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Abstract—This paper studies the sum-capacity of the Multiple
Input Single Output (MISO) Gaussian broadcast channel where
K single-antenna users are served by a base station with N
antennas, with N < K. The generalized Degrees-of-Freedom
(gDoF) for this system is derived as the solution of a Maximum
Weighted Bipartite Matching (MWBM) problem, where, roughly
speaking, each of the N transmit antennas is assigned to a
different user. The MWBM problem inspires a user selection
algorithm where a subset of N out of K users is served.
The proposed algorithm runs in polynomial-time (rather than
involving an exhaustive search among all possible subsets of size
N out of K users) and extends the classical DoF analysis to
more realistic wireless channel configurations where users can
experience very different channel gains from the base station.
Extensive numerical simulations, run in practically relevant
Rayleigh fading environments for different numbers of users and
of antennas, show that the throughput achieved by serving the
set of N users selected by the MWBM-based algorithm is at most
N log(K) bits away from an outer bound to the sum-capacity,
where in principle all the K users are served. Comparisons with
another widely used user scheduling algorithm are also provided.

I. INTRODUCTION

Using antenna arrays at the transmitters or receivers turned
out to be a powerful technique to enhance the performance of
wireless networks in terms of coverage, throughput, Degrees-
of-Freedom (DoF), and robustness / diversity. In a system with
K single-antenna users connected to a base station with N
antennas, it is well known that at most min{N,K} DoF are
possible [1], or in other words, at high SNR, the base station
can only deliver min{N,K} independent streams to the users.
Since in practical systems N < K (there are fewer antennas at
the base station than the number of users to serve), it becomes
important to design appropriate user selection techniques to
identify which N out of the K users should be served for
achieving maximum DoF [2].

Motivated by the importance of user scheduling in the
downlink of Multiple Input Single Output (MISO) systems
in this work we seek to determine throughput / sum-rate
optimal policies by also taking into account the fact that
users experience sometimes very different channel qualities.
We therefore propose to go beyond DoF (for which all channel
gains are assumed as fixed and the transmit power is let go to
infinity) and study the generalized DoF (gDoF) of a K-user
MISO Broadcast Channel (BC). The gDoF is an asymptotic
performance measure in the high-SNR regime and refines the

classical DoF metric since it captures the fact that, in wireless
networks, the channel gains can differ by several orders of
magnitude. The gDoF, first introduced in [3] for the 2-user
interference channel, has shed light on different operating
regimes depending on the strength of the interference com-
pared to the intended signal; moreover, the gDoF analysis has
inspired relatively simple achievable schemes that are to within
a constant gap of known outer bounds. The gDoF analysis has
been restricted to Single Input Single Output (SISO) networks
with a very small number of nodes. This is because the gDoF
requires the specification of one parameter per channel gain,
therefore becoming quickly prohibitively complex for large
networks – even more in case of multi-antenna nodes. In this
work, we propose a polynomial time (rather than an exhaustive
search) algorithm to determine the gDoF of a K-user MISO
BC, which consists in solving a Maximum Weighted Bipartite
Matching (MWBM) problem where, roughly speaking, each
transmit antenna at the base station is assigned to a different
user.

A. Contributions

In this work we focus on the gDoF of a K-user MISO BC
that, to the best of our knowledge, has not been characterized
before. We attack the problem by leveraging our recent result
on the connection between the gDoF of a MIMO point-to-
point channel and the MWBM problem [4, Theorem 2]. We
analyze the sum-capacity of the K-user MISO BC (where the
base station is equipped with N antennas and where N is
strictly smaller than the total number K of users). We propose
a new user scheduling algorithm inspired by the solution of
the MWBM problem. One of the most appealing feature of
the proposed strategy is its low-complexity since polynomial-
time routines exist to solve the MWBM problem that do not
require an exhaustive search among all possible subsets of
size N out of K users. We finally evaluate, through extensive
numerical simulations, the throughput performance attained
by the proposed user selection algorithm in ergodic fading
channels. Simulations are run in practically relevant Rayleigh
fading environments, for different values of K and N , and
show that the throughput achieved by serving the set of N
users obtained as output of the MWBM-based algorithm is at
most N log(K) bits away from an outer bound on the theo-
retical sum-capacity. The sum-rate achieved by the MWBM-
based algorithm is also compared with the one attained by



the algorithm proposed in [5], which can be implemented in
currently used LTE multi-user MIMO base stations.

B. Related Work

The user scheduling problem is notoriously hard since often
the space to be searched does not have “steepest descent”
directions that would allow a fast (and possibly optimal) way
to reach the desired stationary point. Actually, in general,
this problem requires an exhaustive search over all sub-
sets of users. This approach might be feasible in relatively
small networks, but its complexity becomes prohibitive for
large-scale networks. However, the fact that DoF-wise only
min{K,N} independent streams can be delivered [1] suggests
that the number of users effectively served is bounded by
the number of antennas at the base station, since, in today’s
cellular networks N < K. This fact is supported by the
work in [6] where it was showed that the optimal sum-
capacity transmission strategy schedules at most N2 users.
The prohibitive complexity of the brute-force best-set selection
motivated the authors of [7] to design a suboptimal low-
complexity algorithm for user selection, where at most N users
are scheduled. In particular, at each step a user is selected only
if this leads to a throughput increase with respect to the one at-
tained in the previous step. It was numerically showed that this
method, which employs zero-forcing beamforming, achieves a
significant fraction of the sum-capacity. Another user selection
algorithm was proposed in [5], where, at each step, the
users are selected based on an orthogonality threshold. This
approach, jointly with zero-forcing beamforming, was shown
to achieve the sum-capacity when K → ∞. In [8], it was
demonstrated that, when the base station can transmit at large
power, the sum-rate achieved by zero-forcing beamforming,
where only N users are served, equals the sum-capacity. In [9],
the authors proposed an algorithm that applies singular value
decomposition to all channel matrices and selects only the
eigenvectors whose corresponding singular values are above a
threshold. Then, among these eigenvectors, only the N ones
which are nearly orthogonal to each other are selected. In
[9] it was also shown that the proposed algorithm achieves
a significant fraction of the sum-capacity.

C. Paper Organization

The paper is organized as follows. Section II describes the
static K-user MISO Gaussian BC and summarizes well-known
sum-capacity results. Section III derives the gDoF in closed-
form as the solution of a MWBM problem and presents a novel
polynomial-time user selection algorithm where only the set
of N users obtained as output of the MWBM-based algorithm
is served. Section IV compares, through extensive numerical
simulations, run in practically relevant Rayleigh fading mod-
els, the sum-rate achieved by the proposed MWBM-based user
selection algorithm with the one proposed in [5]. Section IV
also shows that the throughput achieved by the MWBM-based
algorithm is at most N log(K) bits away from an outer bound
on the theoretical sum-capacity where, in principle, all users
are served. Section V concludes the paper.

D. Notation

Through the paper we use lower and upper case letters to
indicate scalars, boldface lower case letters to denote vectors
and boldface upper case letters to indicate matrices; [n1 : n2]
is the set of integers from n1 to n2 ≥ n1; E [·] indicates the
expected value; IN is the identity matrix of dimension N ; H†

is the Hermitian transpose of H; |H| is the determinant of H;
Tr (H) is the trace of H; X ∼ NC

(
µ, σ2

)
indicates that X is

a proper-complex Gaussian random variable with mean µ and
variance σ2.

II. SYSTEM MODEL

The static K-user MISO BC has input-output relationship

yk = hkx+ zk, k ∈ [1 : K], (1)

where the input x ∈ CN×1 is constrained to satisfy the average
power constraint

Tr
(
E
[
xx†

])
≤ 1, (2)

(a non-unitary power constraint can be incorporated into the
channel gains), the vector hk ∈ C1×N contains the channel
gain coefficients from each transmit antenna at the base station
to the k-th user and zk ∼ NC (0, 1).

The transmitter has K messages; message Wk ∈ [1 :
2LRk ], k ∈ [1 : K], has to be decoded from yLk , where
L denotes the codeword length and Rk the transmission
rate in bits per channel use (logarithms are in base 2). The
transmitter sends xL(W1, ...,WK) and receiver k outputs the
estimate Ŵk(y

L
k ). The capacity region is defined as the convex

closure of all non-negative rates Rk, k ∈ [1 : K], such that
maxk∈[1:K] P[Ŵk 6=Wk]→ 0 as L→ +∞. For the Gaussian
BC the whole capacity region can be achieved by using Dirty-
Paper-Coding (DPC) and time sharing [10]. Extension of the
above setting to the ergodic fading case with full channel state
information at all nodes is straightforward.

The focus of this paper is on the sum-capacity or through-
put, which is given by the “Sato’s cooperative upper bound
with least favorable noise correlation” [11]

C(H) = min
0�Sz :

[Sz ]k,k=1,
∀k∈[1:K]

max
0�Sx:

Tr(Sx)≤1

I (x;Hx+ z) , (3)

where H = [h1; . . . ;hK ] ∈ CK×N is the overall channel
matrix and z = [z1; . . . ; zK ] is the overall noise vector with
covariance matrix Sz = E

[
zz†
]
∈ CK×K . By exploiting the

MAC-BC duality [12], [13], [14], the sum-capacity in (3) can
be equally obtained by solving

C(H) = max
D∈D

log
∣∣IN +H†DH

∣∣ , (4)

where D is the set of the K × K non-negative diagonal
matrices D with Tr (D) ≤ 1.

It has been pointed out several times in the literature, (see
for example [8, page 1697]), that in some regimes, such as
when the base station can transmit at large power, serving only



min{N,K} = N destinations asymptotically attains the sum-
capacity in (3). In this work we seek to find a simple algorithm
to select the best N users to serve and to show that the sum-
rate achieved by the proposed user selection algorithm is close
to (3). The proposed user selection algorithm is based on the
study of the gDoF of the system, which is defined as follows.
For some SNR > 0 let the channel gains be parameterized as

|hk,n|2 = SNRβk,n , βk,n ≥ 0, (5)

for all k ∈ [1 : K] and n ∈ [1 : N ]. The gDoF, as a function
of {βk,n}, is defined as

d := lim
SNR→∞

C(H)

log (1 + SNR)
, (6)

where C(H) is defined in (3).

III. MWBM-BASED USER SCHEDULING ALGORITHM

In order to determine the gDoF, we exploit our recent result
in [4] that established a connection between the gDoF of a
MIMO point-to-point channel and the MWBM problem. Based
on this, we will present a MWBM-based user scheduling
algorithm, which selects N users for transmission.

We first give some graph theoretical notions, which are
crucial to understand our MWBM-based user selection algo-
rithm. In graph theory, a weighted bipartite graph is a graph
whose vertices can be partitioned into two sets in such a way
that each edge, which has a non-negative weight, has exactly
one endpoint in each set. For the K-user MISO BC with N
transmit antennas, we define a weighted bipartite graph and its
weight matrix B as follows. The first set consists of K nodes
(number of users), where K is the number of rows in B,
and the second set consists of N nodes (number of antennas),
where N is the number of columns in B. The element [B]k,n
is the weight of the edge between nodes k ∈ [1 : K] and
n ∈ [1 : N ], which is set to [B]k,n = βk,n defined in (5). A
matching is defined as a set of edges without common vertices.
The MWBM problem is a matching where the sum of the edge
weights in the matching has the maximal value. The Hungarian
algorithm is a polynomial time algorithm that efficiently solves
the assignment problem in O(max{K,N}3) [15].

In the following we assume that the phases of the fading
channel gains are such that all involved channel (sub)matrices
are full rank almost surely given the parameterization in (5).
Since the constraints that define the set D in (4) imply D �
IK , we have that the sum-capacity is upper bounded by

C(H) ≤ log
∣∣IK +HH†

∣∣ = log
∣∣IN +H†H

∣∣ . (7)

By applying [4, Theorem 2] to the right-hand side (RHS) of
(7) we immediately find that the gDoF in (6) is upper bounded
by

d ≤ MWBM (B) , B =

β1,1 . . . β1,N
...

. . .
...

βK,1 . . . βK,N

 , (8)

that amounts to solve a MWBM problem with weight matrix B
given by the SNR-exponents {βk,n, k ∈ [1 : K], n ∈ [1 : N ]}
introduced in (5).

To gain insights into the result in (8), we next consider the
case N = 2 (the result can be straightforwardly extended to
a general N ). Without loss of generality, let the antennas and
the users be numbered in such a way that

|h1,1| ≥ max
k∈[1:K], n∈[1:N ]

|hk,n| ⇐⇒

β1,1 ≥ max
k∈[1:K], n∈[1:N ]

βk,n, (9)

i.e., the link from antenna 1 to user 1 is the strongest among
all links to any user from any of the antennas; then, by using
(9) in (8), it is easy to see that

d(N=2) ≤ MWBM

β1,1 β1,2
...

...
βK,1 βK,2

 (10)

= MWBM

[
β1,1 β1,2
βk∗,1 βk∗,2

]
, (11)

k∗ := arg max
k∈[2:K]

{β1,1 + βk,2, β1,2 + βk,1}, (12)

or in other words, destinations 1 and k∗ form the best set of
N = 2 users to serve in order to attain the gDoF upper bound
in (10). Let Hπ ∈ C2×2 be the channel matrix that contains
the channel gains of user 1 and user k∗. Since the constraints
that define the set D in (4) allow D = 1

2I2 (by allocating equal
power among users 1 and k∗), we have that the sum-capacity
is lower bounded by

C(H) ≥ log

∣∣∣∣I2+1

2
HπH

†
π

∣∣∣∣ ≥ log
∣∣I2+H†πHπ

∣∣−2 log(2).
By applying [4, Theorem 2] to the RHS of the above equation
we immediately find that the gDoF d(N=2) is lower bounded
by (11). This implies that the gDoF d(N=2) is given by (11)
(the upper and lower bounds coincide). Thus, from (12) it is
easy to see that gDoF-wise just serving N = 2 users, among
the possible K, is optimal. Moreover, it is simple to understand
which N = 2 users have to be served: user 1, i.e., the user
who has the strongest link from the source, always has to be
served, and the “second best” user is the one defined in (12).

By extending the above reasoning to any N and K, it
is straightforward to prove that the solution of the MWBM
problem in (8), which outputs the N = min{N,K} users to
be scheduled, represents the gDoF of the K-user MISO BC as
long as the channel matrix is full rank. One appealing feature
of the proposed algorithm is that it runs in polynomial time.

IV. NUMERICAL EVALUATIONS

In this section we numerically assess the performance of
the MWBM-based algorithm for different values of N and
K. We let π be the set of users which attains the optimal
MWBM in (8), and Hπ ∈ CN×N be the matrix that contains
the channel gains of the users indexed by π. Clearly, C(Hπ) is
achievable by using the optimal DPC scheme for the channel



Hπ . Here we aim to evaluate C(Hπ) and compare it with
the sum-capacity C(H) and with the sum-rate achieved by
the algorithm proposed in [5], which can be implemented in
today’s multi-user MIMO base stations.

We consider the case of Rayleigh fading, where hk,n ∼
NC
(
0, σ2

k

)
, k ∈ [1 : K] and n ∈ [1 : N ], is assumed to be

constant over the whole slot (block-fading model), i.e.,

hk,n = σk gk,n, (13)

where gk,n ∼ NC (0, 1). We define

σ2
k = E[|hk,n|2] =

c

dαk
, (14)

where c is a constant that depends on the model parameters
(e.g., base station’s transmit power), dk is the distance of the
k-th user from the base station and α ≥ 2 is the path loss
exponent. We assume a short-term average power constraint
on the inputs, i.e., the power constraint in (2) is enforced in
each fading block. With this model, we start by considering
a dynamic scheduling that depends on |hk,n|2 (note that our
proposed algorithm does not make use of phase information),
which later on will be compared to a static scheduling based
on E[|hk,n|2] only. We set

βk,n = 10 log10

(
|hk,n|2

)
. (15)

Note that multiplying the weight matrix B in (8) by a constant
and/or adding a constant to each matrix entry does not change
the nature of the matching in the MWBM problem. We assume
that the K users are independently uniformly distributed on
an annulus with minimum radius equal to rmin and maximum
radius equal to rmax. Moreover, we consider that the model
parameters are such that the average SNR at the cell edges is
SNR (rmax), that is, the average SNR at distance dk is given
by

SNR (dk) := E

[
N∑
n=1

|hk,n|2
∣∣∣∣∣ dk
]
=
Nc

dαk

= SNR (rmax)

(
dk
rmax

)−α
.

Let (X,Y ) be the coordinate of the random position of a user;
then the cumulative distribution function (cdf) of its position
is

F d
rmax

(x) = P
[√

X2 + Y 2 ≤ x rmax

]
=

[
min(1, x2)− r2min

r2max

]+
1− r2min

r2max

for x ≥ 0, (16)

and hence the probability density function (pdf) is

f d
rmax

(x) =
2x

1− r2min

r2max

for x ∈
[
rmin

rmax
, 1

]
. (17)

Fig. 1 shows the cdf of the throughput for different values
of N and K, with fixed α = 3, SNR (rmin) = 40 dB, and
SNR (rmax) = 0 dB. The cfd was estimated with MATLAB

command ecdf with a confidence level of 0.05 (default value)
whose input was generated by considering Niter,1 = 100
different user positions (i.e., for each k ∈ [1 : K] we consider
Niter,1 = 100 different values of dk in (14)), for each of
which we considered Niter,2 = K · 103 different realizations
of gk,n in (13), k ∈ [1 : K], n ∈ [1 : N ]. In Fig. 1, the
average throughput E [C(Hπ)] achieved by our MWBM-based
algorithm is also reported for all values of K and N .

From Fig. 1, we observe that the throughput performance
of our MWBM-based algorithm is very close to the one
of [5] when DPC is used in both cases (blue dashed lines
versus dash-dotted lines). Differently from [5], our scheduling
algorithm does not use the knowledge of the channel phases.
This means that, in a practical scenario, less information has
to be fed back to the base station for the purpose of scheduling
users. Once our MWBM-based algorithm has selected the N
users to serve, only the channel phases of the N selected users
need to be fed back to the base station in order to implement
the DPC strategy. In other words, given a fixed amount of
bits on the feedback link, the base station can get a more
accurate representation of the phases of the N selected users,
as opposed to [5] that requires phases from all the K users.

From Fig. 1 we also observe that, if Zero-Forcing Beam-
Forming (ZFBF) is used instead of DPC, our algorithm does
not perform as well as the one in [5] (red dashed lines versus
dash-dotted lines). This is because ZFBF is most effective
when the selected users have nearly orthogonal channel vec-
tors. Hence, when ZFBF is used, it becomes essential to
schedule those users whose channel gains are as orthogonal as
possible. Thus, the knowledge of the channel phases becomes
critical. Our MWBM-based algorithm, which is based on a
“coarse” approximation of the channel gains (since only the
magnitude of the channel gains is considered while the phases
are neglected), does not capture this aspect. This appears to
cost in performance at low-SNR if ZFBF is employed. Indeed
we expect our MWBM-based algorithm to be nearly optimal
at high-SNR, where the phases become negligible; in the
simulated scenario the average SNR, averaged over the random
positions of the users, is

E [SNR (d)] = SNR (rmax)

∫ 1

rmin
rmax

2x1−α

1− r2min

r2max

dx

= SNR (rmax)

2

(
1−

(
rmin

rmax

)2−α)
(2− α)

(
1− r2min

r2max

) = 16.1481 dB,

which is far from being in the high-SNR regime, thus explain-
ing the better performance of [5] if ZFBF is used.

Fig. 1(d) shows that the throughput increases when the
number of users increases for a fixed value of N . This is
due to multiuser diversity: as K increases for a fixed N , the
base station has a larger pool of users to choose from and it
is therefore more likely to find a subset of users with ‘good’
channels thereby attaining a larger throughput. Fig. 1(d) also
shows the throughput performance of our MWBM-based al-
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gorithm when a static scheduling is performed, i.e., a schedule
which is based only on the fading expected value. We observe
that the dynamic scheduling (dashed lines) outperforms the
static scheduling (dotted lines), since the former is adapted to
each instantaneous channel realization; this aspect is critical
especially at low throughput.

Figs. 1(e)-1(f) show that the throughput increases when the
number of antennas increases for a fixed K. This is due to the
multiplexing gain: for a fixed K, as the number of transmit
antennas increases (always considering N < K), more users
can be served leading to a throughput’s boost.

Finally, we remark that in Fig. 1 the black curves represent
the sum-capacity outer bound in (7) and not the exact sum-
capacity in (4). Numerically, we notice that the gap between
the black curves (outer bounds to the sum-capacity) and the
achievable throughputs grows with K and N . In particular, the
gap is always smaller than N log(K) bits since D = IK gives
the sum-capacity upper bound in (7) while using D = 1

K IK ,
i.e., the power is equally split among the K users, gives a sum-
capacity lower bound. The difference between these upper and
lower bounds is upper bounded by

GAP ≤ log
∣∣IN +H†IKH

∣∣− log

∣∣∣∣IN +H†
1

K
IKH

∣∣∣∣
≤ log

∣∣IN+H†IKH
∣∣−log(∣∣IN+H†IKH

∣∣ ( 1

K

)N)
= N log(K).

In general, it is not possible to prove that the achievable
throughput C(Hπ), with our MWBM-based algorithm, is a
constant number of bits away from the sum-capacity C(H)
(or an upper bound on it) uniformly over all channel gains. In
particular, these cases occur when the channel matrix Hπ is
ill-conditioned, a feature which is not captured by the gDoF
analysis. However, as also observed numerically, this kind of
scenario is unlikely to occur and C(Hπ) appears to be at most
N log(K) bits apart from the sum-capacity outer bound in (7).
Moreover C(Hπ) is asymptotically optimal at high-SNR and
gives the optimal gDoF.

V. CONCLUSION

In this work we studied the K-user MISO Gaussian broad-
cast channel where the number of antennas N at the base
station is strictly smaller than K, thus motivating the question
of what is the best set of users to schedule for transmission
in order to attain a throughput that is not that far from the
optimal sum-capacity. We proposed a MWBM-based user
scheduling algorithm that selects N users for transmission
and is asymptotically optimal at high-SNR. The proposed
algorithm, which runs in polynomial time, solves a MWBM
problem, where, roughly speaking, each transmit antenna at
the base station is assigned to a different user.

For the Rayleigh fading channel, we numerically evaluated
the throughput cumulative density function with the proposed
user scheduling algorithm and compared it with that of a state-
of-the-art user scheduling algorithm. We numerically showed

that the sum-rate achieved by our proposed algorithm is at
most N log(K) bits away from an outer bound on the sum-
capacity where, in principle, all the K users are served.

Future work will consider the study of different fading
models and the comparison with others scheduling algorithms
known in the literature.
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