirysub.We then retrieve the label LP associatedwith this

prefix and check for all access tokens that are related to

operation op (actually, after generalization, there will be at

most one such token, or none). When no token is found, the

model raises an alert. When a token is found, its first

component is compared with proc. When the application

names match or when the first component is *, the access

succeeds. Otherwise, an alert is raised.

The situation is slightly more complicated when the folder

that corresponds to the prefix P is marked as container. In this

case, we have the situation that a process accesses a sub-

folder of a container that was not present in the training

data. For example, this could be a program installed under

C:yProgram Files that was not seen during training. In this

case, the access is permitted. Moreover, the model is dynami-

cally extended with the full path to the resource, and all new

folders receive labels that indicate that application proc is its

owner. More precisely, we add to each label access tokens in

form of 〈proc, op〉 for all operations. This ensures that from

now on, no other process can access these newly “discovered”

folders. This makes sense, because it reflects the semantics of

a container (which is a folder that stores sub-folders that are

only accessed by their respective owners).

Whenever an alert is raised, we have several options. It is

possible to simply log the event, deny that particular access, or

terminate the offending process.
3. Hypervisor framework design

In this section we present the design of a hypervisor-based

detector that implements the system centric technique pre-

sented in the previous section. It is important to note that the

design part of the Hypervisor is one of the main contributions

of the extension of the paper.

Our enforcement model exploits hardware virtualization

support available in commodity x86 CPU (AMD Inc.), (Neiger

et al., 2006). Leveraging hardware-assisted virtualization

technology, we design a tamper-resistant and efficient de-

tector that is able to take over the OS operations and verify the

policies derived from the AccessMiner system. Our design

goals provide two main contributions: (1) Provide an efficient

detection monitor technique (2) Establish a trusted path for

system call execution and provide control flow integrity for

the whole system call execution. Both properties are

really important to design a resilient and secure reference

monitor.

3.1. Technology overview

Before presenting the details of our detector implementation,

we provide a brief introduction on Intel Virtualization Tech-

nology (VT-x) (Neiger et al., 2006).

The main characteristic of Intel VT-x is the support for two

new VMX modes of operation. When VMX is enabled, the

processor can be either in VMX root mode or in VMX non-root

mode. The behavior of the processor in VMX root mode is

similar to classic protected mode, except for the availability of
a new set of instructions, called VMX instructions. Non-root

mode is, instead, limited, even when the CPU is running in

ring 0. Thanks to this, the virtual machine monitor (VMM) can

inspect and intercept operations on critical resources without

modifying the code of the guest OS (i.e., the virtualized OS).

Moreover, because non-root mode operation supports all four

IA-32 privilege levels, guest software can run in the original

ring it was designed for.

A processor which has been turned on in normalmode can

be switched to VMX root operation by executing a vmxon

operation. The VMM running in root mode sets up the envi-

ronment and initiates the virtual machine by executing the

vmlaunch instruction.

Intel VT-x technology defines a data structure called virtual

machine control structure (VMCS) that embeds all the infor-

mation and the configuration needed to capture the state of

the virtual machine, or resume its execution. The various

control fields determine the conditions under which control

leaves the virtual machine (VM exit) and returns to the VMM,

and define the actions that need to be performed during VM

entry and VM exit operations.

Various eventsmay cause a VM exit, and can be configured

with a very fine precision by the hypervisor (e.g., exceptions, I/

O operations). Furthermore, the processor can also exit from

the virtual machine explicitly by executing a vmcall

instruction.

3.2. Threat model

The threat model we adopt in this paper considers a very

powerful attacker who can operate with kernel-level privi-

leges. On the other side, the attacker does not have physical

access to the machine and, therefore, cannot perform any

hardware-based attack (e.g., a DMA attack Wojtczuk, 2008)

and he cannot tamper with the hypervisor operations. We

assume that our hypervisor starts during the boot process of

the machine and it is the most privileged hypervisor on the

system.

Should the deployment scenario require it, it is also

possible to leverage late-launching (Neiger et al., 2006) to load

AccessMiner hypervisor after the boot. For this to be feasible,

however, we have to relax our threatmodel a little. Indeed, we

must assume that either there is no malware on the machine

before we launch AccessMiner or that we leverage an integrity

checking technique to ensure that the hypervisor is not

altered at load time (Martignoni et al., 2010; McCune et al.,

2008). Despite this requirement, a hot-bootable hypervisor

can be quite useful in scenarios in which it is not possible to

restart the machine (e.g., when it provides some critical

service).

3.3. Hypervisor architecture

The Detector system is composed by three components: a

system call interceptor, a policy matcher, and a process revealer.

The outputs of all the components are combined together to

check the policies derived by AccessMiner system. In Fig. 2, we

depict a scheme of the overall architecture. The overhead in

executing security tools out of the guest OS is primarily due to

the change in privilege levels that occurs while switching back

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Fig. 2 e Hypervisor architecture.

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 038
and forth between the kernel-level and the hypervisor-level.

We set the performance requirements for system call

tracer's design to improve the performance of the system. In

particular, we set two properties:

� (P1) Fast invocation: Invoking the monitor handler for a

system call should not involve any privilege level changes

if it is not needed.

� (P2) Data read/write at native speed: The monitor code

should be able to read and write any system data and local

data at native speed.

To state the security requirements, we consider an adver-

sarial program A residing in the same environment as the

system P. As we already described above in our threat model,

A runs with the highest privilege in the guest VM and there-

fore can directly read from, write to and execute from any

memory location that is not protected by the hypervisor by

using sophisticated attack such as kernel rootkits. To ensure

the security of the system call Monitor and its own trusted

path, we state the security requirements:

� (S1) Isolation of Monitor's code and data: This ensures the

integrity of the Monitor's code and data is protected from

the adversary A. The Hypervisor approaches satisfy this

requirement because A does not have any means to access

to the Hypervisor code and data.

� (S2) Designated point for switching into Monitor's code:

This requirement ensures that an attacker does not invoke

any code in Monitor's code other than the designated

points of entry (i.e., system call invocation).
� (S3) A handler is called if and only if the corresponding

hook is executed: This requirement has two parts:

e If a hook is reached in the monitored system, then the

corresponding handler must be initiated by the system.

e A handler is initiated only if the hook was executed.

The second requirement can be satisfied because the exact

vmcalls that initiated the hypervisor execution can be iden-

tified and checked.

� (S4) The hooking mechanism must provide a trusted path

system call execution: The interception mechanism must

provide a trusted path between the invocation of the sys-

tem call and its own termination.

Our interception mechanism is designed with all the per-

formance and security requirements in mind, described

above.

3.3.1. Protected memory mechanism
Generally, the kernel is mapped into a fixed address range in

each process address space. We define this address range the

system address space. Since we are primarily interested in

kernel level monitoring (e.g., system call parameters), we

denote any code and data contained in the system address

space as kernel code and kernel data. Since we do not know

which kernel pages will contain data (e.g., some kernel code

pages could be re-mapped in data pages) we need to map all

the kernel memory pages into the Monitor address space. All

pages containing kernel code will have read and execute

privileges, but we assume that the kernel code can be write

protected. The data regions will have all access rights. The

System call Monitor (SCM) address space includes the Mon-

itor's code (SCM code) and data (SCM data). However, some of

the permissions are set differently. The kernel code and data

regions do not have execute permissions. This means that

while execution is within the SCM address space, no code

mapped from the system address space will be executable.

This is used to limit the surface attack code in case a privilege

escalation attack occurs at the hypervisor level. The invoca-

tion checking modules are also contained only in the SCM

address space and have execution privileges. Since the sys-

tem address space contents are mapped into the SCM

address space, an important requirement for the mapping to

work is to ensure that other additional regions in the SCM

address space do not overlap with the mapped regions from

the system address space. This is achieved during the

initialization of the Hypervisor that splits the memory in two

main areas, the one dedicate to the system and the one

dedicated to the Hypervisor data and code. It is important to

note that the Hypervisor for the system should only map the

entries of the page table that refers to the Data and Kernel

Code. Since the System call Monitor address space contains

all kernel data and also the Monitor data in its address space,

the instructions as part of the security monitor can access

these regions at native speed. This satisfies the performance

requirement (P2). The memory mapping method we have

introduced satisfies the isolation security requirement (S1) by

having the Monitor code and data regions in a separate

Monitor address space.

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 39
3.3.2. Checking invocation points
The entry and exit gates are the only regions that are mapped

into both the system address space in pages having execut-

able privilege. This ensures that a transfer between the

address spaces (system to SCM and vice versa) can only

happen through code contained in these pages. Moreover,

since these pages are write-protected by the hypervisor, its

contents cannot be modified by any in-guest code.

To satisfy the security requirement (S3, S4), once the SCM

address space is entered through one of the entry gates, the

invocation of the gate needs to be checked to ensure that it

was from the only hook that is allowed to call the gate. The

challenge is that, since the entry gate is visible to the guest

OS's system address space, a branch instruction can jump to

this location from anywhere within the system address space.

Moreover, we cannot rely on call instructions and checking

the call stack because they are within the system address

space and as such the information cannot be trusted. We

utilize a hardware debugging feature available in the Intel

processors after Pentium 4 to check the invocation points.

This feature, which is called last branch recording (LBR), stores

the sources and targets of the most recently executed branch

instructions in some specific processor registers. The last

branch recording feature is activated by setting LBR flag in the

IA32_DEBUGCTL MSR. Once set, the processor records a

running trace of a fixed number of last branches executed in a

circular queue.

For each branch, the address of the branch instruction and

its target are stored as pairs. The number of pairs stored in

the LBR queue varies among the x86 processor families.

However, all families of processors since Pentium 4 record

information about a minimum of four last branches taken.

These values can be read from the MSR registers

MSR_LASTBRANCH_k_FROM_IP and the MSR_LAST-

BRANCH_k_TO_IP where k is a number from 0 to 3. We check

the branch that transferred execution to the entry gate using

the LBR information. In the invocation checking routine, the

second most recent branch is the one that was used to invoke

the entry gate. We check that the source of the branch cor-

responds to the hook that is supposed to call the entry gate.

Although the target of the branch instruction is also avail-

able, we do not need to verify it if the source matches. A

conceivable attack may be an attempt to modify these MSR

registers in order to bypass the invocation checks. We need

to stop malicious modifications to these MSR, but at the same

time ensure that performance requirement is not violated.

With Intel VT, read and write accesses to MSR registers can

selectively cause VMExits by setting the MSR read bitmap and

MSR write bitmap, respectively. Using this feature, we set the

bitmasks in such a way that write attempts to the IA32_DE-

BUGCTL MSR and the LBR MSRs are intercepted by the

hypervisor but read attempts are not. Since the invocation

checking routine only needs to read the MSRs, performance

is not affected.

3.3.3. Trusted path execution
The core of the system is represented by the System Call

Tracer component. Its goal is to intercept the operations per-

formed by the OS, in terms of system call type, parameters

and return values. All these information will be used by the
Policy Matcher, to verify the right permissions on a certain

resources on behalf of the process. There are two main re-

quirements for this component: (S4) The interception mech-

anism must provide a trusted path between the invocation of

the system call and its own termination. In particular the

system needs to provide a secure hooking mechanism for

intercepting the invocation and termination of OS operation.

(P1) The overhead of the interception mechanism must be

kept as low as possible. The trusted path is crucial for our

work and it represents one of the main contributions of the

extended version of the paper.

In order to retrieve all system call information, we need to

monitor the invocation of the operation along with its own

termination. Whenever a system call is issued by a process, a

sysenter instruction is invoked. The sysenter instruction re-

fers to the SYSENTER_EIP MSR that contains the address of

the system call handler. In order to bring the execution flow

inside the hypervisor, we need to switch from VMX non-root

mode to VMX root mode. For this reason, we overwrite the

SYSENTER_EIP MSR so that it points to a vmcall instruction.

By using this hooking technique the hypervisor is able to

intercept all the system calls performed by the OS and to

parse the parameters according to their type. Note that any

change of the MSR value on behalf of the system is inter-

cepted and denied by the hypervisor. In this way, the system

is able to protect the system call interception mechanism

(requirement S4).

Before passing the information to the Policy Matcher, the

system also needs to check whether the operation is suc-

cessful or not and to collect its return value. For this purpose,

our hypervisor is able to intercept a sysexit instruction by

substituting it with a vmcall. Any attempt to re-write the VMX

instruction is prevented by the hypervisor through a memory

page protection mechanism (requirement S4). To verify the

trusted path of the system call, our hypervisor also imple-

ments a simple automaton that checks the correctness of the

system call execution flow. Every time a sysenter (entry gate)

is intercepted an opening bracket “(” transition is triggered to

indicate which system call was invoked. Every time a sysexit

(exit gate) is intercepted, the hypervisor verifies that the

watchpoint was expected, given the invoked system call. It

performs this step repeatedly until it sees the watchpoint “)”,

corresponding to the end of the system call request. Any un-

known state is reported as a system anomaly. If the operation

succeeded, the System Call Tracer invokes the Policy Matcher

component and provides all the information on the system

call type, parameters, and return value.

Since the hypervisor is intercepting a high number of

system calls, the hooking mechanism is a critical component

from a performance point of view. Consequently, to improve

performances, we devise two modifications to our original

implementation. First, the system allocates a protected

memory page that contains a short control code and some

data about the monitored system calls e such as the system

call types and thememory handler code address. Based on the

system call type, the code decides whether to invoke a

hypercall to switch to monitor mode or to leave the control-

flow to the default system call handler. By using this tech-

nique we are able to exclude the non-monitored system calls

and reduce the overhead of the whole hypervisor system

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 040
(requirement P1). More details about performance evaluation

are reported in Section 6.

Another relevant source of overhead is related to possible

multiple repetitions of the same system call from the same

process. For example, during a file copy operation, the same

read and write operations are repeated multiple times, ac-

cording to the size of disk blocks and of copied file. Since there

is no reason to check the permissions for each operation, our

system is designed to verify only the first occurrence of the

operation and run the other operations natively. The overhead

caused by the repetition of these operations is thus avoided.

This is implemented by introducing a small cache that con-

tains a checksum based on the system call number, its pa-

rameters, and the value of the CR3 register of the process

which is performing the operation. Every time the system

discovers a new operation, we insert it into the cache and

when the operation is not likely to be repeated (e.g., the cor-

responding process terminates, or the file is closed), we flush

the cache entry related to that operation. In this way we only

check the first operation and we skip possible repetitions

(requirement P1). We report a measurement of the effective-

ness of our cache in Section 6, Figs. 6 and 7.

3.3.4. Process revealer
The goal of this component is twofold: First, it extracts and

provides the name of the process that is performing the actual

operation (i.e., a system call) through Virtual Machine Intro-

spection (Garfinkel and Rosenblum, 2003) and, second, it

caches this information to reduce the system overhead. The

component keeps a cache that allows to lookup the name of

the process given a certain CR3 value. The cache is updated

every time a process is created or destroyed, by properly

intercepting and analyzing process-related system calls.

3.3.5. Policy checker
The goal of this component is to check AccessMiner policies

and to generate an alert in case some of themare violated. The

policies are created by the model described in Section 2 and

enforced system follows the model described in Section 2.5.

We recognize two main phases for the Policies Checker

task: Initialization and Detection phase. The initialization

phase is responsible to create thememory structures that will

be used for the detection phase. In particular, to check the file

system and registry policies, we adopt a hash table memory

structure where the name of each resource is used as key and

the name of process with its own permissions on that

resource is stored as value. During the initialization phase, the

hypervisor receives the signatures using the ad-hoc network

communication protocol we briefly mentioned above. Then,

whenever a signature is loaded, the full pathname of the

corresponding resource is extracted and inserted in the

memory structure as a key of the hash table. The list of the

processes that can get access to the resource along with their

own access permission are inserted as elements of such a key.

Another important memory structures used by the policy

matcher is the file/registry handles structure. Since most of the

file system and registry system calls operate on handles, while

our policy system works with full-pathname resources, the

system needs to keep the association between a handle

number and the resource full pathname. For this reason, we
use a dynamic memory structure that tracks this association.

During the monitoring of the system, every time a resource is

created or opened, the system retrieves the handle associated

to the resource full pathname and it registers it in the struc-

ture. Afterwards, when a system call operates on the same

handle, the corresponding object is retrieved from the handle

structure. Every time a handle is closed, the system removes it

from the handles memory structure.

To protect the policy information loaded during the

initialization phase, the network driver that receives com-

mands is only enabled when the hypervisor is in Management

mode e in our prototype, this is triggered by using a special

keystroke sequence. On the other hand, to protect the policies

from network attacks, a signature scheme between the

hypervisor and the management console is provided. In this

way, we can assure that no one is able to tamper the hyper-

visor configuration information, according to our thread

model.

During the detection phase, the SystemCall Tracer invokes

the Policy Checker with the relevant system call information.

At this point, the Policy Checker, by using the resources full-

pathname as a key of the hash table, retrieves the list of the

processes along their permissions. It also queries the process

Revealer component in order to retrieve the processes name

that acts as a subject of the operation. Once all the informa-

tion is obtained, it scans the list of the processes to search the

process name. If the process is not allowed to perform the

operation, the Policy Checker raises an alert and blocks the

operation. Otherwise, it permits the operation and then

returns to non-root mode.
4. System call data collection

In this section, we discuss our efforts to collect a large and

diverse set of system call traces. Our requirements are geared

towards imposing the least impact on the users whose ma-

chines are part of the data collection effort. Thus, the data

collection framework must have minimal impact on the

performance of those machines, must operate with and

without network connectivity, must ensure that private in-

formation does not leave the user's machines, and must

make almost no assumptions about the run-time environ-

ment. For example, requiring that users make use of virtual

machines would significantly restrict the practical applica-

bility of our data collection. Additionally, the data collection

framework must be capable of extracting a rich set of attri-

butes for each event (i.e., system call) of interest. Unfortu-

nately, none of the existing system call tracing tools satisfies

these requirements, so we built and deployed our own data

collection framework.

Our system consists of a number of software agents,

which, once installed on user's machines, automatically

collect, anonymize, and upload system call logs, and a central

data repository, which receives logs from each machine and

normalizes the data in preparation for further analysis. The

software agents can be installed by users on their own ma-

chines and are mindful of system load, available disk space,

and network connectivity. Furthermore, users can enable and

disable the collection agent as they wish.

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 41
Our analysis and training algorithms need several infor-

mation regarding each system call. Therefore, our sensors

were designed to collect the system call number and its ar-

guments, its result (return) code, the process ID, the process

name, and the parent process ID. Each log entry is represented

by a tuple in the form:

〈timestamp; program; pid; ppid; system call; args; result〉

This data allows us to perform our analyses within a single

process, across multiple executions of the same program, or

across multiple programs.
4.1. Raw data collection

The software agent that collects data is a real-time component

running on each user's machine. This agent consists of a data

collector and a data anonymizer. We implemented our agent

for Microsoft Windows, as it is the OS targeted the most by

malware. The description in the remainder of this section

provides details specific to the Microsoft Windows platform.

The data collector is a Microsoft Windows kernel module that

traces system call events and annotates them with additional

process information. The data anonymizer transforms the

collected system call data according to privacy rules and up-

loads it to the remote, central data repository. More in details

the privacy rules used for our system are described in the

section below called Log anonymizer.

Kernel collector. The main goal of this component is to

collect system call and process information across the entire

system. In order to intercept and log system call informa-

tion, the kernel data collector hooks the SSDT table

(Hoglund and Butler, 2005). The kernel collector logs in-

formation for 79 different system calls in five categories: 25

related to files, 23 related to registries, 25 to processes and

threads, one related to networking, and five related to

memory sections. We selected the same subset of system

calls that are used in Anubis (Anubis), which covers the

relevant operations that manipulate persistent OS

resources.

A challenge arises from the fact that the kernel collector

does not necessarily observe the start of a new process. One

reason is that the user can disable and re-enable the software

agent at any point. Another reason is that the kernel collector

is started as the last kernelmodule in the systemboot process.

This means that the kernel collector might observe system

calls that refer to previously acquired resource handles, but

without having any information about which resources those

handles point to. As a special case, some resource handles

(e.g., handles to the registry roots) are automatically provided

to a process by the OS at process-creation time. Consequently,

if we log only the parameters for each individual system call

that we observe, we lose information about previously (or

automatically) acquired resources. To address this problem,

we query the open handler table for each process we have not

seen before. This allows the kernel collector to retrieve the

open objects already associated with a new process. We store

the path names of these objects for later use, for example
when we intercept a system call (such as NtOpenKey) that

references a pre-existing handle.

Log anonymizer. To protect the privacy of our users, we

obfuscate or simply remove arguments of various system

calls before sending the log to the data repository. The

obfuscation consists of replacing part or the entire sensi-

tive argument value with a randomly generated value.

Every time a value repeats, it is replaced with the same

randomly generated value, so that we can recover corre-

lations between system call arguments. We consider as

sensitive all arguments whose values specify non-system

paths (e.g., paths under C:yDocuments and Settings are

sensitive), all registry keys below the user-root registry key

(HKLM), and all IP addresses. Furthermore, we remove all

buffers read, written, sent, or received, thus both providing

privacy protection and reducing the communication to the

data repository. The data repository indexes the logs by the

primary MAC address of each machine.

Impact on performance. We designed the software agent to

minimize the overhead on users' activities. The kernel

module collects information only for a small subset of the

79 system calls. Log are saved locally and processed out of

band before being sent to the server, when network con-

nectivity is available. Users can turn data collection on and

off, based on their needs. Local logs are uploaded to the

repository when they reach 10 MB in size and logging is

automatically stopped if available disk space drops below

the 100MB threshold. Each 10MB portion of the system call

log is compressed using ZIP compression, for a 95% average

reduction in size (from 10 MB to 500 KB). Given these

techniques, we are confident that users were able to use

their computers with the data collector present as they

would normally do, and thus the collected system call logs

are representative of day-to-day usage.
4.2. Data normalization

The purpose of this component is to process the raw system

call logs and extract the fully qualified names of the accessed

resources as well as the access type. For files and directories,

the fully qualified name is the absolute path, while for registry

keys it is the full path from one of the root keys.

To compute fully qualified resource names, we track for

each process the set of resources open at any given time, via

the corresponding set of OS handles. When a resource (file or

registry key) is accessed relative to another resource (either

opened by the process or opened by the OS automatically for

the process), we combine the resource names to obtain a fully

qualified name.

Computing the access type (e.g., read, write, or execute)

requires tracking the access operations performed on a

resource. This is more tricky than expected. When a resource

is acquired by a program (e.g., a file is opened), the program

specifies a desired level of access. This information, however,

is not sufficiently precise for our needs. This is because, often,

programs open files and registry keys at an access level

beyond their needs. For example, a program might open a file

with FULL_ACCESS (i.e., both read and write access), but

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Table 2 e Data rates during collection.

Machine Usage Data
(GB)

Time Data rate
(MB/minute)Logged (h) Total

(days)

1 office 18.0 12 3 8

2 home 4.5 4 3 6.25

3 home 5.6 3 4 7.77

4 prod. 32.0 12 3 14

5 prod. 34.0 12 3 15

6 lab 14.0 8 3 11

7 home 1.3 3 2 4

8 home 1.2 3 2 4

9 dev. 1.6 2 2 6

10 dev. 2.3 2 3 6.4

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 042
afterward, it only reads from the file. Since we are interested

in the actual access type, we track all of the operations on a

resource, and only when the resource is released (on NtClose),

we compute the access type as a union of all operations on the

resource.

In Microsoft Windows, there is no single system call that

starts a new process from a given executable file. In order to

retrieve the execution path and file name, the normalizer

needs to recognize the NtOpenFile system calls that belong to

the process-creation task. When a process is created, the OS

executes a set of system calls to allocate resources, load the

binary executable, and start the new process: NtOpenFile,

NtCreateSection with desired executable access, and NtCrea-

teThread. Consequently, we automatically identify occur-

rences of this pattern and extract the executable path and file

name.

4.3. Experimental data set

We used different datasets in our experiments. The first is a

collection of execution traces of 6000 malware samples

randomly extracted from Anubis (Anubis). This set, that we

call malware, includes amix of all the existing categories (e.g.,

botnets, worms, dropper, Trojan horses), extrapolated from

malware that is active in the wild. The second dataset con-

tains 114.5 GB of execution traces collected from 10 different

real-world machines, where we observed normal day-to-day

operation of end-users computer. In particular, the benign

data consists of 1.556 billion of system calls, from 362,600

processes and 242 distinct applications. In Table 1 we provide

detailed information for eachmachine. The choice of the nine

machines used for model construction is done using 10-fold

cross-validation approach. The evaluation results presented

here are averages across the 10 tests. We deployed our data

collection framework on ten different Windows machines,

each belonging to a different user. The users had different

levels of computing expertise and different computer usage

patterns. Based on their role, themachines can be classified as

follows: two development systems, one office system, one

production system, four home PCs, and a computer-lab

machine.

Our system collected data from eachmachine at an average

rate of 8.2MB/min,withhighlyusedmachinesproducing logsat

40MB/min and idlemachines producing 1.5MB/min. In Table 2,
Table 1 e Characteristics of our data set.

Machine Data
(GB)

System calls
(� 106)

Processes
(� 103)

Applications

1 18.0 285 55.1 90

2 4.5 70 22.4 87

3 5.6 89 17.7 46

4 32.0 491 110.9 41

5 34.0 514 125.6 42

6 14.0 7 2.8 73

7 1.3 19 3.7 49

8 1.2 18 3.0 22

9 1.6 27 8.5 47

10 2.3 36 12.9 26

Total 114.5 1556 362.6 242
we report the logging time for the 10 different machines. For

eachmachine, we show themachine's usage profile, the size of

data collected, the total time during which data was actually

collected, the timeperiodbetween thefirst log entry and the last

log entry, and theaveragedata rate. For example, the fourth row

indicates that machine 4 was a production server that gener-

ated 32 GB of system call logs, over a period of 3 days, during

which data collection was active for 12 h.
5. Detection results

In this section, we evaluate the effectiveness of our system in

detecting malicious activities on real systems.

More precisely, we conducted 10 experiments. For each

one, we selected one of the machines and we used the system

calls recorded on the other nine hosts to generate the access

activity model, as described in Section 2. Finally, we used this

model for detection by checking the resource accesses per-

formed by all processes on the machine that was not used for

model generation. Then, we examine the accesses performed

by the malware samples. For each experiment, we evaluate

the detection capabilities and false positives of the file system

model alone, the registry model alone, and both models

combined.

5.1. File system access activity model

On average, the file system access activity model contains

about 100 labels. These labels contain tokens that restrict read

access to about 70 directories, write access to about 80 di-

rectories, and execute access to about 30 directories. The re-

sults for the file system model are shown in Table 3. In this

table, we see a number of different columns for the detection

rates and the false positive rates. These are discussed in the

following paragraphs.

When using the original model to check all read, write, and

execute accesses, we see an average detection rate of 66% for

the malware samples (column Detection rate) and a false pos-

itive rate of almost 15% (column False positive rate). Note that

the false positive rates are computed on the basis of single

applications and not on a process basis.

At first glance, the results appear sobering. However, a

closer examination of the result reveals interesting insights.

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Table 3 e Partial detection based on our file system access activity model.

Machine Experiment 1 Experiment 2 Detection rate
(only writes)Detection rate False positive rate Adjusted detection rate Rates of detected access violations

Read Write Execute

1 0.656 0.225 0.906 0.000 0.022 0.222 0.864

3 0.657 0.154 0.907 0.000 0.130 0.043 0.902

4 0.657 0.156 0.907 0.024 0.049 0.122 0.902

5 0.657 0.143 0.907 0.024 0.024 0.095 0.902

6 0.635 0.242 0.877 0.014 0.055 0.242 0.868

7 0.657 0.267 0.907 0.020 0.041 0.265 0.901

8 0.657 0.045 0.907 0.000 0.045 0.000 0.902

9 0.657 0.025 0.907 0.000 0.025 0.000 0.902

10 0.657 0.050 0.907 0.000 0.038 0.038 0.902

Average 0.655 0.148 0.904 0.008 0.044 0.137 0.895

Table 4 e Final detection based on our file system access
activity model.

Machine FP rate Final det.rate

1 0.0 0.864

2 0.0 0.902

3 0.0 0.902

4 0.0 0.902

5 0.0 0.902

6 0.0 0.868

7 0.0 0.901

8 0.0 0.902

9 0.0 0.902

10 0.0 0.902

Average 0.0 0.895

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 43
First, we decided to investigate the false negative rate in more

detail. When looking at the execution traces of the malware

programs, we observed that many samples did not get far in

their execution but quickly exited or crashed. Interestingly, a

substantial fraction of suspicious samples never wrote to the

file system or the registry, and they did not open any network

connections. It is difficult to confirm that these samples

exhibit any malicious activity at all. As a result, we decided to

remove from our malware data sets all samples that never

perform a write operation or open a network connection. This

decreases ourmalware data set to 7847 samples that exhibit at

least some kind of activity. It also improves our detection rate

to more than 90%, as reported in column Adjusted detection rate

of Table 3. For the remainder of this paper, all reported

detection rates are computed based on the adjusted malware

data set.

In the next step, we investigated the false positives inmore

detail. Table 3 shows the access violations for each machine,

divided into violations due to read (column Read), write (col-

umn Write), and execute (Execute) access attempts. It can be

seen that execute violations account for a significant majority

of false positives. However, we also found that they are only

marginally important for detection. Thus, for the next exper-

iment, we decided to use only the access tokens that refer to

write operations. This is justified by the fact that we are most

interested in preserving the integrity of the operating system

resources. The detection results for the new write-only detec-

tion approach are presented in column Detection rate (only

writes) of Table 3. As can be seen, the numbers remain high

with 89.5%. This confirms that write access violations are a

good indicator for malicious activity. With this approach, the

false positives are identical to the write violations, which are

shown in column Write.

We further examined the reasons for the remaining write

violations. It turned out that these violations were due to two

root causes. One set of false positives was caused by our own

system-call logging component that wrote temporary files

directly into the C:y directory before sending the data over

the network. The second violation was due to software up-

dates. More precisely, we detected a number of cases in which

an applicationwaswriting to its folder in C:yProgramFiles. Of

course, only this program had read/execute access to that

directory. However, we never saw a write access during
training, and as a result, the directory was considered read-

only. To accommodate for updates, we manually added a

rule to the model that would grant write permission to ap-

plications that “own” directories in C:yProgram Files. More-

over, we granted our component write access to C:. Withmore

extensive training, both access activities would have very

likely been added automatically. The model that incorporated

our minor adjustments generated no more false positives, as

shown in Table 4. However, the detection capabilities of the

model remain basically unchanged, as shown in Table 4.
5.2. Registry access activity model

In our experiments, the registry access activity model con-

tained in average about 3000 labels, significantly more than

the file-system model. In particular, the labels contained to-

kens that restrict read access to about 1600 keys and write

access to about 2800 keys (execute is not defined for registry

keys).

The results for the registrymodel are shown in Table 5. The

columns Detection rate and False positive rate show the detec-

tion rates and the false positive rate, respectively, for the

original model. It can be seen that both the detection rate and

the false positive rates are lower than for the file system

model. We also examined the detection rate and the false

positive rate when considering only write operations (col-

umns Det. rate (only writes) and FP rate (only writes)). Similar to

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Table 5 e Detection based on our registry access activity model.

Machine Detection rate False positive rate Det. rate (only writes) FP rate (only writes) Final det. rate

1 0.567 0.063 0.530 0.063 0.521

2 0.557 0.107 0.540 0.053 0.521

3 0.566 0.179 0.530 0.128 0.062

4 0.557 0.000 0.530 0.000 0.540

5 0.557 0.000 0.530 0.000 0.540

6 0.557 0.015 0.530 0.000 0.540

7 0.597 0.133 0.530 0.000 0.540

8 0.557 0.067 0.530 0.067 0.537

9 0.561 0.100 0.530 0.025 0.521

10 0.557 0.000 0.530 0.000 0.540

Average 0.563 0.066 0.530 0.034 0.486

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 044
the file system case, the false positive rate drops significantly;

there are five runs in which no false positives were reported at

all. However, the detection rate remains (relatively) high.

We also examined the cases for which the registry access

model raises false positives. We found that all registry write

access violations can be attributed to the sub-tree

HKEY_USERSySoftwarey Microsoft. While this is an impor-

tant part of the registry that contains a number of security

settings, we wanted to understand the detection capabilities

of amodel that permitswrite access to these keys. To this end,

we added amanual rule to allowwrites to this sub-tree and re-

run the experiments on the malware data set. We see that the

model is still effective and achieves a detection rate of over

48% (shown in column Final det. rate of Table 5) with no false

positives. Considering the significantly larger size of the reg-

istry models compared to the ones for the file system, we

expect that a larger training set would be required to effec-

tively capture legitimate writes to the SoftwareyMicrosoft

sub-tree.

5.3. Full access activity model

For the final experiment, we combined those improved file

system and registry models that yielded zero false positives.

The combined detection rate improves compared to the file

systemmodel alone, but only slightly (between 1% and 2% for

all of the 10 runs). The average detection improved from 89.5%

to 91% (of course, with no false positives).

5.4. Discussion

When focusing on write operations only, our access activity

model achieves a good detection rate (more than 90%) with a

very low false positive rate. The false positive rate even drops

to zero with minor manual adjustments that compensate for

deficiencies in the training data, while still retaining its

detection capabilities. This suggests that a system-centric

approach is suitable for distinguishing between benign and

malicious activity, and it handles well even applications not

seen previously. This is because most benign applications are

written to be good operating system “citizens” that access and

manage resources (files and registry entries) in the way that

they are supposed to.

Malicious programs frequently violate good behavior, often

because their goals inevitably necessitate tampering with
system binaries, application programs, and registry settings.

Of course, we cannot expect to detect all possible types of

malicious activity. In particular, our detection approach will

fail to identify malware programs that ignore other applica-

tions and the OS (e.g., themalware does not attempt to hide its

presence or to gain control of the OS) and that carry out ma-

licious operations only over the network. Most of the 10% of

malware that represent the false negative was waiting for a

particular command from the network in order to perform

malicious actions (botnet, spammer etc.), or theywerewaiting

for a particular conditions in order to activate themselves. In

general this malware are designed to hide information to the

user. It is important to note that the malicious system call

traces were extracted from Anubis, where the system only

wait for a small time window for analyzing a single sample

(20 min). Consequently some malware did not have a chance

to perform their own malicious actions and cannot be detec-

ted by AccessMiner.
6. Performance results

In this sectionwe report a set ofmicro andmacro benchmarks

we used to demonstrate the efficiency of our new system. In

our experiments we run the Passmark Performance Test suite

(P. Software) in four different test environments: on a physical

machine (PM), inside a guest VMWare virtual machine (VM),

on physical machine with AccessMiner (AM), and on physical

machine running the Hypersight (RTD) (Northsecuritylabs)

real-time rootkit detector. Hypersight is a hardware-

supported virtual machine monitor that starts at boot time

and intercepts several types of suspicious actions applied to

critical memory structures such as attempts to modify page

tables, read-only kernel modules, and GDT and IDT tables. All

the experiments are performed on an Intel Core i7 2.67 GHz

with 3 GB of memory running a Windows XP (32-bit) OS.
6.1. Macro benchmark

We measured and compared the overhead introduced by

AccessMiner on different workloads by using four of the

PassMark performance tests: memory operations read and

write, and sequential disk read and write operations. To

perform these tests, we loaded AccessMiner with 3824 policy

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Fig. 4 e Memory write operation.

Fig. 5 e Disk read operation.

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 45
rules: 173 signatures related to the file system and 3651 sig-

natures related to the Windows registry.

The final values were obtained by taking the average of 10

repetitions for each benchmark. Figs. 3 and 4 show the results

of the memory tests. In these cases, we used the system to

perform a sequential read or write operation of 1 GB of

memory with a block size ranging from 1024 bytes up to

512 MB. As we can see in the graph, the higher overhead is

encountered in VmWare, mainly due to its memory virtuali-

zation. AccessMiner does not introduce any overhead, since it

does not virtualize the memory but only uses a memory pro-

tectionmechanism. The overhead introduced byHypersight is

due to the memory scanning operation responsible to check

the sensible memory structures.

More interesting performance results are reported in Figs. 5

and 6. For this test, we performed a sequential read and write

disk operations for 1 min. We use the NTFS file system with a

block size of 8192 bytes. As we can see in the graphs, the

overhead of our system is similar to the one observed in a

VmWare virtual machine, while the Hypersight overhead is

the same of the physical machine, since it does not intercept

any operation on the disk. The overhead for our system is due

to the high number of file system and registry system calls

performed by the benchmark program. However, in these

scenarios with multiple repetitive operations our caching

mechanism is able to reduce the overhead of almost 80%, as

reported in Figs. 7 and 8.

During the PassMark disk test we counted 11,000 NtRead/

NtWrite system calls related to the file system operations and

other 5430 system calls related to the registry operations. The

impact of the disk operation was largely covered by our

caching system, leaving the registry responsible for most of

the overhead.

In Table 6 we report the overhead of memory operations

for the four environments test: PM, AM, VM, and RTD system.

In Table 7 we report the overhead of the disk operations.

To conclude the macro benchmarks, we also performed a

worse-case experiment, in which we measured the overhead

introduced by AccessMiner during a source code compilation

routine. The target of the compilation was a middle-sized C

program, composed of almost 100,000 lines of code. Results of

this last benchmark are reported in Fig. 9. In this case, since
Fig. 3 e Memory read operation.
the IO operations were spread on hundreds of different files,

our caching mechanism was less effective in mitigating the

disk overhead. This resulted in an average AccessMiner

overhead, with respect to the physical machine baseline, of

around 2.5�. It is important to note that our system can be

tuned to obtain better performance. For instance, a possible

optimization could be to monitor only untrusted applications
Fig. 6 e Disk write operation.

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

Fig. 7 e Cache/NoCache disk read operation.

Fig. 8 e Cache/NoCache disk write operation.

Fig. 9 e GCC evaluation.

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 046
that are downloaded from untrusted sources such as network

or copied from untrusted devices. Monitor only a small set of

applications can improve the performance without losing the

detection rate. It is important to note that in our design, it is

enough to remove an application from the monitored set to

exclude it from further analysis.
Table 6 e Overhead of memory operations.

Memory operations PM AM VM RTD

Read (ms) 209.8916 209.9269 277.2247 220.0006

Write (ms) 205.5485 205.1042 271.5995 212.1548

Overhead read NA 100.0% 132.1% 104.8%

Overhead write NA 99.9% 132.1% 103.2%

Table 7 e Overhead of disk operations.

Disk operations PM AM VM RTD

Read (ms) 0.2070 1.3470 0.2460 0.2240

Write (ms) 0.1580 0.8900 0.7590 0.1640

Overhead read NA 650.7% 118.8% 108.2%

Overhead write NA 563.3% 480.4% 103.80%
To conclude, the performance of AccessMiner greatly de-

pends on the type of application. However, the system nor-

mally introduces an overhead, considering memory and disk

operations together, that is comparable with the one observed

in a traditional virtual machine environment.

6.2. Micro-benchmarks

To have a more fine-grained view of the delay introduced by

our system, we measured the overhead introduced by trig-

gering a system call on a particular resource. We started by

measuring the time needed to perform a context switch be-

tween a VM exit and a VM entry (without checking any policy),

taking an average over 20 repetitions. The operation took 1216

clock cycles, corresponding to around 0.45 ms. The second

operation that wemeasured was the entire syscall monitoring

mechanism. In this case, the time needed to intercept a single

system call is, in average, 1,241,739 clock cycles, or about

0.47 ms. These results show that most of the overhead intro-

duced by our new system is due to the policy validation

mechanism, while the context switch along with the moni-

toring mechanism does not impact the system in a relevant

way. Such results highlight the high efficiency of our new

system that is built on top of the AccessMiner model.
7. Related work

The existing papers most relevant to our current work focus

on malware detection at the system call and the system li-

brary interfaces. These interfaces best describe the system

resources manipulated by a program (e.g., files, other pro-

grams, other processes, configuration data, authentication

and authorization information, network communication

channels), making system call-based detectors comparable to

our access activity model.

7.1. Malware detection

Malware detection has looked at many ways to describe pro-

gram behavior, and corresponding models evolved to keep

pace with the increasing complexity of malware. Early

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 47
detection mechanisms were based on particular byte se-

quences in the program binary that were indicative of mal-

ware. Over time, obfuscation strategies pursued by malware

writers forced detectors to move to regular expressions over

bytes (Sz€or, 2005), and eventually rendered them obsolete as

byte patterns have little predictive power (i.e., they can

accurately capture only previously seen malware). Other

models such as byte n-grams (Li et al., 2005), system de-

pendencies of the program binary (Schultz et al., 2001), and

syntactic sequences of library calls (Mukkamala et al., 2004),

(Xu et al., Dec. 2004) have been proposed with limited success.

Because these models have a strong syntactic aspect in that

they capture artifacts of program binary unrelated to the

malicious behavior, malware writers managed to evade such

defenses and produce new, undetected malware. Our

emphasis on a system-centric approach to modeling resource

interactions bypasses such syntactic artifacts.

The software-diversity tactics employed by malware

writers required new detection techniques that could capture

more of the intent of the program and less of the syntactic

characteristics of the program binary. The research efforts

have focused on describing malware in terms of violations to

an information-flow policy. Because it is not feasible for per-

formance reasons to track system-wide information flows

accurately, the focus shifted on better and better approxima-

tions of the information flow. Bruschi et al. (2006) and Kruegel

et al. (2005b) showed that some classes of obfuscations could

be rendered innocuous by modeling programs according to

their instruction-level control flow,while Christodorescu et al.

(2005) and Kinder et al. (2005) built obfuscation-resilient de-

tectors based on instruction-level information flow. None-

theless, instruction sequences are fungible and there are

many ways to implement the same high-level functionality.

Detection techniques then raised the bar by capturing infor-

mation flow at the level of library calls, as proposed by Kirda

et al. (2006), system calls, as proposed by Kolbitsch et al.

(2009), Christodorescu et al. (2007), Martignoni et al. (2008),

and Stinson and Mitchell (2007), and OS resources, as pro-

posed by Yin et al. (2007). The respective evaluations of each of

these techniques shows that as the models used in detection

more closely describe actual OS resources, the detection rates

significantly increase and the false-positive rates decrease.

Unfortunately the library and system-call interfaces are rich

enough that mimicry attacks are still possible (Kruegel et al.,

2005; Wagner and Soto, 2002). This observation guided our

choice of system resources as the basic element in ourmodels,

discarding any information about the order in which re-

sources are accessed. Furthermorewe focus strictly on system

resources that are shared across processes (i.e., files, registry,

and network connections) and we ignore single-process re-

sources such as virtual memory.

Beyond proposing a richer, system-centric model of pro-

gram behavior, we made a concerted effort to improve an

often overlook evaluation aspect, the external validity of the

experimental settings. This concerns the number and di-

versity of benign and malicious programs used to evaluate a

detection technique, as well as the environment inwhich they

are exercised (in the case of detectors that rely on runtime

information). For example, Kirda et al. (2006) evaluated their

system against 33 malware samples and 18 benign samples,
each samples executed for 30e60 s. Kolbitsch et al. (2009) used

563 malware samples and 10 benign samples, executed for up

to 5 min. Christodorescu et al. (2007) evaluated 16 malware

samples and 6 benign samples for up to 4 min, similar to the

test sets used by Martignoni et al. (2008) (7 malware, 6 benign)

and to Stinson and Mitchell (2007) (6 malware, 9 benign). Yin

et al. (2007), in their PANORAMA system, evaluated 42 malicious

samples and 56 benign ones, for 5 min. What is common to all

of these evaluations is that both the numbers of malicious

samples and of benign samples are quite small. On current

systems, regular users often run tens of interactive applica-

tions and hundreds of background processes, casting doubt on

the relevance of results obtained from a few benign samples.

Furthermore, evaluations in previous work were performed in

virtualized, constrained environments, where interactive ap-

plications were exercised mechanically in ways that do not

necessarily reflect real-life usage. We addressed these limi-

tations by collecting execution traces of benign applications

from actual users, during the course of their normal interac-

tion with their personal systems. We designed our system to

have low overhead and to anonymize all collected informa-

tion, so that the users had no concerns andwere not impacted

in their regular use of their machine. The benign data we

collected covered 242 distinct benign applications ran by ten

users in their own environments.

7.2. Malware classification

Another research topic that is closely related to our work is

that of classification of large sets of malware samples. Various

models have been proposed, all focusing on system calls or on

accesses to system resources. Lee and Mody performed clas-

sification ofmalware samples based on the similarity between

sequences of system calls (Lee and Mody, 2006). Bailey et al.

(2007) considered similarity between sets of accessed system

resources, and Rieck et al. (2008) considered various re-

finements by abstraction. Bayer et al. (2009) used similarity

between resource-based information flows for classification.

All of these papers describe the classification task applied to

large sets of malware (thousands or tens of thousands), and

thus their results are representative. Yet, because their pri-

mary focus was on malware classification, it is not clear that

the classification features that they derived are useful in

malware detection. A classification feature (e.g., some

particular resource accesses) might well distinguish botnetM1

from botnet M2, but it might not be able to distinguish botnet

M1 from a benign program B. Thus our current work is

orthogonal to malware-classification research.

7.3. Access control and domain and type enforcement

Our system-centric access activity model is related to access

control mechanisms, and, in particular, to mandatory access

control (MAC) systems. They both define acceptable uses of

resources in a user-independent way via a central policy.

There are numerous implementations of MAC systems, of

which SELinux (Loscocco and Smalley, 2001) is currently the

most visible. Some MAC systems have been specifically

designed to prevent malware from running in a system

(Debbabi et al., 2001; Salois and Charpentier, 2000), while

http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 048
others can enforce multi-level security policies. Based on this

similarity, the system-centric model can be converted into a

SELinux policy, for example, and our model-generation tech-

nique can be used as a practical tool to construct SELinux

policies.

There is a fundamental distinction between MAC policies

and our system-centric models. While an MAC policy neces-

sarily enumerates all the programs and the program-specific

rules, a system-centric model is more general in that it de-

fines confidentiality and integrity rules for all programs.While

it might appear that system-centric models are less restric-

tive, in our experimental evaluation, we observed a very good

match between our models and real-life application execu-

tions. Additionally, MAC policy are often deployed to ensure

the confidentiality and integrity of system files, at the cost of

leaving user files poorly (if at all) secured and in need of

additional mechanisms, such as the PinUP tool proposed by

Enck et al. (2008), which ties user files to particular applica-

tions. Our system-centric model covers system and user files,

based on the observation that both system programs and

applications satisfy some general ways in which they use OS

resources.
7.4. Virtualization

The idea of utilizing a virtual machine monitor to perform

sophisticated run-time analyses, with the guarantee that the

results cannot be tampered by a malicious attacker, has

already been widely explored in the literature. Garfinkel et al.

were the first to propose to use a VMM to perform OS-aware

introspection (Garfinkel and Rosenblum, 2003). Other re-

searchers proposed to use a VMM for protecting the guest OS

from attacks by monitoring its execution, with a software-

based VMM (Riley et al., 2008) that leveraged on hardware

support for virtualization (Seshadri et al., 2007). Similar ideas

were also proposed by other authors Payne et al. (2008), Sharif

et al. (2009). In Chen et al. (2008) described a solution to protect

applications' data even in the presence of a compromised

operating system. Recently, Vasudevan et al. proposed XTREC,

a lightweight framework to record securely the execution

control flow of code running in an untrusted system (Perrig

et al., 2010). Finally, our Hypervisor is lightweight version of

HyperDbg (Fattori et al., 2010) and it can provide a secure layer

for checking the AccessMiner Policies. It also provided a

manage mode where the policies can be loaded in secure way

from the network so we can assure that the attacker cannot

modify them.
8. Conclusions

In this paper we present AccessMiner, a system-centric

approach to model the activities of benign programs and use

thesemodels to detect the presence of malicious applications.

In particular, we discuss the general algorithm and the

implementation of the AccessMiner detector as a custom

system hypervisor. We also discuss the accuracy of our

approach and the overhead introduced by our hypervisor. The

results of our experiments show that our system could be
deployed in a real environment, with only a limited impact on

the performance of the system.
Acknowledgments

The research leading to these results was partially funded by

the European Union Project FP7-SEC-285477-CRISALIS.
r e f e r e n c e s

AMD, Inc. AMD virtualization. www.amd.com/virtualization.
Anubis. Anubis. http://anubis.iseclab.org.
Bailey Michael, Oberheide Jon, Andersen Jon, Mao Zhuoqing

Morley, Jahanian Farnam, Nazario Jose. Automated
classification and analysis of internet malware. In: Kruegel C,
Lippmann R, Clark A, editors. Proceedings of the 10th
international symposium on recent advances in intrusion
detection (RAID'07), volume 4637 of Lecture notes in Computer
Science. Gold Goast, Australia: Springer-Verlag; Sept. 2007.
p. 178e97.

Bayer Ulrich, Comparetti Paolo M, Hlauschek Clemens,
Kruegel Christopher, Kirda Engin. Scalable, behavior-based
malware clustering. In: Proceedings of the 16th annual
network and distributed system security symposium
(NDSS'09), San Diego, CA, USA; Feb. 2009.

Bruschi Danilo, Martignoni Lorenzo, Monga Mattia. Detecting
self-mutating malware using control-flow graph matching. In:
Büschkes R, Laskov P, editors. Proceedings of the 3rd
conference on detection of intrusions and malware &
vulnerability assessment (DIMVA'06), volume 4064 of Lecture
notes in Computer Science. Springer-Verlag; 2006. p. 129e43.

Chen Xiaoxin, Garfinkel Tal, Lewis Christopher,
Subrahmanyam Pratap, Waldspurger Carl A, Boneh Dan, et al.
Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. In: Operating
systems review; 2008.

Canali Davide, Lanzi Andrea, Balzarotti Davide,
Kruegel Christopher, Christodorescu Mihai, Kirda Engin. A
quantitative study of accuracy in system call-based malware
detection. In: Proceedings of the 2012 international
symposium on software testing and analysis (ISSTA); 2012.

Christodorescu Mihai, Kruegel Christopher, Jha Somesh. Mining
specifications of malicious behavior. In: Proceedings of the 6th
joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the
foundations of software engineering (ESEC/FSE'07). New York,
NY, USA: ACM Press; 2007. p. 5e14.

Christodorescu Mihai, Jha Somesh, Seshia Sanjit A, Song Dawn,
Bryant Randal E. Semantics-aware malware detection. In:
Proceedings of the 2005 IEEE symposium on security and
privacy (S&P'05). Oakland, CA, USA: IEEE Computer Society;
May 8e11, 2005. p. 32e46.

Debbabi Mourad, Girard Marc, Poulin Luc, Salois Martin,
Tawbi Nadia. Dynamic monitoring of malicious activity in
software systems. In: Proceedings of the symposium on
requirements engineering for information security (SREIS'01);
Mar. 2001. p. 1e10. Indianapolis, IN, USA.

Enck William, McDaniel Patrick Drew, Jaeger Trent. PinUP:
pinning user files to known applications. In: Proceedings of
the 24th annual computer security applications conference
(ACSAC'08). Anaheim, CA, USA: IEEE Computer Society; Dec.
2008. p. 55e64.

http://www.amd.com/virtualization
http://anubis.iseclab.org
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref1
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref2
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref3
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref4
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref5
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref6
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref7
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref8
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref9
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref9
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 0 49
Fattori Aristide, Paleari Roberto, Martignoni Lorenzo,
Monga Mattia. Dynamic and transparent analysis of
commodity production systems. In: Proceedings of the 25th
international conference on automated software engineering
(ASE); 2010. http://code.google.com/p/hyperdbg/.

Garfinkel Tal, Rosenblum Mendel. Virtual machine introspection
based architecture for intrusion detection. In: Proceedings of
the network and distributed systems security symposium.
The Internet Society; 2003.

Hoglund Greg, Butler Jamie. Rootkits: subverting the Windows
kernel. Addison-Wesley Professional; 2005.

Kinder Johannes, Katzenbeisser Stefan, Schallhart Christian,
Veith Helmut. Detecting malicious code by model checking.
In: Julisch K, Kruegel C, editors. Proceedings of the 2nd
international conference on intrusion and malware detection
and vulnerability assessment (DIMVA'05), volume 3548 of
Lecture notes in Computer Science. Vienna, Austria: Springer-
Verlag; July 2005. p. 174e87.

Kirda Engin, Kruegel Christopher, Bank Greg, Vigna Giovanni,
Kemmerer Richard. Behavior-based spyware detection. In:
Proceedings of the 15th USENIX security symposium
(Security'06), Vancouver, BC, Canada; August 2006.

Kolbitsch Christian, Comparetti Paolo Milani,
Kruegel Christopher, Kirda Engin, Zhou Xiaoyong,
Wang XiaoFeng. Effective and efficient malware detection at
the end host. In: Proceedings of the 18th USENIX security
symposium (Security'09). Montr�eal, Canada: USENIX
Association; Aug. 2009. p. 351e66.

Kruegel Christopher, Kirda Engin, Mutz Darren,
Robertson William, Vigna Giovanni. Automating mimicry
attacks using static binary analysis. In: Proceedings of the 14th
USENIX security symposium (Security'05), Baltimore, MD,
USA; August 2005.

Kruegel Christopher, Kirda Engin, Mutz Darren,
Robertson William, Vigna Giovanni. Polymorphic worm
detection using structural information of executables. In:
Proceedings of the 8th international symposium on recent
advances in intrusion detection (RAID'05), volume 3858 of
LNCS. Seattle, WA: Springer-Verlag; September 2005b.
p. 207e26.

Lanzi Andrea, Balzarotti Davide, Kruegel Christopher,
Christodorescu Mihai, Kirda Engin. AccessMiner: using
system-centric models for malware protection. In:
Proceedings of the 17th conference on computer and
communications security (CCS); 2010.

Lee Tony, Mody Jigar J. Behavioral classification. In: Proceedings
of the 15th annual European institute for computer antivirus
research conference (EICAR'06); May 2006.

Li Wei-Jen, Wang Ke, Stolfo Salvatore J, Herzog Benjamin.
Fileprints: identifying file types by n-gram analysis. In:
Proceedings of the 6th annual IEEE systems, man, and
cybernetics (SMC) workshop on information assurance. West
Point, NY: United States Military Academy; June 2005.
p. 64e71.

Litty Lionel, Lagar-Cavilla H Andr�es, Lie David. Hypervisor
support for identifying covertly executing binaries. In:
Proceedings of the 17th conference on security symposium,
SS'08. Berkeley, CA, USA: USENIX Association; 2008. p. 243e58.

Loscocco Peter, Smalley Stephen. Integrating flexible support for
security policies into the linux operating system. In:
Proceedings of the FREENIX track of the 2001 USENIX annual
technical conference. Berkeley, CA, USA: USENIX Association;
2001. p. 29e42.

Martignoni Lorenzo, Stinson Elizabeth, Fredrikson Matt,
Jha Somesh,Mitchell JohnC.A layered architecture for detecting
malicious behaviors. In: Proceedings of the 11th international
symposiumon recent advances in intrusion detection (RAID'08).
Berlin, Heidelberg: Springer-Verlag; 2008. p. 78e97.
Martignoni Lorenzo, Paleari Roberto, Bruschi Danilo. Conqueror:
tamper-proof code execution on legacy systems. In:
Proceedings of the 7th conference on detection of intrusions
and malware and vulnerability assessment (DIMVA), Lecture
notes in Computer Science. Bonn, Germany: Springer; 2010.

McCune Jonathan M, Parno Bryan, Perrig Adrian, Reiter Michael K,
Isozaki Hiroshi. Flicker: an execution infrastructure for TCB
minimization. In: Proceedings of the ACM European
conference in computer systems (EuroSys); 2008.

Mukkamala Srinivas, Sung Andrew, Xu Dennis, Chavez Patrick. ,
Static analyzer for vicious executables (SAVE). In: Proceedings
of the 20th annual computer security applications conference
(ACSAC'04); Dec. 2004. p. 326e34. Tucson, AZ, USA.

Neiger Gil, Santoni Amy, Leung Felix, Rodgers Dion, Uhlig Rich.
Intel virtualization technology: hardware support for efficient
processor virtualization. Intel Technol J August
2006;10(3):167e77.

Northsecuritylabs. HyperSigh rootkit detector. http://
northsecuritylabs.com/downloads/whitepaper-html/.

Payne Bryan D, Carbone Martim, Sharif Monirul, Lee Wenke.
Lares: an architecture for secure active monitoring using
virtualization. In: Proceedings of the IEEE symposium on
security and privacy; 2008.

Perrig Adrian, Gligor Virgil, Vasudevan Amit. XTREC: secure real-
time execution trace recording and analysis on commodity
platforms. In: Technical report. Carnegie Mellon University;
2010.

Riley Ryan, Jiang Xuxian, Xu Dongyan. Guest-transparent
prevention of Kernel Rootkits with VMM-based memory
shadowing. In: Proceedings of the 11th international
symposium on recent advances in intrusion detection; 2008.

Rieck Konrad, Holz Thorsten, Willems Carsten, Dussel Patrick,
Laskov Pavel. Learning and classification of malware behavior.
In: Zamboni D, editor. Proceedings of the 5th conference on
detection of intrusions and malware & vulnerability
assessment (DIMVA’08), volume 5137 of Lecture notes in
Computer Science. Springer-Verlag; 2008. p. 108e25.

Sharif Monirul, Lee Wenke, Cui Weidong, Lanzi Andrea. Secure
In-VM monitoring using hardware virtualization. In:
Proceedings of the ACM conference on computer and
communications security; 2009.

Seshadri Arvind, Luk Mark, Qu Ning, Perrig Adrian. SecVisor: a
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes. In: Proceedings of the ACM symposium on
operating systems principles; 2007.

Salois Martin, Charpentier Robert. Dynamic detection of
malicious code in COTS software. In: Proceedings of the
information systems technology panel (IST) symposium on
commercial off-the-shelf products in defence applications
“The Ruthless Pursuit of COTS”. Brussels, Belgium:
NATO Research and Technology Organization; Apr. 2000. 16-
1e16-13.

Schultz Matthew G, Eskin Eleazar, Zadok Erez, Stolfo Salvatore J.
Data mining methods for detection of new malicious
executables. In: Proceedings of the 2001 IEEE symposium on
security and privacy (S&P'01); May 2001. p. 38e49.

P. Software. PassMark Performance Test.
Stinson Elizabeth, Mitchell John C. Characterizing bots' remote

control behavior. In: Kruegel C, Lippmann R, Clark A,
editors. Proceedings of the 10th international symposium on
recent advances in intrusion detection (RAID'07), volume
4637 of Lecture notes in Computer Science. Springer-Verlag;
2007.

Symantec. W32.Stuxnet Dossier. February 2011. http://www.
symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/w32_stuxnet_dossier.pdf.

Symantec. Flamer: highly sophisticated and discreet threat
targets the Middle East. May 2012. http://www.symantec.com/

http://code.google.com/p/hyperdbg/
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref11
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref12
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref12
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref13
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref14
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref14
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref14
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref14
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref15
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref16
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref17
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref18
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref19
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref19
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref19
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref20
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref21
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref22
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref23
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref24
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref25
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref26
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref27
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref27
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref27
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref27
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref27
http://northsecuritylabs.com/downloads/whitepaper-html/
http://northsecuritylabs.com/downloads/whitepaper-html/
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref28
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref29
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref30
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref31
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref32
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref33
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref34
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref35
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref36
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref36
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

c om p u t e r s & s e c u r i t y 5 2 (2 0 1 5) 3 3e5 050
connect/blogs/flamer-highly-sophisticated-and-discreet-
threat-targets-middle-east.

Symantec. W32.Duqu: the precursor to the next Stuxnet. October
2011. http://www.symantec.com/connect/w32_duqu_
precursor_next_stuxnet.

Sz€or P�eter. The art of computer virus research and defense.
Addison-Wesley; 2005.

Wagner David, Soto Paolo. Mimicry attacks on host-based
intrusion detection systems. In: Proceedings of the 9th ACM
conference on computer and communications security
(CCS'02). New York, NY, USA: ACM; 2002. p. 255e64.

Wojtczuk Rafał. Subverting the Xen hypervisor. Black Hat USA;
2008.

Xu Jianyun, Sung Andrew H, Chavez Patrick, Mukkamala Srinivas.
Polymorphic malicious executable scanner by API sequence
analysis. In: Proceedings of the 4th international conference
on hybrid intelligent systems (HIS'04). Kitakyushu, Japan: IEEE
Computer Society; Dec. 2004. p. 378e83.

Yin Heng, Song Dawn, Egele Manuel, Kruegel Christopher,
Kirda Engin. Panorama: capturing system-wide information
flow for malware detection and analysis. In: Proceedings of
the 14th ACM conference on computer and communications
security (CCS'07). New York, NY, USA: ACM; 2007. p. 116e27.

Aristide Fattori got his PhD in Computer Science in 2014 from
Universit�a degli Studi di Milano, Italy. His research interests
include several aspects of Computer Security and Operating Sys-
tems. In particular, the main focus of his research is on the ap-
plications of hardware-assisted virtualization to various systems
security problems, ranging from malware analysis/detection to
intrusion prevention.
Andrea Lanzi is an assistant professor at the Computer Science
department of Universit�a degli Studi di Milano, Italy. He is inter-
ested in several aspects of Computer Security. In particular, his
main area of research deals with Host Intrusion Detection Sys-
tems (HIDS), exploitation techniques for memory errors, reverse
engineering, and virtualization techniques for detecting cyber
attacks. He got his PhD in 2008 from University of Milan, during
which he was employed, for over 2 years, as a visiting student at
Georgia Tech University GATech (GA) USA, in the GTISC Lab lead
by Prof. Wenke Lee where he was mainly working on malware
analysis.

Davide Balzarotti is currently an Assistant Professor at Institut
Eurecom in the south of France. His research interests includemost
aspects of system security and in particular the areas of intrusion
detection and prevention, binary and malware analysis, reverse
engineering, and web security. Before joining Eurecom, Davide
spent two years in Santa Barbara as a postdoctoral researcher in the
Department of Computer Science at UCSB. He received his PhD in
Computer Engineering from Politecnico di Milano in 2006.

Engin Kirda is Sy and Laurie Sternberg Associate Professor for In-
formation Assurance at the College of Computer and Information
Science and the Department of Electrical and Computer Engineer-
ing ofNortheasternUniversity in Boston. He is also the newdirector
of theNortheastern InformationAssurance Institute. Previously, he
was tenured faculty at Institute Eurecom (Graduate School and
ResearchCenter) in the FrenchRivieraandbefore that, facultyat the
Vienna University of Technology where he co-founded the Secure
Systems Lab. The lab has now become international and is
distributed over five institutions and geographical locations.

http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet
http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref40
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref41
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref42
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref42
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref43
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref44
http://refhub.elsevier.com/S0167-4048(15)00039-5/sref44
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.03.007

	Hypervisor-based malware protection with AccessMiner
	1. Introduction
	2. System-centric models and detection
	2.1. Creating access activity models
	2.2. Initial access activity model
	2.3. Pre-processing
	2.4. Model generalization
	2.5. Model enforcement and detection

	3. Hypervisor framework design
	3.1. Technology overview
	3.2. Threat model
	3.3. Hypervisor architecture
	3.3.1. Protected memory mechanism
	3.3.2. Checking invocation points
	3.3.3. Trusted path execution
	3.3.4. Process revealer
	3.3.5. Policy checker

	4. System call data collection
	4.1. Raw data collection
	4.2. Data normalization
	4.3. Experimental data set

	5. Detection results
	5.1. File system access activity model
	5.2. Registry access activity model
	5.3. Full access activity model
	5.4. Discussion

	6. Performance results
	6.1. Macro benchmark
	6.2. Micro-benchmarks

	7. Related work
	7.1. Malware detection
	7.2. Malware classification
	7.3. Access control and domain and type enforcement
	7.4. Virtualization

	8. Conclusions
	Acknowledgments
	References

