
Static Code Analysis for Software Security
Verification: Problems and Approaches
Zeineb Zhioua

SAP Labs France
zeineb.zhioua@sap.com

Stuart Short
SAP Labs France

stuart.short@sap.com

Yves Roudier
EURECOM

yves.roudier@eurecom.fr

Abstract—Developing and deploying secure software is a
difficult task, one that is even harder when the developer
has to be conscious of adhering to specific company security
requirements. In order to facilitate this, different approaches
have been elaborated over the years to varying degrees of success.
To better understand the underlying issues, this paper describes
and evaluates a number of static code analysis techniques
and tools based on an example that illustrates prevalent
software security challenges. The latter can be addressed
by considering an approach that allows for the detection
of security properties and their transformation into security
policies that can be validated against security requirements. This
would help the developer throughout the software development
lifecycle and to insure the compliance with security specifications.

Index Terms—static analysis, code analysis tools, security
properties, program modeling

I. INTRODUCTION

Flaws can be introduced into software throughout its de-
velopment lifecyle, that result from design or development
errors. Undetected flaws can turn into security vulnerabilities
at run-time, and can be exploited by intruders to introduce
serious damages to the software critical resources. Undetected
flaws ultimately entail maintenance costs, in addition to losses
incurred by potential attacks. The use of security testing
techniques is now well established to find out such flaws.

Static code analysis tools to avoid such issues and to help
produce safe and secure software are slowly catching up yet
still fail to capture all the requirements expected in terms of
secure software engineering. The derivation and validation of
security properties in software indeed present a challenging
problem that different researchers have tried to tackle based
on a variety of security analysis tools and models. These tools
make use of different techniques, such as lexical analysis,
syntactic and semantic analysis. Each of these tools is focused
on specific security properties and requires human intervention
to different degrees.

Dynamic analysis’ strength lies in the possibility to take
action in the presence of dynamic inputs. This type of analysis
generally considers the program to analyze as an atomic
artifact. It resorts to different approaches in order to analyze
the run-time behavior of the program, often without any access
to the source code. The latter approach requires a sufficient
number of test cases and is quite time-consuming, yet it cannot
ensure an automatic verification or a complete coverage of the
test cases space of the analyzed program. Dynamic analysis

reports failures at the instant they occur, and provides details
allowing the developer/tester to make the required corrections.

In comparison, static analysis in all its forms ensures a
complete coverage of the program branches [4], used APIs,
program dependencies, or configuration files explored. Static
analysis refers to different methodologies, including model
checking and model provers, to verify the execution paths of
a program without actually executing it [2]. Unlike manual
review, which relies on the tedious examination of sequences
of the concrete or symbolic execution of a program, static code
analyzers can capture comprehensive and accurate models of
the software, like for instance an abstract representation of
all the execution paths, which test-case execution falls short
to cover. We discuss in this paper different static analysis
approaches to securing software and what are the challenges
ahead in order to assess different types of security properties,
notably complex ones defined at the application level in close
relationship with the design.

This paper is organized as follows: Section 2 highlights
common security issues based on a motivating example.
Section 3 discusses different definitions of software security
properties that can be found in the literature. Section 4 then
briefly surveys different static code analysis techniques that
are used today, while Section 5 provides further details on
a selection of four static code analysis tools representative of
current uses. Section 6 discusses the applicability of such tools,
as well as experimental results with respect to the motivating
example. Finally, section 7 concludes the paper and discusses
future work.

II. MOTIVATING EXAMPLE

To illustrate further the concepts discussed in the previous
section, and to motivate the idea we are pushing to achieve,
we present a sample code (fig.1 and fig.2) in which we have
injected security flaws and introduced the notion of security
properties.

The payment information of the user are provided as input.
The credit card number, the 3-digit cryptogram and the ex-
piration date are then encrypted using an encryption library.
The encrypted data is afterwords stored in the database for
different reasons, such as the payment made. This may provide
assurance about the confidentiality of these critical data in

Fig. 1. Sample code

Fig. 2. SendUserData method

storage; here we mean that these critical data have to be kept
secret when stored and persisted in the database. However, the
invocation of the method (sendUserData) sends the credit card
number, the cryptogram and the expiry date in plain text to
an external source. This is a security breach that automated
source code vulnerability detection tools cannot recognize
automatically using string-matching, and independently from
the application expected security properties. Even though the
critical data (the assets) are encrypted, the program cannot be
deemed as secure or, in this case, ensuring the confidentiality
of the payment information. On the other hand, the action
of sending critical data in plain text is a severe vulnerability,
that violates the security property confidentiality. Integrity and
confidentiality of data are classically guaranteed by the imple-
mentation of access control mechanisms. If an unauthorized
party gets access to the sensitive payment information, the
property confidentiality is then breached. A typical use case
consists in using logging functionalities for analysis and audit-
ing purposes. As we can see in the sample code, the encrypted
data are logged with the encryption key (publicKey), and the
payment information are logged in plain text; this represents
a severe security threat, that will only be detected after the
software is released to the customer, or even worse, after
the flaw is exploited by intruders. The encryption mechanism
may insure the data is kept secret, but can’t provide assurance
about where and how the data will propagate, where it will
be stored, or where it will be sent or processed. This entails
the need for controlling information flow using static code
analysis. This same idea is emphasized by Andrei Sabelfeld,
and Andrew C. Myers [30], who deem necessary to analyze
how the information flows through the program. According
to the authors, a system is deemed to be secure regarding
the property confidentiality, if the system as a whole ensures
this property. If we had a security policy that expresses the
”confidentiality of user’s payment information” requirement,
current static code analysis tools will not be able to concretize
it or to relate it the concrete user information variables in the
source code. Hence, the code analysis tools will not afford
to verify the compliance of the developed program with this
security policy. If a known vulnerability is identified, static
code analysis tools will only detect its exact location, that is,
in which line of the source code, but they don’t provide the
means to back-track the source of vulnerability and identify
the source that led to it.

The main issues we raised in this sample code are related
to capabilities of static code analysis tools to:

• define the assets to be protected: we mean by assets the
critical resources/variables in the source code

• represent/concretize abstract security properties with re-
spect to the code: in other words, how to map between
the abstract security policy and the assets to be protected

• detect the presence of the ”confidentiality in storage” of
the assets

• detect the bad programming practice ”send critical data
in plain text”

• back-track the source of the vulnerability: we need
to backtrack the security vulnerability and identify its
sources

• establish the mapping between the vulnerability and the
violated security properties: security vulnerability can be
perceived as violation of security property

• detect the bad programming practice ”storage/logging of
the encryption key with the encrypted data in the same
table”

• translate the detected properties into a security policy

III. SECURITY PROPERTIES

Several studies have suggested the use of static code analy-
sis in order to establish the satisfaction of security properties in
software implementations. The objectives of such analysis vary
widely as security properties are understood very diversely as
well.

Many authors take it for granted that security properties
can be defined universally. In contrast, some authors contend
that security properties are highly dependent on the level of
abstraction considered and on the application developed. For
instance, [19], Antonio Maña and Gimena Pujol [1] clas-
sify security properties along several dimensions in emerging
open and distributed environments: Abstract Security Proper-
ties (ASP) represent security properties considered over the
initial draft of the software architecture during application
requirements engineering, and can be formalized. Concrete
Security Properties (CSP) map ASPs to security mechanisms
or algorithms implemented into software. The same ASP
can be proven by different CSPs. ASPs and CSPs can be
connected by logical relationships, for instance through the
logical implication, and which they term Semantic Security
Properties (SSP). In contrast, Domain Security Properties
(DSP) are specifications of security properties generic to a
given domain.

ASPs are for instance often considered in relationship
with complex access control or usage control model policies
introduced into software, especially through language based
security approaches. For instance, the JIF framework [42] re-
lies on the static analysis of the information flows of a security
policy and the verification of the conformance of the flows
implemented with those specified in that policy. However,
application level security concerns have not really made their
way into mainstream static code analysis techniques, which
focus mostly on concrete security properties, and which is
sometimes even restricted to code safety analysis.

Code safety can be considered as the most concrete level of
abstraction in software for what regards security properties.
Practitioners generally look for the absence of exploitable
safety vulnerabilities in software. Though this is most gen-
erally addressed through security testing, static validation
may help. The dual modeling problem introduced by John
Wilander et al. [9], [8] for instance sheds some light on the
correlation between security properties and bad programming
practices that may result in safety issues. Wilander et al.
introduce a static analysis methodology based on the detection

of security and insecurity patterns. The analysis starts by
ruling out the presence of an insecurity pattern in the code.
If one such pattern is detected, the analysis then proceeds to
check whether faulty behaviors are prevented by a security
pattern encompassing the insecurity pattern scope. This means
that potential vulnerabilities are foiled by the presence of
appropriate security mechanisms. The analysis relies on the
mapping of functionalities over code snippets. This mapping
may somewhat restrict the expressivity of the analysis in that
only simple functions are likely to be automatically recognized
in a complex source code. The insecurity and security patterns,
together with the mapping between both types of patterns can
be regarded as a security policy. A number of researchers
similarly regards security properties as classes of good vs.
bad programming practices with respect to a given security
policy. For instance, Aris Zakinthinos and E.S. Lee [18] define
security properties as the instantiation of a security policy that
can be satisfied by more than a single property. The authors
distinguish between security properties regarding high-level
(trusted) and low-level (untrusted) users, in such a way that
low-level users are not able to make deductions about events
generated by the high-level users. Another definition [17]
considers security properties following a classical IT security
policy: such a policy ensures that software assets or resources
have CIA (confidentiality, integrity, availability) properties,
and therefore that their confidentiality cannot be violated,
and that they cannot be corrupted, or made unavailable, if
so specified. The network security properties of authoriza-
tion, message confidentiality and integrity, non-repudiation
of sending or receipt are also used in distributed software,
or in software involving several principals. In the following
section, we will explore more the static code analysis and the
capabilities it offers in the aim of identifying and validating
security properties in source code.

IV. STATIC CODE ANALYSIS

The previous section has given an overview about the
different definitions attributed to security properties in the
literature, and most of them were considered in the modeling
and representation of security properties that source code
analysis tools made use of.

A. Static Code Analysis in the Practice of Software Develop-
ment

Delivering and deploying secure software has always been
a challenging issue that software vendors try to achieve.
Creating more secure software can help reduce security related
maintenance and update costs, given the fact that it helps
reduce the sources requiring security corrections.
Static code analysis can be used according to Fabian van den
Broek [14] in two situations; the first is during testing, and the
second during development and before testing. Many develop-
ers rely on testing to ensure the safety of their programs; but
this doesn’t guarantee the security of the developed software,
given the fact that it aims at verifying that the it only meets the
functional requirements [28]. Hence, functional testing falls

short in covering the security aspect of the software under
inspection. In addition, it is applied only to executable and
not to source code or byte-code, and takes place rather late in
the software development process. Unlike testing, static code
analysis can be applied to single files or to entire program
code, and doesn’t require the development to be complete. In
the earlier stages of the development process, developers may
make mistakes and programming errors that can be detected by
compilers; in many cases, compilers provide corrections to the
detected flaws, and the development process is still ongoing.
However, this principle is not applicable to most security
vulnerabilities that can remain undetected. The more a flaw is
undiscovered, the greater it costs to fix [5]. Some organizations
try to overcome this lack of focus on security by performing
Penetration tests [2]. Another approach consists in detecting
the security flaws in the source code of the developed software
before it is released or even tested. This can be manual,
meaning that tests are carried out by human analyst/developer,
or automatic, using a code analysis tool. Note that manual code
review can be much more time-consuming than automatic code
review, specially when the entire source code is to be analyzed,
or the code to inspect is large. [32]
From this perspective, automatic static code analysis can be
integrated and applied regularly to the Software Development
Life cycle. These tools are to be used to complement the
manual code review, and not to totally replace it as precised by
Jernej et al. [33]. Having all this is mind, we can emphasize
on the importance and necessity of the static code analysis in
reducing the sources of security issues in the early stages of
the software development life cycle, and before it is released
to customers.

B. Techniques for Static Code Analysis

Static analyzers are used for different purposes, such as
security vulnerabilities and bugs detection, verification of
security properties as well as for program understanding [6].

Formal static analysis makes use of different approaches in
the objective of analyzing the program without executing it.
Control-flow and Data-flow are two of the commonly adopted
formal methods for program representations, and are used in
static code analysis.

1) Model Checking: Model checking is one of the formal
approaches that was first introduced by Steffen and Schmidt,
and is applicable to programs having finite states, or that can
be reduced to finite state; it is a technique that allows the
automatic verification of properties on finite-state systems.
This approach requires the model construction and the
properties specification as well. Model checking supposes
first the construction of a model that is the transformation
of the system into a formalism (such as the Kripke structure
[11]) accepted by a model checking tool. The modeling may
also require a certain level of abstraction in order to eliminate
irrelevant details. Model checking requires as a second step
the definition and the specification of the properties to be met
by the software model subject of the analysis, and is usually

given using logical formalism, like for instance the temporal
logic. However, once the specification of the requirements is
achieved, no human intervention can be performed on the
input specification. Most of the Model Checking methods
are focused on the Temporal Logic, and were introduced by
a number of researches, among them [21], who proposed
a Model Checker allowing to verify the compliance of
finite state systems to a Temporal Logic specification. The
verification is performed by exploring the state space in order
to determine whether the specified properties are satisfied or
not.

2) Control-flow analysis: Control-flow analysis is one of
the common used techniques for static code analysis. The
program control-flow is modeled as a directed Control Flow
Graph (CFG), and was first introduced by Frances E. Allen
[29]. CFG is directed graph that is used to represent blocs
of code in the the form of nodes, the control dependencies
in the form of directed edges, starting with an entry node
and concluding with the end point of the program. The
CFG construction can be carried out based on an abstract
syntax graph representation such as AST (Abstract Syntax
Tree) to which control flow information are introduced [12]
[13]. The main focus of this technique is to determine how
the procedures in a program call each other, as well as to
determine which functions are effectively called.

3) Data-flow analysis: Data-flow analysis, on the other
hand, is based on the abstract representation of the analyzed
program semantics, and is focused on the extraction of
the possible values of data. It aims at representing data
dependencies in the source code, and allows to track the
effect of input data. It aims also at mapping program’s
statements with the data-flow. The latter gathers information
about the possible set of values [24], and is often performed
on the Control Flow Graph. Data-flow analysis has for
objective to statically predict the the dynamic behavior of the
analyzed program.

4) Symbolic analysis: Symbolic analysis consists in consid-
ering the program variables. According to Wolfgang Wogerer
[25], this approach can be seen as a compiler that translates
the program being analyzed to an intermediate language,
consisting of symbolic expressions and recurrences. This tech-
nique is supported by computer algebra systems, that adopt
simplification methods to ensure the quality of the output
results. The analyzed program consists of three parts: the state,
the state condition and the path condition. As for the state, it is
composed of a (variable, value) pair. State condition is a logic
formula that describes assumptions about the variables values.
The path condition, on the other hand, is a logic formula that
defines the condition for which the program point is reached.
Symbolic analysis is deemed to be useful in transforming
unpredictable loops to predictable sequences, and is mainly
used for code optimization, performed by compilers.

5) Information-flow analysis: Information flow is mainly
analyzed using dynamic analysis approach, however, static
code analysis can be used to approximate the information
flows and ensure their security, according to Pistoia et al. [4]
In the information-flow terminology, we distinguish between
direct and indirect informatiom flow. The direct arises from
direct data flows, and the indirect is induced indirectly by
branching control flow [40].

V. STATIC CODE ANALYSIS TOOLS

In order to have concrete information, we conducted an
analysis on source code analysis tools. The performed research
doesn’t aim at classifying or ranking the tools, but instead,
to allow a deeper understanding of the analysis approach
followed by these tools, as well as the security properties they
detect. Static analysis tools are used mainly in the objective
of detecting security vulnerabilities in the code, so that the
developer makes the needed corrections on the identified
security flaws before the software is released to customer.

We investigated a number of static analysis tools with the
aim of identifying their analysis methodologies, and com-
paring their accuracy and performance. The precision of the
analysis performed by the studied tools is estimated regarding
the amount of false positives they report. The main objective
behind this analysis is to shed the light on areas where
innovations can be proposed. Some of the security analysis
tools generate an important number of false positives (false
alarm), which reduces the efficiency of the considered tool
[7]. On the other hand, a tool that reduces both false negatives
(flaws that the tool doesn’t report) and false positives (reported
flaws that the program doesn’t contain) is deemed to be
more accurate. Automated tools usually use string regular
expressions they match against source code statements in order
to identify security vulnerabilities [43]. Other elements are
to be taken into consideration when making an investigation
about static analysis tools, namely the considered security
properties, the required human intervention amount, as well
as the output visual aspect and interpretation complexity.

This section presents a research on a number of static
analysis tools. We would consider ones that allow the detection
and evaluation of security properties, as well as tools that
are used to detect security vulnerabilities in the source code.
We will justify the second alternative based on the fact that
security vulnerabilities are violations of security properties.
We carried out experiments on the sample code (fig.1, fig.2)
using the presented tools. For some of the considered tools,
we had to translate the sample code to the C programming
language, as these tools only support C.

A. MOPS

MOPS (MOdel checking Program for Security Properties)
[3] makes use of the model checking technique to check for
violation of security rules, that are defined as temporal safety
properties. It is based on a formal modeling approach for both

the program and the security properties, and proceeds by the
analysis of the implemented models.

As for program representation, MOPS models the program
in the form of Push Down Automaton (PDA), that contains
all the feasible execution paths. Push Down Automata are
used as tools to analyze procedural sequential programs, and
more specifically those having recursive procedures [16]. As
for automata, they are according to Schneider [15] used in the
objective of specifying security policies that can be enforced
by mechanisms. MOPS makes use of this approach to model
security properties in the form of Finite State Automata (FSA),
that dictate the order of security-relevant operations sequence.
The modularity of security properties was also proposed by
MOPS; this approach allows the decomposition of complex
security properties into simpler and reusable basic security
properties, that are easy to model and to extend (such as role
based access). MOPS verifies that the security properties are
properly respected in all the execution paths of the analyzed
program, making use of the model checking on the PDA, and
checks if risky states are reachable within the PDA.

B. SPlint

Secure Programming LINT (SPlint) is an annotation-based
data-flow static code analyzer for C for security vulnerabilities
and programming flaw detection. It makes use of annotations
(semantic comments) entered by the developer. The annota-
tions serve as specification of the constraints (properties) about
a library, a variable, a function or a type. In other words,
annotations serve as properties specification. SPlint execution
is an iterative process, that helps the developer/analyst to detect
vulnerabilities locations, and to eliminate the warnings by
adjusting annotations or modifying the code. SPlint parses
the source code of the program subject to the analysis,
and generates the Abstract Syntax Tree (AST) based on the
formal semantics of the program’s programming language. The
annotations entered by the developer serve as specification
of the high-level security properties about an asset. SPlint
generates constraints from the annotations entered by the
developer and adds them to the Abstract Syntax Tree (AST)
of the program to analyze. As for annotations format, they
are similar to comments in C: /* @notnull@ */ and they
are syntactically associated to functions parameters, return
values, variables, etc. Annotations allow expressing intra-
procedural pre-conditions and post-conditions on assets. The
developer/analyst can customize the security properties, and
add security patterns to be detected in the AST according
to his needs, which makes SPlint an extensible tool. If the
property expressed by the annotation is violated, SPlint reports
a warning for any return path that fails to satisfy the property.

C. GraphMatch

GraphMatch is a code analysis tool/prototype for secu-
rity policy violation detection [9]. For the program model-
ing, GraphMatch makes use of a widely used tool called

CodeSurfer1 [26] that generates the System Dependence Graph
(SDG) from the source code provided as input. SDG [20] is
an inter-procedural dependence graph representation, and is an
extension to the Program Dependence Graph (PDG). SDGs
were first proposed by the authors of ”Interprocedural Slicing
Using Dependence Graph” [31], and have proved to be useful
in performing deep analysis of programs [27]. They have been
developed over the last two decennies, and consist now a basis
to perform the code analysis, based on different approaches,
such as slicing [31] [39] [41] or Model Checking [34]
As for the PDG, it is a directed graph whose nodes are pred-
icates (variable declarations, assignments, control predicates)
and edges are data and control dependence representation; both
types are computed using respectively control-flow and data-
flow analysis. PDG is the intra-procedural representation of a
program, and considers the control and data flow dependen-
cies within a procedure. On the other hand, SDG modeling
considers the inter-procedural calls, that is, the control and
data dependencies between procedures in a program. Given
the fact that the generated SDG is in a proprietary file format,
the authors have deemed necessary to transform the generated
SDG into the GraphMatch’s file format [10]. GraphMatch
allows the users to customize the positive and negative security
patterns that the program will be analyzed against, as well
as to define the relationships between positive and negative
security properties. John Wilander [8] has considered examples
of security properties covering both positive and negative ones,
that according to the author meet good and bad programming
practices.[8]. GraphMatch traverses the generated SDG with
the objective of finding security pattern matching. For a
security property violation to be raised, GraphMatch proceeds
in two steps: verification of the negative pattern matching first,
followed by a verification of the embedding positive security
pattern. If negative security patterns are found, the tool doesn’t
report a violation immediately, but proceeds to the verification
of the embedding security property. If it corresponds to a
positive security pattern, then GraphMatch doesn’t raise a
warning. However, if the embedding security pattern match is
not found, GraphMatch raises a warning and reports a security
property violation.

D. Fortify

Fortify is a static analysis tool that processes the source code
in a way similar to a code compiler. It has the ability to detect
and fix vulnerabilities in the source code and to be run on
multiple environments (Windows, Linux, Mac). Fortify takes
as input the source code of a single file or an entire application
composed of many files, and conducts a semantic analysis
approach; it represents semantically the control flow and the
data flow of the code. The tool is able to map the execution and
the data flow and can for example recognize that input data are
left untested or invalidated before being passed to a function
or component. Fortify performs an inter-procedural analysis in

1http://hiper.cis.udel.edu/lp/lib/exe/fetch.php/courses/cisc879/codesurfer-
demo.pdf

the objective of making the analysis as accurate as possible. 2

The tool detects four types of issues: Semantic, Data Flow,
Control Flow, Configuration and Structural. The Semantic
Analyzer detects potentially dangerous uses of functions and
APIs at the intra-procedural level. Basically a smart GREP 3.
The Data Flow analyzer detects potential vulnerabilities that
involve tainted data (user-controlled input) put to potentially
dangerous use. The data flow analyzer uses global, inter-
procedural taint propagation analysis to detect the flow of
data between a source (site of user input) and a sink (tainted
data, or dangerous function call or operation) The Structural
Analyzer detects flaws in the structure or the definition of
the program. As for the Configuration Analyzer, it looks for
dangerous flaws in the application deployment configuration
files. The Control Flow Analyzer detects potentially dangerous
sequences of operations. By analyzing control flow paths in a
program, the control flow analyzer determines whether a set
of operations are executed in a certain order.

The generated file is then processed by the Audit Work-
bench Tool that presents the results in a user-friendly format
[22]. The Audit Workbench tool is customizable and enables
the user to configure the custom rules (from the rulespacks) for
audit; the user selects the types of issues he wants to be warned
about. The Workbench tool flags the detected vulnerabilities,
provides the problem description and how it might be fixed.

VI. EVALUATION AND DISCUSSION

In this section, we will reflect more upon the outcome of
the static code analysis tools investigation, and will illustrate
the results in a summary table, containing the main points of
our interest. We focus on the program modeling approach that
exploits the source code properties, and represents the program
in a faithful model.

Different criteria are to be taken into account for evaluating
a static code analysis tool, such as the security properties
representation model, and which analysis approach is used to
validate these security properties. The abilty of the tool in
modeling and detecting specified security properties is highly
dependent on the abstraction level of the program modeling.
Another criterion is the soundness of the analysis tool. It
can be evaluated taking into account the type of security
vulnerabilities the tool is able to detect, as well as the amount
of false positives and false negatives it produces. Reporting
an important amount of false alarms can be misleading to the
users, who will get discouraged of using that tool [35]. The
soundness and accuracy of the tool’s performed analysis is
highly dependent on the precision of the code representation
[36]; false alarms can emanate from an incorrect modeling of
the system.

We are also interested in the mapping between detected
vulnerabilities and the violated security properties, which is
not covered by most of the studied static analysis tools.

2http://stackoverflow.com/questions/13051974/how-does-fortify-software-
work

3http://blog.linuxacademy.com/linux/grep-tutorial-searching-file-contents/

The tools usability is one of our points of interest. A tool
is deemed to be usable if its generated results are understand-
able to an average developer, meaning not having advanced
knowledge in security. The usability can also emanate from
the quality of its output and how it is presented to the user.

We focus also on the ability of the tool to allow users define
their own rules against which the program will be evaluated.
We consider the latter of paramount importance when dealing
with static code analysis; most of the analyzed tools have their
set of predefined rules. From this perspective, the tool will not
detect a flaw if the corresponding pattern is not predefined.

We consider also the extensibility of the tool, that is, the
integration possibilities it offers. A good tool has to be efficient
and scalable enough to perform the analysis on complex or
large programs, taking into account the dependencies between
components without impacting the speed of its execution.

TABLE I
EVALUATION OF STATIC CODE ANALYSIS TOOLS.

MOPS SPlint GraphMatch Fortify
Program model PDA CFG SDG semantic DFG

and CFG
Security proper-
ties model

FSA Constraint-
based

positive
security
pattern
(PDG)

NA

Security vulnera-
bilities model

NA NA PDG Signature-based
patterns

Static analysis
method

Intra-
procedural
Control
Flow, Inter-
procedural
Control
Flow and
Model-
checking

Intra-
procedural
Control
Flow, Intra-
procedural
Data Flow

Security
pattern
matching

Inter-procedural
semantic,
Data Flow,
Control Flow
configuration
and structural
analysis

Customizable se-
curity properties

yes yes yes yes 4

Extensibility NA NA No public
API

Commercial tool

Output Text Text Text HTML or XML
file 5

Supported
programming
languages

C C C C#, ABAP,
C, C++,
COBOL, Java,
PHP, Python,
Visual Basic,
JavaScript, VB
Script, etc. [23]

Analysis result no violation
reported

no violation
reported

NA Privacy violation

SPlint is able to detect not only security-related vulner-
abilities, but also coding errors that may affect the quality
of the code [6]. However, SPlint doesn’t handle multiple
programming languages, and is only limited to C programs.
Regarding its accuracy, SPlint produces an important number
of false positives that lead to confusion when interpreting
the results. In addition, it performs only intra-procedural data
flow analysis; the control-flow and the inter-procedural data-
flow analysis it performs are very limited. SPlint relies on
annotations added by developers in their source code, in other
words, a number of vulnerabilities will remain undetected if

specific annotations are not added.
MOPS is control-flow sensitive, and doesnt consider data-

flow dependence, that according to the others limits its scal-
ability. Other shortcomings of MOPS are its incapability to
analyze multi-threaded programs or dynamic methods invo-
cation. The experiment on our sample code translated in C
programming language, detected no violation for both SPlint
and MOPS.

As for GraphMatch tool, it proceeds by model checking
using the dependence graph, which combines both the program
data and control dependencies, and proceeds by positive and
negative security patterns. The tool doesn’t scale to the anal-
ysis of distributed systems, but only considers a single source
code file. Another issue with this tool is its non-scalability
[9]. In addition, the graph matching performed by this tool
has high complexity, which can impact the performance of the
analysis. The tool is more focused on the liveness and safety
properties, such as integer input validation and the double
free() flaw where the free() method is called twice attempting
to free the same memory allocated using the malloc() method.
GraphMatch is mainly focused on the order and sequence of
instructions, but doesn’t cover high level security properties
such as confidentiality. We couldn’t carry out the experiment
on our sample code, as GraphMatch was not available.

As for Fortify, this tool is scalable, and doesn’t have
restrictions on size of the program to analyze. The performed
analysis on our sample code produced as output a critical
issue ”Privacy violation”, accompanied with explanation about
the vulnerability (private user information enters the program,
the data is written to an external location), its location, and
recommendations on how to avoid it. However, it produces
false positives. [6]

As shown in the motivating example presented in section
2, static analysis tools allow only the detection of secu-
rity vulnerabilities, but are unable to identify the security
properties that might be affected by this vulnerability. Such
identification can be realized by exploiting the vulnerabilities
knowledge base (such as NVD). On the other hand, where no
security vulnerability is detected, can one deem the analyzed
program as secure? Going beyond the detection of security
vulnerabilities, and tackling the problem of retrieving security
properties using static code analysis is not trivial. Besides,
the used encryption mechanism doesn’t provide assurance
about the security property ”confidentiality”, that is highly
dependent on the flow of the critical data through the program
model, which has to be accurate, and has to exploit the source
code properties, meaning the control and data dependencies.
Besides, the model needs to have a certain level of abstraction
and exploit as much as possible the program properties. PDGs
are considered a standard tool that allows the modeling of
information flow through a program [37], and their strength
consists in considering the order of sequences in the program.
Hence, they provide an over-approximation of the analyzed
program possible behaviors at run-time [38]. SDG model-
ing, which is an extension to the PDG, considers the inter-
procedural calls, that is, the control and data dependencies

between procedures in a program. From this perspective, we
foresee the use of SDG as a program modeling approach, for
its accuracy and its capability in modeling information-flow
through a program.

VII. CONCLUSION AND FUTURE WORK

In this paper, an assessment of selected static code analysis
approaches and tools was carried out. Static code analysis here
consists in mapping security vulnerabilities to a program rep-
resentation. We presented how verification of simple security
properties in the source code took place with different such
representations.

In relation to the paper’s motivating example we have also
showed that the static code analysis tools discussed are not
able to cover all the outlined issues. We plan to extend one of
these tools in order to accommodate more complex security
properties that may be derived from the code, even when no
security vulnerability or threat is detected (e.g., confidentiality
in storage). In order to overcome these challenges, we plan to
address a few fundamental problems in coming work, namely:

• One such key question will be how to translate detected
security properties enforced by mechanisms into a se-
curity policy that can be afterwards validated against the
security requirements expressed in the specification of the
program? Making the result of such an analysis easy to
understand and to interpret for a developer will also be
critical.

• A second critical question related to the determination of
the scope of a vulnerability. How to detect the source of
a vulnerability must be addressed in relationship with the
type of static analysis selected. Running a code analysis
tool allows the detection of a vulnerability in the exact
code location, but sometimes, programmers and code
reviewers need to identify the source of that vulnerability
[38], and hence to back-track the analysis that led to
such an incorrect state[39]. A related concern is how to
determine which security property is under threat when
a vulnerability is detected.

ACKNOWLEDGMENT

This work was partly supported by the EU-funded project
OPTET [grant no. 317631].

REFERENCES

[1] Antonio Maña and Gimena Pujol, Towards Formal Specification of
Abstract Security Properties, 0-7695-3102-4/08, 2008 IEEE

[2] Brian CHESS, and Gary MCGRAW, Static Analysis for Security
[3] Hao Chen, and David Wagner. MOPS: An Infrastructure for Examining

Security Properties of Software, Copyright 2002 ACM 1-58113-612-
9/02/0011

[4] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav, A Survey of Static
Analysis Methods for Identifying Security Vulnerabilities in Software
Systems, (n.d.).

[5] Brian Chess, and Jacob West Secure Programming with Static Analysis,
Software Security Series edition.

[6] Patrik Hellstrm, Tools for Static Code Analysis: A Survey, n.d.
[7] C.C. Michael, and Steven Lavenhar, Source Code Analysis Tools -

Overview., Cigital, Inc. 2005-2007 (n.d.).
[8] John Wilander, Modeling and Visualizing Security Properties of Code

Using Dependence Graphs, (n.d.).

[9] John Wilander and Pia Fak, Pattern Matching Security Properties of Code
using Dependence Graphs

[10] John Wilander, Contributions to Specification, Implementation, and
Execution of Secure Software, n.d.

[11] Michael Huth. Model Checking Modal Transition Systems Us-
ing Kripke Structures, n.d. http://pubs.doc.ic.ac.uk/fairness-abstraction-3-
valued/fairness-abstraction-3-valued.pdf.

[12] Emma Soderberg, Gorel Hedin, Eva Magnusson, and Torbjorn Ekman,
Extensible Intraprocedural Flow Analysis at the Abstract Syntax Tree
Level

[13] R.M. Smelik, Specication and Construction of Control Flow Semantics
[14] Fabian van den Broek, Static Code Analysis in Java.
[15] FRED B. SCHNEIDER, Enforceable Security Policies., ACM Transac-

tions on Information and System Security, Vol. 3, No. 1, February 2000,
Pages 3050. (n.d.).

[16] O. Burkart and B. Ste?en. Composition, Decomposition and Model
Checking of Pushdown Processes. Nordic Journal of Computing,
2:89125,1995.

[17] ARM Security Technology, (n.d.).
[18] Aris Zakinthinos, and E.S. Lee. A General Theory of Security Properties,

(n.d.). 1081-601lJ97 $10.00 0 1997 IEEE.
[19] Marco Anisetti, Claudio A. Ardagna, Ernesto Damiani, Fulvio Frati, and

Hausi A. M uller, Web Service Assurance: The Notion and the Issues,
(n.d.). http://www.mdpi.com/1999-5903/4/1/92.

[20] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel, System-
Dependence-Graph-Based Slicing of Programs With Arbitrary Interpro-
cedural Control Flow, (n.d.).

[21] Edmund M. Clarke, and E Allen Emerson, Design and Synthesis of
Synchronization Skeletons Using Branching Time Temporal Logic (n.d.).

[22] Hyunji Kim, Fortify Source Code Analaysis Tools, n.d.
[23] HP Fortify Software Security Center v3.60, System Requirements
[24] Aarthi Ganesan and Aparna Boddupalli, Static Analysis by Abstract

Interpretations: For detection of security vulnerabilities.
[25] Wolfgang Wogerer, A Survey of Static Program Analysis Techniques.
[26] http://www.grammatech.com/research/technologies/codesurfer
[27] Code Surfer, Dependence Graphs and Program Slicing
[28] Dejan Baca, Automated static code analysis - A tool for early vulnera-

bility detection
[29] Frances E. Allen (July 1970). ”Control flow analysis”
[30] Andrei Sabelfeld, and Andrew C. Myers, Language-Based Information-

Flow Security, IEEE JOURNAL ON SELECTED AREAS IN COMMU-
NICATIONS, VOL. 21, NO. 1, JANUARY 2003, n.d

[31] SUSAN HORWITZ, THOMAS REPS, and DAVID BINKLEY, Inter-
procedural Slicing Using Dependence Graphs, ACM Transactions on
Programming Languages and Systems, Vol. 12, No. 1, January 1990,
Pages 26-60. (n.d.).

[32] B. Boehm, Software Engineering Economics. New York: Prentice-Hall,
1981

[33] Jernej Novak, Andrej Krajnc, and Rok ontar, Taxonomy of Static Code
Analysis Tools

[34] Masahiro Matsubara, Kohei Sakurai, and Fumio Narisawa, Model
Checking with Program Slicing Based on Variable Dependence Graphs

[35] Ivo Gomes, Pedro Morgado, Tiago Gomes, and Rodrigo Moreira, An
Overview on the Static Code Analysis Approach in Software Development

[36] Deguang Kong, Quan Zheng, Chao Chen, Jianmei Shuai, and Ming Zhu,
ISA: A Source Code Static Vulnerability Detection System Based on Data
Fusion

[37] Christian Hammer, Jens Krinke, and Gregor Snelting, Information Flow
Control for Java Based on Path Conditions in Dependence Graphs

[38] Fang Deng, and James A. Jones, Weighted System Dependence Graph,
2012 IEEE Fifth International Conference on Software Testing, Verifica-
tion and Validation

[39] Mark Weiser, Programmers Use Slices When Debugging
[40] Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic Dependency

Monitoring to Secure Information Flow, n.d.
[41] MARK WEISER, Program Slicing
[42] Boniface Hicks, Sandra Rueda, Trent Jaeger, Patrick Drew McDaniel:

From Trusted to Secure: Building and Executing Applications That
Enforce System Security. USENIX Annual Technical Conference 2007:
205-218.

[43] Justin Clarke, Rodrigo Marcos Alvarez, Dave Hartley, Joseph Hemler,
Alexander Kornbrust, Haroon Meer, Gary OLeary-Steele, Alberto Revelli,
Marco Slaviero, and Dafydd Stuttard, SQL Injection Attacks and Defense,
n.d. http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/sqlinjbook.pdf

