
Improving Schema Matching with Linked Data

Ahmad Assaf, Eldad Louw, Aline Senart, Corentin Follenfat and David Trastour
SAP Research, SAP Labs France SAS

805 avenue du Dr. Maurice Donat, BP 1216
06254 Mougins Cedex, France

firstname.lastname@sap.com
Raphaël Troncy

EURECOM
06904 Sophia Antipolis Cedex, France

raphael.troncy@eurecom.fr

ABSTRACT
With today’s public data sets containing billions of data
items, more and more companies are looking to integrate
external data with their traditional enterprise data to im-
prove business intelligence analysis. These distributed data
sources however exhibit heterogeneous data formats and ter-
minologies and may contain noisy data. In this paper, we
present a novel framework that enables business users to
semi-automatically perform data integration on potentially
noisy tabular data. This framework offers an extension to
Google Refine with novel schema matching algorithms lever-
aging Freebase rich types. First experiments show that using
Linked Data to map cell values with instances and column
headers with types improves significantly the quality of the
matching results and therefore should lead to more informed
decisions.

1. INTRODUCTION
Companies have traditionally performed business analy-

sis based on transactional data stored in legacy relational
databases. The enterprise data available for decision mak-
ers was typically relationship management or enterprise re-
source planning data [10]. However social media feeds, we-
blogs, sensor data, or data published by governments or in-
ternational organizations are nowadays becoming increas-
ingly available [4].

The quality and amount of structured knowledge available
make it now feasible for companies to mine this huge amount
of public data and integrate it in their next-generation enter-
prise information management systems. Analyzing this new
type of data within the context of existing enterprise data
should bring them new or more accurate business insights
and allow better recognition of sales and market opportuni-
ties [17].

These new distributed sources, however, raise tremendous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

challenges. They have inherently different file formats, ac-
cess protocols or query languages. They possess their own
data model with different ways of representing and storing
the data. Data across these sources may be noisy (e.g. du-
plicate or inconsistent), uncertain or be semantically similar
yet different [11]. Integration and provision of a unified view
for these heterogeneous and complex data structures there-
fore require powerful tools to map and organize the data.

In this paper, we present a framework that enables busi-
ness users to semi-automatically combine potentially noisy
data residing in heterogeneous silos. Semantically related
data is identified and appropriate mappings are suggested
to users. On user acceptance, data is aggregated and can
be visualized directly or exported to Business Intelligence
reporting tools. The framework is composed of a set of ex-
tensions to Google Refine server and a plug-in to its user
interface1. Google Refine was selected for its extensibility
as well as good cleansing and transformation capabilities
[2].

We first map cell values with instances and column head-
ers with types from popular data sets from the Linked Open
Data Cloud. To perform the matching, we use the Auto
Mapping Core (also called AMC [16]) that combines the re-
sults of various similarity algorithms. The novelty of our
approach resides in our exploitation of Linked Data to im-
prove the schema matching process. We developed specific
algorithms on rich types from vector algebra and statistics.
The AMC generates a list of high-quality mappings from
these algorithms allowing better data integration.

First experiments show that Linked Data increases sig-
nificantly the number of mappings suggested to the user.
Schemas can also be discovered if column headers are not de-
fined and can be improved when they are not named or typed
correctly. Finally, data reconciliation can be performed re-
gardless of data source languages or ambiguity. All these
enhancements allow business users to get more valuable and
higher-quality data and consequently to take more informed
decisions.

The rest of the paper is organized as follows. Section 2
presents some related work. Section 3 describes the frame-
work that we have designed for business users to combine
data from heterogeneous sources. Section 4 validates our
approach and shows the value of the framework through
experiments. Finally, Section 5 concludes the paper and

1http://code.google.com/p/google-refine/

discusses future work.

2. RELATED WORK
While schema matching has always been an active re-

search area in data integration, new challenges are faced
today by the increasing size, number and complexity of data
sources and their distribution over the network. Data sets
are not always correctly typed or labeled and that hinders
the matching process.

In the past, some work has tried to improve existing data
schemas [14] but literature mainly covers automatic or semi-
automatic labeling of anonymous data sets through Web
extraction. Examples include [6] that automatically labels
news articles with a tree structure analysis or [21] that de-
fines heuristics based on distance and alignment of a data
value and its label. These approaches are however restrict-
ing label candidates to Web content from which the data
was extracted. [5] goes a step further by launching specula-
tive queries to standard Web search engines to enlarge the
set of potential candidate labels. More recently, [13] applies
machine learning techniques to respectively annotate table
rows as entities, columns as their types and pairs of columns
as relationships, referring to the YAGO ontology. The work
presented aims however at leveraging such annotations to
assist semantic search queries construction and not at im-
proving schema matching.

With the emergence of the Semantic Web, new work in
the area has tried to exploit Linked Data repositories. The
authors of [20] present techniques to automatically infer a
semantic model on tabular data by getting top candidates
from Wikitology [8] and classifying them with the Google
page ranking algorithm. Since the authors’ goal is to export
the resulting table data as Linked Data and not to improve
schema matching, some columns can be labeled incorrectly,
and acronyms and languages are not well handled [20]. In
the Helix project [9], a tagging mechanism is used to add se-
mantic information on tabular data. A sample of instances
values for each column is taken and a set of tags with scores
are gathered from online sources such as Freebase 2. Tags
are then correlated to infer annotations for the column. The
mechanism is quite similar to ours but the resulting tags for
the column are independent of the existing column name and
sampling might not always provide a representative popula-
tion of the instance values.

3. PROPOSITION
Google Refine (formerly Freebase Gridworks) is a tool de-

signed to quickly and efficiently process, clean and even-
tually enrich large amounts of data with existing knowl-
edge bases such as Freebase. The tool has however some
limitations: it was initially designed for data cleansing on
only one data set at a time, with no possibility to compose
columns from different data sets. Moreover, Google Refine
has some strict assumptions over the input of spreadsheets
which makes it difficult to identify primitive and complex
data types. The AMC is a novel framework that supports
the construction and execution of new matching components
or algorithms. AMC contains several matching components
that can be plugged and used, like string matchers (Leven-
shtein, JaroWinkler . . . etc.), data types matchers and path

2http://www.freebase.com/

matchers. It also provides a set of combination and selec-
tion algorithms to produce optimized results (weighted av-
erage, average, sigmoid . . . etc.). In this section, we describe
in detail our framework allowing data mashup from several
sources. We first present our framework architecture, then
the activity flow and finally our approach to schema match-
ing.

3.1 Framework Architecture
Google Refine makes use of a modular web application

framework similar to OSGi called Butterfly 3. The server-
side written in Java maintains states of the data (undo/redo
history, long-running processes, etc.) while the client-side
implemented in Javascript maintains states of the user in-
terface (facets and their selections, view pagination, etc.).
Communication between the client and server is done through
REST web services. As depicted in Figure 1, our frame-

Figure 1: Framework Architecture

work leverages Google Refine and defines three new But-
terfly modules to extend the server’s functionality (namely
Match, Merge and Aggregate modules) and one JavaScript
extension to capture user interaction with these new data
matching capabilities.

3.2 Activity Flow
This section presents the sequence of activities and inter-

dependencies between these activities when using our frame-
work. Figure 2 gives an outline of these activities. The

Figure 2: Framework Architecture

3http://code.google.com/p/simile-butterfly/

data sets to match can be contained in files (e.g. csv, Ex-
cel spreadsheets, etc.) or defined in Google Refine projects
(step 1). The inputs for the match module are the source
and target files and/or projects that contain the data sets.
These projects are imported into the internal data structure
(called schema) of the AMC [15] (step 2). The AMC then
uses a set of built-in algorithms to calculate similarities be-
tween the source and target schemas on an element basis,
i.e. column names in the case of spreadsheets or relational
databases. The output is a set of similarities, each con-
taining a triple consisting of source schema element, target
element, and similarity between the two.

These results are presented to the user in tabular form
(step 3) such that s/he can check, correct, and potentially
complete the mappings (step 4). Once the user has com-

Figure 3: Framework Architecture

pleted the matching of columns, the merge information is
sent back to Google Refine, which calls the merge module.
This module creates a new project, which contains a union
of the two projects where the matched columns of the target
project are appended to the corresponding source columns
(step 5). The user can then select the columns that s/he
wants to merge and visualize by dragging and dropping the
required columns onto the fields that represent the x and
y axes (step 6). Once the selection has been performed,
the aggregation module merges the filtered columns and the
result can then be visualized (step 7). As aggregation oper-
ations can quickly become complex, our default aggregation
module can be replaced by more advanced analytics on tab-
ular data. The integration of such a tool is part of future
work.

3.3 Schema Matching
Schema matching is typically used in business to busi-

ness integration, metamodel matching, as well as Extract,

Figure 4: Data Selection

Figure 5: Data Selection

Transform, Load (ETL) processes. For non-IT specialists
the typical way of comparing financial data from two dif-
ferent years or quarters, for example, would be to copy and
paste the data from one Excel spreadsheet into another one,

thus creating reduncancies and potentially introducing copy-
and-paste errors. By using schema matching techniques it
is possible to support this process semi-automatically, i.e.
to determine which columns are similar and propose them
to the user for integration. This integration can then be
done with appropriate business intelligence tools to provide
visualisations.

One of the problems in performing the integration is the
quality of data. The columns may contain data that is noisy
or incorrect. There may also be no column headers to pro-
vide suitable information for matching. A number of ap-
proaches exploit the similarities of headers or similarities of
types of column data. We propose a new approach that
exploits semantic rich typing provided by popular datasets
from the Linked Data cloud.

3.4 Data Reconciliation
Reconciliation enables entity resolution, i.e. matching

cells with corresponding typed entities in case of tabular
data. Google Refine already supports reconciliation with
Freebase but requires confirmation from the user. For medium
to large data sets, this can be very time-consuming. To rec-
oncile data, we therefore first identify the columns that are
candidates for reconciliation by skipping the columns con-
taining numerical values or dates. We then use the Freebase
search API to query for each cell of the source and target
columns the list of typed entities candidates. Results are
cached in order to be retrieved by our similarity algorithms.

3.5 Matching Unnamed and Untyped Columns
The AMC has the ability to combine the results of dif-

ferent matching algorithms. Its default built-in matching
algorithms work on column headers and produce an overall
similarity score between the compared schema elements. It
has been proven that combining different algorithms greatly
increases the quality of matching results [16][18]. However,
when headers are missing or ambiguous, the AMC can only
exploit domain intersection and inclusion algorithms based
on column data. We have therefore implemented three new
similarity algorithms that leverage the rich types retrieved
from Linked Data in order to enhance the matching results
of unnamed or untyped columns. They are presented below.

3.5.1 Cosine Similarity
The first algorithm that we implemented is based on vec-

tor algebra. Let v be the vector of ranked candidate types
returned by Freebase for each cell value of a column. Then:

v :=

K∑
i=1

ai ∗
−→
ti

where ai is the score of the entry and
−→
ti is the type returned

by Freebase. The vector notation is chosen to indicate that
each distinct answer determines one dimension in the space
of results.

Each cell value has now a weighted result set that can be
used for aggregation to produce a result vector for the whole
column. The column result V is then given by:

V ?

n∑
i=1

vi

We compare the result vector of candidate types from the
source column with the result vector of candidate types from

the target column. Let W be the result vector for the target
column, then the similarity s between the columns pair can
be calculated using the absolute value of the cosine similarity
function:

s?
|(V ∗W)|
‖V ‖ ∗ ‖W‖

3.5.2 Pearson Product-Moment Correlation Coeffi-
cient (PPMCC)

The second algorithm that we implemented is PPMCC, a
statistical measure of the linear independence between two
variables (x, y) [12]. In our method, x is an array that repre-
sents the total scores for the source column rich types, y is an
array that represents the mapped values between the source
and the target columns. The values present in x but not in y
are represented by zeros. We have: SourceColumn [{R1, Csr1} , {R2, Csr2} , {R3, Csr3} . . . {Rn, Csrn}]TargetColumn [{R1, Ctr1} , {R2, Ctr2} , {R3, Ctr3} . . . {Rn, Ctrn}]

Where R1, R2,. . . , Rn are different rich type values retrieved
from Freebase, Csr1, Csr2, . . . , Csrn are the sum of scores
for each corresponding r occurrence in the source column,
and Ctr1, Ctr2, . . . , Ctrn are the sum of scores for each
corresponding r occurrence in the target column.

The input for PPMC consists of two arrays that represent
the values from the source and target columns, where the
source column is the column with the largest set of rich
types found. For example:

X = [Csr1, Csr2, Csr4, . . . , Csrn]

Y = [0, Ctr2, Ctr4, . . . , Ctrn]

Then the sample correlation coefficient (r) is calculated us-
ing:

r =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2

Based on a sample paired data(xi, yi), the sample PPMCC
is:

r =
1

n− 1

n∑
i=1

(
xi − x

sx

)(
yi − y

sy

)
Where

(
xi− x
sx

)
, x and sx are the standard score, sample

mean and sample standard deviation, respectively.

3.5.3 Spearman’s Rank Correlation Coefficient
The last algorithm that we implemented to match un-

named and untyped columns is Spearman’s rank correlation
coefficient [3]. It applies a rank transformation on the input
data and computes PPMCC afterwards on the ranked data.
In our experiments we used Natural Ranking with default
strategies for handling ties and NaN values. The ranking
algorithm is however configurable and can be enhanced by
using more sophisticated measures.

3.6 Column Labeling
We showed in the previous section how to match unnamed

and untyped columns. Column labeling is however beneficial
as the results of our previous algorithms can be combined
with traditional header matching techniques to improve the
quality of matching.

Rich types retrieved from Freebase are independent from
each other. We need to find a method that will determine
normalized score for each type in the set by balancing the

proportion of high scores with the lower ones. We used Wil-
son score interval for a Bernoulli parameter that is presented
in the following equation:

w =

(
p̂ +

z2α/2
2n

+
− zα/2

√[
p̂ (1− p̂) + z2α/2/4n

]
/n

)
/
(
1 + z2α/2/n

)
Here p̂ is the average score for each rich type, n is the total
number of scores and zα/2 is the score level; in our case it is
1.96 to reflect a score level of 0.95.

3.7 Handling Non-String Values
So far, we have covered several methods to identify the

similarity between “String” values, but how about other nu-
meral values such as dates, money, distance,etc.? For this
purpose, we have implemented some basic type identifier
that can recognize dates, money, numerical values, numer-
als used as identifiers. This will help us in better match
corresponding entries. Adjusting AMC’s combination algo-
rithms can be of great importance at this stage. For ex-
ample, assigning weights to different matchers and tweaking
the configuration can yield more accurate results.

4. EXPERIMENTS
We present in this section results from experiments we

conducted using the different methods described above. To
appreciate the value of our approach, we have used a real
life scenario that exposes common problems faced by the
management in SAP. The data we have used come from two
different SAP systems: the Event tracker and the Travel
Expense Manager.

The Event Tracker provides an overview of events (Confer-
ences, Internal events, etc.) that SAP Research employees
contribute to or host. The entries in this system contain as
much information as necessary to give an overview of the
activity like the activity type and title, travel destination,
travel costs divided into several sub categories (conference
fees, accommodation, transportation and others), and dura-
tion related information (departure, return dates). Entries
in the Event Tracker are generally entered in batches as em-
ployees fill in their planned events that they wish to attend
or contribute to at the beginning of each year. Afterwards,
managers can either accept or reject these planned events
according to their allocated budget.

On the other hand, the Travel Expense Manager contains
the actual expenses data for the successfully accepted events.
This system is used by employees to enter their actual trip
details in order to claim their expenses. It contains more de-
tailed information and aggregated views of the events, such
as the total cost, duration calculated in days, currency ex-
change rates and lots of internal system tags and identifiers.

Matching reports from these two systems is of great bene-
fit to managers to organize and monitor their allocated bud-
get. They mainly want to:

1. Find the number of the actual (accepted) travels com-
pared with the total number of entered events.

2. Calculate the deviation between the estimated and ac-
tual cost of each event.

However, matching from these two sources can face several
difficulties that can be classified in two categories: column
headers and cells. Global labels (or column headers as we

are dealing with spreadsheet files) can have the following
problems:

1. Missing labels: importing files into Google Refine with
empty headers will result in assigning that column
a dummy name by concatenating the word “column”
with a number starting from 0.

2. Dummy labels or semantically unrelated names: this
is a common problem especially from the data com-
ing from the Travel Expense Manager. This can be
applied to columns that are labeled according to the
corresponding database table (i.e. lbl dst to denote
destination label). Moreover, column labels do not of-
ten convey the semantic type of the underlying data.

The second category of difficulties is at cell (single entry)
level:

1. Detecting different date formats: we have found out
that dates field coming from the two systems have dif-
ferent formats. Moreover, the built-in type detection
in Google Refine converts detected date into another
third format.

2. Entries from different people can be made in different
languages.

3. Entries in the two systems can be incomplete, an entry
can be shortened automatically by the system. For
example, selecting a country in the Travel Expense
Manager will result in filling out that country code in
the exported report (i.e. France = FR).

4. Inaccurate entries: this is one of the most common
problems. Users enter sometimes several values in
some fields that correspond to the same entity. For
example, in the destination column, users can enter
the country, the airport at the destination, the city or
even the exact location of the event (i.e. office loca-
tion).

The data used in our evaluation consists of around 60
columns and more than 1000 rows. Our source data set will
be the data coming from Event Tracker, and our target data
set will be the data from the Travel Expense Manager.

By manually examining the two data sets, we have found
out that most of the column headers in the source table exist
and adequately present the data. However, we have noticed
few missing labels in the target table and few ambiguous
column headers. We have detected several entries in several
languages: the main language is English but we have also
identified French, German. Destination field had entries in
several formats: we have noticed airport names, airports by
their IATA code, country codes, and cities.

Running AMC with its default matchers returns the match-
ing results shown in Table 1.

Source
Column

Target Col-
umn

Similarity
Score

Reason for
Trip

Reason for
Trip

1

Begins On Trip Begins
On

0.8333334

Ends On Trip Ends On 0.8
Total Total Cost 0.7333335
Trip Trip Destina-

tion
0.72727275

Amount Receipt
Amount

0.7142875

Pd by Comp Paid by Com-
pany

0.6904762

Period Period Num-
ber

0.6666667

Pers.No. Sequential no. 0.5555556
M/Km Total

Miles/Km
0.55

Curr. Currency 0.5
Crcy Currency 0.5

Table 1. Similarity Scores Using the AMC Default
Matching Algorithms

The AMC has perfectly matched the two columns labeled
“Reason for Trip”using name and data type similarity calcu-
lations (the type here was identified as a String). Moreover,
it has computed several similarities for columns based on
the pre-implemented String matchers that were applied on
the column headers and the primitive data types of the cells
(Integer, Double, Float, etc.). However, there is no align-
ment found between the other columns since their headers
are not related to each other, although the actual cell values
can be similar. AMC’s default configuration has a threshold
of 50%, so any similarity score below that will not be shown.

The Cosine Similarity algorithm combined with the AMC
default matchers produces the results shown in Table 2.

Source
Column

Target Col-
umn

Similarity
Score

Reason for
Trip

Reason for
Trip

1

tr dst 0.9496432
Begins On Trip Begins

On
0.9166667

Ends On Trip Ends On 0.9
Amount Receipt

Amount
0.8571428

Curr. Currency 0.75
Crcy Currency 0.75
Total Total Cost 0.7333335
Trip Trip Destina-

tion
0.7321428

Pd by Comp Paid by Com-
pany

0.6904762

Period Period Num-
ber

0.6666667

Trip Trip Number 0.6666667
Pers.No. Sequential no. 0.5555556
M/Km Total

Miles/Km
0.55

Table 2. Similarity Scores Using the AMC Default
Matching Algorithms + Cosine Similarity Method

We notice that we have an increased number of matches

(+2), and that the similarity score for several matches has
improved. For example, the “tr dst” column is now aligned
to the blank header. This shows that our approach allows
performing schema matching on columns with no headers.

For simplicity reason we have used the default combina-
tion algorithm for AMC which is an average of the applied
algorithms (AMC’s native and Cosine). We should also note
that we have configured AMC’s matchers to identify a“SIM-
ILARTY UNKOWN” value for columns that could not be
matched successfully, which will allow other matchers to
perform better. For example, our semantic matchers will
skip columns that do not convey semantic meaning thus not
affecting the score of other matchers. Moreover, the rela-
tively high similarity score of “tr dst” column is explained
by the fact that the native AMC matching algorithm has
skipped that column as it does not have a valid header, and
the results are solely those of the Cosine matcher. Like-
wise, the Cosine matcher skips checking the “Cost” columns
as they contain numeric values, and the implemented nu-
merical matchers with the AMC’s native matcher results
are taken into account. Our numerical matchers’ implemen-
tation gives a perfect similarity score for columns that are
identified as date or money or IDs. However, this can be im-
proved in the future as we can have different date hierarchy
and numbers as IDs can present different entities. Combin-
ing this approach with the semantic and string matchers was
found to yield good matching results.

The (PPMCC) Similarity algorithm combined with the
AMC default matchers produces the results shown in Table
3.

Source
Column

Target Col-
umn

Similarity
Score

Reason for
Trip

Reason for
Trip

1

tr dst 0.97351624
Begins On Trip Begins

On
0.833334

Ends On Trip Ends On 0.8
Total Total Cost 0.7333335
Trip Trip Destina-

tion
0.7321428

Amount Receipt
Amount

0.7142857

Curr. Currency 0.7041873
Crcy Currency 0.6931407
Pd by Comp Paid by Com-

pany
0.6904762

Period Period Num-
ber

0.6666667

Trip Trip Number 0.6666667
Pers.No. Sequential no. 0.5555556
M/Km Total

Miles/Km
0.55

Table 3. Similarity Scores Using the AMC De-
fault Matching Algorithms+ the PPMCC Similarity
Method

372213305The Spearman Similarity algorithm combined
with the AMC default matchers produces the results shown
in Table 4.372213305ttroncy372213305-2028243878Here, there
are 10 matches, we lost one ... which one? Why?

Source
Column

Target Col-
umn

Similarity
Score

Reason for
Trip

Reason for
Trip

1

Begins On Trip Begins
On

0.8333334

Ends On Trip Ends On 0.8
Total Total Cost 0.7333335
Amount Receipt

Amount
0.7142857

Pd by Comp Paid by Com-
pany

0.6904762

Currency2 Curr. 0.6689202
Trip Trip Number 0.6666667
Pers.No. Sequential no. 0.5555556
M/Km Total

Miles/Km
0.55

Table 4. Similarity Scores Using the AMC De-
fault Matching Algorithms + Spearman Similarity
Method

We notice that by plugging the Spearman method, the
number of matches and similarity results have decreased
(-4). After Several experiments we have found that this
method does not work well with noisy data sets. For in-
stance, the similarity results returned by Cosine, Pearson’s
and Spearman’s matchers for the {tr dst, empty header}
pair is much higher: 95%, 97% and 43% respectively.

To properly measure the impact of each algorithm, we
have tested the three algorithms (Cosine, PPMCC and Spear-
man) alone by de-activating the AMC’s default matchers on
the above data set. The result is shown in Figure 3. We have
noticed that generally, the Cosine and PPMCC matchers
perform well, resulting in more matching and better simi-
larity score. However, the Spearman method was successful
in finding more matches but with a lower similarity score
than the others.

To better evaluate the three algorithms, we have tested
them on 372213307four different data sets 372213307ttroncy372213307-
2028243878What are these datasets?extracted from the Travel
Expense Manager and Event Tracker systems. We ensured
that the different experiments will cover all the cases needed
to properly evaluate the matcher dealing with all the prob-
lems mentioned earlier. The results of our findings are shown
in Figure 4.

We have found that generally the Cosine method is the
best performing algorithm compared to the other two es-
pecially when dealing with noisy data sets. This was no-
ticed particularly in our fourth experiment as the Cosine
algorithm performed around 20% better than the other two
methods. After investigating the dataset, we have found
that several columns contained noisy and unrelated data.
For example, in a “City” column, we had values such as “ref-
erence book” or “NOT KNOWN”.

To gain better similarity results we decided to combine
several matching algorithms together. By doing so, we would
benefit from the power of the AMC’s string matchers that
will work on column headers and our numeral and semantic
matchers.

The Cosine and PPMCC Similarity algorithms combined
with the AMC default matchers produces the results shown
in Table 5.

Source
Column

Target Col-
umn

Similarity
Score

Reason for
Trip

Reason for
Trip

1

tr dst 0.96351624
Curr. Currency 0.79221311
Crcy Currency 0.78173274
Begins On Trip Begins

On
0.77777785

Ends On Trip Ends On 0.76666665
Amount Receipt

Amount
0.7380952

Total Total Cost 0.7333335
Trip Coun-
try/Group

Ctr2 0.7194848

Pd by Comp Paid by Com-
pany

0.6904762

Period Period Num-
ber

0.6666667

Trip Trip Number 0.6666667
Pers.No. Sequential no. 0.5555556
M/Km Total

Miles/Km
0.55

Table 5. Similarity Scores Using the Combination
of Cosine, PPMCC and AMC’s defaults

The combination of the above mentioned algorithms have
enhanced generally the similarity scores for the group. More-
over, we notice that the column “Trip Country/Group” was
matched with “Ctr2”. This match was not computed sin-
gularly by any of the previous algorithms. However, we
notice that the match {Trip, Trip Destination} is now miss-
ing, probably as the similarity score is below the defined
threshold.

Now, we will try and group all the mentioned algorithms.
The combination of all Similarity algorithms with the AMC
default matchers produces the results shown in Table 6.

Source
Column

Target Col-
umn

Similarity
Score

Reason for
Trip

Reason for
Trip

1

tr dst 0.8779132
Curr. Currency 0.80033726
Crcy Currency 0.79380125
Begins On Trip Begins

On
0.7708334

Trip Coun-
try/Group

Ctr2 0.767311

Ends On Trip Ends On 0.7625
Amount Receipt

Amount
0.7410714

Total Total Cost 0.7333335
Trip Trip Destina-

tion
0.7321428

Pd by Comp Paid by Com-
pany

0.6904762

Period Period Num-
ber

0.6666667

Trip Trip Number 0.6666667
Pers.No. Sequential no. 0.5555556
M/Km Total

Miles/Km
0.55

We notice that now we have an increased number of matches

(15 compared to 14 in the previous trials). The column
{Trip, Trip Destination} is matched again and the newly
previously matched column {Trip Country/Group, Ctr2}
has a higher similarity score. We have found that combining
matching algorithms resulted in higher number of matches.
Several tuning methods can be applied in order to enhance
the similarity score as well. Trying other combination al-
gorithms instead of the näı£¡ve average will be an essential
part of our future work.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a framework enabling mashup

of potentially noisy enterprise and external data. The im-
plementation is based on Google Refine and uses Freebase
to annotate data with rich types. As a result, the match-
ing process of heterogeneous data sources is improved. Our
preliminary evaluation shows that for datasets where map-
pings were relevant yet not proposed, our framework pro-
vides higher quality matching results. Additionally, the num-
ber of matches discovered is increased when Linked Data
is used in most datasets. We plan in future work to eval-
uate the framework on larger datasets using rigorous sta-
tistical analysis of [7]. We also consider integrating addi-
tional linked open data sources of semantic types such as
DBpedia [1] or YAGO [19] and evaluate our matching results
against instance-based ontology alignment benchmarks such
as OAEI4 or ISLab 5. Another future work will be to gen-
eralize our approach on data schemas to data classification.
The same way the AMC helps identifying the best matches
for two datasets, we plan to use it for identifying the best
statistical classifiers for a sole dataset, based on normalized
scores.

6. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and

Z. Ives. Dbpedia: A nucleus for a web of open data. In
In 6th IntâĂŹl Semantic Web Conference, Busan,
Korea, pages 11–15. Springer, 2007.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5:1âĂŞ22, 2009.

[3] S. Boslaugh and P. A. Watters. Statistics in a nutshell
- a desktop quick reference. O’Reilly, 2008.

[4] D. Boyd and K. Crawford. Six Provocations for Big
Data. Social Science Research Network Working Paper
Series, 2011.

[5] A. S. da Silva, D. Barbosa, J. M. B. Cavalcanti, and
M. A. S. Sevalho. Labeling data extracted from the
web. In OTM Conferences (1), pages 1099–1116, 2007.

[6] D. de Castro Reis, P. B. Golgher, A. S. da Silva, and
A. H. F. Laender. Automatic web news extraction
using tree edit distance. In S. I. Feldman, M. Uretsky,
M. Najork, and C. E. Wills, editors, Proceedings of the
Thirteenth International World Wide Web Conference,
pages 502–601, New York, NY, 2004. ACM Press.

[7] T. Fawcett. An introduction to roc analysis. Pattern
Recogn. Lett., 27(8):861–874, 2006.

[8] T. Finin, Z. Syed, J. Mayfield, P. McNamee, and
C. D. Piatko. Using wikitology for cross-document

4http://oaei.ontologymatching.org/2011/instance/index.html
5http://islab.dico.unimi.it/iimb/

entity coreference resolution. In AAAI Spring
Symposium: Learning by Reading and Learning to
Read, pages 29–35. AAAI, 2009.

[9] O. Hassanzadeh, S. Duan, A. Fokoue,
A. Kementsietsidis, K. Srinivas, and M. J. Ward.
Helix: online enterprise data analytics. In
S. Srinivasan, K. Ramamritham, A. Kumar, M. P.
Ravindra, E. Bertino, and R. Kumar, editors, WWW
(Companion Volume), pages 225–228. ACM, 2011.

[10] M. J. Hernandez. Database Design for Mere Mortals:
A Hands-On Guide to Relational Database Design
(3rd Edition). Addison-Wesley Professional, 3rd
edition, 2013.

[11] G. S. S. S. N. Kavitha, C.; Sadasivam. Ontology based
semantic integration of heterogeneous databases.
European Journal of Scientific Research, Vol. 64(Issue
1):p115.

[12] C. J. Kowalski. On the Effects of Non-Normality on
the Distribution of the Sample Product-Moment
Correlation Coefficient. Journal of the Royal
Statistical Society. Series C (Applied Statistics),
21(1):1–12, 1972.

[13] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships. Proc. VLDB Endow.,
3(1-2):1338–1347, 2010.

[14] R. J. Miller and P. Andritsos. Schema discovery. IEEE
Data Eng. Bull., 26(3):40–45, 2003.

[15] E. Peukert, J. Eberius, and E. Rahm. Amc - a
framework for modelling and comparing matching
systems as matching processes. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on,
pages 1304–1307, 2011.

[16] E. Peukert, J. Eberius, and E. Rahm. A
self-configuring schema matching system. In
A. Kementsietsidis and M. A. V. Salles, editors,
ICDE, pages 306–317. IEEE Computer Society, 2012.

[17] R. S. M. S. H. Steve LaValle, Eric Lesser and
N. Kruschwitz. Big data, analytics and the path from
insights to value. MIT Sloan Management Review,
2011.

[18] U. Straccia and R. Troncy. omap: Combining
classifiers for aligning automatically owl ontologies. In
A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold, J.-Y.
Chung, and Q. Z. Sheng, editors, WISE, volume 3806
of Lecture Notes in Computer Science, pages 133–147.
Springer, 2005.

[19] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW
’07, pages 697–706, New York, NY, USA, 2007. ACM.

[20] Z. Syed, T. Finin, V. Mulwad, and A. Joshi.
Exploiting a Web of Semantic Data for Interpreting
Tables. In Proceedings of the Second Web Science
Conference, 2010.

[21] J. Wang and F. H. Lochovsky. Data Extraction and
Label Assignment for Web Databases. The World
Wide Web Conference, pages 187–196, 2003.

