
A-PPL: An Accountability Policy Language

Monir Azraoui1, Kaoutar Elkhiyaoui1, Melek Önen1, Karin Bernsmed2,
Anderson Santana De Oliveira3, and Jakub Sendor3

1 EURECOM, Biot Sophia Antipolis, France
{monir.azraoui, kaoutar.elkhiyaoui, melek.onen}@eurecom.fr

2 SINTEF ICT, Trondheim, Norway
karin.bernsmed@sintef.no

3 SAP Labs France, Mougins Sophia Antipolis, France
{anderson.santana.de.oliveira, jakub.sendor}@sap.com

Abstract. Cloud Computing raises various security and privacy chal-
lenges due to the customers’ inherent lack of control over their outsourced
data. One approach to encourage customers to take advantage of the
cloud is the design of new accountability solutions which improve the
degree of transparency with respect to data processing. In this paper, we
focus on accountability policies and propose A-PPL, an accountability
policy language that represents machine-readable accountability policies.
A-PPL extends the PPL language by allowing customers to define ad-
ditional rules on data retention, data location, logging and notification.
The use of A-PPL is illustrated with a use case where medical sensors
collect personal data which are then stored and processed in the cloud.
We define accountability obligations related to this use case and translate
them into A-PPL policies as a proof of concept of our proposal.

1 Introduction

Cloud computing marks a shift in the way organizations and individuals consume
technology. Customers outsource large amount of data into the cloud and del-
egate the implementation of numerous security and privacy controls over these
data to the cloud service provider. This new paradigm hence raises account-
ability concerns; in particular, business customers perceive data lock-in, loss of
governance and non-compliance as major risks associated with the cloud [11].

As defined in [14], accountability concerns data stewardship regimes in which
organizations that are entrusted with personal and business confidential data are
responsible and liable for processing, sharing, storing and otherwise using the
data according to contractual and legal requirements from the time the data
is collected until when it is destroyed (including onward transfer to and from
third-parties). In such a setting, clarifying the accountability relationships, i.e.
who is responsible to whom and for what, with clear organizational policies will
help overcome barriers to data governance in the cloud. Appropriate policies
mitigate risks, provided that reliable tools to enforce them and to monitor their
effectiveness are in place to allow audits.

In this paper, we are interested in machine-readable representations of poli-
cies expressing accountability obligations. Such policies will help service providers
deploy their automatic enforcement when personal data is processed. We propose
a new policy language, A-PPL, that enables the expression of the accountability
obligations. A-PPL (shorthand for Accountable PPL) extends the existing PPL
language [15] by allowing the expression of accountability obligations such as
rules on data retention, data location, logging and notification. We first present
a number of design requirements for an accountability policy language. We then
describe PPL and its limitations. A-PPL which aims at addressing these short-
comings is further introduced and finally illustrated with a healthcare use case.

2 Policy Language Requirements

Following an analysis of accountability relationships between cloud actors in [1,
5], we derive a collection of eight requirements for the design of an account-
ability policy language. The new policy language should express data handling
rules that correspond to (R1) Privacy Policies, (R2) Access Control Rules,
(R3) Usage Control Rules and (R4) Data Retention Periods. The requirements
related to accountability needs, often absent in existing policy languages, concern
(R5) Reporting and Notification, (R6) Data Location Rules, (R7) Auditability
and (R8) Logging. One may argue that these requirements can be expressed
and enforced using multiple languages at different levels of the cloud technol-
ogy stack. We advocate that centralizing these concerns in a single policy will
improve the accountability of the actors processing personal data in the cloud,
while decreasing the loss of governance, as policies will not be diluted across
the service provisioning chain. Besides, rather than imposing a new language,
we aim at choosing an existing language that fulfills the above requirements the
best and which is extensible enough to add accountability extensions to it.

3 A-PPL: An Accountable Policy Language

In [1, 5], we conduct an analysis of existing policy languages against the design
requirements we identified in Section 2. As a result, we choose the PrimeLife
Policy Language (PPL) as the best candidate language since it covers most of
the requirements and PPL is an extensible language. Therefore, we create new
extensions to PPL to build A-PPL.

3.1 PrimeLife Policy Language (PPL) and its limitations

PPL [15] was proposed by the European ICT PrimeLife4 project to specify
machine-readable privacy policies. PPL extends XACML [12] by defining a new
obligation and authorization syntax. In PPL, an obligation is expressed using
the pair Trigger-Action. Triggers are events related to an obligation and filtered

4 http://www.primelife.eu/

by conditions. Triggers fire Actions that are performed by the data controller.
The complete list of available PPL Triggers and Actions can be found in [15].
Authorizations define the actions that the data controller is allowed or prohibited
to perform: (i) authorization for purposes, allows the data controller to perform
actions for a particular set of well-stated usage purposes; (ii) authorization for
downstream usage, allows the forwarding of collected data to third-parties.

While PPL meets most of the requirements we identify in Section 2 (such
as privacy policies (R1), access and usage control rules (R2)), it falls short in
meeting other requirements such as data location (R6) or auditability (R7). Hav-
ing identified the limitations of PPL, we propose in Section 3.2 our accountable
policy language A-PPL that extends PPL based on each requirement.

3.2 The syntax of A-PPL

In this section we present the extensions we add to PPL to create A-PPL. Note
that we maintain the overall structure of PPL. More details can be found in [5].

Roles. A-PPL identifies different actors that can hold different roles: data sub-
ject, data controller, data processor and data protection authority. PPL already
defines the first three roles. We create the auditor role. To make the identification
of roles explicit in A-PPL, we introduce a role attribute identifier subject:role
to be included as an attribute of the standard XACML element <Subject>.

Access Control Rules (R2). We introduce two new triggers which condition
the execution of an obligation based on the result of an access decision. More
specifically, we propose TriggerPersonalDataAccessPermitted and Trigger-

PersonalDataAccessDenied that occur when the evaluation of the access con-
trol on the targeted data results in “Permit” and “Deny”, respectively.

Data Retention (R4). PPL provides an element Purpose that allows to spec-
ify for which purpose a piece of data can be collected or accessed. In A-PPL, we
define the duration attribute for Purpose that allows to specify for how long
the data can be processed for a particular purpose. This attribute implies that
when all durations for each purpose have expired, the data has to be deleted,
since the data cannot be used for any purpose anymore.

Reporting and Notification (R5). We modify the existing PPL Action-

NotifyDataSubject element and call the newly created action ActionNotify.
We provide the attribute recipient that allows to indicate the recipient of the
notification and the attribute type that specifies the type of notification to be
sent to the recipient.

Controlling Data Location (R6). We propose in A-PPL a standard identifier
region to specify the location in the AuthzUseForPurpose element. Thus we
define the authorized locations of processing of data for particular purposes.

Auditability (R7). We propose two extensions that relate to audits and col-
lection of evidence. This evidence collection is governed by a new A-PPL trig-
ger TriggerOnEvidenceRequestReceived, and a new A-PPL action Action-

EvidenceCollection. The combination of these two elements initiates the evi-
dence collection by the data controller.

Logging (R8). We extend the ActionLog element in A-PPL. We introduce
several parameters to make explicit which information about an event needs to
be logged: a timestamp, the action that is performed on the data, the identity
of the subject who performed the action and the purpose of the action (e.g.
marketing). Other details can also be written in the logs such as some security
flags that may state whether the log entry is encrypted.

Note that possible conflicts between accountable obligations are not ad-
dressed by A-PPL. As studied in our report [5], we consider that these conflicts
are solved before mapping the obligations to A-PPL policies.

3.3 A-PPLE (A-PPL Engine): the extension of the PPL Engine

The policy engine supporting PPL was originally designed in PrimeLife project [15].
We briefly present the new architecture of A-PPLE whereby we extend and mod-
ify the PPL engine’s architecture to implement the new features of the A-PPL
policy language. The core elements of A-PPLE are the Policy Enforcement Point
(PEP) and the Policy Decision Point (PDP). While the PEP acts as an orches-
trator of the enforcement process and interfaces with the Web Services, the PDP
is the component where the access control decision is taken. PDP relies on the
access control engine implementation based on HERAS [9] for the evaluation of
the XACML part of an A-PPL policy. Apart from the standard attribute-based
access control, the other information evaluated by the PDP at the step of access
control decision is usage authorization. The PEP coordinates two modules: the
Event and Obligation Handlers. The functionality of the Event Handler is to
fire the events related to the personal data lifecycle, e.g. when data is deleted
from the Personal Data store or when it is shared with the third parties. The
Obligation Handler keeps track of the triggers that are part of the obligation
statements in the A-PPL policy. Once the events are observed, the action asso-
ciated with the obligation is activated by the Obligation Engine. We also define
an additional and central component for handling the audit requests which will
facilitate the process of retrieving the necessary information from the systems
(logs related to obligations, notifications, access control decisions and personal
data lifecycle). Finally, each component in the engine architecture (Obligation
Handler, Event Handler, PDP and PEP) are linked with the logging Handler to
record all data sensitive actions in a non-repudiable manner. More details on the
new A-PPL engine can be found in [1].

4 Example of Use of A-PPL

In this section we present a use case that illustrates how accountability obliga-
tions can be expressed using A-PPL. The use case that we describe is a healthcare
system that will be used to support elderly people by analyzing medical data col-
lected by sensors. We investigate a case where medical data from the sensors will
be exchanged between the elderly, their families and friends, hospital caregivers
and healthcare personnel. The proposed solution is the M Platform, which is a
cloud-based service for medical sensor data collection, processing, storage and
visualization. The sensor data will be transmitted to the cloud where they will
be further processed and stored. The M Platform is offered to the hospital as a
service from a European software and service provider M, which has outsourced
both the initial storage of data collected through the sensors placed by hospital
staff (Cloud x, which is provided by X) as well as the long-term data storage
and back-up procedures (Cloud y, which is provided by Y). Further details about
this healthcare system can be found in [1, 3, 2]. To comply with the European
Data Protection Directive [7], as well as with the contractual relationships that
must exist between the involved actors, a number of accountability obligations
can be derived for the healthcare use case. Here we outline some of the most
prominent ones with their mapping into A-PPL statements. Further details on
the obligations can be found in [3].

Obligation 1: The right to access, correct and delete personal data. The hospital
must ensure that the patients have read, write and delete access to their personal
data that have been collected and stored in the cloud. The right to delete is
expressed in Listing 1.1 as XACML rules that A-PPL is built upon. Similar
rules can be specified for read and write access.

Listing 1.1: Access control

<Rule Effect="Permit" RuleId="DS_access">
<Target >
<Subject >
<SubjectMatch MatchId="function:string -equal">
<AttributeValue DataType="string">Data Subject </AttributeValue >
<SubjectAttributeDesignator DataType="string"

AttributeId="subject:role -id"/>
</SubjectMatch >

</Subject >
<Action >
<ActionMatch MatchId="string -equal">
<AttributeValue DataType="string">delete </AttributeValue >
<ActionAttributeDesignator DataType="string"

AttributeId="action -id"/>
</ActionMatch >

</Action >
</Target >

</Rule>

Obligation 2: Purpose of processing. The hospital must make sure that the pa-
tients’ personal data is only processed for specific, explicit and legitimate pur-
poses. Listing 1.2 shows an A-PPL statement that specifies the purposes and
their respective durations of use of the collected data.

Listing 1.2: Authorization for the specified list of purposes

<a-ppl:AuthzUseForPurpose >
<a-ppl:Purpose duration =2Y region=Europe >diagnosis </a-ppl:Purpose >
<a-ppl:Purpose duration =5Y region=Europe >research </a-ppl:Purpose >

</a-ppl:AuthzUseForPurpose >

Obligation 3: Breach notification. In case of security or personal data breaches,
cloud providers X and Y must notify M, which in turn must notify the hospital
and the hospital must notify the patients. Listing 1.3 shows an example of the
use of the ActionNotify element whereby the data controller is hold responsible
for notification in case of a policy violation5 or a loss of data.

Listing 1.3: Notify the data subject in case of a breach

<Obligation >
<TriggersSet >

<TriggerOnPolicyViolation/>
<TriggerOnDataLost/>

</TriggersSet >
<ActionNotify >

<Media>e-mail</Media>
<Address >data -subject@example.com</Address >
<Recipients >Patient:Data subject </Recipients >
<Type>Policy Violation </Type>

</ActionNotify >
</Obligation >

Obligation 4: Evidence of the correct and timely deletion of personal data. Cloud
providers X and Y must be able to provide evidence to the platform provider
M, and M must be able to provide evidence to the hospital on the correct and
timely deletion of personal data. Listing 1.4 shows an example of logging of the
delete action and Listing 1.5 collects these logs as evidence.

Listing 1.4: Log deletion

<Obligation >
<TriggerPersonal -

DataDeleted >
</TriggerPersonal -

DataDeleted >
<ActionLog >
<Timestamp/>
<Action/>
<Purpose/>
<Subject/>
<Resource/>>

</ActionLog >
</Obligation >

Listing 1.5: Evidence of data deletion

<Obligation >
<TriggerEvidenceRequestReceived >
</TriggerEvidenceRequestReceived >
<ActionEvidenceCollection >
<Evidence >
<Attribute AttributeId="evidence -type">
<AttributeValue >Logs of deletion </AttributeValue >

</Attribute >
</Evidence >
<Resource >
<Attribute AttributeId="resource -id">
<AttributeValue >Personal Data</AttributeValue >

</Attribute >
</Resource >

</ActionEvidenceCollection >
</Obligation >

Obligation 5: Location of processing. Cloud providers X and Y, as well as the
M Platform provider have contractual obligations towards their respective cus-

5 Violations are detected by an external tool that takes A-PPL policies as inputs.

tomers on the location of the data processing. Listing 1.2 presents an example
of how to specify authorized location of processing.

5 Related Work

Various work design a language for specifying obligations such as [12, 15, 10, 6,
13]. But little focus has been put on a language for accountability. For instance,
[10] proposes an extension of the XACML architecture to enable the enforcement
of obligations related to access control decisions.

Contemporaneous work by Butin et al. [4] leverages PPL to design logs for
accountability. They identify the lack of expressiveness of PPL ActionLog which
does not provide sufficient information in the logs. Besides, they discuss the
fact that the PPL element ActionNotifyDataSubject does not allow to specify
the content of the notification. Our accountability language A-PPL proposes a
solution for these two above problems.

Similarly, Henze et al. [8] identify location and duration of storage as the
two main challenges in cloud data handling scenarios. They use PPL to specify
data annotations that contain the data handling obligations (e.g “delete after 30
days”). Without giving more details, they propose to extend PPL with elements
that specify a maximum and a minimum duration of storage and with an element
that restricts the location of data. A-PPL addresses these two challenges and we
give in Section 3.2 the details of the extensions that solve these issues.

6 Conclusion

In this paper, we defined the design requirements for an accountability policy
language. We presented A-PPL, an extension of PPL, that handles accountability
specific requirements such as notification, logging and evidence collection. We
also described an architecture of A-PPLE, the policy engine that enforces A-PPL
policies. Finally, we extracted several obligations from a healthcare use case and
defined the corresponding A-PPL rules.

Our future work will consist in the finalization of A-PPLE and its integration
in a real setting that combines enforcement tools (such as an audit system).

7 Acknowledgments

This work was supported by the European Commission’s Seventh framework
A4Cloud6 project. We thank Dimitra Stefanatou for her help on the analysis of
accountability obligations.

6 http://www.a4cloud.eu/

References

1. M. Azraoui, K. Elkhiyaoui, M. Önen, K. Bernsmed, A. Santana de Oliveira, and
J. Sendor. A-PPL: An Accountability Policy Language. Technical report, 2014.

2. K. Bernsmed, M. Felici, A. S. D. Oliveira, J. Sendor, N. B. Moe, T. Rübsamen,
V. Tountopoulos, and B. Hasnain. Use case descriptions. Deliverable, Cloud Ac-
countability (A4Cloud) Project, 2013.

3. K. Bernsmed, H. Kuan, and C. Millard. Deploying Medical Sensor Networks in
the Cloud - Accountability Obligations from a European Perspective. Submitted
for publication, 2014.

4. D. Butin, M. Chicote, and D. Le Métayer. Log design for accountability. In Security
and Privacy Workshops (SPW), 2013 IEEE, pages 1–7. IEEE, 2013.

5. R.-A. Cherrueau, R. Douence, H. Grall, J.-C. Royer, M. Sellami, M. Südholt,
M. Azraoui, K. Elkhiyaoui, R. Molva, M. Önen, A. Garaga, A. S. de Oliveira,
J. Sendor, and K. Bernsmed. Policy representation framework. Deliverable (to be
published), Cloud Accountability (A4Cloud) Project, 2013.

6. F. Cuppens and N. Cuppens-Boulahia. Modeling contextual security policies. In-
ternational Journal of Information Security, 7(4):285–305, 2008.

7. European Parliament. Directive 95/46/EC of the European Parliament and of the
Council of 24 October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data., 1995.

8. M. Henze, M. Großfengels, M. Koprowski, and K. Wehrle. Towards data handling
requirements-aware cloud computing. In 2013 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2013.

9. HERAS AF team. HERAS AF (Holistic Enterprise-Ready Application Security
Architecture Framework). http://herasaf.org/.

10. N. Li, H. Chen, and E. Bertino. On practical specification and enforcement of
obligations. In Proceedings of the second ACM conference on Data and Application
Security and Privacy, pages 71–82. ACM, 2012.

11. A. Lin and N.-C. Chen. Cloud computing as an innovation: Percepetion, attitude,
and adoption. International Journal of Information Management, 32(6):533 – 540,
2012.

12. OASIS Standard. eXtensible Access Control Markup Language (XACML) Version
3.0. 22 January 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-
os-en.html, 2013.

13. E. I. Papagiannakopoulou, M. N. Koukovini, G. V. Lioudakis, N. Dellas, J. Garcia-
Alfaro, D. I. Kaklamani, I. S. Venieris, N. Cuppens-Boulahia, and F. Cuppens.
Leveraging ontologies upon a holistic privacy-aware access control model. In Foun-
dations and Practice of Security, pages 209–226. Springer, 2014.

14. S. Pearson, V. Tountopoulos, D. Catteddu, M. Sudholt, R. Molva, C. Reich,
S. Fischer-Hubner, C. Millard, V. Lotz, M. Jaatun, R. Leenes, C. Rong, and
J. Lopez. Accountability for cloud and other future internet services. In 2012
IEEE 4th International Conference on Cloud Computing Technology and Science
(CloudCom), pages 629–632, 2012.

15. S. Trabelsi, G. Neven, D. Raggett, C. Ardagna, C. Bournez, L. Bussard, M. Bezzi,
J. Camenisch, S. de Capitani di VIMERCATI, F. Gey, A. Kuczerawy, S. Meissner,
G. Neven, A. Njeh, S. Paraboschi, E. Pedrini, S. Foresti, U. Pinsdorf, F.-S. Preiss,
J. Sendor, C. Tziviskou, D. Raggett, T. Roessler, P. Samarati, J. Schallaboeck,
S. Short, D. Sommer, M. Verdicchio, and R. Wenning. D5.3.4 - report on design and
implementation of the primelife policy language and engine. Deliverable, Primelife
Project, 2011.

