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Abstract

Crowd density analysis is a crucial component in visual surveillance mainly for se-

curity monitoring. This paper proposes a novel approach for crowd density measure,

in which local information at pixel level substitutes a global crowd level or a number

of people per-frame. The proposed approach consists of generating automatic crowd

density maps using local features as an observation of a probabilistic density function.

It also involves a feature tracking step which excludes feature points belonging to the

background. This process is favorable for the later density estimation as the influence

of features irrelevant to the underlying crowd density is removed. Since the proposed

crowd density conveys rich information about the local distributions of persons in the

scene, we employ it as a side information to complement other tasks related to video

surveillance in crowded scenes. First, since conventional detection and tracking meth-

ods are hard to be scalable to crowds, we use the proposed crowd density to enhance

detection and tracking in videos of high density crowds. Second, we employ the local

density together with regular motion patterns as crowd attributes for high level applica-

tions such as crowd change detection and event recognition. Third, we investigate the

concept of crowd context-aware privacy protection by adjusting the obfuscation level

according to the crowd density. In the experimental results, our proposed approach for

crowd density estimation is evaluated on videos from different datasets, and the results

demonstrate the effectiveness of feature tracks for crowd measurements. Moreover, the

employment of crowd density in other applications demonstrate good performances for

detection, tracking, behavior analysis, and privacy preservation.

Preprint submitted to Journal of LATEX Templates July 2, 2014



Keywords: Crowd density, local features, detection, tracking, behavior analysis,

privacy protection

1. Introduction

Studying crowd phenomenon is becoming of great interest mainly with the increas-

ing number of popular events that gather many people such as in markets, subways,

religious festivals, public demonstrations, sport events, and high density moving ob-

jects like car traffic. In this context, crowd analysis has emerged as a major topic for5

crowd monitoring and management in visual surveillance field. In particular, the es-

timation of crowd density is receiving much attention for safety control. It could be

used for developing crowd management strategies by measuring the comfort level in

public spaces. Also, its automatic monitoring is extremely important to prevent dis-

asters by detecting potential risk and preventing overcrowd. Many stadium tragedies10

could illustrate this problem, as well as what happened in 2010, in the Love Parade

stampede in Germany and the Water Festival stampede in Colombia. To prevent such

deadly accidents, early detection of unusual situations in large scale crowd is required

and appropriate decisions for safety control have to be taken to insure assistance and

emergency contingency plan.15

Many recent works in the field of automatic video surveillance have been proposed

to address the problem of crowd density analysis. Typically, given a video sequence

the objective is to estimate the number of people, or to alternatively estimate the crowd

level. For people counting problem, significant progress has been recently made to

handle that by using features regression methods [1, 2, 3]. This paradigm is proposed20

as an alternative solution to detection-based methods because of the partial occlusions

that occur in the crowd, and that make delineating people a difficult task. In addition

to person counts, level of the crowd is another indicator in crowd density analysis.

According to the classification introduced in [4], the crowd density can be categorized

into 5 levels: free, restricted, dense, very dense, and jammed flow. Early attempts to25

handle this problem generally made use of local texture features. Especially the use of

some variants of Local Binary Pattern (LBP) [5], has been an active topic of research
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for this problem [6, 7, 8, 9].

Although these categories of people counting and crowd level classification are

commonly used in the field of crowd analysis, they have the limitation of providing30

a global information of the whole image, and discarding local information about the

crowd. We therefore resort to crowd measure at local level by computing crowd den-

sity maps. This alternative solution is indeed more appropriate since it enables both

the detection and the localization of potentially crowded areas. The proposed crowd

density map is based on using local features as an observation of a probabilistic density35

function. Also, a feature tracking step is involved in the estimation of crowd density.

In fact, considering all extracted local features brings an inconvenience to the density

function estimation as a substantial amount of components are irrelevant to the under-

lying crowd density. Therefore, we propose to use motion information to alleviate this

effect.40

In addition to the estimation of local crowd density, we intend to explore in this

paper the usefulness of such crowd measure as additional information to other video

surveillance tasks, mainly because common capabilities of automated surveillance sys-

tems are of limited success in high-density scenes. This is due to the challenging char-

acteristics of crowded scenes such as the small size of objects in crowds, the occlusions45

caused by inter-object interactions, and the constant interactions among individuals in

the crowd which make them indiscernible from each other. Given these difficulties, vi-

sual analysis of high density scenes remains a challenge compared to scenes with fewer

people. As the density of people increases in the scene, a substantial deterioration in

performances of automatic video surveillance tasks such as person detection, track-50

ing, and behavior analysis is observed [10]. In this paper, we mainly focus on three

major representative set of problems which are: (1) detection and tracking of people

in crowded scenes, (2) modeling crowd behaviors and detecting anomaly (or change),

and (3) studying privacy aspects in crowds.

The problems of detection and tracking in crowds have been addressed in the lit-55

erature by learning motion patterns in order to constraint the tracks. In [11], global

motion patterns are learned and participants of the crowd are assumed to follow a sim-

ilar pattern. Rodriguez et al. [12] extended this approach in unstructured environments
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to cope with different crowd behaviors by studying overlapping motion patterns. Al-

though these solutions have shown promising results, they operate in off-line mode60

and the learned patterns are tied to a particular scene. Also, they impose constraints to

the crowd motion, thus, trajectories not following the common patterns are penalized.

Moreover, some of these methods include additional constraints; in [12], Rodriguez et

al. employed a limited descriptive representation of target motion by quantizing the

optical flow vectors into 10 possible directions. Also, the floor fields proposed in [11]65

impose how a pedestrian should move based on scene constraints, which results in only

one single direction at each spatial position in the video.

Crowd behavior analysis is another problem that has attracted research attention in

the field. This problem covers different subproblems such as crowd change or anomaly

detection [13, 14, 15], and crowd event recognition [16, 17, 18]. Usually the activity70

process in video sequence can be categorized into three main steps [16]: (1) detection,

(2) tracking, and (3) behavior analysis. Given the difficulties encountered by analyzing

crowded scenes, related works to crowd behavior analysis bypass the detection and the

tracking of individuals and instead operate on local features [15], or particles [14, 17].

In general, these methods aim at detecting and categorizing crowd events using motion75

information. This latter could correspond to normal (frequent) behavior or abnormal

(unusual) behaviors.

The last problem we intend to address in this paper, is about preserving privacy

in crowded scenes. Actually, with the widespread growth in the adoption of digital

video surveillance systems, several concerns have been raised related to the possibil-80

ity of infringing the privacy rights of the subjects being monitored [19]. At the same

time, the adoption of automated methods for the analysis of video surveillance data

has raised additional concerns, since algorithms such as face recognition or people

re-identification could potentially expose the identity of any individual under video

surveillance at any time [20]. One big challenge related to privacy protection policies85

in crowded scenes is the identification of the correct trade-off between intelligibil-

ity of the video, which should be adequate for crowd monitoring tasks, and privacy

protection itself. An attempt to deal with this problem is presented in [21], where a

context-aware surveillance system is proposed by combining a number of contextual
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information (based on the analysis of visual features such as global motion, and person90

counts) to determine an appropriate level of privacy protection.

To overcome all these problems, in this paper, we propose to incorporate the local

crowd density measure in the three aforementioned applications: First, we propose a

method for enhancing human detection and tracking in crowded scenes; it is based on

applying a scene-adaptive dynamic parametrization using the crowd density measure.95

Compared to prior works, our approach does not depend on any learning step, and

does not impose any direction to the crowd flow. It models the crowd in a temporally

evolving system, which enables a large number of likely movements at each space-time

location of the video. Second, we propose a novel approach to detect crowd change and

to recognize crowd events. It is based on analyzing temporal and spatial distributions100

of persons using long-term trajectories within a sparse feature tracking framework. Our

proposed approach employs the local density together with the commonly used motion

patterns (speed and direction). The idea is motivated by the necessity of using local

density to determine the ongoing crowd behavior since that helps to characterize the

event, and to localize crowded regions. Finally, we investigate the usefulness of apply-105

ing crowd density in privacy context. The concept of context-aware privacy protection

has recently emerged, as the required amount of privacy protection is deeply linked

to the context. In particular, we propose adaptive protection filters that select suitable

level of privacy preservation according to the crowd density measure.

The remainder of the paper is organized as follows: In the next Section 2, we110

present our proposed approach for crowd density map estimation. In Section 3, we

demonstrate how a prior estimation of crowd density could provide valuable infor-

mation and could complement other applications in video surveillance. In particular,

three applications are investigated: enhancing human detection in crowded scenes is

presented in Section 3.1, studying crowd behaviors is presented in Section 3.2, and115

formulating contextualized privacy preservation filters is presented in Section 3.3. De-

tailed experimental results of the density map and the different applications follow in

Section 4. Finally, we briefly conclude and give an outlook for possible future works

in Section 5.
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2. Crowd Density Map Estimation120

(a) (b) (c)

(d) (e)

Figure 1: Illustration of the proposed crowd density map estimation using local features tracking: (a) ex-

emplary frame, (b) FAST local features (c) feature tracks (d) distinction between moving (green) and static

(red) features - red features at the lower left corner are due to text overlay in the video (e) estimated crowd

density map

In this paper, we explore a new promising research direction which consists of using

crowd density measures to complement some other applications in crowded scenes. For

this, generating local crowd density measure is more helpful than computing only an

overall density or a number of people in a whole frame. In the following, we present our

proposed approach for crowd density estimation [22]. First, local features are extracted125

to infer the contents of each frame under analysis. Then, we perform local features

tracking using the Robust Local Optical Flow algorithm from [23] and a point rejection

step using forward-backward projection. To accurately represent the motion within the

video, the estimation of the optical flow between consecutive frames is extended to

trajectories. The generated feature tracks are thereby used to remove static features.130

Finally, crowd density maps are estimated using Gaussian symmetric kernel function.

An illustration of the density map modules is shown in Figure 1. The remainder of this
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section describes each of these system components.

2.1. Extraction of local features

One of the key aspects of crowd density measurements is crowd feature extraction.135

Under the assumption that regions of low crowd density tend to present less dense local

features compared to high-density crowd, we propose to use local features as a descrip-

tion of the crowd by relating dense or sparse local features to the crowd size. Thus, the

proposed crowd density map is estimated by measuring how close local features are.

For local features, we assess Features from Accelerated Segment Test (FAST) [24].140

The reason behind selecting this feature for crowd measurement is as follows: FAST

has been proposed for corner detection in a reliable way. It has the advantage of being

able to find small regions which are outstandingly different from their surrounding

pixels. In addition, FAST was used in [25] to detect dense crowds from aerial images

and the derived results demonstrate a reliable detection of crowded regions.145

2.2. Local features tracking

Using the extracted features to estimate the crowd density map without a feature

selection process might incur two problems: First, the high number of local features

increases the computation time of the crowd density. As a second and more important

effect, the local features contain components irrelevant to the crowd density. Thus, we150

need to add a separation step between foreground and background entities to our sys-

tem. This is done by assigning motion information to the detected features. Based on

the assumption that only persons are moving in the scene, these can then be differenti-

ated from background by non-zero motion vectors.

Motion estimation is performed using the Robust Local Optical Flow (RLOF) [23]155

[26], which computes accurate sparse motion fields by means of a robust norm1. A

common problem in local optical flow estimation is the choice of feature points to be

tracked. Depending on texture and local gradient information, these points often do not

lie on the center of an object but rather at its borders and can thus be easily affected by

1www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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other motion patterns or by occlusions. While RLOF handles these noise effects better160

than the standard Kanade-Lucas-Tomasi (KLT) feature tracker [27], the process is still

not prone against all errors. This is why we establish a forward-backward verification

scheme where the resulting position of a point is used as input to the same motion

estimation step from the second frame towards the first one. Points for which this

“reverse motion” does not result in their respective initial position are discarded. For165

all other points, motion information is aggregated to form trajectories by connecting

motion vectors computed on consecutive frames. This results in a set of pk trajectories

at each frame k:

Tk = {T k1 , ..., T kpk |

T ki = {Xi(k −∆tki ), Yi(k −∆tki ), ..., Xi(k), Yi(k)}} (1)

where ∆tki denotes the temporal interval between the start and the current frames of

a trajectory T ki . (Xi(k −∆tki ), Yi(k −∆tki )), and (Xi(k), Yi(k)) are the coordinates170

of the feature point at its start and current frames respectively. The advantage of using

trajectories in our system instead of computing the motion vectors only between two

consecutive frames is that outliers are filtered out and the overall motion information

is more reliable and less affected by noise.

2.3. Kernel density estimation175

After generating trajectories, our goal is to remove static features. It proceeds by

comparing the overall mean motion Γki of a trajectory T ki to a certain threshold ζ which

is set according to image resolution and camera perspective. Moving features are then

identified by the relation Γki > ζ while others are considered as part of the static back-

ground. We mean by “others”, trajectories of zero length because they are stationary180

along frames, or of small length because of the noise in video acquisition or dynamic

background. Using trajectories, the separation between foreground and background

entities is improved and the number and positions of the tracked features undergo an

implicit temporal filtering step which makes them smoother.

After filtering out static features, the crowd density map is defined via kernel den-

sity estimate based on the positions of moving local features. Starting from the as-
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sumption of a similar distribution of feature points on the objects, the observation can

be formulated as: the more local features come towards each other, the higher crowd

density is obtained. For this purpose, a probability density function (pdf) is estimated

using a Gaussian kernel density. At a frame Ik, if we consider a set ofmk moving local

features extracted at their respective locations {(xi, yi), 1 ≤ i ≤ mk}, the correspond-

ing density map Ck is defined as follows:

Ck(x, y) =
1√
2πσ

mk∑
i=1

exp−(
(x− xi)2 + (y − yi)2

2σ2
) (2)

where σ is the bandwidth of the 2D Gaussian kernel. The resulting crowd density map185

characterizes the spatial distributions of pedestrians in the scene which could comple-

ment others tasks in crowd analysis.

3. Crowd Density-Aware Applications

In this section, we intend to demonstrate how the proposed density presented in the

last section, could provide valuable information and complement other tasks related to190

crowd analysis. Precisely, three applications are investigated, see Figure 2.

Crowd density 
estimation 

People detection 
and tracking 

Crowd behaviour 
analysis 

Privacy preservation 

Crowd Analysis 

 

Crowd Density-Aware Applications 

 
Figure 2: Schematic representation of the topics tackled in this paper in crowd analysis field. The dotted line

shows that the crowd density map is used to complement other tasks (people detection and tracking, crowd

behavior analysis, and privacy preservation).
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3.1. Enhancing human detection and tracking in crowded scenes

Human detection is a common problem in computer vision as it is a key step to pro-

vide semantic understanding of video data. Accordingly, it has been intensively studied

and different approaches have been proposed. In this context, the deformable part-195

based models [28] has recently shown good performances. It is an enriched version

of Histograms of Oriented Gradients (HOG) [29], that achieves much more accurate

results and represents the current state-of-the-art.

Although this human detector has become a quite popular technique, its extension

to crowded scenes is of limited success. In fact, the density of people substantially af-200

fects their appearance in video sequences. Especially in dense crowds, people occlude

each other and only some parts of each individual are visible. Therefore, accurate

detection in such scenarios with dynamic occlusions and high interactions among the

targets remains a challenge. In order to adapt the detector to such situations, it is im-

portant to include additional information about the crowd.205

In this section, we present our proposed extension of human detection to crowded

scenes. As a major improvement, we propose to employ the crowd density map de-

scribed in Section 2 as context information to adaptively optimize the behavior of the

human detector by selecting dynamic detection threshold. This is especially important

in heterogeneous scenes with crowded and non-crowded regions since the detection210

results are highly dependent on the crowd size (i.e. the higher the crowd density is, the

more difficult is to detect persons). As a result, low detection thresholds would be suit-

able in crowded scenes and higher values ensure less false positives in non-crowded

spaces. It is therefore desirable to find a way of automatically setting the detection

threshold according to the probability that people are present in a certain position of215

the image.

For a given threshold τ , Dk(τ) = {dk1 , ..., dknk} denotes a set of candidate RoIs at a

frame k, dkj is the jth detection at this frame and is defined as dkj = {xkj , ykj , wkj , hkj },

where (xkj , y
k
j ) is the upper left position andwkj , h

k
j are the respective width and height.

Using a pre-defined range of detection thresholds given by upper/lower boundaries

τmax/τmin, we apply the following linear density-scaled adaptive rule to automatically
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select acceptance threshold value of the detector:

τdyn = τmin + (τmax − τmin) · Ĉk(dkj ), j ∈ {1...nk} (3)

with

Ĉk(dkj ) =

hkj−1∑
p=0

wkj−1∑
q=0

Ck(xkj + p, ykj + q)

wkj · hkj
(4)

as the average crowd density of a detection dkj .

To obtain the dynamic threshold τdyn for every candidate dkj in Dk(τmax), the average

crowd density Ĉk(dkj ) is computed as in (4) and inserted into (3) for all regions.

In addition to the crowd context constraints, we propose applying geometrical con-220

straints in a filtering step. This is important due to the nature of the part-based model

that may comprise certain human parts from different persons and match them together

in one candidate RoI. If the score of such detection is higher than the scores of the

individual objects’ detections, the non-maximum suppression (NMS) step will keep it

instead of the correct individual detections which might be recognized otherwise. Ac-225

cordingly, in this case a false positive detection and a number of missed detections are

generated which decrease the detection performance. To filter out inaccurate detec-

tions of inappropriate size, we propose to apply geometry-based pre-filters using the

perceived height and the aspect ratio.

Since the perceived size of a person in a given image is affected by perspective

distortions, we design a filter that uses the height of a candidate RoI to indicate the

likelihood of human presence. Also, as some detections could include multiple persons

at once, we propose to use the aspect ratio as a correction measure. Given a set of

candidate RoIs Dk, following [30] we assume that the relationship between a person’s

position and his/her perceived height to be:

hkj = αk−1 · ykj + βk−1, j ∈ {1...nk} (5)

where αk−1 and βk−1 parameters are computed using a standard regression. Also, the

aspect ration is defined as:

γk−1 = median

{
wij
hij

}
1≤i≤(k−1),1≤j≤ni

(6)
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αk−1, βk−1, and γk−1 parameters are computed over all accepted detections {D1, ...,Dk−1}230

and are updated at each frame.

These proposed correction filters use the previous detections to predict the height

and the ratio of a new detection candidate, allowing the algorithm to operate on-line

without any preliminary learning step. By applying these two geometrical filters si-

multaneously, a detection candidate is accepted only if it fits the aspect ratio and the235

height according to the y-coordinate of its center. As the used NMS step is greedy and

overlap-oriented, it is now possible to filter out any unlikely large or small region and

to detect other objects in the same area which would have been suppressed otherwise.

3.2. Crowd behavior analysis

To achieve an improved overall performance for crowd behavior analysis, we con-240

sider that the crowd density measure could provide rich source of information about the

spatial distributions of persons in the scene, mainly to localize and to recognize crowd

events such as evacuation, crowd formation, and splitting. Therefore, in our approach

we simultaneously consider these both cues of crowd dynamics: appearance (density)

and motion (velocity, and direction).245

To achieve this goal, the feature tracks (defined in (1)) used in a first step to es-

timate crowd density maps, are employed in a second step to extract crowd motion

information. This extraction proceeds as follows: we consider only long-term trajec-

tories, while other short-term trajectories of small length (because of tiny movement

of crowd) are filtered out to not affect the computation of speed and orientation. Once250

the set of useful trajectories is determined, we restrict the history of each 2D trajectory

over last few frames. Without such restriction, an augmentation in the speed will not

be early detected, also the flow direction could be less precise. After that, the speed

is computed as the quotient of the trajectory length divided by the number of frames

being tracked. For flow direction, we consider the orientation of motion vectors formed255

by the start and the current position of each trajectory.

Overall, the spatio-temporal crowd measures introduced by density maps and mo-

tion vectors give fundamental information about the distributions and the movements

of pedestrians in the scene which are strongly related to their behaviors. To model the
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crowd, we encode each attribute by 1D-histogram. Given the crowd density map Ck260

at a frame k, the local density is quantized into Nd bins. We have chosen Nd = 5 ac-

cording to the definition of 5 crowd levels [4]. Then, to group together motion vectors

of the same direction, we quantize the orientation Θ into NΘ bins. NΘ is set to 8 bins,

resulting in orientation bin of size ∆Θ = 45 degrees. As proposed in [13], the speed is

quantized into Ns = 5 classes: very slow, waking, walking fast, running, and running265

fast. Also, since speed changes can be affected by perspective distortions (due to the

fact that when people are getting away from the camera, their motion vectors are of

smaller lengths), we rectify these effects in the computation of speed.

After modeling crowd attributes by histograms, their application to crowd behav-

ior analysis is demonstrated in three steps: First, the variation in time of a stability270

measure (using the histograms) is employed to detect changes or abnormal event, see

paragraph 3.2.1. Second, a feature vector concatenating these histograms is used for

event recognition, see paragraph 3.2.2. Third, the variations of these crowd attributes

in time are used to characterize crowd events, see paragraph 3.2.3.

3.2.1. Crowd change detection275

According to the procedure described so far, at each frame k, we have Hd(k),

HΘ(k), and Hs(k) which denote, respectively, the histograms of density, orientation,

and speed. If a change occurs in the crowd behavior, that would generate dissimilarities

between the histograms. For this, we compare histograms in time following the same

strategy as in [13]: we compute the temporal stability σi(k) of each histogram Hi(k)280

as the weighted average of a similarity vector Si(k):

σi(k) = ωTSi(k),

ω =
1∑n

j=1 e
λ∆tj

(e−λ∆t1 , e−λ∆t2 , ..., e−λ∆tn) (7)

λ denotes the decay constant, ∆tj = j∆t (∆t is a constant). Si(k) is computed

using histogram correlation metric between each histogram Hi(k) and histograms of n

previous frames Hi(k −∆t1), ..., and Hi(k −∆tn).

In our approach, a change is detected if the temporal stability for one crowd at-

tribute is low. For this, we compare each temporal stability σi(k), 1 ≤ i ≤ 3 to an
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adaptive threshold τi(k) computed as the half average of σi between (k − ∆t1) and

(k −∆tn):

τi(k) =
1

2n

n∑
j=1

σi(k −∆tj) (8)

3.2.2. Crowd event recognition285

The proposed crowd attributes are also used to recognize crowd events. In partic-

ular, 6 crowd events are tested namely, walking, running, evacuation, local dispersion,

crowd formation and crowd splitting. In testing step, given a new frame x, we aim at

classifying it into one of the events v∗ ∈ V , which maximizes the conditional proba-

bility:

v∗ = arg max
v∈V

P (v|x, θ∗) (9)

where θ∗ are learned from the training data. This can be performed by SVM classifica-

tion, for the feature vector, we concatenate the 3 histogramsHd(k),HΘ(k), andHs(k)

intoHk. For classification, we use Chi-Square kernel:

K(Hi,Hj) =
∑
I

Hi(I)−Hj(I))2

Hi(I) +Hj(I)
(10)

3.2.3. Crowd event characterization

Local density is an important cue to characterize crowd events; it provides addi-

tional information about the density of people participating to a detected event, and it

enables the localization of the event as well. The characterization of crowd events is as

follows:290

Walking/Running: Walking event corresponds to a number of persons moving at low

speed. If the speed is high, running event is detected.

Evacuation: Evacuation is defined as a sudden dispersion of the crowd in different di-

rections. To recognize this event, direction, speed, and crowd density attributes can be

used. This event is characterized by detecting more than 4 principal directions which295

have to be distant from each others. Also, a degradation in the crowd density and an

increase in the speed and in the motion area have to be detected.

Crowd formation/Splitting: Crowd formation (or merging) event is recognized when

we detect a merge of many individuals coming from different directions towards the
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same location. For this purpose, distance between main directions can be used. Also,300

this event is characterized by an increase in the crowd density and a decrease in the

motion area. The opposite of crowd formation is splitting event.

Local dispersion: This event is recognized when people moves locally away from a

threat. The same attributes of crowd formation and splitting can be employed.

3.3. Improving the compliance between privacy and surveillance305

In this section, we propose to apply the crowd density measure described in Sec-

tion 2 in privacy context by adjusting the level of privacy protection according to the

local needs. The crowd density is selected as a criterion for privacy protection for the

following reasons: crowded areas have to be constantly monitored as they are common

places for crimes or for dangerous overcrowding situations. At the same time, people310

in a crowd exhibit a smaller amount of information to a video operator, thus they do not

have to be filtered by the same degree as for an isolated person who is entirely visible.

We therefore propose to lower the level of privacy protection within a crowded area

compared to non-crowded area.

A simple way to do that could be to use the crowd density map as input to choose315

the obfuscation level. Since this method could substantially decrease the visibility of

potentially important information because all crowded areas would be obscured, we re-

strict the application of privacy preservation filters to some regions of interest, i.e. only

regions that contain personal information are obfuscated. These could include face,

clothing, skin/hair color or even gait depending on the scene context. Given this vari-320

ety and considering that these information is not perceivable under all circumstances

(e.g. heavy crowding, different lighting conditions, distance, low resolution...), in our

work we consider head obfuscation as the most visible part of a human in a crowd.

However, once a person leave the crowd and is perceived as an isolated subject, more

information such as clothing or skin color has to be hidden from the viewer.325

The flowchart of the proposed contextualized privacy protection filters is shown in

Figure 3. First, for RoIs detection step, we employ the extension of the part-based

models to crowded scenes described in Section 3.1 (dotted line in Figure 3). Then, for

people obfuscation, we apply adaptive privacy preservation filters to the head part or to
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Figure 3: Flowchart of the proposed contextualized privacy preservation filters using an examplary frame

from PETS [31], the dotted line in this figure shows that the crowd density map is also used to improve the

robustness of the detection in crowded scenes.

the whole body depending whether the target is isolated or within the crowd. Finally,330

the level of privacy protection is adapted according to the crowd density. Given a set

of filter parameters representing different obfuscation levels P = {Pmin, ..., Pmax},

for each detection dkj , its average crowd density value Ĉk(dkj ) is used to choose the

respective filter parameter that has to be applied.

As the visibility of a person in the scene is also sensitive to his/her distance from335

the camera because of perspective effects, we use this distance as second parameter to

choose a suitable obfuscation level. A simple method to approximate the distance is to

use the resolution of the detected bounding box. Since this information could be subject

to errors, a more accurate method is to compute the aspect ratio and the perceived

height of a person from all accepted detections (this information can be obtained from340

the detection step). Using this method, we are able to predict the height h̃kj and the

ratio γk−1 of a detection from the previous detections. Thus, the estimated size of a

bounding box dkj is S̃kj = (h̃kj )2 ∗ γk−1 which is more robust than wkj ∗ hkj .

In this work, we use two typical privacy protection filters which are:
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3.3.1. Gaussian Blurring345

This privacy filter essentially consists of removing details in a region of interest by

applying Gaussian low pass filtering.

Ikblur(x, y) = Ik(x, y) ∗ 1

2πσk,j2
e

(x2+y2)

2σk,j
2 (11)

The bandwidth σk,j of the Gaussian is adapted according to the crowd density level

and the predicted size.

3.3.2. Pixelization

This filter is based on decreasing the resolution of any region of interest by replac-

ing each block of pixels in this area with its respective average.

Ikpix(x, y) =
1

b2k,j

bk,j−1∑
i=0

bk,j−1∑
j=0

I

(⌊
x

bk,j

⌋
+ i,

⌊
y

bk,j

⌋
+ j

)
(12)

As for the blurring process, the filter size bk,j ∝ (Ĉk(dkj ), S̃kj ).

4. Experimental Results350

4.1. Results of crowd density estimation

The proposed crowd density map is evaluated within challenging crowded scenes

from multiple video datasets. In particular, we select some videos from PETS [31],

UCF dataset [32], and the Data Driven Crowd Analysis dataset [33]. Regarding the na-

ture of the videos, PETS sequences are all taken from the same view (View 1), however,355

they still pose different problems such as lighting conditions, shadows, and different

crowd densities between the test sequences. The UCF-879 sequence is even more chal-

lenging due to higher crowd density and the tilted camera view. For the INRIA 879-38

sequence, the camera view is almost completely downward and people are walking

very near to the camera. The proposed method was developed using an Intel Core360

i5-2500 CPU, 8 Go of RAM, Windows 7 running PC. The software used to perform

the experiments was Matlab. The calculation of the density map per frame takes 2.71

seconds (for 509 local features).
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For evaluating crowd density maps, the following methodology is adapted: we

consider that accurate estimation of density maps can adequately represent the spa-

tial distributions of people in the scene. For this purpose, we define the ground truth

density function as a kernel density estimate based on annotated person detections.

Then, we assume that an optimal feature representation can be produced by simple lin-

ear weighting of the ground truth density. Hence, given a set of annotated detections

φk = {ϕk1 , ..., ϕklk}, ϕ
k
i = {xcki , ycki , hki , wki }, where (xcki , yc

k
i ), hki , wki denote, re-

spectively, the center coordinates, the height, and the width. The corresponding ground

truth density Gk is defined as:

Gk(x, y) =

lk∑
i=1

1√
2πσki

exp−(
(x− xcki )2 + (y − ycki )2

2σki
2 ) (13)

σki corresponds to the size of the bounding box ϕki .

Given the estimated density maps {C1, ..., CN} and their corresponding ground

truth density maps {G1, ..., GN}, we aim at estimating the linear transformation map-

ping Ci to Gi, 1 ≤ i ≤ N , with the least mismatches between them. The parameter

vector Ω of this linear transformation [34] is defined as:

Ω = argmin
ω

(ωTω + λ
∑N
i=1Dist(Gi(.), C

′
i(.|ω))),

C ′i(.|w) = wTCi(.)

(14)

where λ is a scalar hyperparameter controlling the regularization strength while Dist365

is the distance measuring the loss. Since we aim at evaluating the local distribution of

density, an appropriate choice of Dist could be an Lp metric, which turns (14) to a

typical linear regression problem, see Figure 4.

The evaluation is performed using MAE (mean-absolute-error) between the ground

truth densities Gk and the estimated densities C ′k after applying linear transformation.370

Additionally, we split the image regions to crowd (C) / non-crowd (C) regions using

the reference image and the ground truth density. In Table 1, we report the results in

terms of normalized MAE to the range of data in order to ensure scale-independence.

In particular, three evaluation metrics E, EC and EC , are computed which denote nor-

malized MAE in the whole video, in crowded areas, and non-crowded areas, respec-375
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Input   Frame 

Annotated Detections 

Estimated Density Map 

Ground-Truth Density 
Map 

Figure 4: Flowchart of the evaluation methodology of crowd density map: The ground truth density is

estimated using annotated person detection. These ground truth values are plotted vs. the estimated density

values to approximate the linear transformation mapping the estimated to the ground truth values.

tively. Also, a comparison of FAST to other local features (namely Scale-Invariant

Feature Transform (SIFT) [35], Good Features to Track (GFT) [36], Maximal Stable

Extremal Regions (MSER) [37], and Speeded Up Robust Features (SURF) [38] ) is

shown and values for a GMM-based crowd density-estimation (which consists of sub-

stituting the feature-tracking step by foreground segmentation) are given. These com-380

parisons clearly show that the feature tracking step achieves substantial improvement

over using foreground segmentation. That highlights the advantage of using trajecto-

ries; our estimate is more robust to noise and the overall motion is more accurate. As

a result, the number and position of the tracked features undergo an implicit tempo-

ral filtering step which improves the consistency compared to the separation between385

foreground and background entities.

By comparing different local features, the results show that the choice of local

features in general have limited impact on the performance if we consider all image

regions, even if a small improvement of FAST features is noted compared to other

features. However, a more significant margin in the results between FAST and the other390

features is shown in crowded regions (using EC quality metric) which demonstrates

good performance of FAST for crowd measurements. For this reason, this feature will
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sequence name E EC EC

S1.L1.13-57 (FAST): 0.07 / 0.20 0.05 / 0.18 0.30 / 0.44
S1.L1.13-57(SIFT): 0.07 / 0.15 0.05 / 0.13 0.32 / 0.38
S1.L1.13-57 (GFT): 0.08 / 0.17 0.06 / 0.14 0.34 / 0.40
S1.L1.13-57 (MSER): 0.07 / 0.15 0.05 / 0.13 0.36 / 0.40
S1.L1.13-57 (SURF): 0.07 / 0.21 0.04 / 0.19 0.36 / 0.47
S1.L1.13-59 (FAST): 0.04 / 0.12 0.04 / 0.11 0.13 / 0.30
S1.L1.13-59 (SIFT): 0.04 / 0.09 0.04 / 0.09 0.18 / 0.27
S1.L1.13-59 (GFT): 0.04 / 0.11 0.04 / 0.10 0.18 / 0.31
S1.L1.13-59 (MSER): 0.04 / 0.12 0.04 / 0.11 0.30 / 0.37
S1.L1.13-59 (SURF): 0.05 / 0.13 0.04 / 0.13 0.39 / 0.44
S1.L2.14-31 (FAST): 0.09 / 0.24 0.07 / 0.21 0.21 / 0.41
S1.L2.14-31 (SIFT): 0.09 / 0.20 0.07 / 0.17 0.24 / 0.41
S1.L2.14-31 (GFT): 0.10 / 0.22 0.08 / 0.18 0.27 / 0.41
S1.L2.14-31 (MSER): 0.07 / 0.18 0.05 / 0.14 0.26 / 0.43
S1.L2.14-31 (SURF): 0.07 / 0.20 0.04 / 0.16 0.26 / 0.44
S2.L3.14-41 (FAST): 0.04 / 0.23 0.03 / 0.20 0.23 / 0.54
S2.L3.14-41 (SIFT): 0.03 / 0.17 0.02 / 0.13 0.21 / 0.60
S2.L3.14-41 (GFT): 0.03 / 0.18 0.02 / 0.15 0.21 / 0.58
S2.L3.14-41 (MSER): 0.03 / 0.11 0.02 / 0.07 0.19 / 0.69
S2.L3.14-41 (SURF): 0.03 / 0.14 0.02 / 0.10 0.18 / 0.66
UCF-879 (FAST): 0.10 / 0.28 0.10 / 0.28 0.09 / 0.23
UCF-879 (SIFT): 0.26 / 0.37 0.25 / 0.36 0.33 / 0.38
UCF-879 (GFT): 0.14 / 0.31 0.14 / 0.31 0.17 / 0.33
UCF-879 (MSER): 0.15 / 0.42 0.14 / 0.42 0.25 / 0.41
UCF-879 (SURF): 0.10 / 0.47 0.08 / 0.47 0.21 / 0.47
INRIA-879-42(FAST): 0.11 / 0.36 0.09 / 0.38 0.21 / 0.30
INRIA-879-42 (SIFT): 0.16 / 0.33 0.13 / 0.34 0.28 / 0.31
INRIA-879-42 (GFT): 0.13 / 0.34 0.10 / 0.36 0.24 / 0.31
INRIA-879-42 (MSER): 0.12 / 0.37 0.12 / 0.39 0.21 / 0.38
INRIA-879-42 (SURF): 0.11 / 0.34 0.08 / 0.35 0.23 / 0.36

Table 1: Results of crowd density estimation for five different local feature types (FAST, SIFT, GFT, MSER

and SURF) and for different test videos in terms of normalized MAE (E, EC and EC). Val1/Val2 are the

results of our proposed approach using feature tracks, and the results using GMM foreground segmentation.

be used in the experiments for the three following applications.

4.2. Results of person detection and tracking

For quantitative evaluations of detection results, we use the CLEAR metrics [39]:395

the Multi-Object Detection Accuracy (MODA) and the Multi-Object Detection Preci-

sion (MODP). To demonstrate the effectiveness of the proposed detection algorithm,

we compare the baseline method [28] using two detection thresholds (τmin and τmax)

to the proposed method using a dynamically chosen threshold τdyn ∈ {τmin...τmax}

according to the crowd density. Additional tests are conducted to assess the impact of400

the correction filters.
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sequence name τmin τmax τdyn Filtering τdyn+ Filter-
ing

S1.L1.13-57 0.48 / 0.65 0.36 / 0.57 0.59 / 0.59 0.48 / 0.66 0.63 / 0.63

S1.L1.13-59 0.56 / 0.68 0.25 / 0.61 0.60 / 0.67 0.56 / 0.69 0.60 / 0.68

S1.L2.14-31 0.33 / 0.63 0.09 / 0.57 0.40 / 0.59 0.32 / 0.65 0.47 / 0.63

S2.L3.14-41 0.29 / 0.54 0.04 / 0.56 0.34 / 0.56 0.29 / 0.54 0.35 / 0.57

UCF-879 0.44 / 0.58 0.34 / 0.54 0.41 / 0.55 0.41 / 0.62 0.59 / 0.58

INRIA879-42 0.27 / 0.54 0.06 / 0.55 0.35 / 0.55 0.20 / 0.42 0.42 / 0.47

Table 2: MODA / MODP results for FAST features used in the crowd density estimation and for different

test videos.

As it is shown in Table 2, we set τmin to (-0.5) and τmax to (-1.2), these values have

been found empirically suitable for lowly-resp. highly crowded scenes. The second

column of this table shows that using τmin as detection threshold does not provide

satisfactory results, also by decreasing the threshold to τmax in the third column, the405

results are globally worse. However, as shown in the fourth column, the automatic

choice of the detection threshold gives better results than both configurations of the

baseline method. Regarding the final results (in the last column), the proposed method

using a dynamically chosen detection threshold together with filtering gives the best

results for all test videos. These results demonstrate that using both steps (filtering410

and dynamic threshold) performs favorably better than implementing them separately

which justifies that filtering has to be performed first to suppress false detections and

to emphasize correct ones.

Figure 5 shows exemplary visual results which also indicate that the performance

increases by the proposed method. Although the PETS sequences pose different prob-415

lems to the detector, in all cases the proposed method improves the detection results

compared to the baseline method. The UCF-879 sequence is even more challenging,

however, the proposed method still enhances the detection considerably compared to

the baseline method. For INRIA 879-38 sequence, people are walking very near to

the camera which significantly changes their aspect ratio for different positions. Addi-420

tionally, for this specific perspective, many detection candidates comprising the head

of one person and the body of another are generated. As the correction filter does

not apply any prior-knowledge about the shape of a person but is only estimated from
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(a) (b) (c)

Figure 5: Exemplary visual results comparing the performance of crowd-sensitive threshold to the baseline

method: (a) baseline algorithm at τmin, (b) baseline algorithm at τmax, (c) proposed method using dynam-

ically chosen τdyn and correction filter according to aspect ratio and perceived height. From Top to bottom:

Frames from PETS, UCF 879, and INRIA 879-38.

previous detections, it is misled in this situation. Accordingly, in this special case, its

contribution is smaller.425

To demonstrate the impact of improving detection results on tracking, we use Prob-

ability Hypothesis Density (PHD) filter [40] in a tracking-by-detection framework. The

results in terms of OSPA-T distance [41] that are generated using the same tracker con-

figuration for all videos are shown in Table 3. In all cases, our results using a dynamical

detection threshold and correction filtering are better compared to the baseline method.430

These results are consistent with our expectations as the tracker relies on improved de-

tections and lower clutter. As the tracker can deal with clutter and also with missed

detections to some extent, detection improvements enhance the tracking performance
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sequence name original (τ = 0.5) proposed method

S1.L1.13-57 65.26 63.64

S1.L1.13-59 64.81 62.36

S1.L2.14-31 75.27 66.39

S2.L3.14-41 88.19 87.65

UCF-879 89.92 86.89

INRIA-879-42 81.15 73.22

Table 3: Averaged OSPA-T values for test sequences. We use a cut-off parameter c = 100, α = 30 and a

distance order of d = 2.
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Figure 6: (a) OSPA-T distance over full sequence PETS S1.L2.14-31. (b)-(c) Exemplary visual tracking

results for this scene. (b) baseline method, (c) proposed method using FAST features

but not with the same effect.

In Figure 6 (a), the OSPA-T metric over a complete scene (PETS S1.L2.14-31)435

is shown. For this scene with hard lighting conditions and medium crowd density,

the detection performance is considerably increased by the proposed method. The

diagram shows that the tracking performance of our method is mostly better than using

the baseline algorithm. Visual examples are given in Fig. 6 (b)-(c) where it can be seen

that our method using FAST is visibly able to track objects for a longer time and also440

maintains more tracks than the baseline method.

4.3. Results of crowd behavior analysis

For crowd change detection, we test our proposed approach on the publicly avail-

able UMN dataset [42], which has been widely used to distinguish between normal

and abnormal crowd activities. The dataset comprises 11 videos from three indoor and445

outdoor scenes. Each of these videos can be divided into normal and abnormal parts.
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More precisely, they illustrate different scenarios of escape events such as running in

one direction, or people dispersing from a central point.

For the ground truth, as noticed in [13, 15], the labels of abnormal events shown in

the videos are not accurate; there are some lags in the ground truth labels. To overcome450

this conflict, we use the labels of change detection of some videos from [13], and [15],

for the other videos we follow the same annotation strategy; we manually label the

frame in which people start running.

For quantitative evaluation, we employ the relative mean frame error [17]. As

seq. UMN nb. frames ground truth our det. changes eF

Video1 625 484 493 0.0144

Video2 828 665 669 0.0048

Video3 549 303 319 0.0291

Video4 685 563 582 0.0277

Video5 769 492 512 0.0260

Video6 579 450 466 0.0276

Video7 895 734 754 0.0223

Video8 667 454 471 0.0255

Video9 658 551 551 0

Video10 677 570 577 0.0103

Video11 807 717 722 0.0062

Table 4: Comparison of our detection results to the ground truth labels using error frame metric

shown in Table 4, the comparison of our detection results to the ground truth labels455

demonstrates accurate detections in most videos. The delay in the detection of some

frames after the event occurs is because of our strategy of detection, in which an ab-

normal event is detected only if the temporal stability is below the dynamic threshold.

This requires some times to be detected, which justifies the delay. At the same time,

this strategy is suitable to avoid false alarms.460

Moreover, we compare our results to other methods, namely, the Social Force

Model (SFM) [14], the adjacency-matrix based clustering (AMC) [15], and the sim-

ilarity metric based on 2D-histograms decoupling speed and orientation in [13], see

Figures 7, and 8. In these figures, the green bar indicates normal events, and the red

color denotes abnormal events. These results show that our method gives better results465
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than SFM and comparable results regarding the two other methods. It is important

to note that UMN dataset does not include events such as crowd formation/splitting,

that could justifies the satisfactory results achieved by methods based only on motion

information.

For evaluating crowd event recognition, we test our method on PETS. S3 dataset470

[31], which is used to assess flow analysis and event recognition algorithms. For event

recognition, this dataset depicts 6 classes of crowd events: walking, running, formation

(merging), splitting, evacuation, and dispersion. We randomly split this dataset into

(75%) for training and (25%) for testing. Following one-vs-one strategy, we obtain

(99.54%) as classification accuracy. In addition, we report the classification accuracy475

on the test set for each class separately, following one-vs-rest strategy, see Table 5. As

Events Walking Running Splitting Dispersion Evacuation Formation

accuracy 99.41 99.21 100.00 99.87 99.80 99.54

Table 5: Classification accuracy of our proposed crowd event recognition method on test set from PETS. S3

dataset following one-vs-rest strategy

it is shown in this table, we obtain good results for all crowd events including crowd

formation/splitting, which justifies the relevance of our proposed crowd attributes.

(a) (b) (c)

0
624

Our Approach

Ground Truth 484

496

493

Almeida et al.

(d)

Figure 7: Results on Video1 of UMN [42] dataset (a) The first frame of the video sequence (b) The frame in

which the crowd change occurs (c) The frame in which our method detects the crowd change (d) Comparisons

of our result to [13] and to the ground truth
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Figure 8: Results on Video10 of UMN [42] dataset (a) The first frame of the video sequence (b) The frame in

which the crowd change occurs (c) The frame in which our method detects the crowd change (d) Comparisons

of our result to [13, 15, 14] and to the ground truth

For evaluating our proposed method for crowd event characterization, we use PETS.

S3 dataset. By following up some measures extracted from the crowd attributes (un-480

supervised method), we are able to monitor what is happening in the scene, to localize

the event, and to have clear idea about the density of people participating to each event.

Figure 9 illustrates some examples of event characterization on PETS. In the first row

of this figure, a sample frame of crowd formation is shown. This event is characterized

by people coming from different directions and they are moving towards the same lo-485

cation (as it is depicted in the first column, showing the direction of motion vectors).

Also, this event is characterized by a decrease of motion area ratio in time (equal to

40.72% at this frame). In the second column, we show the estimated density map,

which localizes where the crowd is formed. The area of dense regions is increasing

in time, it reaches 6.10% at this frame. Given all the characteristics, crowd formation490

event can be recognized and localized as it is shown in the third column.

In the second row, an example of evacuation is shown. This event is characterized

by the divergence of motion vectors as it is shown in the first column, because people

are moving away from each others in different directions. In addition, this event is

characterized by a sudden increase in the speed; the average of magnitude of all motion495

vectors at this frame is equal to 12.48 pixels. Evacuation event is also characterized by
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a) Motion vectors (b) Density map (c) Recognized event

Figure 9: Results of event characterization from PETS dataset: examples of crowd formation and evacuation

events.

in an increase in the motion area ratio (53.79%) and a decrease in time of dense areas

(as it is shown in the second column).

4.4. Results of contextualized protection filters

The proposed context-dependent privacy protection filers are tested with challeng-500

ing crowd scenes from PETS [31], UCF [32] and Data Driven Crowd Analysis [33]

datasets. For evaluation, we adopt an objective evaluation framework, by studying the

variation in performances of the commonly used algorithms in video surveillance ana-

lytics before and after applying the filters. We recall that one of the major challenges in

defining privacy protection policies lies in identifying the appropriate balance between505

the two axis of intelligibility and privacy of the surveillance data.

On one side, we model the impact of privacy filters on intelligibility by evalu-

ating the performances of a people counting-by-detection algorithm before and after

applying the filters. We motivate our choice by observing that privacy protected video

surveillance footage must at least retain those visual features necessary to perform very510

basic monitoring tasks such as people detection and counting. On the other side, we

model privacy as the inverse score of a person matching algorithm based on local fea-

tures. Such algorithm tries to identify an individual among a set of other subjects by
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extracting and matching local features. This algorithm represents a common step for

higher level tasks such as person re-identification, recognition or tracking, which could515

potentially reveal information on the identity of a subject. In our implementation, we

use Hessian-Laplace interest point detector together with the SIFT descriptor and near-

est neighbor matching. Based on such premise, an appropriate privacy filter should

prevent the person matching algorithm to correctly detect and match local features.
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Figure 10: Counting scores on sequences protected by blur and pixelization, compared to original results.

Figure 10 reports the people counting results for blurring and pixelization protec-520

tion techniques, compared to the counting scores when no protection filter is applied.

The evaluation score is chosen as the percentage p ∈ [0, 1] of correctly detected indi-

viduals with respect to the annotated ones in the ground truth. We can observe that the

counting results do not decrease significantly after applying the protection filters. The

score drop is 0.09, with the minimum loss observed for the blur filter. Consequently, we525

are still able to correctly perform people counting within a 9% error margin. We also

notice that counting results are better using blurring filter compared to pixelization.

Matching results are displayed in Figure 11, following the same strategy as for

counting. We can clearly observe a dramatic drop in performances of the person match-

ing algorithm. On average, the drop in matching score is 0.39, with the maximum ob-530

served loss is for the blur filter. These results confirm that our approach for privacy

protection behaves in accordance to the requirements, in terms of preservation of in-

telligibility and privacy of the original source. Our privacy protection filters generate a
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Figure 11: Matching scores on sequences protected by blur and pixelization, compared to original results.

relatively small loss in people counting score, and therefore in intelligibility, compared

to the drop in performances of the matching step, and thus the gain in privacy protec-535

tion level. We notice as well that in both counting and matching experiments, blurring

filters provide better intelligibility and privacy levels compared to pixelization.

In Figure 12, we show the results on one frame from PETS. It is visible that the

block size in the pixelization filter and the bandwidth of the Gaussian blurring are

changed by our system according to the crowd density value and perceived size of the540

person. Comparing e.g. the woman in the lower right corner, to the persons walking in

the crowd, it is well perceivable that the protection level is reduced within the crowd

by a smaller block size or a smaller bandwidth respectively. At the same time, it can be

seen that this woman does not have such a high density measure compared to the group

of people walking in the crowd, consequently, the application of privacy protection545

filters is extended to the whole body.

5. Conclusion

Our contribution in this paper fits the context of crowd density estimation and its

application to other video surveillance tasks. The crowd density information was repre-

sented as a new statistical model of spatio-temporal local features that varies temporally550

over the video and spatially across the frame. Our proposed approach was tested on

videos from different datasets and the results highlighted the relevance of the feature
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(a) RoIs detections (b) Crowd density map (c) Pixelized image (d) Blurred image

Figure 12: Results of adaptive protection filters using one frame from PETS: (a) RoIs detection, (b) estimated

crowd density map, (c) application of pixelization filter, and (d) application of blurring filter

tracking process compared to the foreground segmentation. Furthermore, we included

a comparative study between different local features in order to investigate their dis-

criminative power to the crowd.555

In addition, we approached some problems related to the crowd analysis field from

a new perspective. Given the difficulties encountered by video analytic components in

crowded scenes, we employed the proposed local space-time model of crowd density

to complement the following applications: First, the crowd density was used to en-

hance human detection and tracking in crowded scenes by applying a scene-adaptive560

dynamic parameterization. Second, it was used with motion information for studying

crowd behaviors by analyzing long-term trajectories. Finally, it was applied in privacy

context to boost the compliance between privacy and surveillance concerns. The exper-

imental results demonstrated the usefulness of the crowd density to improve detection

and tracking results compared to the baseline methods. Also, its application to crowd565

behavior analysis showed good performance for early detection of crowd change, and

accurate event recognition. Finally, the effectiveness of the proposed crowd density-

dependent privacy preservation filters has been demonstrated by an objective evaluation

assessing privacy and intelligibility trade-off.

There are several possible extensions of this work: First, for human detection and570

tracking more contextual information to improve the results in crowded scenes might be

investigated. Also, since the incorporation of the crowd density model into the tracking

is performed by providing improved detection results, a more elegant approach could
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formulate both detection and tracking as a joint framework and crowd density informa-

tion could be integrated in both steps to enforce scene constraints. For crowd behavior575

analysis, our proposed method succeeds to achieve accurate results for early detection

and recognition once the change or the event occurs, however, it is important to inves-

tigate event prediction (before it happens). Finally, for privacy preservation, since we

only used objective evaluation to assess our proposed contextualized protection filers;

it could be advantageous to perform subjective evaluation of them as well.580
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