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Abstract

In many wireless networks, link strengths are affected by many topological factors such as different distances, shadowing and
inter-cell interference, thus resulting in some links being generally stronger than other links. From an information theoretic point
of view, accounting for such topological aspects is still a novel approach, that has been recently fueled by strong indications that
such aspects can crucially affect transceiver and feedbackdesign, as well as the overall performance.

The work here takes a step in exploring this interplay between topology, feedback and performance. This is done for the two
user broadcast channel with random fading, in the presence of a simple two-state topological setting of statistically strong vs.
weaker links, and in the presence of a practical ternary feedback setting ofalternating channel state information at the transmitter
(alternating CSIT) where for each channel realization, this CSIT can be perfect, delayed, or not available.

In this setting, the work derives generalized degrees-of-freedom bounds and exact expressions, that capture performance as
a function of feedback statistics and topology statistics.The results are based on noveltopological signal management(TSM)
schemes that account for topology in order to fully utilize feedback. This is achieved for different classes of feedbackmechanisms
of practical importance, from which we identify specific feedback mechanisms that are best suited for different topologies. This
approach offers further insight on how to split the effort — of channel learning and feeding back CSIT — for the strong versus
for the weaker link. Further intuition is provided on the possible gains from topological spatio-temporal diversity, where topology
changes in time and across users.

I. I NTRODUCTION

The Gaussian multiple-input single-output broadcast channel (MISO BC) is comprised of a transmitter with multiple antennas
that wishes to send independent messages to different receivers, each equipped with a single antenna. In addition to itsdirect
relevance to cellular downlink communications, the MISO BChas attracted much attention for the critical role played inthis
setting by the feedback mechanism through which channel state information at the transmitter (CSIT) is typically acquired.
Interesting insights into the dependence of the capacity limits of the MISO BC on the timeliness and quality of feedback,have
been found through degrees of freedom (DoF) characterizations under perfect CSIT [1], no CSIT [2]–[5], compound CSIT
[6]–[8], delayed CSIT [9], CSIT comprised of channel coherence patterns [10], mixed CSIT [11]–[14], and alternating CSIT
[15]. Other related work can be found in [16]–[30].

As highlighted recently in [31], while the insights obtained from DoF studies are quite profound, they are implicitly limited
to settings where all users experience comparable signal strengths. This is due to the fundamental limitation of the DoFmetric
which treats each user with a non-zero channel coefficient, as capable of carrying exactly 1 DoF by itself, regardless of the
statistical strength of the channel coefficients. Thus, theDoF metric ignores the diversity of link strengths, which isperhaps
the most essential aspect of wireless communications from the perspective of interference management. Indeed, in wireless
communication settings, the link strengths are affected bymany topological factors, such as propagation path loss, shadow
fading and inter-cell interference [32], which lead to statistically unequal channel gains, with some links being muchweaker
or stronger than others (See Figures 1, 2). Accounting for these topological aspects, by going beyond the DoF framework into
thegeneralizeddegrees of freedom (GDoF) framework (cf. [33]–[39]), is thefocus of the topological perspective that we seek
here.

The work here combines considerations of topology with considerations of feedback timeliness and quality, and addresses
questions on performance bounds, on encoding designs that account for topology and feedback, on feedback and channel
learning mechanisms that adapt to topology, and on handlingand even exploiting fluctuations in topology.

II. SYSTEM MODEL FOR THE TOPOLOGICALBC

A. Channel, topology, and feedback models

We consider the broadcast channel, with a two-antenna transmitter sending information to two single-antenna receivers. The
corresponding received signals at the first and second receiver at timet, can be modeled as

yt =
√
ρh

′
T

t xt + u
′

t (1)
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Fig. 1. Topology where link 2 is weaker due to distance and interference.

zt =
√
ρg

′
T

t xt + v
′

t (2)

whereρ is defined by a power constraint,xt is the normalized transmitted vector at timet — normalized here to satisfy
||xt||2 ≤ 1 — h

′

t, g
′

t represent the vector fading channels to the first and second receiver respectively, andu
′

t, v
′

t represent
equivalent receiver noise.

1) Topological diversity:In the general topological broadcast channel setting, the variance of the above fading and equivalent
noise, may be uneven across users, and may indeed fluctuate intime and frequency. These fluctuations may be a result of
movement, but perhaps more importantly, topological changes in the time scales of interest, can be attributed to fluctuating
inter-cell interference. Such fluctuations are in turn due to different allocations of carriers in different cells or — similarly —
due to the fact that one carrier can experience more interference from adjacent cells than another.

The above considerations can be concisely captured by the following simple model

yt = ρA1,t/2hT

txt + ut (3)

zt = ρA2,t/2gT

txt + vt (4)

where nowht, gt and ut, vt are assumed to be spatially and temporally i.i.d1 Gaussian with zero mean andunit variance.
With ||xt||2 ≤ 1, the parameterρ and thelink power exponentsA1,t, A2,t reflect — for each link, at timet — an average
received signal-to-noise ratio (SNR)

Eht,xt
|ρA1,t/2hT

txt|2 = ρA1,t (5)

Egt,xt
|ρA2,t/2gT

txt|2 = ρA2,t . (6)

In this simplified model, the difference in link strengths (in a statistical sense) reflects the differences due to the propagation
setting or due to inter-cell interference. While more motivation for this simplified multiplicative model will be givenlater on
in the context of generalized degrees-of-freedom, we hasten to note that the multiplicative dependency of received power to
input power, is meant to capture the possibility of a substantial difference in the high-SNR capacities of any two links.

In this setting we adopt a simple two-state topological model where the link exponents can each take, at a given timet, one
of two values

Ak,t ∈ {1, α} for 0 ≤ α ≤ 1, k = 1, 2

reflecting the possibility of either a strong link (Ak,t = 1), or a weaker link (Ak,t = α). The adopted small number of
topological states, as opposed to a continuous range ofAk,t values, is motivated by static multi-carrier settings withadjacent
cell interference, where the number of topological states can be proportional to the number of carriers.

Remark 1:We clarify that the rate of change of the topology — despite the use of a common time index forAk,t andht, gt
— need not match in any way, the rate of change of fading. We also clarify that our use of the term ‘link’ carries a statistical
connotation, so for example when we say that at timet the first link is stronger than the second link, we refer to a statistical
comparison whereA1,t > A2,t.

2) Alternating CSIT formulation:In terms of feedback, we draw from the alternating CSIT formulation by Tandon et al. [15],
which can nicely capture simple feedback policies. In this setting, the CSIT for each channel realization can be immediately
available and perfect (P ), or it can be delayed (D), or not available (N ). In our notation,Ik,t ∈ {P,D,N} will characterize
the CSIT about the fading channel of userk at time t.

B. Problem statement: generalized degrees-of-freedom, feedback and topology statistics

1) Generalized Degrees-of-Freedom:In this work we focus on the generalized degrees-of-freedom(GDoF) performance
of the system. This approach goes back to Etkin and Tse in [33]which studied the Gaussian interference channel (IC),
and which was followed by many GDoF related works such as thatby Mohapatra and Murthy in [40] which analyzed the
GDoF of theK-user symmetric IC, as well as the work by Karmakar and Varanasi in [37] which analyzed the GDoF of the

1This suggests the simplifying formulation of unit coherence time.
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Fig. 2. Cell edge users experience fluctuating interferencedue to changing frequency allocation in the multi-cell system.

multiple-input multiple-output (MIMO) IC. Combining topology and feedback considerations, Vaze et al. in [34] employed
the GDoF measure in the MIMO IC setting without CSIT under statistically weak interference links, while Karmakar and
Varanasi in [36] analyzed the GDoF of the MIMO IC with limitedfeedback. Further interesting works include the work by
Gherekhloo et al. in [38] which considered interference management issues in the presence of an alternating connectivity
(α = 0).

In this setting, for an achievable rate pair(R1, R2) for the first and second user respectively, the corresponding GDoF pair
(d1, d2) is given by

dk = lim
ρ→∞

Rk
log ρ

, k = 1, 2. (7)

The corresponding GDoF regionD is then the set of all achievable DoF pairs(d1, d2), and the sum GDoF is

dΣ = sup
{
d1 + d2 : (d1, d2) ∈ D

}
. (8)

It is easy to see that in the current two-state topological setting, a strong link by itself has capacity that scales aslog ρ+
o(log ρ), while2 a weak link has a capacity that scales asα log ρ+ o(log ρ). Settingα = 1 removes topology considerations,
while settingα = 0 almost entirely removes the weak link, as its capacity does not scale with SNR. Needless to say that
setting the stronger link to correspond to a unit link-powerexponent, is a result of normalization, and thus imposes no loss in
generality.

Example 1:One can see that, in the current setting of the two-user MISO BC, having always perfect feedback (P ) for both
users’ channels, and having a static topology where the firstlink is stronger than the second throughout the communication
process (A1,t = 1, A2,t = α, ∀t), the sum GDoF isdΣ = 1 + α, and it is achieved by zero forcing.

Example 2:Furthermore a quick back-of-the-envelope calculation (see Section IV-G), can show that in the same static
topologyA1,t = 1, A2,t = α, ∀t, the original Maddah-Ali and Tse (MAT) scheme — originally designed in [9] without
topology considerations for theα = 1 case — after a small modification that regulates the rate of the private information to
the weaker user, achieves a sum GDoF ofdΣ = 2

3 (1+α). This performance will be surpassed by a more involved topological
signal management (TSM) scheme, to be described later on.

2) Motivation of the GDoF setting:Often, taking a strict interpretation of the limiting nature of GDoF, leads to confusion
because, strictly speaking, any reasonable channel model would force a limitingα to be 1, since all powers would go to infinity
the same way. Towards convincing the skeptical reader of theusefulness of our approach, we offer the following thoughts
which can help clarify any misconceptions.

Our GDoF approach here is based on two crucial premises.
i) Network links generally have different capacities, and in the perfectly conceivable case where a link has a capacity that is a
fractionα of another link’s capacity, a good approximation is that theweaker link has average power that is close to theαth

2o(•) comes from the standard Landau notation, wheref(x) = o(g(x)) implies limx→∞ f(x)/g(x) = 0. Logarithms are of base2.



power of the aforementioned power of the strong link.
ii) Even though, strictly speaking, GDoF results are by definition associated to the infinite SNR limit (cf. (8)) where thelimiting
behavior of random variables allows for more analytical tractability, it is crucial to note that this tractable interpretation applies
and offers insight in operationalmoderate-to-largeSNR regimes. The crucial element that binds infinite-SNR mathematical
analysis to engineering insight over operational SNR values, can be found in the above observation regarding the ratiosof
link capacities. This says that our analysis would apply in abroadcast channel setting, where the two links independently
have sufficiently high capacity — which would in turn imply a moderate-to-large SNR regime — and where the ratio of
these capacities is close to a certain valueα. Once thisα is picked and fixed, the derived high-SNR approximations will
yield (capacity) expressions which, as SNR increases, are expected to offer an increasingly faithful representation of the actual
behavior of the system, i.e., are expected to offer an increasingly better qualitative estimate of the overall system behavior.
Avoiding a strict and literal interpretation of asymptotics, while still mathematically rigorous, the GDoF approach allows for
consideration of topological settings that are motivated by reasonable scenarios that include distance variations and interference
fluctuations. In other words, while the mathematics use scaling laws and limits as tools for tractability of randomness,the
GDoF approach does not require the actual real-life nature of the problem to scale with SNR, as this would related to awkward
scenarios where variable geometries have distances that scale in different specific ways.

With the above premises in mind, one can now better appreciate the utility of the simple multiplicative model in (5) which
— employing a multiplicative dependency of the received power to the input power — manages to concisely capture substantial
differences in the high-SNR capacities of any two links, andthus fits well with the GDoF setting. While other, more refined
models could certainly be conceived that could potentiallybetter map the intricacies of what causes topological diversity
in networks, we have yet to see such models that allow for analysis that offers insight. Additionally, we believe that such
complex and involved models would be more susceptible to losing some of their refinement in the high SNR regime of GDoF
asymptotics. No such loss of model information is suffered —in the transition to the asymptotic setting — by the chosen
multiplicative model, exactly because of this model’s inherent simplicity and its direct association to the GDoF measure.

3) Feedback and topology statistics:Naturally performance is a function of the feedback and topology statistics. In terms
of feedback statistics, we draw from the formulation in [15]and consider

λI1,I2

to denote the fraction of the time during which the CSIT stateis described by a pair(I1, I2) ∈ (P,D,N)× (P,D,N).
We similarly consider

λA1,A2

to denote the fraction of the time during which the gain exponents of the two links are some pair(A1, A2) ∈ (1, α)× (1, α),
where naturallyλ1,α + λα,1 + λ1,1 + λα,α = 1. Finally we use

λA1,A2

I1,I2

to denote the fraction of the time during which the CSIT stateis (I1, I2) and the topology state is(A1, A2).
Example 3:λP,P = 1 (resp.λD,D = 1, λN,N = 1) implies perfect CSIT (resp. delayed CSIT, no CSIT) for bothusers’

channels, throughout the communication process. Similarly λP,N + λN,P = 1 restricts to a family of feedback schemes
where only one user sends CSIT at a time (more precisely, per channel realization), and does so perfectly. From this family,
λP,N = λN,P = 1/2 is the symmetric option. Similarly, in terms of topology,λ1,α = 1, α < 1 implies astatic (or fixed)
topologywhere the first link is stronger than the second throughout the communication process,λ1,1 = λα,α = 1/2 implies a
topology where half of the time both links are strong and thenboth are weak, whileλ1,α = λα,1 = 1/2 implies analternating
topologywhere half of the time, the first user is statistically stronger, and vice versa.
Finally havingλ1,αP,D+λα,1D,P = 1 does not impose any restriction on the topology statistics,but it implies a feedback mechanism
that asks — for any channel realization — the statistically stronger user to send perfect feedback, and the statistically weaker
user to send delayed feedback.

C. Conventions and structure

In terms of notation,(•)T, (•)H, (•)−1, and tr(•) denote the transpose, conjugate transpose, inverse and thetrace of a
matrix respectively, while(•)∗ denotes the complex conjugate,|| • || denotes the Euclidean norm, and| • | denotes either the
magnitude of a scalar or the cardinality of a set. We also use

.
= to denoteexponential equality, i.e., we writef(ρ)

.
= ρB to

denote lim
ρ→∞

log f(ρ)/ log ρ = B. Similarly
.
≥ and

.
≤ denote exponential inequalities.e⊥ denotes a unit-norm vector orthogonal

to vectore. We define that(•)+ = max{•, 0}. Throughout this work, we adhere to the common convention and assume perfect
and global knowledge of channel state information at the receivers (perfect and global CSIR). We also make the soft assumption
that the transmitter is aware of the feedback statistics andthe topology statistics. Furthermore, for some cases, we will consider
the broad ‘symmetric’ alternating CSIT setting, corresponding to the symmetry assumption that

i.e., λP,N = λN,P , λD,N = λN,D, λP,D = λD,P .



For thissymmetricCSIT setting we will often use the following notations

λP ,
∑

(I1,I2):I1=P

λI1,I2 ,
∑

(I1,I2):I2=P

λI1,I2 , λD ,
∑

(I1,I2):I1=D

λI1,I2 ,
∑

(I1,I2):I2=D

λI1,I2 , λN ,
∑

(I1,I2):I1=N

λI1,I2 ,
∑

(I1,I2):I2=N

λI1,I2 .

In terms of the feedback statistics, we will here adopt a commonly used soft assumption that the long term feedback statistics
definingλI1,I2 , (I1, I2) ∈ (P,D,N) × (P,D,N), still hold for reasonably large but finite durations. Whilethere are some
specific cases of non-homogeneous feedback statistics for which this assumption does not hold, the assumption in general can
be achieved, up to a certain point, by interchanging of the time index, as well as fits well to feedback mechanisms that are
periodic in time.

In Section III we present the GDoF bounds for the topologicalBC with alternating CSIT. Specifically in Section III-A we
present the general GDoF outer bounds, in Section III-B we present a unified GDoF inner bound for the BC with symmetrically
alternating CSIT and a static topology, while in Section III-C we present the optimal sum GDoF for different practical CSIT
schemes, for generalfluctuating(non-static) topology settings. In Section IV we present a general topological signal management
scheme for the entire spectrum of static topologies and alternating CSIT settings (this serves as a proof for Theorem 1),as
well as provide two illustrative examples, where the general scheme is distilled down to specific simpler instances thatcan
help the reader better understand the idea behind these schemes. Then in Section V we describe sum-GDoF optimal schemes
for the fluctuating topology setting. In Section VI we offer some conclusions, while in the appendix of Section VII we have
the proof of the general outer bound of Lemma 2.

We proceed with the main results, starting with the GDoF region outer bounds, and then proceeding with achievable and
often optimal GDoF expressions for pertinent cases of practical significance.

III. GD OF BOUNDS FOR THE TOPOLOGICALBC WITH ALTERNATING CSIT

A. GDoF outer bounds for the topological BC with alternatingCSIT

We first proceed with a simpler version of the outer bound, which encompasses all cases of alternating CSIT, and allstatic
topologies (λ1,α = 1, or λα,1 = 1, α ∈ [0, 1]).

Lemma 1:For the two-user MISO BC with alternating CSIT and a static topology (λ1,α = 1), the GDoF region is outer
bounded as

d1 ≤ 1, d2 ≤ α,

d1 +
d2
2

≤ 1 +
∑

(I1,I2):I1=P

α

2
λI1,I2 ,

d2 +
d1
2

≤ α+
∑

(I1,I2):I2=P

1

2
λI1,I2 +

∑

(I1,I2):I2 6=P

1− α

2
λI1,I2 ,

d1 + d2 ≤ d
(2)
Σ ,

and the sum GDoF is upper bounded asdΣ ≤ min{d(1)Σ , d
(2)
Σ }, where

d
(1)
Σ ,(1 + α)λP,P +

3 + 2α

3
(λP,D+λD,P+λP,N+λN,P ) +

3 + α

3
(λD,D + λD,N + λN,D + λN,N ),

d
(2)
Σ ,(1 + α)(λP,P + λP,D + λD,P + λD,D) +

2 + α

2
(λP,N + λN,P + λD,N + λN,D) + λN,N .

The proof of the above lemma, can be found as part of the proof of the following more general lemma, in the appendix of
Section VII.

We now proceed with the general outer bound, for any alternating CSIT mechanism, and any topology, i.e., for anyλA1,A2

I1,I2
.

For conciseness we use

λA1,A2

P↔N ,λA1,A2

P,N + λA1,A2

N,P

λA1,A2

D↔N ,λA1,A2

D,N + λA1,A2

N,D

λA1,A2

P↔D ,λA1,A2

P,D + λA1,A2

D,P

so for example,λ1,αP↔D simply denotes the fraction of the communication time during which the first link is stronger than the
second, and during which, the CSIT for the channel ofany oneof the users, is being fed back in a perfect and instantaneous
manner, while the CSIT for the channel of the other user, is fed back later in a delayed manner.



Lemma 2:For the topological two-user MISO BC with alternating CSIT,the GDoF region is outer bounded as

d1 ≤
∑

∀(A1,A2)

A1λA1,A2
, (9)

d2 ≤
∑

∀(A1,A2)

A2λA1,A2
, (10)

d1 +
d2
2

≤
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)

+
( ∑

(I1,I2):I1=P

∑

∀(A1,A2)

A2

2
λA1,A2

I1,I2

)

+
( ∑

(I1,I2):I1 6=P

1− α

2
λα,1I1,I2

)

, (11)

d2 +
d1
2

≤
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)

+
( ∑

(I1,I2):I2=P

∑

∀(A1,A2)

A1

2
λA1,A2

I1,I2

)

+
( ∑

(I1,I2):I2 6=P

1− α

2
λ1,αI1,I2

)

, (12)

d1 + d2 ≤ d
(4)
Σ , (13)

and the sum GDoF is upper bounded asdΣ ≤ min{d(3)Σ , d
(4)
Σ }, where

d
(3)
Σ ,(1 + α)(λα,1P,P + λ1,αP,P ) +

3 + 2α

3
(λα,1P↔D + λ1,αP↔D) +

3 + 2α

3
(λα,1P↔N + λ1,αP↔N )

+
3 + α

3
(λα,1D,D + λ1,αD,D) +

3 + α

3
(λα,1D↔N + λ1,αD↔N ) +

3 + α

3
(λα,1N,N + λ1,αN,N )

+ 2λ1,1P,P +
5

3
λ1,1P↔D +

5

3
λ1,1P↔N +

4

3
λ1,1D,D +

4

3
λ1,1D↔N +

4

3
λ1,1N,N

+ 2αλα,αP,P +
5α

3
λα,αP↔D +

5α

3
λα,αP↔N +

4α

3
λα,αD,D +

4α

3
λα,αD↔N +

4α

3
λα,αN,N (14)

d
(4)
Σ ,(1 + α)(λ1,αP,P + λα,1P,P ) + (1 + α)(λ1,αP↔D + λα,1P↔D) + (1 + α)(λ1,αD,D + λα,1D,D)

+
2 + α

2
(λ1,αP↔N + λα,1P↔N ) +

2 + α

2
(λ1,αD↔N + λα,1D↔N ) + λ1,αN,N + λα,1N,N

+ 2λ1,1P,P + 2αλα,αP,P + 2λ1,1P↔D + 2αλα,αP↔D + 2λ1,1D,D + 2αλα,αD,D

+
3

2
λ1,1P↔N +

3α

2
λα,αP↔N +

3

2
λ1,1D↔N +

3α

2
λα,αD↔N + λ1,1N,N + αλα,αN,N . (15)

Note that boundd(3)Σ results from the combination of bound (11) and bound (12).
The above bounds will be used to establish, particularly in the fluctuating topology setting, the optimality of different

encoding schemes and practical feedback mechanisms.
Remark 2:The derived outer bound here expands on the classical compound BC techniques, to account for uneven link

strengths. The original idea of the compound BC technique isthat, two statistically equivalent observations may allowfor
approximate reconstruction of another observation (assuming two transmit-antennas). However, in this setting, two statistically
equivalent observations may not allow approximate reconstruction of another observation, due to the uneven nature of the
links. Towards this, we introduced a different auxiliary random variable structure such that, together with the two statistically
equivalent observations — that are common in these type of bounds — can allow for approximate reconstruction of another
observation.

B. Unified GDoF inner bound for the BC with symmetrically alternating CSIT and a static topology

We first proceed to bound the GDoF region for the entiresymmetricalternating CSIT setting with astatic topology (λ1,α = 1,
or λα,1 = 1, α ∈ [0, 1]).

Theorem 1:The GDoF region of the two-user MISO BC withsymmetricalternating CSIT and astatic topology(λ1,α = 1)
is inner bounded by the region described as

d1 ≤ 1, d2 ≤ α,

d1 +
d2

1 + α
≤ 1 +

α

1 + α
λP ,

d2 +
d1
2

≤ 1 + α

2
+
α

2
λP ,

d1 + d2 ≤ 1 + αλP + αλD.

Proof: The achievability of the bound is described in Section IV.

The GDoF bound in Theorem 1 is depicted in Fig. 3. Note that forα = 1, our result covers the previous result in
[15]. From Theorem 1 we directly have the following corollaries for the setting with delayed CSIT and a static topology
(λD,D = 1, λ1,α = 1).
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1+2α
− α

1+2α
λP , and for case(2) of λD ≥ α

1+2α
− α

1+2α
λP , respectively. Corner points take the values:B = (1, αλP ), C = (1 − α + αλP , α),

E =
(

1− α+ 2αλD + αλP , α− αλD

)

, F =
(

1− λD , αλP + (1 + α)λD

)

andG =
(

1+α
1+2α

+ α
1+2α

λP ,
α(1+α)
1+2α

+ α2

1+2α
λP

)

.

Corollary 1a: The GDoF region of the two-user MISO BC with delayed CSIT and astatic topology(λD,D = 1, λ1,α = 1)
is inner bounded by the region characterized as

d1 ≤ 1, d2 ≤ α,

d1 +
d2

1 + α
≤ 1,

d2 +
d1
2

≤ 1 + α

2
,

i.e., is inner bounded by the region with GDoF corner points(0, 0), (1, 0), ( 1+α
1+2α ,

α(1+α)
1+2α ), (1− α, α) and (0, α).

Corollary 1b: The sum GDoF of the two-user MISO BC with delayed CSIT and a static topology(λD,D = 1, λ1,α = 1) is
lower bounded as

dΣ ≥ (1 + α)2

1 + 2α
.

C. Optimal sum GDoF for the topological BC with practical CSIT schemes: fluctuating topology

We here explore a class of dynamically fluctuating topologies and reveal a certaintopological diversity gain— in specific
instances — that is associated to topologies that vary in time and across users. Emphasis is mainly given to statistically
symmetric topologies, as well as to a certain class of practical feedback schemes.

We first proceed, and for the delayed CSIT settingλD,D = 1, derive the optimal sum GDoF in the presence of the
symmetricallyfluctuating topologywhereλ1,α = λα,1 = 1/2.

Proposition 1: For the two-user MISO BC with delayed CSITλD,D = 1 and topological spatio-temporal diversity such that
λ1,α = λα,1 = 1/2, the optimal sum GDoF is

dΣ = 1 +
α

3
. (16)

Proof: The GDoF is optimal as it meets the general outer bound in Lemma 2. The optimal TSM scheme is described in
Section V-A.

Remark 3:We see that the above result corresponding to an alternatingtopology (λ1,α = λα,1 = 1/2) exhibiting a certain

spatio-temporal topological diversity, exceeds the achievable sum GDoFd = (1+α)2

1+2α of the corresponding setting with a static
topology (λ1,α = 1 or λα,1 = 1), as well as exceeds the optimal sum GDoFd = 2

3 (1 + α) for the equivalent delayed-CSIT
setting over a topology(λ1,1 = λα,α = 1/2) that lacks the alternating and spatial-diversity elementsthat we find in the first
topology (λ1,α = λα,1 = 1/2).

A similar observation to that of the above proposition, is derived below, now for the feedback mechanismλP,N = λN,P =
1/2.
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Fig. 4. Sum GDoF performance for the naively modified Maddah-Ali and Tse scheme (MAT), the single user case (SU), and the topological signal management
scheme (TSM 1), all for the settingλ1,α

D,D
= 1. Additionally the plot (TSM 2) describes the optimal sum GDoF for the fluctuating topology setting where

λ1,α
D,D

= λα,1
D,D

= 1/2.

Proposition 2: For the two-user MISO BC withλP,N = λN,P = 1/2 and topological diversity such thatλ1,α = λα,1 = 1/2,
the optimal sum GDoF is

dΣ = 1+
α

2
(17)

which can be seen to exceed the optimal sum GDoFd
′

Σ = 3
4 (1 +α) of the same feedback mechanism over the equivalent but

spatially non-diverse topologyλ1,1 = λα,α = 1/2.

Proof: The sum GDoF is optimal as it achieves the general outer boundin Lemma 2. The optimal scheme is described
in Section V-B.

Regarding this same feedback policyλP,N = λN,P = 1/2, it is worth noting this policy’s optimality, in the following broad
context.

Proposition 3: For the two-user MISO BC with any strictly uneven topologyλ1,α + λα,1 = 1 and a feedback constraint
λP,N + λN,P = 1, the optimal sum GDoF is

dΣ = 1+
α

2
(18)

and it is achieved by the symmetric feedback policyλP,N = λN,P = 1/2.

Proof: The sum GDoF is optimal as it achieves the general outer boundin Lemma 2. The optimal scheme is described
in Section V-B.

Remark 4:This broad applicability of mechanismλP,N = λN,P = 1/2, implies a simpler process of learning the channel
and generating CSIT, which now need not consider the specifictopology as long as this is strictly uneven (λ1,1 = λα,α = 0).
In essence, what the last two propositions say is that the design of the CSIT feedback protocol that indicates which user
offers feedback at any given time, does not have to depend on the knowledge of the topology, and only needs to know that
λP,N = λN,P = 1/2. Such CSIT feedback design can hence be agreed upon before the communication process.

IV. TOPOLOGICAL SIGNAL MANAGEMENT SCHEMES FOR STATIC TOPOLOGIES AND FOR SYMMETRIC ALTERNATINGCSIT
(PROOF OFTHEOREM 1)

We proceed to derive a broad scheme for the general static topology, i.e., for the case ofλ1,α = 1, which will constructively
support the result in Theorem 1. This will entail achieving GDoF corner points (see Figure 3)B = (1, αλP ), C = (1− α+
αλP , α), (0, α),(1, 0), GDoF corner points

E =
(
1− α+ 2αλD + αλP , α− αλD

)
, F =

(
1− λD, αλP + (1 + α)λD

)



for

λD <
α

1 + 2α
− α

1 + 2α
λP (19)

and point

G =
( 1 + α

1 + 2α
+

α

1 + 2α
λP ,

α(1 + α)

1 + 2α
+

α2

1 + 2α
λP

)

for λD ≥ α
1+2α − α

1+2αλP . Proper time sharing allows for the entire GDoF region in Theorem 1.
a) Intuition behind schemes:In a nutshell, the schemes will alternate between the actions of overloading and of

multicasting, where overloading refers to having the transmitter send at a rate that is largerthan what can be supported
by the MISO BC, whilemulticastingrefers to having the transmitter compensating for this excess by transmitting additional
information that eventually assists both users in decoding. This interplay will naturally be a function of the topology. Such
overload-multicast strategy was explored in different settings, including in [41] for the heterogeneous parallel channel with
delayed CSIT. It is worth noting that one of the main differences between the new schemes, and the older schemes by Tandon
et al. [15] as well as the schemes from the general CSIT setting in [14] — and by extension, the difference between the new
schemes here and other block-Markov related schemes [42]–[46] (see also [47], [48]) — relates the new schemes’ ability to
properly capitalize on the inherent weakness of a link in order to (often optimally) reduce interference in at least one direction.

b) General notation used in schemes:In describing any scheme, we will generally associate the use of symbol
a to denote a private symbol for user 1, while we will associatesymbol b to denote a private symbol for user 2, and
symbol c to denote a common symbol meant for both users. We will also use P (q) ,E|q|2 to denote the average power
of some symbolq, and will user(q) to denote the pre-log factor of the number of bits[r(q) log ρ − o(log ρ)] carried by
symbolq. In the interest of brevity, we will on occasion neglect the additive noise terms, without an effect on the GDoF analysis.

We first describe the encoding, interference quantization and mapping, and the backward decoding for the scheme. Upon
achieving pointsE andF for whenλD < α

1+2α− α
1+2αλP , we will do the same for pointG for the case ofλD ≥ α

1+2α− α
1+2αλP

by slightly modifying the scheme such that it uses delayed CSIT for a lesser fraction of the timeλ
′

D , α
1+2α − α

1+2αλP ≤ λD.
Similar modifications will allow for the other corner points3.

The general scheme will consist ofL communication blocks, withT consecutive channel uses in each block, whereT is
finite while L can grow as large as we need it to be. We recall our soft assumption that, in everyT consecutive channel uses
— without loss of generality, in every time periodt = T (ℓ−1)+1, T (ℓ−1)+2, · · · , T ℓ for ℓ = 1, 2, 3, · · · , — the fraction of
time associated with CSIT state(I1, I2) converges to the long-term statisticλI1,I2 , for any (I1, I2) ∈ (P,D,N)× (P,D,N).
This is commonly used in the setting of alternating CSIT.

A. Encoding

We now describe the encoding in blockℓ, ℓ ∈ [1, L−1], which takes place over timet = T (ℓ−1)+1, T (ℓ−1)+2, · · · , T ℓ.
During blockℓ, the transmitter sends

xt =

[

ct +
√

ρ−αa
′′′

t

0

]

+ φP2
t g⊥

t at + φP1
t h

⊥
t bt + φD2

t

[
a

′

t

a
′′

t

]

+ φD1
t

[
b
′

t

b
′′

t

]

(20)

whereat, a
′

t, a
′′

t , a
′′′

t are the private symbols meant for user 1,bt, b
′

t, b
′′

t for user 2, wherect is a common symbol, where the
average power of each of those eight symbols is1/8 (the effective average power of

√

ρ−αa
′′′

t is ρ−α), wheree⊥ denotes a
unit-norm vector orthogonal toe, and where

φP2
t ,

{

1 if I2 = P at time t

0 else
, φP1

t ,

{

1 if I1 = P at time t

0 else
, (21)

φD2
t ,

{

1 if I2 = D at time t

0 else
, φD1

t ,

{

1 if I1 = D at time t

0 else
, (22)

where we note that

1

T

Tℓ∑

t=T (ℓ−1)+1

φP1
t =

1

T

Tℓ∑

t=T (ℓ−1)+1

φP2
t = λP ,

1

T

Tℓ∑

t=T (ℓ−1)+1

φD1
t =

1

T

Tℓ∑

t=T (ℓ−1)+1

φD2
t = λD (23)

after recalling the symmetric alternating CSIT assumption, and the assumption that the long term feedback statistics defining
λI1,I2 , (I1, I2) ∈ (P,D,N)× (P,D,N), still hold for finite durations.

3Section IV-F introduces a special example of this scheme fora specific setting.



After transmission during eacht = T (ℓ− 1) + 1, · · · , t = T ℓ, the received signals take the form

yt = ht,1(
√
ρct +

√

ρ1−αa
′′′

t ) + φP2
t

√
ρhT

tg
⊥
t at + φD2

t

√
ρhT

t

[
a

′

t

a
′′

t

]

+ φD1
t

√
ρhT

t

[
b
′

t

b
′′

t

]

︸ ︷︷ ︸

s1,t

+ut (24)

zt =
√
ραgt,1ct + φP1

t

√
ραgT

th
⊥
t bt + φD1

t

√
ραgT

t

[
b
′

t

b
′′

t

]

+ φD2
t

√
ραgT

t

[
a

′

t

a
′′

t

]

︸ ︷︷ ︸

s2,t

+
√

ρ0gt,1a
′′′

t + vt (25)

whereht,1 ,hT

t

[
1 0

]
T

, gt,1, gT

t

[
1 0

]
T

, and where

s1,t,φD1
t

√
ρhT

t

[
b
′

t

b
′′

t

]

, s2,t,φD2
t

√
ραgT

t

[
a

′

t

a
′′

t

]

(26)

denote the interference signals at user 1 and user 2 respectively.

B. Interference quantization and mapping

At the end of blockℓ, ℓ ∈ [1, L− 1], the transmitterreconstructss1,t ands2,t using delayed CSIT, and thenquantizesthese
into s̄1,t and s̄2,t with φD1

t log ρ− o(log ρ) quantization bits andφD2
t α log ρ− o(log ρ) quantization bits, respectively, allowing

for bounded quantization errors̃s1,t, s1,t − s̄1,t and s̃2,t, s2,t − s̄2,t becauseE|s1,t|2 .
= φD1

t ρ andE|s2,t|2 .
= φD2

t ρα (cf.
[49]). The total of

Tℓ∑

t=T (ℓ−1)+1

(φD1
t + φD2

t α) log ρ− To(log ρ) = TλD(1 + α) log ρ− To(log ρ) (27)

quantization bits for blockℓ (cf. (23)) is then mapped into common information symbols{ct}T (ℓ+1)
t=Tℓ+1 that will be transmitted

in the next block, together withnew information bits. In the last block (blockL), the transmitter simply sends the common
information symbols{ct}TLt=T (L−1)+1 carrying a total ofTλD(1 + α) log ρ information bits to both users, which can be done
in T channel uses.

C. Backward decoding

We proceed to describe the decoding for each block. The decoding starts from the last block and moves backward. Specifically
after decoding the common information in the last block, each user reconstructs{s̄1,t}T (L−1)

t=T (L−2)+1 and {s̄2,t}T (L−1)
t=T (L−2)+1

(corresponding to the quantized interference of blockL − 1) and uses them to decode its private symbols and common
information symbols of blockL − 1; naturally the common information of blockL − 1 can accommodate decoding of the
previous block (blockL−2), and so on. Specifically after decoding the common information {ct}T (ℓ+1)

t=Tℓ+1 in block ℓ+1, user 1
reconstructs{s̄1,t}Tℓt=T (ℓ−1)+1, {s̄2,t}Tℓt=T (ℓ−1)+1 and forms a MIMO observation for blockℓ, ℓ ∈ [1, L− 1], which takes the
form









yTℓ − s̄1,T ℓ
s̄2,T ℓ

...
yT (ℓ−1)+1 − s̄1,T (ℓ−1)+1

s̄2,T (ℓ−1)+1










=










√
ρhTℓ,1cTℓ

0
...√

ρhT (ℓ−1)+1,1cT (ℓ−1)+1

0










+










√

ρ1−αhTℓ,1a
′′′

Tℓ

0
...

√

ρ1−αhT (ℓ−1)+1,1a
′′′

T (ℓ−1)+1

0










+










φP2
Tℓ

√
ρhT

Tℓg
⊥
TℓaTℓ

0
...

φP2
T (ℓ−1)+1

√
ρhT

T (ℓ−1)+1g
⊥
T (ℓ−1)+1aT (ℓ−1)+1

0










+











φD2
Tℓ

[√
ρhT

Tℓ√
ραgT

Tℓ

] [
a

′

Tℓ

a
′′

Tℓ

]

...

φD2
T (ℓ−1)+1

[√
ρhT

T (ℓ−1)+1√
ραgT

T (ℓ−1)+1

][

a
′

T (ℓ−1)+1

a
′′

T (ℓ−1)+1

]











+










uTℓ + s̃1,T ℓ
−s̃2,T ℓ

...
uT (ℓ−1)+1 + s̃1,T (ℓ−1)+1

−s̃2,T (ℓ−1)+1










︸ ︷︷ ︸

power ρ0

.

One can easily show that, with successive decoding on this MIMO, user 1 canjointly decode the common symbols
{ct}Tℓt=T (ℓ−1)+1 by treating other signals as noise, allowing for decoding a total of

Tα(1− λP − λD) log ρ+ To(log ρ) (28)



information bits. After removal of the common symbols from the received signals, the decoder can decode the private symbols
{a′

t, a
′′

t }Tℓt=T (ℓ−1)+1 by treating other signals as noise, thus allowing for decoding of up to

2TαλD log ρ+ To(log ρ) (29)

further information bits. Again, after removal of these symbols, the decoder can now decode{at}Tℓt=T (ℓ−1)+1 containing a total
of

TαλP log ρ+ To(log ρ) (30)

information bits, and finally after removing these last decoded symbols, the decoder can decode{a′′′

t }Tℓt=T (ℓ−1)+1 containing
a total of

T (1− α) log ρ+ To(log ρ) (31)

information bits. Once the common information symbols{ct}Tℓt=T (ℓ−1)+1 (with a total ofTα(1− λP − λD) log ρ+ To(log ρ)

information bits) are decoded at user 1, theTλD(1 + α) log ρ − To(log ρ) (cf. (27)) side-information bits of these common
symbols, can be used to recover the quantized interference{s̄1,t}T (ℓ−1)

t=T (ℓ−2)+1 and{s̄2,t}T (ℓ−1)
t=T (ℓ−2)+1 of block ℓ − 1, which in

turn allows for completing decoding of blockℓ− 1. Backward decoding naturally stops at block 1.
Similarly, user 2 reconstructs{s̄1,t}Tℓt=T (ℓ−1)+1 and {s̄2,t}Tℓt=T (ℓ−1)+1 with the knowledge of common information

{ct}T (ℓ+1)
t=Tℓ+1, and forms a MIMO observation for blockℓ, ℓ ∈ [1, L− 1], which takes the form










zTℓ − s̄2,T ℓ
s̄1,T ℓ

...
zT (ℓ−1)+1 − s̄2,T (ℓ−1)+1

s̄1,T (ℓ−1)+1










=










√
ραgTℓ,1cTℓ

0
...√

ραgT (ℓ−1)+1,1cT (ℓ−1)+1

0










+










φP1
Tℓ

√
ραgT

Tℓh
⊥
TℓbTℓ

0
...

φP1
T (ℓ−1)+1

√
ραgT

T (ℓ−1)+1h
⊥
T (ℓ−1)+1bT (ℓ−1)+1

0










+











φD1
Tℓ

[√
ραgT

Tℓ√
ρhT

Tℓ

] [
b
′

Tℓ

b
′′

Tℓ

]

...

φD1
T (ℓ−1)+1

[√
ραgT

T (ℓ−1)+1√
ρhT

T (ℓ−1)+1

] [

a
′

T (ℓ−1)+1

a
′′

T (ℓ−1)+1

]











+










vTℓ + s̃2,T ℓ +
√

ρ0gTℓ,1a
′′′

Tℓ

−s̃1,T ℓ
...

vT (ℓ−1)+1 + s̃2,T (ℓ−1)+1 +
√

ρ0gT (ℓ−1)+1,1a
′′′

T (ℓ−1)+1

−s̃1,T (ℓ−1)+1










︸ ︷︷ ︸

power ρ0

from which one can easily show that — again by using successive decoding — the common symbols{ct}Tℓt=T (ℓ−1)+1 can be
jointly decoded with a total of

Tα(1− λP − λD) log ρ+ To(log ρ) (32)

information bits, while the private symbols{b′t, b
′′

t }Tℓt=T (ℓ−1)+1 can be decoded with a total of

T (1 + α)λD log ρ+ To(log ρ) (33)

information bits, whereas the private symbols{bt}Tℓt=T (ℓ−1)+1 can be decoded with a total of

TαλP log ρ+ To(log ρ) (34)

information bits. As with the first user case, once the commoninformation symbols{ct}Tℓt=T (ℓ−1)+1 are decoded by user 2,
the side information bits can be used to recover the quantized interference of blockℓ − 1, which allows for completion of
decoding for blockℓ− 1. This continues until we reach block 1.

D. Achieving the GDoF corner points

We proceed to calculate the GDoF performance of the designedscheme. We here consider a largeL, in order to be able to
neglect the necessary inefficiency of the last block.



1) Achieving GDoF pointsE andF for the case ofλD < α
1+2α − α

1+2αλP : In calculating the total number ofinformation
bits, we start by recalling that the common symbols{ct}Tℓt=T (ℓ−1)+1 of block ℓ, ℓ ∈ [1, L− 1], carry a total ofTα(1− λP −
λD) log ρ+To(logρ) bits (cf. (28), (32)), out of whichTλD(1+α) log ρ−To(log ρ) bits (cf. (27)) are used as side information
to convey the information of quantized interference{s̄1,t}T (ℓ−1)

t=T (ℓ−2)+1 and{s̄2,t}T (ℓ−1)
t=T (ℓ−2)+1 of block ℓ− 1. This leaves

∆com,Tα(1− λP − λD) log ρ− TλD(1 + α) log ρ+ To(log ρ) = T
(
α(1 − λP )− λD(1 + 2α)

)
log ρ+ To(log ρ) (35)

remaining information bits in these common symbols (this number is non-negative whenλD < α
1+2α − α

1+2αλP (cf. (19))).
Assigning all∆com information bits to user 1, achieves the GDoF pointF , i.e., allows for

d1 = d∆com
︸ ︷︷ ︸

cf. (35)

+2αλD
︸ ︷︷ ︸

cf. (29)

+ αλP
︸︷︷︸

cf. (30)

+(1− α)
︸ ︷︷ ︸

cf. (31)

=
(
α(1 − λP )− λD(1 + 2α)

)
+ 2αλD + αλP + (1− α) = 1− λD

d2 = (1 + α)λD
︸ ︷︷ ︸

cf. (33)

+ αλP
︸︷︷︸

cf. (34)

whered∆com , limρ→∞
∆com
log ρ (cf. (35)). On the other hand, assigning all these∆com information bits to user 2, allows for GDoF

point E, i.e., allows for

d1 = 2αλD
︸ ︷︷ ︸

cf. (29)

+ αλP
︸︷︷︸

cf. (30)

+(1− α)
︸ ︷︷ ︸

cf. (31)

d2 = d∆com
︸ ︷︷ ︸

cf. (35)

+(1 + α)λD
︸ ︷︷ ︸

cf. (33)

+ αλP
︸︷︷︸

cf. (34)

=
(
α(1− λP )− λD(1 + 2α)

)
+ (1 + α)λD + αλP = α− αλD.

2) Achieving GDoF pointG for the case ofλD ≥ α
1+2α − α

1+2αλP : To achieve GDoF pointG associated to the case
whereλD ≥ α

1+2α − α
1+2αλP , we simply apply the proposed scheme, except that now, instead of using delayed CSIT for the

allowableλD fraction of the time (fraction of the block), we only use delayed CSIT forλ
′

D fraction of the time, where

λ
′

D ,
α

1 + 2α
− α

1 + 2α
λP .

Simple calculations show that this allows for a total of∆com = T
(
α(1 − λP )− λ

′

D(1 + 2α)
)
log ρ+ To(log ρ) = To(log ρ)

information bits (cf. (35)), and for the GDoF pointG corresponding to

d1 = 2αλ
′

D
︸ ︷︷ ︸

cf. (29)

+ αλP
︸︷︷︸

cf. (30)

+(1− α)
︸ ︷︷ ︸

cf. (31)

= 2α(
α

1 + 2α
− α

1 + 2α
λP ) + αλP + (1− α) =

1 + α

1 + 2α
+

α

1 + 2α
λP

d2 = (1 + α)λ
′

D
︸ ︷︷ ︸

cf. (33)

+ αλP
︸︷︷︸

cf. (34)

= (1 + α)(
α

1 + 2α
− α

1 + 2α
λP ) + αλP =

α(1 + α)

1 + 2α
+

α2

1 + 2α
λP .

3) Achieving GDoF pointsB, C, (0, α) and (1, 0): It is easy to show that the two GDoF points(0, α) and(1, 0) are easily
achievable with simple time division between the two users.For achieving GDoF pointC = (1 − α + αλP , α), we repeat
the same relegation ofλD as before, except that now thisλD is relegated all the way down toλ

′′

D = 0, which simply means
that we disregard entirely delayed CSIT. Proceeding as above, allocating∆com information bits to user 2 gives GDoF point
C, corresponding to

d1 = 2αλ
′′

D
︸ ︷︷ ︸

cf. (29)

+ αλP
︸︷︷︸

cf. (30)

+(1− α)
︸ ︷︷ ︸

cf. (31)

= αλP + (1− α)

d2 = d∆com
︸ ︷︷ ︸

cf. (35)

+(1 + α)λ
′′

D
︸ ︷︷ ︸

cf. (33)

+ αλP
︸︷︷︸

cf. (34)

=
(
α(1 − λP )− λ

′′

D(1 + 2α)
)
+ (1 + α)λ

′′

D + αλP = α

while allocating the∆com information bits to user 1, gives GDoF pointB, corresponding to

d1 = d∆com
︸ ︷︷ ︸

cf. (35)

+2αλ
′′

D
︸ ︷︷ ︸

cf. (29)

+ αλP
︸︷︷︸

cf. (30)

+(1− α)
︸ ︷︷ ︸

cf. (31)

=
(
α(1− λP )− λ

′′

D(1 + 2α)
)
+ αλP + (1 − α) = 1

d2 = (1 + α)λ
′′

D
︸ ︷︷ ︸

cf. (33)

+ αλP
︸︷︷︸

cf. (34)

= (1 + α)λ
′′

D + αλP = αλP .

Having completed the description of the general TSM design,we proceed to provide two illustrative examples, where the
general scheme described above, is distilled down to specific instances. In the first example, the overloading and multicasting



c1

+Ly(b1, b2)

+Lz(b1, b2)

x2 =

[
c2 + a4ρ

−α/2

0

]

user 1 received signal power level

user 2 received signal power level

t = 2

c2
Ly(a1, a2)

Lz(a1, a2)

ρ

ρ
α

x1 =

[
a1
a2

]

+

[
b1
b2

]

t = 1

a4

c2 c1

x3 =

[
c3 + a5ρ

−α/2

0

]

t = 3

c3

a5

c3 c1

x4 =

[
c4 + a6ρ

−α/2

0

]

t = 4

c4

a6

c4

Fig. 5. Illustration of received power level for the proposed scheme, on the setting with delayed CSIT and one topology(λ1,α = 1 andλD,D = 1, α = 1/2),
whereLy(•) andLz(•) denote the linear function of the argument at user 1 and user 2, respectively.

phases are operated in a consecutive manner, and the entire scheme has a finite and small duration. In the second example
— where CSIT has a periodic structure — the two phases are jointly performed in the same communication block, and this
block is repeated many times, in a block Markov manner where the multicasting phase in one block is designed to aid for the
overloading phase from the previous block. This sequence follows closely from the scheme in [14] that considered a similar
setting without though any topology considerations (α = 1).

E. Illustrative Example: Fixed topology, delayed CSIT(λ1,α = 1, α = 1/2 andλD,D = 1)

For the setting with constantly available delayed CSIT (λD,D = 1), and a specific static topologyλ1,α = 1 with α = 1/2, the
schemeoverloadsfor one channel use, andmulticastsin three other channel uses, to achieve GDoF(d1 = 1+α

1+2α = 3/4, d2 =
α(1+α)
1+2α = 3/8).
1) Overloading phase:During the overloading phase, taking place att = 1, the transmitter sends (as illustrated in Fig. 5)

x1 =

[
a1
a2

]

+

[
b1
b2

]

wherea1 anda2 are the private symbols for user 1, whereb1, b2 are the private symbols for user 2, and where the power of
each symbol is1/4. The received signals then take the form

y1 =
√
ρhT

1

[
a1
a2

]

+
√
ρhT

1

[
b1
b2

]

︸ ︷︷ ︸

s1

+u1 z1 =
√
ραgT

1

[
b1
b2

]

+
√
ραgT

1

[
a1
a2

]

︸ ︷︷ ︸

s2

+v1 (36)

wheres1 ,
√
ρhT

1

[
b1 b2

]
T

and s2 ,
√
ραgT

1

[
a1 a2

]
T

correspond to the interference signals at user 1 and user 2 respectively.
Note that for user 1, knowings1 allows for removal of interference fromy1, while knowings2 allows for an extra observation
that can assist in decodinga1 anda2. Similarly user 2 can use possible knowledge ofs1 ands2 towards decodingb1 andb2.
This knowledge will be provided in the next phase, where the transmitter will multicast the information abouts1 and s2 to
both users.

2) Multicasting phase:After time t = 1, and after having access to delayed CSIT of channelsg1 andh2, the transmitter
reconstructss1 and s2, and thenquantizesthem into s̄1 and s̄2 with approximatelylog ρ quantization bits4 and α log ρ
quantization bits respectively, allowing for bounded quantization errorss̃1 , s1 − s̄1 and s̃2 , s2 − s̄2 sinceE|s1|2 .

= ρ and
E|s2|2 .

= ρα (cf. [49]). All (1 + α) log ρ quantization bits are then mapped into the common information symbolsc2, c3, c4
that will be transmitted to both users in this multicasting phase, duringt = 2, 3, 4. Specifically, at each timet = 2, 3, 4, the
transmitter sends

xt =

[

ct +
√

ρ−αat+2

0

]

4The use of the term ‘approximately’, refers to the fact that we are usinglog ρ− o(log ρ) (rather thanlog ρ) quantization bits.



whereat+2 is the private symbol for user 1, and where the average power of eachct andat+2 is 1/2, i.e., the effective average
power of

√

ρ−αat+2 is ρ−α. Then theprocessedreceived signals duringt = 2, 3, 4, are of the form

yt/ht,1 =
√
ρct +

√

ρ1−αat+2 + ut/ht,1 zt/gt,1 =
√
ραct +

√

ρ0at+2 + vt/gt,1 (37)

whereht,1 ,hT

t

[
1 0

]
T

, gt,1, gT

t

[
1 0

]
T

. One can see that both users can decode the common symbolct with α log ρ information
bits, and additionally that user 1 can decode the private symbol at+2 with approximately(1 − α) log ρ information bits, for
eacht = 2, 3, 4.

After decoding the common information symbolsc2, c3, c4, corresponding to a total of3α log ρ = 3
2 log ρ bits, both users

can reconstruct̄s1 and s̄2 — represented by a total of(1 + α) log ρ = 3
2 log ρ information bits — in order to decode the

private symbolsa1, a2 at user 1 andb1, b2 at user 2. Specifically user 1 and user 2 each form their2× 2 MIMO observations,
respectively taking the form

[
y1−s̄1
s̄2

]

=

[√
ρhT

1√
ραgT

1

] [
a1
a2

]

+

[
u1+s̃1
−s̃2

]

︸ ︷︷ ︸

power ρ0

,

[
y2 − s̄2
s̄1

]

=

[√
ραgT

1√
ρhT

1

] [
b1
b2

]

+

[
z2+s̃2
−s̃1

]

︸ ︷︷ ︸

power ρ0

.

One can easily show that the private symbolsa1, a2 can be decoded by user 1 with a total of approximately(1+α) log ρ bits,
while the private symbolsb1, b2 can be decoded by user 2 with a total of approximately(1 + α) log ρ bits. Finally a simple
calculation can show that the GDoF(d1 = 1+α+3(1−α)

4 = 3
4 , d2 = 1+α

4 = 3
8 ) is achievable.

Remark 5:Note that in this scheme, during the four channel uses, we only use delayed CSIT onh1 andg1, i.e., only for
the first channels, which implies that the scheme and result still hold when (I1, I2) = (D,D)

︸ ︷︷ ︸

t=1

, (N,N)
︸ ︷︷ ︸

t=2

, (N,N)
︸ ︷︷ ︸

t=3

, (N,N)
︸ ︷︷ ︸

t=4

.

F. Illustrative Example: Fixed topology, partially available and periodic delayed CSIT

We now consider a specific static topology(λ1,α = 1, α = 1/2) and delayed CSIT that isperiodic, but only partially
available. Specifically we consider a setting where

(I1, I2) = (D,N)
︸ ︷︷ ︸

t=1

, (N,D)
︸ ︷︷ ︸

t=2

, (N,N)
︸ ︷︷ ︸

t=3

, (N,N)
︸ ︷︷ ︸

t=4

,
∣
∣
∣ (D,N)
︸ ︷︷ ︸

t=5

, (N,D)
︸ ︷︷ ︸

t=6

, (N,N)
︸ ︷︷ ︸

t=7

, (N,N)
︸ ︷︷ ︸

t=8

,
∣
∣
∣ (D,N)
︸ ︷︷ ︸

t=9

, (N,D)
︸ ︷︷ ︸

t=10

, (N,N)
︸ ︷︷ ︸

t=11

, (N,N)
︸ ︷︷ ︸

t=12

,
∣
∣
∣ · · ·

corresponding to havingλD,N = λN,D = 1
2λN,N = 1/4. This scheme consists ofL communication blocks, where each blockℓ

(ℓ = 1, 2, · · · , L) has duration of4 channel usest = 4ℓ − 3, 4ℓ − 2, 4ℓ − 1, 4ℓ. In the end, the scheme will achieve GDoF
(d1 = 1+α

1+2α = 3/4, d2 = α(1+α)
1+2α = 3/8).

1) Encoding: We proceed to describe the encoding during each blockℓ, ℓ ∈ [1, L − 1]. The last block will be omitted
without a GDoF effect, given thatL will be chosen to be large.

In the first channel use of blockℓ (t = 4ℓ− 3) we have(I1, I2) = (D,N), and the transmitter sends

x4ℓ−3 =

[

c4ℓ−3 +
√

ρ−αa4ℓ−3

0

]

+

[
b4ℓ−3

b
′

4ℓ−3

]

(38)

wherea4ℓ−3 is the private symbol for user 1,c4ℓ−3 is a common symbol for both users, whereb4ℓ−3, b
′

4ℓ−3 are the private
symbols meant for user 25, and where the power of each of these four symbols is1/4. The corresponding received signals
take the form

y4ℓ−3 = h4ℓ−3,1(
√
ρc4ℓ−3 +

√

ρ1−αa4ℓ−3) +
√
ρhT

4ℓ−3

[
b4ℓ−3

b
′

4ℓ−3

]

︸ ︷︷ ︸

s1,ℓ

+u4ℓ−3 (39)

z4ℓ−3 =
√
ραg4ℓ−3,1c4ℓ−3 +

√
ραgT

4ℓ−3

[
b4ℓ−3

b
′

4ℓ−3

]

+
√

ρ0g4ℓ−3,1a4ℓ−3 + v4ℓ−3 (40)

wheres1,ℓ,
√
ρhT

4ℓ−3

[

b4ℓ−3 b
′

4ℓ−3

]T
corresponds to the interference signal at user 1.

In the second channel use of blockℓ (t = 4ℓ− 2), we have(I1, I2) = (N,D), and the transmitter sends

x4ℓ−2 =

[

c4ℓ−2 +
√

ρ−αa4ℓ−2

0

]

+

[
a

′

4ℓ−2

a
′′

4ℓ−2

]

(41)

5These symbols can be considered as ‘overloaded’, in the sense that user 2 would not have been able to decode them, even if there was no interference.



wherea4ℓ−2, a
′

4ℓ−2, a
′′

4ℓ−2 are the private symbols meant for user 1 (nowa4ℓ−2, a
′

4ℓ−2, a
′′

4ℓ−2 are the overloaded symbols),
wherec4ℓ−2 is a common symbol, and where the power of each symbol is1/4. The received signals then take the form

y4ℓ−2 = h4ℓ−2,1(
√
ρc4ℓ−2 +

√

ρ1−αa4ℓ−2) +
√
ρhT

4ℓ−2

[
a

′

4ℓ−2

a
′′

4ℓ−2

]

+ u4ℓ−2 (42)

z4ℓ−2 =
√
ραg4ℓ−2,1c4ℓ−2 +

√
ραgT

4ℓ−2

[
a

′

4ℓ−2

a
′′

4ℓ−2

]

︸ ︷︷ ︸

s2,ℓ

+
√

ρ0g4ℓ−2,1a4ℓ−2 + v4ℓ−2, (43)

wheres2,ℓ,
√
ραgT

4ℓ−2

[

a
′

4ℓ−2 a
′′

4ℓ−2

]T
corresponds to the interference signal at user 2.

In the last two channel uses of blockℓ (t = 4ℓ− 1, 4ℓ), we have(I1, I2) = (N,N), and the transmitter sends

xt =

[

ct +
√

ρ−αat
0

]

(44)

where againat is the private symbol for user 1,ct is a common symbol, and where both symbols have power1/2. This results
in received signals of the following form

yt =
√
ρht,1ct +

√

ρ1−αht,1at ++ut (45)

zt =
√
ραgt,1ct +

√

ρ0gt,1at + vt. (46)

2) Interference quantization and mapping:At the end of each blockℓ, ℓ ∈ [1, L− 1], the transmitterreconstructss1,ℓ and
s2,ℓ using delayed CSIT, andquantizesthese intos̄1,ℓ and s̄2,ℓ using respectivelylog ρ and α log ρ quantization bits, thus
allowing for bounded quantization errors̃s1,ℓ, s1,ℓ − s̄1,ℓ and s̃2,ℓ, s2,ℓ − s̄2,ℓ sinceE|s1,ℓ|2 .

= ρ andE|s2,ℓ|2 .
= ρα. The

total of (1+α) log ρ = 3
2 log ρ quantization bits is then mapped into the common symbols{ct}4(ℓ+1)

t=4ℓ+1 that will be transmitted
to both users in the next block. Note that in the last block — block L, again of length 4 — the transmitter simply sends to
both users the common information symbols{ct}4Lt=4L−3 containing a total of32 log ρ bits.

3) Backward decoding:As with all other schemes here, decoding starts from the lastblock and moves backward. Specifically
after decoding the common symbols of the last block, each user reconstructs̄s1,L−1 and s̄2,L−1, recovers the quantized
interference of blockL − 1, and uses this to decode its private and common symbols of block L − 1. This last common
information of blockL− 1, can now be used for decoding of blockL− 2, and so on. In general, after decoding the common
information{ct}4(ℓ+1)

t=4ℓ+1 of block ℓ+ 1, user 1 reconstructs̄s1,ℓ and s̄2,ℓ, to form a MIMO observation








y4ℓ−3 − s̄1,ℓ
y4ℓ−2

s̄2,ℓ
y4ℓ−1

y4ℓ









=









√
ρh4ℓ−3,1c4ℓ−3√
ρh4ℓ−2,1c4ℓ−2

0√
ρh4ℓ−1,1c4ℓ−1√
ρh4ℓ,1c4ℓ









+









√

ρ1−αh4ℓ−3,1a4ℓ−3√

ρ1−αh4ℓ−2,1a4ℓ−2

0
√

ρ1−αh4ℓ−1,1a4ℓ−1√

ρ1−αh4ℓ,1a4ℓ









+









0
[√

ρhT

4ℓ−2√
ραgT

4ℓ−2

] [
a

′

4ℓ−2

a
′′

4ℓ−2

]

0
0









+









u4ℓ−3 + s̃1,ℓ
u4ℓ−2

−s̃2,ℓ
u4ℓ−1

u4ℓ









︸ ︷︷ ︸

power ρ0

.

In a similar manner to the previous schemes, one can show thatsuccessive decoding on the above MIMO setting, allows
user 1 tojointly decode the common symbols{ct}4ℓt=4ℓ−3 by treating the other signals as noise, decoding a total of3α log ρ

information bits. After removing the common symbols, the user can decode the private symbolsa
′

4ℓ−2 anda
′′

4ℓ−2 by treating the
other signals as noise, thus decoding a total of2α log ρ information bits. Similarly, after removing these last decoded symbols,
user 1 can decode the private symbols{at}4ℓt=4ℓ−3 carrying a total of4(1 − α) log ρ information bits. Furthermore, having
already decoded the common information in symbols{ct}4ℓt=4ℓ−3, user 1 can — as we have seen for blockℓ — complete
decoding for the previous block (blockℓ− 1). Such backward decoding stops at block 1. A similar procedure is followed for
user 2. Consequently, for largeL, the achievable GDoF can easily be calculated to be

d1 =
2α+ 4(1− α)

4
=

3

4
, d2 =

1 + α

4
=

3

8
.

G. Example: Naive topological modifications to the originalMAT scheme (λD,D = 1) for the settingλ1,α = 1

The following — which is meant to accentuate the need for proper TSM design — describes a naive variant of the original
MAT scheme, which fails to properly account for topology andthus under-performs compared to the corresponding TSM in
the sameλ1,α = 1, λD,D = 1 setting.

We recall that the original MAT scheme in [9] consists of three phases, each of duration one. At timet = 1, 2, the transmitter
sends

x1 =

[
a1
a2

]

, x2 =

[
b1
b2

]



Ly(a1, a2)

Lz(a1, a2)

ρ

ρ
α

x3 =

[
Lz(a1, a2) + Ly(b1, b2)

0

]

x2 =

[
b1
b2

]

x1 =

[
a1
a2

]

user 1 received signal power level

user 2 received signal power level

t = 3t = 1 t = 2

Lz(b1, b2)

Ly(b1, b2) Lz(a1, a2)+Ly(b1, b2)

Lz(a1, a2) + Ly(b1, b2)

Fig. 6. Illustration of the received power level for the naively-modified MAT scheme in the static topology settingλ1,α = 1.

wherea1, a2 are for user 1,b1, b2 for user 2, and where the received signals, in their noiseless form, are now (in the current,
topologically sensitive setting)

y1 =
√
ρhT

1

[
a1
a2

]

z1 =
√
ραgT

1

[
a1
a2

]

,
√
ραLz(a1, a2) (47)

y2 =
√
ρhT

2

[
b1
b2

]

,
√
ρLy(b1, b2) z2 =

√
ραgT

2

[
b1
b2

]

. (48)

At time t = 3, the transmitter knowsg1 andh2 by using delayed CSIT, reconstructsLz(a1, a2), Ly(b1, b2) (cf. (47), (48)),
and sends

x3 =

[
Lz(a1, a2) + Ly(b1, b2)

0

]

.

The normalized/processed received signals, in their noiseless form, are

y3/h3,1 =
√
ρLz(a1, a2) +

√
ρLy(b1, b2) (49)

z3/g3,1 =
√
ραLz(a1, a2) +

√
ραLy(b1, b2). (50)

At this point, we recall from [9] that user 1 combines the above with y1, y2, y3, to design a MIMO system

[
y1

y3/h3,1 − y2

]

=
√
ρ

[
hT

1

gT

1

] [
a1
a2

]

+

[
u1

u3/h3,1 − u2

]

(51)

and to MIMO decodea1, a2, which carry a total of[2 log ρ+ o(log ρ)] bits. Similarly, user 2 is presented with another MIMO
system

[
z2

z3/g3,1 − z1

]

=
√
ρα

[
gT

2

hT

2

] [
b1
b2

]

+

[
v2

v3/g3,1 − v1

]

(52)

over a weaker link, from which it can MIMO decodeb1, b2, which though now carry a total of2α log ρ+ o(log ρ) bits. As a
result, the original MAT scheme achieves a sum GDoFd∑ = 2(1+α)

3 .

V. SUM-GDOF OPTIMAL TOPOLOGICAL SIGNAL MANAGEMENT SCHEMES FOR THE FLUCTUATING TOPOLOGY SETTING

We proceed to build on the topological signal management schemes in Section IV and to design schemes for the alternating
topology settings in Section III-C. These schemes will be sum-GDoF optimal.



TABLE I
SUMMARY OF SCHEMES

Scheme# Section# CSIT, topology achievedd∑ for Proposition#

1 V-A λ1,α = λα,1 = 1/2 1 + α
3

Proposition 1

λD,D = 1 optimal

2 V-B any λ1,α + λα,1 = 1 1 + α
2

Propositions 2, 3

λP,N = λN,P = 1/2 optimal

Ly(a1, a2)

Lz(a1, a2)

ρ

ρ
α

x3 =

[
c+ a3ρ

−α/2

0

]

x2 =

[
b1
b2

]

x1 =

[
a1
a2

]

user 1 received signal power level

user 2 received signal power level

t = 3t = 1 t = 2

Lz(b1, b2)

Ly(b1, b2)

c

c

a3 ρ
1−α

ρ

ρ
α

Fig. 7. Received signal power level illustration for the TSMscheme, for the setting whereλ1,α
D,D

= λα,1
D,D

= 1/2.

A. TSM scheme forλ1,αD,D = λα,1D,D = 1/2, achieving the optimal sum GDoFd∑ = (1 + α/3)

The scheme can be described as having three channel uses,t = 1, 2, 3. We will first, without loss of generality, describe
the scheme for the setting where, fort = 1, 3, the feedback-and-topology state is(I1, I2, A1, A2) = (D,D, 1, α), and for
t = 2 the state is(I1, I2, A1, A2) = (D,D, α, 1). The scheme can be slightly modified for the case where(I1, I2, A1, A2) =
(D,D, 1, α)
︸ ︷︷ ︸

t=1

, (D,D, α, 1)
︸ ︷︷ ︸

t=2

, (D,D, α, 1)
︸ ︷︷ ︸

t=3

. In both cases, the scheme can achieve the optimal sum GDoFd∑ = (1 + α/3). By

averaging over the two schemes, we can get the optimal sum GDoF d∑ = (1 + α/3) with λ1,αD,D = λα,1D,D = 1/2.
1) Phase 1:At t = 1 ((I1, I2, A1, A2) = (D,D, 1, α), link 1 is strong) the transmitter sends (see Figure 7)

x1 =

[
a1
a2

]

(53)

wherea1 anda2 are unit-power symbols meant for user 1, with

r(a1) = 1, r(a2) = α (54)

resulting in received signals of the form

y1 =
√
ρhT

1

[
a1
a2

]

︸ ︷︷ ︸

ρ

+u1 (55)

z1 =
√
ραgT

1

[
a1
a2

]

︸ ︷︷ ︸

ρα

+v1 (56)

where we note that the unintended interfering signal is attenuated due to the weak link.



2) Phase 2:At time t = 2 ((I1, I2, A1, A2) = (D,D, α, 1), link 1 is weak) the transmitter sends

x2 =

[
b1
b2

]

(57)

whereb1, b2 are unit-power symbols meant for user 2, with

r(b1) = 1, r(b2) = α (58)

resulting in received signals of the form

y2 =
√
ραhT

2

[
b1
b2

]

︸ ︷︷ ︸

ρα

+u2 (59)

z2 =
√
ρgT

2

[
b1
b2

]

︸ ︷︷ ︸

ρ

+v2 (60)

where again the unintended interfering signal is attenuated due to the weak link.
3) Phase 3:At this point the transmitter - using delayed CSIT - knowsg1 andh2. It then proceeds to reconstruct(z1− v1)

and (y2 − u2), and to quantize the sum

ι,(z1 − v1) + (y2 − u2) (61)

usingα log ρ+ o(log ρ) quantization bits, in order to get the quantized versionῑ. Given the number of quantization bits, and
given thatE|ι|2 .

= ρα, the quantization error
ι̃ = ι− ῑ

is bounded and does not scale withρ (cf. [49]). The above quantized information is then mapped into acommonsymbolc.
At time t = 3, with state(I1, I2, A1, A2) = (D,D, 1, α) (link 2 is weak), the transmitter sends

x3 =

[
c+ a3ρ

−α/2

0

]

(62)

wherec is the aforementioned common symbol meant for both users, wherea3 is a symbol meant for user 1, where

P (c) .= 1, r(c) = α

P (a3) .= 1, r(a3) = 1− α
(63)

and where the (normalized) received signals (in their noiseless form) are

y3/h3,1 =
√
ρc+

√

ρ1−αa3 (64)

z3/g3,1 =
√
ραc+

√

ρ0a3. (65)

Now we see from (64),(65) thatc can be decoded by both users. Similarly we can readily see that a3 can be decoded by
user 1.

At this point, knowingc, allows both users to recover̄ι (cf. (61)), and to then decode the private symbols. Specifically,
user 1 obtains a MIMO observation

[
y1

ῑ− y2

]

=

[√
ρhT

1√
ραgT

1

] [
a1
a2

]

+

[
u1

−u2 − ι̃

]

(66)

which allows for decoding ofa1, a2 at the declared rates (cf. (54)). Similarly, user 2 obtains another MIMO observation
[

z2
ῑ− z1

]

=

[ √
ρgT

2√
ραhT

2

] [
b1
b2

]

+

[
v2

−v1 − ι̃

]

(67)

and can decodeb1, b2 at the declared rates (cf. (58)). Summing up the informationbits concludes that the scheme achieves the
optimal sum GDoFd∑ = 1+α+1+α+(1−α)

3 = 1 + α
3 (also see Figure 7).

Remark 6:As stated above, when(I1, I2, A1, A2) = (D,D, 1, α), (D,D, α, 1), (D,D, α, 1) for t = 1, 2, 3 respectively, we
can slightly modify the scheme such that att = 3, instead of sending the private symbola3 for the first user (see (62)), to
instead send a private symbolb3 for the second user (i.e., again to the stronger user). Following the same steps, one can easily
show that the sum GDoFd∑ = 1 + α/3 is again achievable.

Remark 7: It is interesting to note that the proposed scheme needs delayed CSIT for only a fraction of the channels (the
channels with weak channel gain in phase 1 and phase 2), and inessence only needsλ1,αN,D = λα,1D,N = λ1,αN,N = 1/3, or
λ1,αN,D = λα,1D,N = λα,1N,N = 1/3, or λ1,αN,D = λα,1D,N = 2λ1,αN,N = 2λα,1N,N = 1/3, to achieve the same optimal sum GDoF.
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B. TSM schemes forλP,N = λN,P = 1/2 and for anyλ1,α + λα,1 = 1; achieving the optimal sum GDoF1 + α
2

We will now show that the optimal sum GDoF(1 + α
2 ) is achievable for any topologyλ1,α + λα,1 = 1 using λP,N =

λN,P = 1/2 and a sequence of TSM schemes proposed for the different settings of

λ1,αP,N = λ1,αN,P = 1/2; λα,1P,N = λα,1N,P = 1/2; λ1,αP,N = λα,1N,P = 1/2; λα,1P,N = λ1,αN,P = 1/2

respectively. Each scheme achieves the optimal sum GDoF(1 + α
2 ), and each scheme is designed to have only two channel

uses, during which the two users take turn to feed back current CSIT (only one user feeds back at a time). The general result
is proven by properly concatenating the proposed schemes for the different cases.

1) TSM scheme forλ1,αP,N = λ1,αN,P = 1/2 : Without loss of generality, we focus on the specific sub-casewhere
(I1, I2, A1, A2) = (P,N, 1, α) for t = 1, and(I1, I2, A1, A2) = (N,P, 1, α) for t = 2.

At t = 1 the transmitter knowsh1 (current CSIT), and sends (see Figure 8)

x1 = h1a1 + h
⊥
1 b1 (68)

wherea1 andb1 are intended for user 1 and user 2 respectively, and where

P (a1) .= 1, r(a1) = 1
P (b1) .= 1, r(b1) = α.

(69)

Then the received signals (in their noiseless form) are

y1 =
√
ρhT

1h1a1
︸ ︷︷ ︸

ρ

(70)

z1 =
√
ραgT

1h1a1
︸ ︷︷ ︸

ρα

+
√
ραgT

1h
⊥
1 b1

︸ ︷︷ ︸

ρα

. (71)

At t = 2 ((I1, I2, A1, A2) = (N,P, 1, α)), the transmitter knowsg2 (current CSIT) and sends

x2 = g2a1 + g⊥
2 a2 (72)

wherea2 is intended for user 1, and where

P (a2) .= 1, r(a2) = 1. (73)
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Then the received signals (in their noiseless form) are as follows

y2 =
√
ρhT

2g2a1
︸ ︷︷ ︸

ρ

+
√
ρhT

2g
⊥
2 a2

︸ ︷︷ ︸

ρ

(74)

z2 =
√
ραgT

2g2a1
︸ ︷︷ ︸

ρα

. (75)

At this point, we can see that user 1 can MIMO decodea1, a2 based on (70), (74), while user 2 can recoverb1 by employing
interference cancelation based on (71), (75). This gives a sum DoF of1 + α/2.

Remark 8:We can now readily see that for the setting where(I1, I2, A1, A2) =

t=1
︷ ︸︸ ︷

(N,P, 1, α),

t=2
︷ ︸︸ ︷

(P,N, 1, α), we can easily
modify the above scheme to achieve the same performance, just by reordering the transmissions such thatx1 = g1a1 + g⊥

1 a2
andx2 = h2a1 + h⊥

2 b1.
Similarly whenλα,1P,N = λα,1N,P = 1/2, we can take the above scheme (of Section V-B1), and simply interchange the roles of

the users, to again achieve the optimal sum GDoF1 + α/2.
2) TSM scheme forλ1,αP,N = λα,1N,P = 1/2 : We focus on the case where we first have(I1, I2, A1, A2) = (P,N, 1, α) (at

t = 1), followed by (I1, I2, A1, A2) = (N,P, α, 1) (t = 2).
At t = 1, the transmitter knowsh1, and sends (see Figure 9)

x1 = h1a1 +
√

ρ−αh1a2 + h⊥
1 b1 (76)

wherea1, a2 are the unit-power symbols intended for user 1,b1 is the unit-power symbol intended for user 2, where

r(a1) = α, r(a2) = 1− α, r(b1) = α (77)

and where the received signals, in their noiseless form, are

y1 =
√
ρhT

1h1a1
︸ ︷︷ ︸

ρ

+
√

ρ1−αhT

1h1a2
︸ ︷︷ ︸

ρ1−α

(78)

z1 =
√
ραgT

1h1a1
︸ ︷︷ ︸

ρα

+
√

ρ0gT

1h1a2
︸ ︷︷ ︸

ρ0

+
√
ραgT

1h
⊥
1 b1

︸ ︷︷ ︸

ρα

. (79)



At t = 2 ((I1, I2, A1, A2) = (N,P, α, 1)) the transmitter knowsg2 (user 1 is weak), and sends

x2 = g2a1 + g⊥
2 a3 +

√

ρ−αg2b2 (80)

wherea3, b2 are the unit-power symbols intended for user 1 and user 2 respectively, where

r(a3) = α, r(b2) = 1− α (81)

and where the received signals, in their noiseless form, are

y2 =
√
ραhT

2g2a1
︸ ︷︷ ︸

ρα

+
√
ραhT

2g
⊥
2 a3

︸ ︷︷ ︸

ρα

+
√

ρ0hT

2g
⊥
2 b2

︸ ︷︷ ︸

ρ0

(82)

z2 =
√
ρgT

2g2a1
︸ ︷︷ ︸

ρ

+
√

ρ1−αgT

2g2b2
︸ ︷︷ ︸

ρ1−α

. (83)

At this point, it is easy to see that user 1 can recovera1, a2, a3 by MIMO decoding based on (78) and (82), while user 2 can
recoverb1, b2 by employing interference cancelation based on (79) and (83) (see also Figure 9). This provides ford∑ = 1+α/2.

a) Modifying the scheme for the setting where(I1, I2, A1, A2) is (N,P, α, 1) or (P,N, 1, α): Similarly for the setting
where(I1, I2, A1, A2) is (N,P, α, 1) or (P,N, 1, α), we can modify the previous scheme — to achieve the same optimal sum
DoF — by interchanging the transmissions of the first and second channel uses, i.e., oft = 1, 2.

b) Modifying the scheme for the setting whereλα,1P,N = λ1,αN,P = 1/2: Furthermore whenλα,1P,N = λ1,αN,P = 1/2, we can
simply interchange the roles of users in the previous scheme, to again achieve the same optimal sum GDoF.

c) Spanning the entire settingλ1,α + λα,1 = 1, λP,N = λN,P : Finally, by usingλP,N = λN,P and by properly
concatenating the above scheme variants, gives the optimalperformanced∑ = 1+α/2, for the entire rangeλ1,α + λα,1 = 1.

VI. CONCLUSIONS

The work explored the interplay between topology, feedbackand performance, for the specific setting of the two-user MISO
broadcast channel. Adopting a generalized degrees of freedom framework, and addressing feedback and topology jointly, the
work revealed new aspects on encoding design that accounts for topology and feedback, as well as new aspects on how to
handle and even exploit topologically diverse settings where the topology varies across users and across time.

In addition to the bounds and encoding schemes, the work offers insight on how to feedback — and naturally how to learn
— the channel in the presence of uneven and possibly fluctuating topologies. This insight came in the form of simple feedback
mechanisms that achieve optimality.

VII. A PPENDIX - PROOF OF GENERAL OUTER BOUND(LEMMA 2)

We here provide the proof of the general outer bound in Lemma 2. Let W1,W2 respectively denote the messages of user 1
and user 2, letR1, R2 denote the two users’ rates, and letΩn denote all channel states that appear in the BC. Let the
communication duration ben channel uses, wheren is large. We use

ynI1,I2 = {yt}t, znI1,I2 = {zt}t ∀t : I1,t = I1, I2,t = I2

to denote the accumulated set of received signals at user 1 and user 2 respectively, accumulated throughout the time whenthe
CSIT state was some fixedI1, I2. As a result, the entirety of the received signals, at each user, is the following union of the
above sets

yn =
⋃

I1,I2

ynI1,I2 , zn =
⋃

I1,I2

znI1,I2 .



A. Proof of bound(9) and bound(10)

Towards proving the bound in (9), we note that

nR1 − nǫn

= H(W1)− nǫn

= H(W1|Ωn)− nǫn

= I(W1; y
n|Ωn) +H(W1|yn,Ωn)

︸ ︷︷ ︸

≤nǫn

−nǫn

≤ I(W1; y
n|Ωn) (84)

= h(yn|Ωn)− h(yn|W1,Ω
n)

≤ n
( ∑

∀(A1,A2)

A1λA1,A2

)

log ρ+ no(log ρ)− h(yn|W1,Ω
n)

︸ ︷︷ ︸

≥no(log ρ)

(85)

≤ n
( ∑

∀(A1,A2)

A1λA1,A2

)

log ρ+ no(log ρ)− no(log ρ) (86)

where (84) results from Fano’s inequality which boundsH(W1|yn,Ωn), where (85) follows from the fact thath(yn|Ωn) =
∑n

t=1 h(yt|yt−1Ωn) ≤ ∑n
t=1 maxΨ:tr(Ψ)≤1 log(1 + ρA1,thH

tΨht) =
∑n

t=1

(

A1,t log ρ + o(log ρ)
)

, that Gaussian input maxi-

mizes the differential entropy, and thatΨ,E[xtx
H

t ], where (86) is from the fact thath(yn|W1,Ω
n) ≥ h(yn|W1,Ω

n, {xt}nt=1) =
h
(
{ut}nt=1

)
= no(log ρ) and that conditioning reduces differential entropy. Finally dividing (86) byn log ρ and letingρ→ ∞,

provides for the bound in (9). Similarly, exchanging the roles of user 1 and user 2, proves (10).

B. Proof of bound(11) and bound(12)

Towards proving (11), we first enhance the BC by offering user2, complete knowledge ofyn and ofW1. Having now
constructed a degraded BC, we proceed to remove all delayed feedback. This removal, which is equivalent to substitutingthe
CSIT stateIk = D with Ik = N , does not affect capacity, as one can deduce from the work in [50].

We then proceed to construct a degraded compound BC by addingan additional user, denoted as user1̃, seeking to receive
the same desired messageW1 as user 1. The received signal of user1̃ takes the form

ỹn =
(
ynP,P , y

n
P,D, y

n
P,N , ỹ

n
D,P , ỹ

n
N,P , ỹ

n
D,D, ỹ

n
D,N , ỹ

n
N,D, ỹ

n
N,N

)

where specifically whenI1 = P (i.e., whenever the first user sends perfect CSIT) then the received signal of user̃1 is identical
to that of user 1, else whenI1 6= P , the received signal of user̃1 is only assumed to beidentically distributedto the signal
yt of user 1. We also assume that throughout the communication process, user̃1 and user 1 experience the same channel
gain exponentA1,t for all t (cf. (3)). We further enhance by assuming thatỹn is known to user 2. We note that, since user 1
and user̃1 have the same decodability, the capacity of this degraded compound BC cannot be worse than that of the original
degraded BC.

As a next step, we introduce the auxiliary random variablest, and definesnI1,I2 = {st}t:I1,t=I1,I2,t=I2 . At this point we
enhance the degraded compound BC, by giving user 2 complete knowledge of

sn0 ,{snD,P , snN,P , snD,N , snN,D, snD,D, snN,N}

where, as described below in (87),{snD,P , snN,P , snD,N , snN,D, snD,D, snN,N} is the collection of auxiliary random variables
st, t : I1,t 6= P accumulated whenever there is no CSIT on channelht of user 1 and no CSIT on channelh̃t of user1̃, where
specifically

ρ
A2,t−A1,t

2

[
hT

t

gT

t

] [
hT

t

h̃
T

t

]−1 [
yt
ỹt

]

= ρ
A2,t

2

[
hT

t

gT

t

]

xt +

[
0
vt

]

︸ ︷︷ ︸

=





⋆
zt





+

[
0

−vt

]

+ ρ
A2,t−A1,t

2

[
hT

t

gT

t

] [
hT

t

h̃
T

t

]−1 [
ut
ũt

]

︸ ︷︷ ︸

,





⋆
st





(87)

i.e., where specificallyst is the second element of the vector

[
0

−vt

]

+ ρ
A2,t−A1,t

2

[
hT

t

gT

t

] [
hT

t

h̃
T

t

]−1 [
ut
ũt

]

, and where we have set

h̃t to be independently and identically distributed toht, and ũt to be independently and identically distributed tout. What
the above means is thatst has average power

E|st|2 .
= ρ(A2,t−A1,t)

+



as well as that knowledge of{st, yt, ỹt,Ωn}, implies the knowledge ofzt, again wheneverI1 6= P .
At this point we can see that

nR1 − nǫn

≤ I(W1; y
n|Ωn) (88)

= h(yn|Ωn)− h(yn|W1,Ω
n) (89)

where (88) results from Fano’s inequality which boundsH(W1|yn,Ωn).
Similarly, for virtual user̃1, we have

nR1 − nǫn ≤ h(ỹn|Ωn)− h(ỹn|W1,Ω
n). (90)

As a result, adding (89) and (90) gives

2nR1 − 2nǫn

≤ h(yn|Ωn) + h(ỹn|Ωn)− h(yn|W1,Ω
n)− h(ỹn|W1,Ω

n)

≤ h(yn|Ωn) + h(ỹn|Ωn)− h(yn, ỹn|W1,Ω
n) (91)

where (91) uses a basic entropy inequality.
Now recalling that user 2 has knowledge of{W1, z

n, yn, ỹn, sn0}, gives

nR2 − nǫn

= H(W2)− nǫn

= H(W2|Ωn)− nǫn

≤ I(W2;W1, z
n, yn, ỹn, sn0 |Ωn) (92)

= I(W2; z
n, yn, ỹn, sn0 |W1,Ω

n) + I(W2;W1|Ωn)
︸ ︷︷ ︸

=0

(93)

= I(W2; z
n
P,P , z

n
P,D, z

n
P,N , y

n, ỹn, sn0 |W1,Ω
n)

+ I(W2; z
n
D,P , z

n
N,P , z

n
D,N , z

n
N,D, z

n
D,D, z

n
N,N |znP,P , znP,D, znP,N , yn, ỹn, sn0 ,W1,Ω

n)
︸ ︷︷ ︸

=0

(94)

= I(W2; z
n
P,P , z

n
P,D, z

n
P,N , y

n, ỹn, sn0 |W1,Ω
n) (95)

= h(znP,P , z
n
P,D, z

n
P,N , y

n, ỹn, sn0 |W1,Ω
n)− h(znP,P , z

n
P,D, z

n
P,N , y

n, ỹn, sn0 |W1,W2,Ω
n)

︸ ︷︷ ︸

=no(log ρ)

(96)

= h(znP,P , z
n
P,D, z

n
P,N , y

n, ỹn, sn0 |W1,Ω
n)− no(log ρ) (97)

= h(yn, ỹn|W1,Ω
n) + h(sn0 |yn, ỹn,W1,Ω

n)
︸ ︷︷ ︸

≤h(sn
0
)

+ h(znP,P , z
n
P,D, z

n
P,N |yn, ỹn, sn0 ,W1,Ω

n)
︸ ︷︷ ︸

≤h(zn
P,P

,zn
P,D

,zn
P,N

)

−no(log ρ) (98)

≤ h(yn, ỹn|W1,Ω
n) + h(sn0 ) + h(znP,P , z

n
P,D, z

n
P,N)− no(log ρ), (99)

where (92) comes from Fano’s inequality, where (93), (96), (98) use basic chain rule, where (94) stems
from messages independence, where (95) follows from that the knowledge of {yn, ỹn, sn0 ,Ωn} allows for
the reconstruction of {znD,P , znN,P , znD,N , znN,D, znD,D, znN,N} (for example, knowing {ynD,P , ỹnD,P , snD,P ,Ωn}
allows for reconstructing{znD,P}, cf. (87)), i.e., {znD,P , znN,P , znD,N , znN,D, znD,D, znN,N} ↔ {yn, ỹn, sn0 ,Ωn} ↔
W2 forms a Markov chain, where (97) is from h(znP,P , z

n
P,D, z

n
P,N , y

n, ỹn, sn0 |W1,W2,Ω
n) =

h(znP,P , z
n
P,D, z

n
P,N , y

n, ỹn|W1,W2,Ω
n)

︸ ︷︷ ︸

=no(log ρ)

+ h(sn0 |znP,P , znP,D, znP,N , yn, ỹn,W1,W2,Ω
n)

︸ ︷︷ ︸

=no(log ρ)

= no(log ρ) by using the fact

that the knowledge of{W1,W2,Ω
n} allows for reconstructing{znP,P , znP,D, znP,N , yn, ỹn} up to noise level and the knowledge

of {W1,W2,Ω
n, yn, ỹn} allows for reconstructingsn0 up to noise level, where (99) uses the fact that conditioningreduces

entropy.
By adding (91) and (99), and dividing byn, we have

2R1 +R2 − 3ǫn

≤ 1

n

(

h(yn|Ωn) + h(ỹn|Ωn) + h(sn0 ) + h(znP,P , z
n
P,D, z

n
P,N) + no(log ρ)

)

(100)

≤ 2
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)

log ρ+
∑

(I1,I2):I1 6=P

(1 − α)λα,1I1,I2
log ρ+

∑

(I1,I2):I1=P

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2
log ρ− o(log ρ), (101)



and consequently have

2d1 + d2 ≤ 2
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)

+
∑

(I1,I2):I1 6=P

(1− α)λα,1I1,I2
+

∑

(I1,I2):I1=P

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2
(102)

which gives bound (11).
Similarly, exchanging the roles of user 1 and user 2, gives

2d2 + d1 ≤ 2
( ∑

∀(I1,I2)

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)

+
∑

(I1,I2):I2 6=P

(1− α)λ1,αI1,I2 +
∑

(I1,I2):I2=P

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2
(103)

which gives bound (12).

C. Proof for bound(13)

We continue with the proof of bound (13). We first enhance the BC, by substituting delayed CSIT with perfect CSIT, i.e.,
by treating CSIT stateIk = D as if it corresponded toIk = P . We then transition to the compound BC by introducing a first
imaginary user̃1, and a second imaginary user2̃.

User 1̃, which shares the same desired messageW1 as user 1, is supplied with a received signal that takes the form

ỹn =
(
ynP,P , y

n
P,D, y

n
D,P , y

n
D,D, y

n
P,N , y

n
D,N , ỹ

n
N,P , ỹ

n
N,D, ỹ

n
N,N

)

which means that user 1 and user1̃ share the exact same received signal wheneverI1 6= N , while otherwise we only assume
that user̃1 has a received signal that is statistically identical to that of user 1, but not necessarily the same.

Similarly user2̃, which shares the same desired messageW2 as user 2, is supplied with a received signal that takes the form

z̃n =
(
znP,P , z

n
D,P , z

n
P,D, z

n
D,D, z

n
N,P , z

n
N,D, z̃

n
P,N , z̃

n
D,N , z̃

n
N,N

)

which again means that user 2 and user2̃ share the same received signal wheneverI2 6= N , while otherwise we only assume
that user̃2 has a received signal that is statistically identical to that of user 2, but not necessarily the same.

This latter stage does not further alter the capacity - compared to the previouslyenhancedBC - since user 1 and user1̃
have the same long-term decoding ability; similarly for user 2 and user̃2.

Furthermore, whenever(I1, I2) = (N,N) we can assume without an effect on the result, that the channel vectorsgt, g̃t, h̃t,ht
are the same for all four users, i.e.,gt = g̃t = h̃t = ht, (g̃t and h̃t for user 2̃ and user̃1 respectively), since the capacity
depends only on the marginals for the channels associated with (I1, I2) = (N,N).

Additionally for anyt during which(I1, I2) = (N,N), we define

ȳt =

√

ρmin{A1,t,A2,t}hT

txt + ūt (104)

whereūt is a unit-power AWGN random variable, where
√

ρA1,t−min{A1,t,A2,t}ȳt =
√

ρA1,thT

txt + ut
︸ ︷︷ ︸

=yt

+

√

ρA1,t−min{A1,t,A2,t}ūt − ut
︸ ︷︷ ︸

,ωt

(105)

√

ρA2,t−min{A1,t,A2,t}ȳt =
√

ρA2,thT

txt + vt
︸ ︷︷ ︸

=zt

+

√

ρA2,t−min{A1,t,A2,t}ūt − vt
︸ ︷︷ ︸

,ψt

(106)

and where the two new random variablesωt, ψt have power

E|ωt|2 .
= ρ(A1,t−A2,t)

+

and

E|ψt|2 .
= ρ(A2,t−A1,t)

+

.

The collection of all{ȳt}t for all t such that(I1, I2) = (N,N), is denoted bȳynN,N , and similarlyωnN,N andψnN,N respectively
denote the set of{ωt}t and{ψt}t for all t such that(I1, I2) = (N,N).

Finally we provide each user with the observationȳnNN , to reach an enhanced compound BC.



At this point we have

nR1 − nǫn

= H(W1)− nǫn

= H(W1|Ωn)− nǫn

≤ I(W1; y
n
0 , y

n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, y

n
N,N , ȳ

n
N,N |Ωn) (107)

= I(W1; y
n
0 , y

n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn) + I(W1; y

n
N,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn)

≤ I(W1; y
n
0 , y

n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn) + I(W1; y

n
N,N , ω

n
N,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn) (108)

= I(W1; y
n
0 , y

n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn)

+ I(W1;ω
n
N,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn) + I(W1; y

n
N,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N , ωnN,N ,Ωn)

︸ ︷︷ ︸

=0

(109)

= I(W1; y
n
0 , y

n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn) + I(W1;ω

n
N,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn)

︸ ︷︷ ︸

≤h(ωn
N,N

)−no(log ρ)

(110)

≤ I(W1; y
n
0 , y

n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn) + h(ωnN,N)− no(log ρ) (111)

= I(W1; y
n
0 |ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn)

︸ ︷︷ ︸

≤h(yn
0
)−no(log ρ)

+I(W1; y
n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn) + h(ωnN,N)− no(log ρ) (112)

≤ h(ωnN,N) + h(yn0 )− no(log ρ) + I(W1; y
n
P,N , y

n
N,P , y

n
D,N , y

n
N,D, ȳ

n
N,N |Ωn) (113)

= h(ωnN,N) + h(yn0 )− no(log ρ) + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn) + I(W1; y

n
N,P , y

n
N,D|ynP,N , ynD,N , ȳnN,N ,Ωn) (114)

= h(ωnN,N) + h(yn0 )
︸ ︷︷ ︸

≤nΦ10+no(log ρ)

−no(log ρ) + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

+ I(W1,W2; y
n
N,P , y

n
N,D|ynP,N , ynD,N , ȳnN,N ,Ωn)

︸ ︷︷ ︸

≤h(yn
N,P

,yn
N,D

)−no(log ρ)≤nΦ11+no(log ρ)

−I(W2; y
n
N,P , y

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n) (115)

≤ h(ωnN,N) + nΦ10 + nΦ11 + no(log ρ)

+ I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− I(W2; y

n
N,P , y

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n) (116)

where

yn0 ,
(
ynP,P , y

n
P,D, y

n
D,P , y

n
D,D

)

Φ10 ,
( ∑

(I1,I2):I1 6=N,I2 6=N

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)
log ρ

Φ11 ,
( ∑

(I1,I2)∈{(N,P ),(N,D)}

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)
log ρ

where (107) results from Fano’s inequality, where (108) uses the fact that adding information does not reduce mu-
tual information, where (109) results from the chain rule, where (110) follows from the fact that the knowledge of
{ȳnN,N , ωnN,N ,Ωn} allows for the reconstruction ofynN,N , i.e., follows from the fact thatynN,N ↔ {ȳnN,N , ωnN,N ,Ωn} ↔
W1 forms a Markov chain, where (111) is from the fact thatI(W1;ω

n
N,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn) =

h(ωnN,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn)
︸ ︷︷ ︸

≤h(ωn
N,N

)

− h(ωnN,N |yn0 , ynP,N , ynN,P , ynD,N , ynN,D, ȳnN,N ,Ωn,W1)
︸ ︷︷ ︸

≥h(ωn
N,N

|yn
0
,yn

P,N
,yn

N,P
,yn

D,N
,yn

N,D
,ȳn

N,N
,Ωn,W1,W2)=no(log ρ)

≤ h(ωnN,N) −

no(log ρ) by using the fact that the knowledge of{ȳnN,N ,W1,W2,Ω
n} allows for reconstructingωnN,N up to noise level

(cf. (105), (104)), and where (112) - (116) are derived usingbasic entropy rules.

Similarly for user1̃, we have

nR1 − nǫn

≤ h(ωnN,N) + nΦ10 + nΦ11 + no(log ρ)

+ I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− I(W2; ỹ

n
N,P , ỹ

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n). (117)



Adding (116) and (117), gives

2nR1 − 2nΦ10 − 2nΦ11 − no(log ρ)− 2nǫn

≤ 2h(ωnN,N) + 2I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− I(W2; y

n
N,P , y

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)

− I(W2; ỹ
n
N,P , ỹ

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n) (118)

= 2h(ωnN,N) + 2I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

−h(ynN,P , ynN,D|W1, y
n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)− h(ỹnN,P , ỹ
n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)
︸ ︷︷ ︸

≤−h(yn
N,P

,yn
N,D

,ỹn
N,P

,ỹn
N,D

|W1,ynP,N
,yn

D,N
,ȳn

N,N
,Ωn)

+ h(ynN,P , y
n
N,D|W2,W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)
︸ ︷︷ ︸

=no(log ρ)

+ h(ỹnN,P , ỹ
n
N,D|W2,W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)
︸ ︷︷ ︸

=no(log ρ)

≤ 2h(ωnN,N) + 2I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− h(ynN,P , y

n
N,D, ỹ

n
N,P , ỹ

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)

+ no(log ρ) (119)

= 2h(ωnN,N) + 2I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− I(W2; y

n
N,P , y

n
N,D, ỹ

n
N,P , ỹ

n
N,D|W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)

− h(ynN,P , y
n
N,D, ỹ

n
N,P , ỹ

n
N,D|W2,W1, y

n
P,N , y

n
D,N , ȳ

n
N,N ,Ω

n)
︸ ︷︷ ︸

=no(log ρ)

+no(log ρ) (120)

= 2h(ωnN,N) + 2I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− I(W2; y

n
N,P , ỹ

n
N,P , y

n
N,D, ỹ

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n)

+ I(W2; y
n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n) + no(log ρ) (121)

= 2h(ωnN,N) + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)− I(W2; y

n
N,P , ỹ

n
N,P , y

n
N,D, ỹ

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n)

+ I(W1,W2; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

︸ ︷︷ ︸

≤h(yn
P,N

,yn
D,N

,ȳn
N,N

)−no(log ρ)

+no(log ρ) (122)

≤ h(ωnN,N) + h(ωnN,N) + h(ynP,N , y
n
D,N , ȳ

n
N,N)

︸ ︷︷ ︸

≤nΦ12+no(log ρ)

+I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

− I(W2; y
n
N,P , ỹ

n
N,P , y

n
N,D, ỹ

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n) + no(log ρ) (123)

≤ h(ωnN,N) + nΦ12 + no(log ρ) + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

− I(W2; y
n
N,P , ỹ

n
N,P , y

n
N,D, ỹ

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n) (124)

= h(ωnN,N) + nΦ12 + no(log ρ) + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

− I(W2; y
n
N,P , ỹ

n
N,P , s

n
N,P , y

n
N,D, ỹ

n
N,D, s

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n)

+ I(W2; s
n
N,P , s

n
N,D|ynN,P , ỹnN,P , ynN,D, ỹnN,D, ynP,N , ynD,N , ȳnN,N ,W1,Ω

n)
︸ ︷︷ ︸

≤h(sn
N,P

,sn
N,D

)−no(log ρ)

(125)

≤ h(ωnN,N) + nΦ12 + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn)

− I(W2; y
n
N,P , ỹ

n
N,P , s

n
N,P , y

n
N,D, ỹ

n
N,D, s

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n) + h(snN,P , s
n
N,D) + no(log ρ) (126)

= h(ωnN,N) + nΦ12 + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn) + h(snN,P , s

n
N,D) + no(log ρ)

− I(W2; y
n
N,P , ỹ

n
N,P , s

n
N,P , z

n
N,P , y

n
N,D, ỹ

n
N,D, s

n
N,D, z

n
N,D, y

n
P,N , y

n
D,N , ȳ

n
N,N |W1,Ω

n) (127)

≤ h(ωnN,N) + nΦ12 + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn) + h(snN,P , s

n
N,D) + no(log ρ)

− I(W2; z
n
N,P , z

n
N,D, ȳ

n
N,N |W1,Ω

n) (128)

≤ h(ωnN,N) + nΦ12 + I(W1;W2, y
n
P,N , y

n
D,N , ȳ

n
N,N |Ωn) + h(snN,P , s

n
N,D) + no(log ρ)

− I(W2; z
n
N,P , z

n
N,D, ȳ

n
N,N |W1,Ω

n) (129)

= h(ωnN,N) + nΦ12 + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |W2,Ω

n) + h(snN,P , s
n
N,D)

︸ ︷︷ ︸

≤nΦ13+no(log ρ)

+no(log ρ)

− I(W2; z
n
N,P , z

n
N,D, ȳ

n
N,N |W1,Ω

n) (130)

≤ h(ωnN,N)
︸ ︷︷ ︸

≤nΦ14+no(log ρ)

+nΦ12 + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |W2,Ω

n) + nΦ13 + no(log ρ)

− I(W2; z
n
N,P , z

n
N,D, ȳ

n
N,N |W1,Ω

n) (131)

≤ nΦ14 + nΦ12 + I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |W2,Ω

n) + nΦ13 + no(log ρ)

− I(W2; z
n
N,P , z

n
N,D, ȳ

n
N,N |W1,Ω

n) (132)



where

Φ12 ,
( ∑

(I1,I2):I2=N

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)
log ρ

Φ13 ,
( ∑

(I1,I2)∈{(N,P ),(N,D)}

(1 − α)λα,1I1,I2

)
log ρ

Φ14 ,(1− α)λ1,αN,N log ρ

where snN,P and znN,D (cf. (125)) are defined in (87). In the above, (127) is from thefact that the knowledge of
{ynN,P , ỹnN,P , snN,P , ynN,D, ỹnN,D, snN,D,Ωn} implies the knowledge ofznN,P and znN,D (cf. (87)). Most of the above steps are
based on basic entropy rules.

Similarly, considering user 2 and user2̃, we have

2nR2 − 2nΦ20 − 2nΦ21 − no(log ρ)− 2nǫn

≤ nΦ24 + nΦ22 + I(W2; z
n
N,P , z

n
N,D, ȳ

n
N,N |W1,Ω

n) + nΦ23 + no(log ρ)− I(W1; y
n
P,N , y

n
D,N , ȳ

n
N,N |W2,Ω

n) (133)

where

Φ20 ,
( ∑

(I1,I2):I1 6=N,I2 6=N

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)
log ρ

Φ21 ,
( ∑

(I1,I2)∈{(P,N),(D,N)}

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)
log ρ

Φ22 ,
( ∑

(I1,I2):I1=N

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)
log ρ

Φ23 ,
( ∑

(I1,I2)∈{(P,N),(D,N)}

(1− α)λ1,αI1,I2
)
log ρ

Φ24 ,(1− α)λα,1N,N log ρ.

Finally, combining (132) and (133), gives

d1 + d2

≤ 1

2 log ρ

[

2Φ10 + 2Φ11 +Φ12 +Φ13 +Φ14 + 2Φ20 + 2Φ21 +Φ22 +Φ23 +Φ24

]

=
1

2

[

2
( ∑

(I1,I2):I1 6=N,I2 6=N

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)

+ 2
( ∑

(I1,I2)∈{(N,P ),(N,D)}

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

)

+
∑

(I1,I2):I2=N

∑

∀(A1,A2)

A1λ
A1,A2

I1,I2

+
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(I1,I2)∈{(N,P ),(N,D)}

(1− α)λα,1I1,I2
+ (1− α)λ1,αN,N

+ 2
( ∑

(I1,I2):I1 6=N,I2 6=N

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)

+ 2
( ∑

(I1,I2)∈{(P,N),(D,N)}

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

)

+
∑

(I1,I2):I1=N

∑

∀(A1,A2)

A2λ
A1,A2

I1,I2

+
∑

(I1,I2)∈{(P,N),(D,N)}

(1− α)λ1,αI1,I2 + (1− α)λα,1N,N

]

=
∑

(I1,I2):I1 6=N,I2 6=N

(
1 + α

)(
λ1,αI1,I2 + λα,1I1,I2

)

+
∑

(I1,I2)∈{(N,P ),(P,N),(N,D),(D,N)}

2 + α

2

(
λ1,αI1,I2 + λα,1I1,I2

)
+
(
λ1,αN,N + λα,1N,N

)



+
∑

(I1,I2):I1 6=N,I2 6=N

(
2λ1,1I1,I2 + 2αλα,αI1,I2

)

+
∑

(I1,I2)∈{(N,P ),(P,N),(N,D),(D,N)}

(3

2
λ1,1I1,I2 +

3α

2
λα,αI1,I2

)
+ (λ1,1N,N + αλα,αN,N )

=
(
1 + α

)(
λ1,αP,P + λα,1P,P

)
+
(
1 + α

)(
λ1,αP↔D + λα,1P↔D

)
+
(
1 + α

)(
λ1,αD,D + λα,1D,D

)

+
2 + α

2

(
λ1,αP↔N + λα,1P↔N

)
+

2 + α

2

(
λ1,αD↔N + λα,1D↔N

)
+
(
λ1,αN,N + λα,1N,N

)

+
(
2λ1,1P,P + 2αλα,αP,P

)
+
(
2λ1,1P↔D + 2αλα,αP↔D

)
+
(
2λ1,1D,D + 2αλα,αD,D

)

+
(3

2
λ1,1P↔N +

3α

2
λα,αP↔N

)
+
(3

2
λ1,1D↔N +

3α

2
λα,αD↔N

)
+
(
λ1,1N,N + αλα,αN,N

)
(134)

which completes the proof.
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