DiNoDB: Efficient Large-Scale Raw Data Analytics

Yongchao Tian
Eurecom
yongchao.tian@eurecom.fr

Anastasia Ailamaki

anastasia.ailamaki@epfl.ch

ABSTRACT

Modern big data workflows, found in e.g., machine learning
use cases, often involve iterations of cycles of batch analyt-
ics and interactive analytics on temporary data. Whereas
batch analytics solutions for large volumes of raw data are
well established (e.g., Hadoop, MapReduce), state-of-the-art
interactive analytics solutions (e.g., distributed shared noth-
ing RDBMSs) require data loading and/or transformation
phase, which is inherently expensive for temporary data.

In this paper, we propose a novel scalable distributed solu-
tion for in-situ data analytics, that offers both scalable batch
and interactive data analytics on raw data, hence avoid-
ing the loading phase bottleneck of RDBMSs. Our system
combines a MapReduce based platform with the recently
proposed NoDB paradigm, which optimizes traditional cen-
tralized RDBMSs for in-situ queries of raw files. We revisit
the NoDB’s centralized design and scale it out supporting
multiple clients and data processing nodes to produce a new
distributed data analytics system we call Distributed NoDB
(DiNoDB). DiNoDB leverages MapReduce batch queries to
produce critical pieces of metadata (e.g., distributed posi-
tional maps and vertical indices) to speed up interactive
queries without the overheads of the data loading and data
movement phases allowing users to quickly and efficiently
exploit their data.

Our experimental analysis demonstrates that DiNoDB sig-
nificantly reduces the data-to-query latency with respect to
comparable state-of-the-art distributed query engines, like
Shark, Hive and HadoopDB.

Categories and Subject Descriptors

H.2.4 [Database Management]: System— Query process-
mng

Keywords

Distributed database; In situ query; positional map file

loannis Alagiannis
EPFL EPFL
ioannis.alagiannis@epfl.ch

Pietro Michiardi
EPFL Eurecom
pietro.michiardi@eurecom.fr

Erietta Liarou

erietta.liarou@epfl.ch

Marko Vukoli¢
Eurecom
marko.vukolic@eurecom.fr

1. INTRODUCTION

In recent years, modern large-scale data analysis systems
have flourished. For example, systems such as Hadoop and
Spark [12, 4] focus on issues related to fault-tolerance and
expose a simple yet elegant parallel programming model
that hides the complexities of synchronization. Moreover,
the batch-oriented nature of such system has been comple-
mented by additional components (e.g., [5, 20]) that offer
(near) real-time analytics on data streams. The commu-
nion of these two approaches is now commonly known as the
“Lambda Architecture” (LA) [16]. The LA is split into three
layers, a) the batch layer for managing and pre-processing
append-only set of raw data, b) the serving layer that in-
dexes the batch views so that we can support ad-hoc queries
with low latency and ¢) the speed layer that handles all low
latency requirements using fast and incremental algorithms
over recent data only.

Armed with new systems to store and process data, users’
needs recently grew in complexity as well. For instance,
modern data analysis involves operations that go beyond
extract-transform-load (ETL) or aggregation workloads of-
ten employing statistical learning techniques to, e.g., build
data models and cluster similar data.

As an illustrative use case, we take the perspective of a
user (e.g., a data scientist) focusing on a data clustering
problem. In such a scenario, our user typically faces the
following issues: i) clustering algorithms (e.g., k-means [14],
DBSCAN [11]) require parameter tuning and an appropri-
ate distance function; and) computing clustering “qual-
ity” typically requires a trial-and-error process whereby test
data is assigned to clusters and only domain-knowledge can
be used to discern a good clustering from a bad one. In
practice, even such a simple scenario illustrates a typical
“development” workflow which involves: a batch processing
phase (e.g., running k-means), an interactive query phase on
temporary data (i.e., on data interesting in relatively short
periods of time), and several iterations of both phases until
algorithms are properly tuned and final results meet users’
expectations.

Our system, called DiNoDB, explicitly tackles such “de-
velopment” workflows. Unlike current approaches, which
generally require a long and costly data loading phase that
considerably increases the data-to-query latency, DiNoDB
allows querying raw data in-situ, and exposes a standard
SQL interface to the user making query analysis easier and
effectively removing one of the main operational bottlenecks
of data analysis. In particular, DINoDB can be seen as a dis-
tributed instantiation of the NoDB paradigm [3], which is

specifically designed with in-situ interactive queries in mind
(we briefly revisit NoDB [3] in Section 2). The main princi-
ple of DiNoDB is avoiding the traditional loading phase on
temporary data; indeed, the traditional data loading phase
makes sense when the workload (data and queries) is stable
and critical in the long term. However, since data loading
may include creating indexes, serialization and parsing over-
heads to truly accelerate query processing, it is reasonable
to question its validity when working on temporary data.

The key design idea behind DiNoDB is that of shifting
the part of the burden of a traditional load operation to
the batch processing phase of a “development” workflow.
While batch data processing takes place, DiNoDB piggy-
backs the creation of distributed positional maps and verti-
cal index files; such auxiliary files (DiNoDB metadata) are
subsequently used by a cluster of DiNoDB nodes to improve
the performance of interactive user queries on the temporary
data. Interactive queries operate directly on raw data files
produced by the batch processing phase, which are stored,
for example, on a distributed file system such as HDFS [15],
or directly in memory. Our experimental evaluation indicate
that, for such workloads, DiNoDB systematically outper-
forms current solutions, including HadoopDB [1], Hive [13]
and Shark [18].

In summary, our main contributions in this paper include:

e The design of the DiNoDB architecture, which co-
locates with the Hadoop MapReduce framework. DiN-

oDB is a distributed instantiation of the NoDB paradigm,

and provides efficient, in-situ SQL-based querying ca-
pabilities;

e A system performance evaluation and comparative anal-
ysis of DiNoDB versus state-of-the-art systems includ-
ing HadoopDB, Hive and Shark.

The rest of the paper is organized as follows. In Section 2,
we give a short introduction to NoDB. The DiNoDB archi-
tecture and its detailed components information are covered
in Section 3. Section 4 presents our experimental evalua-
tion demonstrating the performance of DiNoDB. We briefly
overview related work in Section 5 and conclude in Section 6.

2. BACKGROUND ON NODB

NoDB [3] is a database systems design paradigm that pro-
poses the conceptual approach for building database systems
tailored to querying raw files (i.e., in-situ). As a central-
ized instantiation of the paradigm, [3] presents a variant of
PostgreSQL called PostgresRaw. The main advantage of
PostgresRaw, compared to other traditional DBMS, is that
it avoids the data loading phase and proceeds directly to
the querying phase once data becomes available. In a tra-
ditional DBMS, loading the whole data inside the database
is unavoidable, even if few attributes in a table are needed;
the loading process however might take hours (or more) for
large amounts of data. NoDB on the other hand, adopts
in-situ querying instead of loading and preparing the data
for queries. To speed up query executions on raw data files,
PostgresRaw works in two directions: it minimizes raw data
access cost and reduces raw data access.

To minimize raw data access cost, PostgresRaw tokenizes
only necessary attributes and parses only qualified tuples.
PostgresRaw builds an auxiliary structure called positional
map, which contains relative positions of attributes in a

Figure 1: DiNoDB architecture

line, and updates it during the queries. With positional
maps, once processed attributes can be later obtained di-
rectly without scanning the entire data records. If requested
attributes are omitted in the positional map, a nearby at-
tribute position can be used to navigate faster to the re-
quested attributes. Furthermore, to reduce raw data ac-
cesses, PostgresRaw also contains a data cache that tem-
porarily holds the previously accessed data.

The most expensive query for PostgresRaw is the first
query for which PostgresRaw needs to scan the whole raw
file because it does not have any auxiliary positional map or
cache that would be used to speed-up the query. However,
even the first PostgresRaw query has lower latency than the
loading phase in other traditional DBMSs, which involves
the scanning of the entire file [3]. As the positional map and
cache grow, after several queries, query latency in Postgres-
Raw will be comparable to or sometimes even better than
that of traditional DBMSs. Overall, PostgresRaw often out-
performs classical DBMSs in latency of raw data queries.

3. DISTRIBUTED NODB (DiNoDB)

In this section, we present Distributed NoDB (DiNoDB)
in details. DiNoDB is designed for interactive query ana-
lytics on large volumes of raw, unloaded data, as well as to
be integrated into batch processing frameworks such as the
MapReduce/Hadoop framework.

3.1 High-level design

At a high level (see Figure 1), DiNoDB consists of a set
of PostgresRaw instances (used for interactive queries) com-
bined with the Hadoop framework (used for batch process-
ing). Our DiNoDB prototype is inspired by HadoopDB
[1]: it orchestrates PostgresRaw instances using the Hadoop
framework itself, relying on existing “connectors” that plug
into PostgresSQL. As a result of such a high-level design,
raw data that is to be queried in DiNoDB resides in the
Hadoop Distributed File System (HDFS)[15]. DiNoDB en-
sures data locality by co-locating DiNoDB nodes (described
in Section 3.4) with HDF'S data nodes, as shown in Figure 1.

Next, we describe in more detail the DiNoDB pre-processing
(batch processing) phase, as well as DiNoDB components,
namely DiNoDB clients and DiNoDB nodes.

3.2 Pre-processing (batch processing) phase

The batch processing phase in a “development” workflow
typically involves the execution of (sophisticated) analytics

algorithms. This phase is accomplished with one or more
MapReduce jobs, whereby output data is written to HDFS
by reducers in a key-value format. DiNoDB leverages the
batch processing phase as a pre-processing phase for future
interactive queries.

Namely, DiNoDB piggybacks the generation of auxiliary
metadata, including positional maps and a vertical index to
the batch processing phase. Complementary to positional
maps, vertical indices in DiNoDB allow users to specify one
attribute as a key attribute. An entry in the vertical in-
dex has two fields for each record: the key attribute value
and the record row offset value. More details about verti-
cal indices can be found in Sec 3.4. DiNoDB metadata is
created with user defined functions (UDFs) executed by re-
ducers.This guarantees the co-location of raw data files and
their associated DiNoDB metadata, since reducers always
first write their output on the local machine in which they
execute.

In addition to metadata generation, DiNoDB capitalizes
on data pre-processing to store output data in-memory: this
can be done implicitly or explicitly. In the first case, raw
output data is stored in the file system cache of DiNoDB
nodes (i.e., HDFS DataNodes), which uses an approximate
form of an LRU eviction policy: recently written output
data reside in memory. Alternatively output data can be
explicitly stored in RAM, using the ramfs file system as
an additional mount point for HDFS.? With explicit in-
memory data caching, DiNoDB avoids the drawbacks of the
implicit file system caching scheme in multi-tenant environ-
ments where multi-tenancy might cause cache evictions.

As we demonstrate in Section 4, the combination of meta-
data and in-memory data storage substantially contributes
to DiNoDB query execution performance.

3.3 DiNoDB clients

A DiNoDB client serves as entry point for DiNoDB inter-
active queries: it provides a standard shell command inter-
face, hiding the network layout and the distributed system
architecture from users. As such, applications can use DiN-
oDB just like a traditional DBMS.

DiNoDB clients accept application requests, and commu-
nicate with DiNoDB nodes. When a DiNoDB client receives
a query, it fetches related metadata for the “tables” (raw
files) indicated in the query, using the MetaConnector mod-
ule. The MetaConnector (see Figure 1) is a proxy between
DiNoDB and the HDFS NameNode, and is responsible for
retrieving HDFS metadata information like partitions and
block locations of raw data files. Using this metadata, the
MetaConnector guides DiNoDB clients to query DiNoDB
nodes that hold raw data files relevant to user queries. Ad-
ditionally, the MetaConnector remotely configures DiNoDB
nodes so that they can build the mapping between “tables”
and the related blocks, including all data file blocks, posi-
tional map blocks and vertical index blocks. In summary,
the anatomy of a query execution is as follows: (i) using
the MetaConnector, a DiNoDB client learns the location of
every raw file blocks and pushes the query to the respec-
tive DiNoDB nodes; (ii) DiNoDB nodes process the query
in parallel; and finally, (iii) the DiNoDB client aggregates
the result.

!This technique has been independently considered for in-
clusion in a recent patch to HDFS [8].

Key attribute ~ Row offset

Row 0 Value_0 Offset_0
Row 1 Value_1 Offset_1
Row 2 Value_2 Offset_2
Row n Value_n Offset_n

(a) DiNoDB node inter- (b) DiNoDB vertical index
nals

Figure 2: DiNoDB node

Note that, since DiNoDB nodes are co-located with the
HDFS DataNodes, DiNoDB inherits fault-tolerance from
HDFS replication. If a DiNoDB client detects a failure of
a DiNoDB node, or upon the expiration of a timeout on
DiNoDB node’s responses, the DiNoDB client will issue the
same query to another DiNoDB node holding a replica of
the target HDF'S blocks.

3.4 DiNoDB nodes

DiNoDB nodes instantiate customized PostgresRaw databases

which execute user queries, and are co-located with HDFS
DataNodes (see Figure 2(a)). DiNoDB nodes leverage po-
sitional map files generated in the DiNoDB pre-processing
phase (see Section 3.2) when executing queries. DiNoDB
strives at keeping metadata small: indeed, in some cases, a
positional map may contain the position of all “attributes”
present in a raw data file, which could cause metadata to
be as large as the data to query, thus nullifying its bene-
fit. To do so, DiNoDB uses a sampling technique to store
only a few attributes, depending on a user-provided sam-
pling rate. From the query latency perspective, an approx-
imate positional map still provides tangible benefits: when
a query “hits” an attribute in the sampled map, its benefits
are clear; otherwise, DiNoDB nodes use sampled attributes
as anchor points, to proceed with a sequential scan of nearby
attributes to satisfy a query.

When the nature of interactive queries is known in ad-
vance, DiNoDB users can additionally specify a single key
attribute, which is used to create a vertical index file (see
Figure 2(b)). Vertical index generation (just like that of po-
sitional maps) is piggybacked to the batch-processing phase.
When available, DiNoDB nodes load vertical index files,
which contain the key attribute value and its row offset in
the raw data file. This technique contributes to improved
system performance: if a user query “hits” the key attribute,
DiNoDB nodes perform an index scan instead of full se-
quential scan of the raw data, which considerably saves disk
reads.

Note that both positional map and vertical index files are
loaded by a DiNoDB node during the first query execution.
As our performance evaluation shows (see Section 4), the
metadata load time is considerably small, when compared
to the execution time of the first query: as such, only the
first query represents a bottleneck for DiNoDB (a cost that
the NoDB paradigm also has to bear).

Optimizations in DiNoDB nodes. In the vanilla Post-
gresRaw [3] implementation, a “table” maps to a single raw

data file. Since the HDFS files are instead split into mul-
tiple blocks, DiNoDB nodes use a customized PostgresRaw
instance, which features a new file reader that can map a
“table” to a list of raw data file blocks. In addition, the
vanilla PostgresRaw implementation is a multiple-process
server, which forks a new process for each new client ses-
sion, with individual metadata and data cache per process.
Instead, PostgresRaw nodes place metadata and data cache
in shared memory, such that user queries — which are sent
through the DiNoDB client — can benefit from them across
multiple sessions.

An additional feature of DiNoDB nodes is that they ac-
cess raw data files bypassing the HDF'S client API. This de-
sign choice provides increased performance by avoiding the
overheads of a Java-based interface. More importantly, as
discussed in Section 3.2, DiNoDB users can selectively indi-
cate whether raw data files are placed on disk or in memory.
Hence, DiNoDB nodes can seamlessly benefit from the na-
tive file system cache, or from a memory-backed file system
to dramatically decrease query times.

4. EVALUATION

Next, we present an experimental analysis of DiNoDB.
First, in Section 4.1 we study the performance of DiNoDB
in the context of interactive queries and compare DiNoDB
to Shark [18] (version 0.8.0), Hive [13] (version 0.9.0) and
PostgreSQL-backed HadoopDB [1]. Then, in Section 4.2 we
evaluate the benefits of pre-generating DiNoDB metadata
(i.e., positional maps and vertical indices) as well as the
benefits of the in-memory cache, that is populated in the
pre-processing phase (see Sec. 3.2). Finally, in Section 4.3,
we compare the performance of DiNoDB to that of other
systems using a dataset that does not fit in memory. All ex-
periments are conducted on a cluster with 6 machines, with
4 cores, 16 GB RAM and 1 Gbps network interface each.
The underlying distributed file system is HDFS, configured
with one NameNode and five DataNodes.

4.1 Comparative performance evaluation

In this section, we proceed with a comparative analysis us-
ing two kinds of query templates: random and key attribute
queries. The raw data file we use in our experiments con-
tains 3.6 * 107 tuples. Each tuple has 150 attributes, which
are all integers distributed randomly in the range [0-109).
The size of the raw file is 50 GB. The dataset is stored in
RAM, using the ramfs file system available on each machine.

Additional details are as follows. DiNoDB uses a 2.2
GB positional map (generated with a 1/10 sampling rate)
and a 720 MB vertical index file. HadoopDB uses Post-
greSQL as a local database, co-located with HDFS DataN-
odes. To minimize loading time in HadoopDB, we load bulk
data into PostgreSQL directly without using HadoopDB’s
Data Loader which requires to repartition data. Finally,
we evaluate Shark by both loading the dataset in its inter-
nal caching mechanism before issuing queries (that we la-
bel Shark-cached), and using the default, disk-based mech-
anism, (that we call Shark).

Random queries. A sequence of five SELECT SQL queries
are executed in all systems. Each query targets one random
attribute with 1%o selectivity. The result is shown in Fig-
ure 3. Hive has the worst performance since each query
repeatedly scans the whole data files. It spends more than

1200

1080

1000

< 800 -+ W query5
Q
ﬁ W query4d
€
= 600 -+ query3
<
'g query2
]
o
¢ 400 queryl
I}

N
®
a

% load
216

—
200 +—— 183
U e || 119
0 T
Hive HadoopDB Shark_cached Shark DiNoDB

Figure 3: DiNoDB vs. other distributed systems:
Random query

200 seconds for each query. HadoopDB has a very short
query latency, but it only happens after 200 seconds loading
time. Shark_cached enjoys faster loading than HadoopDB
because it achieves a maximum degree of parallelism to load
data into memory at the aggregated throughput of the CPU
[18]. HadoopDB could also support a high degree of paral-
lelism to load the data, but that would require data reparti-
tioning on each datanode, which would require extra effort.
On the other hand, when queries are executed in Shark in
situ, i.e., without caching/loading, then each query latency
is about 43 seconds. Finally, DiNoDB achieves the best per-
formance with an average query latency of 24 seconds. This
can be explained by the fact that DiNoDB avoids explicitly
the loading phase and leverages positional maps to speed-up
queries on raw files.

Key attribute based queries. In this experiment, we
measure the effect of vertical indices on the overall query
latency. To this end, we execute range queries on the key
attribute. The result is shown in Figure 4. Hive supports
index scan and needs more than 400 seconds to build the
index. However, we register a query latency that is worse
than Hive with a sequential scan (depicted in Figure 4).
In HadoopDB, building an index on our dataset requires
about 19 seconds. Overall, HadoopDB requires 223 seconds
before any query can be executed, although each query has
less than 10 seconds latency overall. Shark does not have
any indexing mechanism, so the performance we register is
similar to our experiments with random queries. DiNoDB
achieves the best performance: the average query latency is
about 11 seconds, which is less than half of the latency for
random queries.

Discussion. In our current prototype a DiNoDB node only
uses a single process with one thread. In contrast, Shark
can use all available cpus on loading and processing data.?
Hence, Shark_cached has low per-query latency (after load-
ing) which makes it appealing when there are many queries

2A more “fair” comparison between DiNoDB and Shark
would involve restricting Shark to using only a single core;
such a “single-core” Shark in our experience suffers a three-
fold (3x) latency increase compared to the performance re-
ported in Figures 3 and 4.

1200
1034

1000

E B query5
> 800
£ = query4
; query3
g 600 query2
3
§ queryl
o 400 277 il buildindex
— % load
200 % “““ 175 208 os
7 - 53
0
Hive HadoopDB Shark_cached Shark DiNoDB

Figure 4: DiNoDB VS. other Distributed systems:
Key value query

(e.g., when data of interest is not temporary). Moreover,
since DiNoDB is coupled to the Hadoop framework, it suf-
fers from the its job scheduling overhead, which is about 7
seconds per query. In our future work, we aim at eliminating
these sources of overhead, although globally, DiNoDB out-
performs all other systems for the “development” workloads
we target in this work.

4.2 Benefits of pre-processing

In this experiment, we evaluate the benefits of the DiN-
0oDB pre-processing phase (Sec. 3.2), where we generate DiN-
oDB metadata. Indeed, one major difference between a
vanilla PostgresRaw instance and DiNoDB is that the latter
loads positional map and vertical index files before execut-
ing the first query. As such, what we really measure is the
overhead related to the metadata loading phase. Note that
in the following we use a 1/10 sampling rate to generate a
DiNoDB positional map.

We run the next experiments in a single-machine deploy-
ment: thus, we compare the performance of a vanilla Post-
gresRaw instance to that of a single DiNoDB node. In
both cases, the two systems execute the same sequence of
queries on a 10GB raw file. All the queries are SQL SELECT
statements, which have the selection condition in the WHERE
clause and randomly project one attribute.

Additionally, we also study the impact of raw data being
in memory or on disk. We do this using vanilla PostgresRaw,
which allow us to isolate the effects of metadata from the
benefit of a faster storage tier. We denote the two cases
by PostgresRaw-ramfs and PostgresRaw_disk, respectively.
Figure 5 shows our results.

We can see that for PostgresRaw_disk, the first query has
a latency of about 143 seconds: in this case, the disk is
the bottleneck. The first query in PostgresRaw_ramfs takes
about 53 seconds. Instead, a DiNoDB node executes the
first query in 13 seconds, of which 0.5 seconds are related to
loading metadata files. For all subsequent queries, all three
systems have similar performance, because data reside in
memory. Note that more queries imply richer positional
maps, and hence lower latencies.

In summary, the experiments shown in this Section val-
idate the design choices in DiNoDB: if possible, raw data
should reside in ram, to avoid paying the price of slow disk
access speed. Additionally, piggybacking the generation of
metadata files in the pre-processing phase, which are then
loaded in memory before query execution only marginally
affects the overall query latency.

200

188
180
160
,g 140 ——— ®mquery5
<120 ——— Mquery4
Q
g 100 98 = query3
c
uery2
2 80 L Tauen
é queryl
3 60 78 —
il -
20 —
0 T T)
DiNoDB PostgresRaw_ramfs PostgresRaw_disk
Figure 5: Benefits of pre-processing
6000
5106
5000 ¢ 4749
4090
g 4000 3773 = query5
.g = query4
s 3000+ query3
=]
B query2
3
2 2000 ——— Queml
#|oading
1000 —
0 ‘ : —
Hive HadoopDB Shark DiNoDB

Figure 6: 250 GB dataset experiment

4.3 Large dataset test

We now study the performance of different systems when
the dataset does not fit in memory. We use a 250 GB raw
data file that has been generated similarly to the raw file in
Section Section 4.1 (albeit with more tuples), and the same
random queries defined in Section 4.1. The results are shown
in Figure 6, where we omit latencies for Shark_cached, for
obvious reasons.

HadoopDB achieves the smallest query latencies, at the
cost of a 50 minutes loading phase. Hive, Shark and DiN-
oDB have similar performance because they are all bound by
disk I/O. Overall, DiNoDB has the smallest aggregate query
latency. Clearly, DiNoDB faces a “tipping point”: when the
number of queries on temporary data is small enough, aggre-
gate query latencies are in its favor; the situation changes
when the number of queries exceed a threshold. A better
characterization of this threshold is part of our future work.

S. RELATED WORK

Several research works and commercial products comple-
ment the batch processing nature of Hadoop/MapReduce [12,
7] with systems to query large-scale data at interactive speed
using a SQL-like interface. Examples of such systems in-
clude HadoopDB [1], Vertica [17], Hive [13] or Impala [6].
These systems require data to be loaded before queries can
be executed: in workloads for which data-to-query time mat-
ters, for example due to the ephemeral nature of the data at

hand, the overheads due to the load phase, crucially impact
query performance. In [2] the authors propose the concept of
“invisible loading” for HadoopDB as a technique to reduce
the data-to-query time; with invisible loading, the loading
to the underlying DBMS happens progressively. In contrast
to such systems, DiNoDB avoids data loading and is tailored
for querying raw data files leveraging positional maps and
vertical indices.

Shark [18] presents an alternative design: it relies on a
novel distributed shared memory abstraction [19] to perform
most computations in memory while offering fine-grained
fault tolerance. Shark builds on Hive [13] to translate SQL-
like queries to execution plans running on the Spark system
[4], hence marrying batch and interactive data analysis. To
achieve short query times, Shark requires data to be resident
in memory: as such, the output of batch data processing —
which is generally materialized to disk for failure tolerance —
need to be first loaded in RAM. As our experimental results
indicate, such data “caching” can be a costly operation.

PostgresRaw [3] is a centralized DBMS that avoids data
loading and transformation prior to queries. As we detailed
in the previous sections, DiNoDB leverages PostgresRaw
as a building block, effectively distributing and scaling-out
PostgresRaw, while integrating it with the Hadoop batch
processing framework. Unlike PostgresRaw, DiNoDB does
not generate positional maps on the fly, but leverages the
Hadoop batch processing phase to pre-generate positional
maps and vertical indices to speed up the query execution.

Finally, DiNoDB shares some similarities with several re-
search work that focuses on improving Hadoop performance.
For example, Hadoop++ [9] modifies the data format to in-
clude a Trojan Index so that it can avoid full file sequential
scan. Furthermore, CoHadoop [10] co-locates related data
files in the same set of nodes so that a future join task can be
done locally without transfering data in network. However,
neither Hadoop++ nor CoHadoop are specifically tuned for
interactive raw data analytics, like DiNoDB is.

6. CONCLUSION

We proposed a design of DiNoDB, a distributed database
system tuned for interactive queries on raw data files gen-
erated by large-scale batch processing frameworks such as
Hadoop/MapReduce. Our preliminary evaluation suggest
that DiNoDB has very promising performance targeting it-
erative machine learning data processing, where few inter-
active queries are performed in between iterative batch pro-
cessing jobs. In such use cases, we showed that DiNoDB
outperforms stat-of-the-art systems, including Apache Hive,
HadoopDB and Shark.

In future work, we aim at further improving the perfor-
mance of DiNoDB, notably by removing the overhead re-
lated to Hadoop orchestration framework we use (currently
HadoopDB), as well to evaluate our system on a wider set
of datasets and workloads.

Acknowledgements. This work is partially supported by
the EU project BigFoot (FP7-ICT-223850).

7. REFERENCES

[1] A. Abouzeid and et. al. Hadoopdb: an architectural
hybrid of mapreduce and dbms technologies for
analytical workloads. Proc. VLDB Endow., 2009.

[2] A. Abouzied and et. al. Invisible loading:
Access-driven data transfer from raw files into
database systems. In Proceedings of the 16th
International Conference on Extending Database
Technology, EDBT ’13, 2013.

[3] I. Alagiannis and et. al. Nodb: efficient query
execution on raw data files. In Proceedings of the 2012
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, 2012.

[4] Apache Spark. Webpage. http://spark.apache.org/.

[5] Apache Storm. Webpage.
http://storm.incubator.apache.org/.

[6] Cloudera Impala. Webpage.
http://www.cloudera.com/content/cloudera/en/
products-and-services/cdh/impala.html/.

[7] J. Dean and et. al. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th
Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, 2004.

[8] Discardable Distributed Memory: Supporting Memory
Storage in HDFS. Webpage.
http://hortonworks.com/blog/ddm/.

[9] J. Dittrich and et. al. Hadoop++: making a yellow
elephant run like a cheetah (without it even noticing).
Proc. VLDB Endow., 2010.

[10] M. Y. Eltabakh and et. al. Cohadoop: Flexible data
placement and its exploitation in hadoop. Proc.
VLDB Endow., 2011.

[11] M. Ester and et. al. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Proc. of the 2nd International Conference on
Knowledge Discovery and Data Mining, 1996.

2] Hadoop. Webpage. http://hadoop.apache.org/.

[13] Hive. Webpage. http://hive.apache.org/.

4] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proc. of 5th
Berkeley Symposium on Mathematical Statistics and
Probability, 1967.

[15] K. Shvachko and et. al. The hadoop distributed file
system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and
Technologies (MSST), MSST ’10, 2010.

[16] The Lambda Architecture. Webpage.
http://lambda-architecture.net/.

[17] Vertica. Webpage. http://www.vertica.com/.

[18] R. S. Xin and et. al. Shark: Sql and rich analytics at
scale. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’13, 2013.

[19] M. Zaharia and et. al. Spark: Cluster computing with
working sets. In HotCloud, 2010.

[20] M. Zaharia and et. al. Discretized streams:
Fault-tolerant streaming computation at scale. In
SOSP, 2013.

