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Abstract—In future Intelligent Transport Systems (ITS), ad-
vanced car safety applications may require that each vehicle
determines not only its own absolute position (i.e., “ego” car
localization on the road) but also the positions of its immediate
neighbors in a continuous and accurate way. For this sake, inter-
vehicle data transmissions via Dedicated Short Range Communi-
cations (DSRC) (e.g., compliant with the IEEE 802.11p standard)
can be exploited to support both peer-to-peer ranging based
on Received Signal Strength Indicators (RSSI) and Cooperative
Positioning (CP) between GPS-equipped vehicles. Since the ag-
gregation of heterogeneous (and possibly asynchronous) sources
of information remains quite challenging in such Vehicular Ad
hoc NETworks (VANETs), we herein describe and compare
gradually cooperative solutions that perform distributed data
fusion through Extended Kalman Filtering (EKF). One first stake
consists in re-aligning in time the data received from cooperating
cars following a generalized prediction approach. In addition,
using a so-called validation gate based on innovation monitoring
and/or a Cramér-Rao Lower Bound (CRLB) indicator accounting
for conditional positioning performance, a low-complexity link
selection mechanism is developed to identify the most relevant
neighboring cars and/or the best RSSI candidates to feed the
fusion engine. Preliminary simulation results, obtained under
realistic IEEE 802.11p radio parameters and varying GPS
accuracy conditions, illustrate benefits from selective cooperation,
especially in terms of “ego” car navigation continuity.

Index Terms—Car Navigation, Cooperative Positioning, Dedi-
cated Short Range Communications, Global Positioning System,
Hybrid Data Fusion, IEEE 802.11p, Link Selection, Local Dy-
namic Map, Received Signal Strength Indicator, Vehicular Ad
Hoc Networks.

I. INTRODUCTION

For the last past years, Vehicular Ad hoc NETworks
(VANETs), which typically rely on wireless inter-vehicle
communications, have been attracting a worldwide attention
for contributing to improved transportation efficiency. In the
domain of car safety for instance, vehicles are supposed to
get contextual information about events and/or other vehicles
in their vicinity [1]. This type of information can be shared
between the cars by exchanging specific beacons [1]–[4].
The IEEE 802.11p standard, which has been proposed to
enable wireless access in this specific vehicle-to-vehicle (V2V)
context [2], offers such Dedicated Short Range Communi-
cation (DSRC) means. Safety-related information (e.g., 2D

position from on-board GPS, speed, heading. . . ) are then
encapsulated in Cooperative Awareness Messages (CAMs),
which can be broadcasted over DSRC channels [1] and pos-
sibly used further for cooperative positioning (CP).

Besides, due to the universal availability of satellites and
large penetration into the mass market, the GPS technol-
ogy has become de facto the standard solution for generic
vehicular positioning [4]. However, its precision level and
its accessibility still remain questionable in usual operating
conditions (e.g., in urban canyons, under deep forest cover,
in long tunnels, underground parkings. . . ). On the other hand,
the practical range of accuracy affordable with typical GPS
receivers (e.g., 3–10 m, even in favorable conditions) [2] may
be insufficient in advanced safety applications (e.g., for long-
term anti-collision systems anticipating on lane changes. . . ).

With the development of the DRSC technology, CP in
GPS-aided IEEE 802.11p VANETs thus discloses promising
opportunities to improve “ego” car navigation capabilities in
comparison with stand-alone satellite solutions (in terms of
both average precision and robustness/continuity), but also to
help cars to build and refine local dynamic maps (LDMs)
accounting for their immediate vicinity. In this context, recent
research initiatives have been focusing on hybrid data fusion
techniques [5]. The idea is to optimally combine the position
information delivered by on-board GPS receivers (shared
among neighboring cars) with V2V range measurements re-
lying on the Received Signal Strength Indicator (RSSI) of
broadcasted CAMs [2], [4], [6], [7]. However, most contribu-
tions still make rather strong assumptions in terms of achiev-
able radio coverage and connectivity (and hence, cooperation
potential), V2V ranging performances (e.g., with constant
standard deviation of range measurement noise, regardless of
the true distance and/or channel conditions), and finally data
synchronization among the different cars.

In this paper, we propose a generic data fusion framework
including i) a re-synchronization mechanism to properly in-
corporate cooperative information incoming from neighboring
cars (i.e., location estimates and their related estimation covari-
ances, encapsulated in the data payload of transmitted CAMs),
ii) a link selection scheme to eliminate irrelevant or non-
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Fig. 1. Approximately synchronous location estimates and asynchronous
packets from neighboring vehicles 2 and 3 vs. local prediction timeline at
vehicle 1.

informative cooperative information (i.e., V2V measurement
outliers and/or non-reliable estimates from neighbors), iii) a
core data fusion engine based on a conventional Extended
Kalman Filter (EKF) enabling two correction modes (“ego”
correction only or generalized correction including neighbors).
Considering typical RSSI readings, one goal here is to verify
if and to which extent V2V cooperation could be really ben-
eficial. Evaluations are thus carried out through simulations,
considering a Gauss-Markov mobility model, realistic IEEE
802.11p-compliant radio channel parameters (in terms of both
path loss parameters and slow fading statistics), as well as
varying GPS availability and precision levels over time.

The remainder of the paper is organized as follows. In
Section II, we introduce the CP problem in VANETs. Then
Section III presents the proposed prediction-based data re-
synchronization, links selection and correction/fusion strate-
gies. In Section IV, simulation results illustrate the achievable
performance. Finally Section V concludes the paper.

II. PROBLEM STATEMENT

We first consider a network comprising N GPS-equipped
vehicles distributed on a particular road segment, labeled
1, 2, . . . , N . The objective of each vehicle (later considered
as “ego” vehicle) is to track its own 2D position, as well
as the “constellation” formed by its immediate neighbors.
In the scope of this work and in first approximation, it is
assumed that the refresh rate of the location information
is such that the position estimates locally available at the
different cars are almost synchronous, as depicted in the
example of Fig. 1 (with 3 vehicles only). This assumption is
somehow justified by the possibility to extrapolate the results
in the general asynchronous case (i.e., location estimates could
be generated at distinct points in time but continuously and
locally extrapolated on an arbitrarily finer time scale). To ease
the notation, we also consider a global timeline divided into
time windows indexed by k so that all the events occurring
within this time slot granularity share the same index k.

Throughout this paper, the following notations will be used:

• t(·) is the global time of any event;
• θik =

[
xik,v

i
k

]T
represents the state vector of vehicle i,

including, for a two-dimensional (2D) system, its position
xik =

[
xik, y

i
k

]T
and its velocity vik =

[
ẋik, ẏ

i
k

]T
at time

step k;

• θ̂
i

k|m is the estimate of θik at time step k based on past
time step m, k ≥ m (and similarly for x̂ik|m and v̂ik|m);

• Pik|m(·) is the covariance matrix of a particular variable

estimate such as θ̂
i

k|m, x̂ik|m. . .
• gik is the GPS observation expressed in a 2D Cartesian

coordinate system for vehicle i at time step k;
• P j→ik denotes the measured power (i.e., RSSI reading) of

the beacon sent by vehicle j and received by vehicle i in
the time interval [t(k − 1), t(k)).

• N→ik gathers the indexes of the neighboring vehicles from
which vehicle i can receive beacons/CAMs in the time
interval [t(k − 1), t(k)).

Without loss of generality, we consider localizing the “ego”
vehicle 1 at time step k. In the simplest non-cooperative
scenario, the positioning algorithm just fuses the predicted
state θ̂

1

k|k−1 and the GPS estimate g1
k (treated as observation)

to provide a corrected state θ̂
1

k|k or alternatively, it can rely on

either θ̂
1

k|k−1 (i.e., loss of GPS signals) or g1
k (i.e., no available

prediction). No location information is provided to the neigh-
boring vehicles around. One step ahead, in half-cooperative
schemes, each car broadcasts its latest position estimate in the
next CAM so that its neighbors can directly incorporate the
information in their own constellation representation (with no
further processing). In full CP schemes, vehicle 1 at time step
k is still aware of the latest location estimates {θ̂

j

k−1|k−1} pro-
duced by its neighbors j ∈ N→ik , along with the corresponding
covariance matrices, thanks to the received CAM notifications.
However, such information is not utilized as is, since it is
(by definition) out-of-date. Thus, a prediction step is required
to re-synchronize all the estimates till any desired temporal
point on the “ego” timeline (e.g., right at time step k in our
case). Furthermore, the RSSI measurements derived from the
received CAMs (i.e., the set {P j→1

k }) are used as distance-
dependent observations together with the local GPS position
estimate, so as to correct the predicted “ego” position and
even possibly, the predicted positions of the neighboring cars
(resulting in a larger state dimension and hence, higher filter
complexity). In this paper, we only consider the first “ego”
correction for simplicity. However, such RSSI measurements
are not perfectly synchronized with each other (e.g., the CAM
transmissions may occur at different rates and/or they can be
event-driven). They are not either aligned in time with the
moment when they are used for updating vehicle 1’s position
estimate (i.e., at time step k). In case of highly correlated
velocities (e.g., vehicles forming a group/platoon on a high-
way), relative distances remain quite stable in the medium
term, and hence, so are expected the RSSI measurements (at
least in average). Nevertheless, it is obviously not the case for
vehicles traveling in opposite directions. For this reason, but
also for the sake of discarding measurement outliers, while
capturing only the most informative data from neighboring
cars, one additional link selection step is highly recommended
before performing fusion. In the VANET context, exhaustive
cooperation in CP can also lead to degraded performance due



Fig. 2. Overall fusion synopsis and data flow in GPS-aided IEEE 802.11p
Cooperative Positioning (CP).

to the absence of known fixed anchors and accordingly, due
to errors propagation among cooperating cars. Fig. 2 shows
a block diagram of the overall fusion-based CP, recalling the
main components.

III. PROPOSED ALGORITHMS

A. Data Re-Synchronization

As indicated previously, available sources of information
(i.e., data received from neighbors and/or on-board devices like
GPS) are adversely asynchronous in the high speed VANET
context. To cope with this problem, data re-synchronization
is then naturally achieved via an early prediction step applied
to both “ego” and neighbors’ estimates (See Fig. 2). Even
though various prediction schemes are feasible, spanning from
simple (e.g., non-parametric prediction, Kalman prediction) to
more sophisticated ones (e.g., parametric prediction, unscented
transform with numerical integration (UT-NI)) [3], a very sim-
ple stochastic Kalman prediction is considered in this paper.
It both fits the subsequent data fusion framework and lowers
the impact of modeling errors by fine-tuning the magnitude
of the process noise. Thus, in compliance with the scenario
depicted in Fig. 1, the prediction step in Fig. 2 can be simply
formulated as follows

θ̂
i

k|k−1 = Fikθ̂
i

k−1|k−1 + f ik, (1)

where Fik and f ik are the system matrices of vehicle i at time
step k, with a covariance matrix representing the fidelity of
this prediction given by

Pik|k−1(θ) = FikP
i
k−1|k−1(θ)

[
Fik
]ᵀ

+Qi
k, (2)

where Qi
k = E

{
wi
k

[
wi
k

]ᵀ}
denotes the “need-to-tune” co-

variance matrix of process noise wi
k which takes unmodelled

noises into account (e.g., in our case, including mismatches
between the Gauss-Markov mobility model generating actual
trajectories and the linear Gaussian state transition model
assumed in the filter). Note that at a particular vehicle i, the
matrices Fik and f ik used to predict the “ego” position are
supposed to be known. However, for its neighbors j ∈ N→ik ,
i would need specific but a priori unknown mobility mod-
els (e.g., Fjk, f jk , and Qj

k). However, the later can still be
determined empirically (e.g., out of observed past position
estimates). Alternatively, they could be also included explicitly
in the CAMs received from the neighbors.

B. Measurements and Links Selection

So as to exclude uninformative incoming information that
can ruin or alter the benefits of cooperation, a first validation
gate (See Algorithm 1) is thus introduced to verify RSSIs by
continuously monitoring normalized innovation terms. First of
all, we perform a pre-processing step to discard non-reliable
virtual anchors (i.e., badly positioned neighbors) by comparing
the expected dispersion of their position estimates with that
of the “ego” vehicle (i.e., based on covariance matrices),
multiplied by an arbitrary scaling factor βth that can be set
empirically. Accordingly, one “ego” vehicle i will not consider
information from a cooperative neighbor j if

trace
(
Pjk|k−1(x)

)
> βthtrace

(
Pik|k−1(x)

)
. (3)

Algorithm 1 Validation gate for link quality (iteration k, “ego”
vehicle i, neighboring vehicle j)

1: procedure VALIDATIONGATE(k, i, j,xik|k−1, Pik|k−1(x),
xjk|k−1, Pjk|k−1(x), P

j→i
k , Rj→i

k , βth, γth)

2: if trace
(
Pjk|k−1(x)

)
> βthtrace

(
Pik|k−1(x)

)
then .

received information censoring
3: return remove ambiguity in link j
4: else
5: P j→ik|k−1 = h(x

(i,j)
k|k−1) . predicted RSSI

measurement
6: νj→ik = P j→ik − P j→ik|k−1 . innovation

7: Sj→ik = HkP
(i,j)
k|k−1H

ᵀ +Rj→i
k . innovation

covariance matrix
8: qj→ik =

[
νj→ik

]ᵀ
Sj→ik νj→ik . normalized

innovation error
9: if qj→ik < γth then . validation gate

10: return select link j ∈ V→ik , store qj→ik

11: else
12: return remove ambiguity in link j
13: end if
14: end if
15: end procedure

After censoring neighbors’ estimates, a validation gate is ex-
ecuted to check the usability of the related RSSI measurements
at the current time step k. The predicted RSSI measurement
at vehicle i from vehicle j is thus computed according to a



classical log-distance path loss model [8], as follows

P j→ik|k−1 = h
(
x
(i,j)
k|k−1

)
= P0(dBm)− 10nplog10


∥∥∥xik|k−1 − xjk|k−1

∥∥∥
d0

 ,
(4)

where x
(i,j)
k|k−1 =

[
xik|k−1,x

j
k|k−1

]T
denotes the predicted

states of a pair of “ego” and neighboring vehicles (i, j),
P0(dBm) is the average received power at a reference distance
d0 typically equal to 1 meter, np represents the path loss
exponent and ‖·‖ stands for the Euclidean distance.

Accordingly, we compute each innovation term as

νj→ik = P j→ik − P j→ik|k−1, (5)

with the associated covariance matrix

Sj→ik = HkP
(i,j)
k|k−1H

ᵀ +Rj→i
k , (6)

where P
(i,j)
k|k−1 = diag

(
Pik|k−1(x),P

j
k|k−1(x)

)
is the pre-

dicted covariance matrix of a pair formed by “ego” and
neighboring vehicles (i, j), H = (∂/∂x)h

(
x
(i,j)
k|k−1

)
is the

Jacobian matrix of h (.) evaluated at the predicted point, and
Rj→i
k = σ2

sh denotes the variance of the RSSI shadowing.
Assuming that the innovation term is Normally distributed,

the normalized innovation error
[
νj→ik

]ᵀ
Sj→ik νj→ik is χ2-

distributed with nν degrees of freedom, where nν is the
dimension of νj→ik . Therefore, the validation gate is defined
like in [9] as

R(γth) ,
{
P j→ik|k−1 :

[
νj→ik

]ᵀ
Sj→ik νj→ik ≤ γth

}
(7)

where the detection threshold γth can be found from standard
χ2 distribution tables to fulfill an a priori rate of false alarms.

This gate specifies a region in measurement space for
valid realizations (i.e., legitimate to feed the fusion engine),
whereas the measurements outside the region are removed
(for being outliers caused by noise and/or out-dated due to
asynchronism). Up to this point, at time step k, we obtain for
“ego” vehicle i the set of valid links for CP, denoted by V→ik .

But after re-synchronizing the data and validating candidate
input measurements, additional links selection mechanisms
can be applied to reduce errors propagation, computational
complexity, energy consumption or over-the-air traffic (i.e.,
by censoring next Tx/Rx transactions). Related state-of-the-
art contributions in the field (e.g., [10], [11]) observed that
the selected set could be rather limited (i.e., on the order
of 3-4 links) with no significant performance degradation,
while offering lower complexity. Therefore, in this work, we
also set a priori the number of selected links to 3 (i.e.,
minimum number for non-ambiguous positioning in 2D).
In a first proposal (See Algorithm 2), the innovation-based
criterion consists in selecting the 3 links with the closest
RSSI measurements from their predicted values (i.e., Near-
est Neighbor (NN) criterion), whereas the second solution

(See Algorithm 3) takes into account a Cramér-Rao Lower
Bound (CRLB) characterizing the best achievable precision
for non-biased location estimators (i.e., conditioned on a given
set of neighbors). Note that the latter criterion captures both
the Geometric Dilution Of Precision (GDOP) and the pair-
wise radio link quality. Accordingly, the Fisher Information
Matrix (FIM) is approximated like in [8], [10] by

Îik(s) =
∑

j∈{s,s1,s2}

(
x̂ik|k−1 − x̂jk|k−1

)(
x̂ik|k−1 − x̂jk|k−1

)ᵀ
b
∥∥∥x̂ik|k−1 − x̂jk|k−1

∥∥∥4
+
[
Pik|k−1(x̂)

]−1
,

(8)

where b = (σsh log(10)/ (10np))
2, s1 and s2 refer to the 2

first selected links using the NN criterion whereas s denotes
the third remaining free link used for CRLB comparisons (in
Algorithm 3). Given s1 and s2, each possible CRLB con-
ditioned on a new s is simply computed as CRLBik(s) =

trace
{[

Îik(s)
]−1}

. The selection algorithm will then compare

all the conditional CRLB results and determine as the third
validated link the solution s ∈ V→ik that minimizes the CRLB
criterion, hopefully providing the best relative geometry into
the CP problem resolution.

Algorithm 2 NN-based link selection of 3 most informative
links (iteration k, “ego” vehicle i, neighboring vehicles V→ik )

1: procedure NNLINKSELECTION(V→ik )
2: if

∣∣V→ik

∣∣ > 3 then
3: s1 = argmin

s
qs→ik . first link

4: s2 = argmin
s6=s1

qs→ik . second link

5: s3 = argmin
s6=s1,s2

qs→ik . third link

6: return S→ik = {s1, s2, s3}
7: else
8: return S→ik = V→ik

9: end if
10: end procedure

C. Final Fusion and Correction

Conventional filters such as KF (or its linearized version
EKF) [9] have been considered in the ultimate fusion block.
When only the GPS position is used as observation (in non-
cooperative scenarios), we simply use the KF. If RSSI mea-
surements are available, observations are non-linear functions
of the estimated state variables so that EKF is preferred.

IV. SIMULATION RESULTS

A. Simulation Settings and Scenarios

In our evaluations, we consider a 3-lane highway model
with 9 vehicles traveling in the same direction and separated by
approximately 60 m (along the main moving direction) and by
a typical lane width of 5 m (along the perpendicular direction).
Their actual trajectories are simulated using the Gauss-Markov



Algorithm 3 Modified CRLB (MCRLB)-based link selection
of 3 most informative links (iteration k, “ego” vehicle i,
neighboring vehicles V→ik )

1: procedure MCRLBLINKSELECTION(V→ik )
2: if

∣∣V→ik

∣∣ > 3 then
3: s1 = argmin

s
qs→ik . first link

4: s2 = argmin
s 6=s1

qs→ik . second link

5: for s ∈ V→ik \{s1, s2} do
6: s3 = argmin

s
CRLBik(s) . third link

7: return S→ik = {s1, s2, s3}
8: end for
9: else

10: return S→ik = V→ik

11: end if
12: end procedure

mobility model for 100 seconds with a time step of 0.1 seconds
(i.e., the minimum tolerated period between successive CAMs
in IEEE 802.11p), assuming a memory level of 0.95, an
asymptotic velocity standard deviation of 0.1 m/s, and an
asymptotic mean velocity of 28 m/s. Concerning raw GPS
position estimates, we assume Normally distributed centered
2D errors, with a standard deviation varying as a function
of time. Systematic worst-case GPS accuracy levels of 3–
10 m and 10–15 m have been suggested in [2] and [3], [4]
respectively. Here we define 4 levels of GPS performance
i.e., less than 10 m in favorable conditions, less than 15 m
in prevailing ones, less than 30 m in harsh ones, and finally
in GPS-denied ones. These worst-case levels are reflected by
standard deviations of 3 m, 5 m, 10 m (and N/A), respectively.
In addition, the GPS refresh rate is considered as 10 Hz,
in compliance with typical specifications of commercialized
receivers. As for RSSI measurements, contrarily to most state-
of-the-art contributions reported in the field, a realistic log-
normal shadowing model dedicated to highway scenarios is
employed with a path loss exponent np = 1.9 and a shadowing
standard deviation σsh = 2.5 dB [12]. Lastly, the threshold βth
in Algorithm 1 is empirically set to 0.95.

Different positioning schemes are then compared in terms
of accuracy and service continuity. One first option con-
siders using raw GPS information as observation (non-
cooperative/unfiltered), mostly for benchmark purposes. We
also consider conventional KF to filter the raw GPS infor-
mation (i.e., non-cooperative and half-cooperative schemes,
with no V2V RSSI measurements). Then we test various ap-
proaches that exploit extra RSSI information (still based on the
received CAMs) together with raw GPS estimates, following
different realization modes. In particular, the NN-based (i.e.,
Algorithm 2) and MCRLB-based (i.e., Algorithm 3) coop-
erative solutions are compared with an approach performing
systematic cooperation with all the available neighbors (i.e.,
exhaustive cooperation), but also with a randomly selective
cooperation scheme choosing randomly 3 links at each time

step (i.e., random cooperation).
In a first evaluation scenario (S1), cooperative fusion is

considered uniquely at one single “ego” vehicle chosen as the
central node in the simulated 9-car constellation, whereas the
other cars simply rely on half-cooperative positioning (i.e.,
uniquely on their own filtered GPS result). Constant raw GPS
error standard deviations are assumed at the different vehicles
for the whole simulated period, namely 5 m (medium) for
the considered “ego” vehicle, 3 m (favorable) for 40 % of its
neighbors, 5 m (medium) for the next 20 %, and 10 m (harsh)
for the last 20 %, following a random assignment pattern at
each trial. The average performance is then assessed through
Monte Carlo simulations over 1000 independent realizations of
100 seconds each. In a second scenario (S2), GPS estimates at
the “ego” vehicle are affected by a varying standard deviation
as a function of time, including systematic loss over a signifi-
cant portion of trajectory (i.e., 20 % of service unavailability).
Note that in this case, stand-alone non-cooperative and half-
cooperative solutions can still rely on their prediction steps,
although errors obviously accumulate over time. Here again,
only the ”ego” vehicle performs fusion.

B. Results

Table I summarizes simulation results obtained in both S1
and S2 in terms of typical 2D localization errors, drawing
statistics over all the trials and all the time steps (after
initial convergence in a steady-state regime) and/or restrict-
ing to harsh GPS conditions (in S2 only). We consider
the median error (µ1/2) corresponding to an empirical cu-
mulative density function (CDF) of 50% and a worst-case
(WC) error regime arbitrarily defined for a CDF of 95%.
As expected, the simplest technique (i.e., using raw/unfiltered
GPS) is by far the worst one. Quite significant improvements
are already achieved through conventional filtering in non-
/half-cooperative schemes. Our two links selection schemes
(i.e., NN-based and MCRLB-based) only modestly reduce
the error further, by about 10% in terms of both wort-case
and median errors (with a small advantage to the MCRLB),
when considering the performance over the entire trajectory
in S1 (i.e., regardless of the instantaneous GPS quality). In
addition, contrarily to expectations, exhaustive cooperation
provides even less significant improvement in terms of median
error but it can even be counterproductive and degrade the
performance in the worst-case error regime in comparison with
non-cooperative solutions, likely due to the large fluctuations
of the incorporated RSSI measurements.

The complexity of CP strongly depends on the number of
links used in the data fusion. Particularly, the complexity of ex-
haustive cooperation scales as O

(∣∣N→ik

∣∣) whereas that of the
selective schemes (Algorithms 2 and 3) scales to O

(∣∣S→ik

∣∣)
(with e.g.,

∣∣N→ik

∣∣ = 8 and
∣∣S→ik

∣∣ ≤ 3 in our example).
Besides, regarding the complexity of the prior selection step
itself (likely critical under real-time constraints), classical
exhaustive CRLB-based search of the s most informative links
out of n [10] leads to combinatory complexity in O(n3)
and O(n4) for s = 3, 4 respectively (i.e., accounting for



the number of times that a conditional CRLB result must
be calculated), whereas our links selection techniques lead to
O(0) and O(n) for NN-based and MCRLB-based schemes,
respectively.

However, selective cooperation, if not handled properly,
may not be a relevant solution either (at least, in terms of
localization error) due to uncontrolled poor GDOP conditions,
as revealed by the performance of randomly selective schemes
(approximately similar to that of exhaustive cooperation) in
both S1 and S2. In a favorable steady-state regime when GPS
is fully available and relatively precise (i.e., typically with a
standard deviation equal to 3m), RSSI-based CP thus does not
seem fully relevant, whereas significant gains through selective
CP are mostly noticeable when GPS is seriously altered or
even no more available (but not necessarily lost by cooperating
neighbors in parallel), as practically illustrated in Fig. 3 and
also Table I. In comparison with non-cooperative solutions,
the worst-case error is thus improved with our proposal by
about 25% over the whole trajectory and over the harsh/denied
GPS portion indifferently. The median error is even decreased
by 50% in the harsh/denied GPS portion only. Hence, the
proposed solution enables reasonable continuity of the “ego”
car navigation service at low complexity, opening the floor to
contextual fusion through selective RSSI-based CP.

TABLE I
“EGO” LOCALIZATION ERROR STATISTICS (IN METER) IN BOTH S1 AND S2

Whole trajectory Poor GPS

Algorithm S1 S2 S2

µ1/2 WC µ1/2 WC µ1/2 WC

Raw GPS 5.90 12.24 N/A N/A N/A N/A
Non-/half-CP 0.53 1.11 0.57 1.78 1.10 1.85

NN-CP 0.49 1.02 0.46 1.43 0.67 1.47
MCRLB-CP 0.48 1.01 0.46 1.37 0.53 1.39

Ran. Sel. CP 0.50 1.18 0.82 1.74 1.41 1.72
Exhaust. CP 0.51 1.28 0.87 1.61 1.39 1.60

V. CONCLUSION

In this paper, we have investigated the problem of co-
operative positioning in GPS-aided IEEE 802.11p VANETs.
After re-synchronizing the data broadcasted from neighboring
cars, a link selection scheme eliminates uninformative and
unreliable cooperative information, before performing fusion
through conventional EKF. Realistic simulations based on
IEEE 802.11p-compliant attenuation parameters show perfor-
mance gains through selective RSSI-based cooperation, mostly
in case of severe GPS alteration or loss (up to 50% of
worst-case error reduction). Thus the contextual application
of our proposal could contribute to maintain the quality of
the “ego” car navigation service. Future works should revise
links selection schemes and investigate open issues regarding
asynchronous CAMs and RSSI-based CP under power control.

0 20 40 60 80 100
0

1

2

3

4

5

G
P

S
 s

ig
n
a
l 
lo

s
s

time [s]

L
o
c
a
liz

a
ti
o
n
 e

rr
o
r 

[m
]

 

 

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f 
G

P
S

 e
rr

o
r 

in
 x

, 
y
 [
m

]Non−/half−cooperative

NN−based cooperative

MCRLB−based cooperative

Random cooperative

Exhaustive cooperative

GPS error level

Fig. 3. Ex. of localization performance as a function of time at a central
“ego” vehicle (surrounded by 8 other vehicles) for different cooperative and
non-cooperative schemes, when GPS signals are lost during the time interval
from 60s to 80s (S2).
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