
EURECOM
Department of Networking and Security

Campus SophiaTech
CS 50193

06904 Sophia Antipolis cedex
FRANCE

Research Report RR-13-280

StealthGuard: Proofs of Retrievability
with Hidden Watchdogs

April 7th, 2014
Last update June 24th, 2014

Monir Azraoui , Kaoutar Elkhiyaoui , Refik Molva and Melek̈Onen

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {monir.azraoui,kaoutar.elkhiyaoui,refik.molva,melek.onen}@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group Research
and Technology, IABG, Monaco Telecom, Orange, Principaut de Monaco, SAP, SFR, ST Microelec-
tronics, Symantec.

StealthGuard: Proofs of Retrievability
with Hidden Watchdogs

Monir Azraoui , Kaoutar Elkhiyaoui , Refik Molva and Melek̈Onen

Abstract

This paper presentsStealthGuard, an efficient and provably secure proof
of retrievabillity (POR) scheme.StealthGuard makes use of a privacy-
preserving word search (WS) algorithm to search, as part of a POR query, for
randomly-valued blocks called watchdogs that are insertedin the file before
outsourcing. Thanks to the privacy-preserving features ofthe WS, neither
the cloud provider nor a third party intruder can guess whichwatchdog is
queried in each POR query. Similarly, the responses to POR queries are also
obfuscated. Hence to answer correctly to every new set of PORqueries, the
cloud provider has to retain the file in its entirety.StealthGuard stands out
from the earlier sentinel-based POR scheme proposed by Juels and Kaliski
(JK), due to the use of WS and the support for an unlimited number of queries
by StealthGuard. The paper also presents a formal security analysis of the
protocol.

Index Terms

Proofs of Retrievability, Cloud Computing, Privacy-Preserving Word Search

Contents

1 Introduction 1

2 Background 2
2.1 Entities . 2
2.2 POR . 3

3 Adversary models 3
3.1 Completeness . 4
3.2 Soundness . 4

4 Overview 7
4.1 Idea . 7
4.2 StealthGuard phases . 7

5 StealthGuard 8
5.1 Setup . 8
5.2 WDSearch . 9
5.3 Verification . 11
5.4 Dynamic StealthGuard . 12

6 Security Analysis 12
6.1 Completeness . 13
6.2 Soundness . 13

7 Discussion 14

8 Related Work 15

9 Conclusion 18

A Proof of Theorem 2 20

v

1 Introduction

Nowadays outsourcing, that is, delegating one’s computing to external parties,
is a well established trend in cloud computing. Along with unprecedented advan-
tages such as lower cost of ownership, adaptivity, and increased capacity, outsourc-
ing also raises new security and privacy concerns in that critical data processing and
storage operations are performed remotely by potentially untrusted parties.In this
paper we focus on data retrievability, a security requirement akin to outsourced
data storage services like Dropbox1 and Amazon Simple Storage Service2. Data
retrievability provides the customer of a storage service with the assurancethat
a data segment is actually present in the remote storage. Data retrievability is a
new form of integrity requirement in that the customer of the storage or the data
owner does not need to keep or get a copy of the data segment in order toget the
assurance of retrievability thereof. A cryptographic building block calledProof of
Retrievability (POR) was first developed by Juels and Kaliski [1] (JK) to meet this
requirement. In the definition of [1], a successful execution of the POR scheme
assures a verifier that it can retrieveF in its entirety. Classical integrity techniques
such as transferringF with some integrity check value are not practical since they
incur very high communication or computational costs that are linear with the size
of F . POR schemes aim at much lower cost both in terms of communications and
processing by avoiding transmission or handling ofF in its entirety. To that effect,
POR schemes require the prover to perform some operations on some randomly
selected parts ofF and the verifier is able to check the result returned by the prover
with the knowledge of very brief reference about the data like a secret key. Most
POR schemes thus are probabilistic and their performance is measured in the trade-
off between the bandwidth and processing overhead and the rate of retrievability
assurance.
In this paper we developStealthGuard, a new POR scheme that achieves good re-
trievability assurance with acceptable costs. The main idea behind the new scheme
is a combination of a privacy-preserving word search (WS) algorithm suited to
large datastores with the insertion in data segments of randomly generated short
bit sequences calledwatchdogs. In StealthGuard, the user inserts these watch-
dogs in randomly chosen locations of the fileF and stores the resulting file in the
cloud. In order to check the retrievability ofF the user issues lookup queries for
selected values of watchdogs using the WS scheme. The user decrypts theWS
replies from the cloud server in order to get the proof of retrievability foreach
segment targeted by the WS queries. Each positive result is the proof of presence
for the corresponding data segment. Thanks to the features of the WS, neither the
cloud server nor a third party intruder can guess which watchdogs are targeted by
each WS query or response.
Even though there is an analogy between the watchdogs used inStealthGuard and

1Dropbox - https://www.dropbox.com/
2Amazon Simple Storage Service - http://aws.amazon.com/fr/s3/

1

the sentinels akin to the JK scheme [1], there is a major difference between thetwo
schemes due to the use of WS byStealthGuard: the number of POR queries that
can be issued inStealthGuard without requiring any update of the watchdogs is
unbounded whereas in the JK scheme a given set of sentinels can be used for a fi-
nite number of POR queries only.StealthGuard only requires the transfer of some
additional data that is a small percentage ofF in size and a good POR rate can be
achieved by only processing a fraction ofF . In addition to the description of our
proposal, we give a new security model that enhances existing security definitions
of POR schemes [1, 2]. We state a generic definition of the soundness property that
applies to any POR scheme.
Contributions. To summarize, this paper offers two main contributions:
−We presentStealthGuard, a new POR scheme based on the insertion of watch-
dogs that requires a light file preprocessing and on a privacy-preserving WS that
allows a user to issue an unbounded number of POR queries. Besides, theuser is
stateless since it only needs to keep a secret key to be able to run the POR protocol.
− We propose a new security model which improves existing security definitions
[1, 2]. We also provide a formal proof of our proposal under this newsecurity
model.
The rest of the paper is organized as follows. Section 2 defines the entitiesand the
algorithms involved in a POR scheme. Section 3 describes the adversary models
that are considered in this paper. Section 4 provides an overview ofStealthGuard
and Section 5 gives details of the protocol. Section 6 analyses its security proper-
ties. Section 7 evaluates its security and its efficiency. We review the state of the
art in Section 8.

2 Background

Before presenting the formal definition of PORs and the related security defini-
tions, we introduce the entities that we will refer to in the remainder of this paper.

2.1 Entities

A POR scheme comprises the following entities:

• ClientC: It possesses a set of filesF that it outsources to the cloud serverS.
Without loss of generality, we assume that each fileF ∈ F is composed ofn
splits{S1, S2, ..., Sn} of equal sizeL bits. In practice, if the size ofF is not
a multiple ofL, then padding bits will be added toF . We also suppose that
each splitSi comprisesm blocks ofl bits{bi,1, bi,2, ..., bi,m}, i.e.,L = m · l.

• Cloud ServerS (a potentially malicious prover): For each fileF ∈ F , the
cloud serverS stores an “enlarged” verifiable version̂F of that file, that
enables it to prove to a verifierV that the clientC can still retrieve its original
file F .

2

• VerifierV : It is an entity which via an interactive protocol can check whether
the cloud serverS (i.e., the prover) is still storing some fileF ∈ F or not.
The verifier can be either the client itself or any otherauthorizedentity, such
as an auditor.

2.2 POR

A POR scheme consists of five polynomial-time algorithms (cf. [1, 2]):

• KeyGen(1τ) → K: This probabilistic key generation algorithm is executed
by clientC. It takes as input a security parameterτ , and outputs asecret key
K for C.

• Encode(K,F)→ (fid, F̂): It takes the keyK and the fileF = {S1, S2, ..., Sn}
as inputs, and returns the filêF = {Ŝ1, Ŝ2, ..., Ŝn} andF ’s uniqueidentifier
fid. Cloud serverS is required to storêF together withfid. F̂ is obtained
by first applying toF an error-correcting code(ECC) which allows client
C to recover the file from minor corruptions that may go undetected by the
POR scheme, and further by adding someverifiable redundancythat enables
client C to check whether cloud serverS still stores aretrievableversion of
F or not.

Note that theEncode algorithm is invertible. Namely, there exists an algo-
rithm Decode that allows the clientC to recover its original fileF from the
file F̂ .

• Challenge(K, fid) → chal: The verifierV calls thisprobabilisticalgorithm
to generate a challengechal for an execution of the POR protocol for some
file F . This algorithm takes as inputs the secret keyK and the file identifier
fid, and returns the challengechal that will be sent to cloud serverS.

• ProofGen(fid, chal)→ P: On receiving the challengechal and the file iden-
tifier fid, cloud serverS executesProofGen to generate a proof of retrievabil-
ity P for the fileF̂ whose identifier isfid. The proofP is then transmitted to
verifierV .

• ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: Verifier V runs this algorithm to
check the validity of the proofs of retrievability sent by cloud serverS. On
input of the keyK, the file identifierfid, the challengechal, and the proof
P, theProofVerif algorithm outputs bitb = 1 if the proofP is a valid proof,
andb = 0 otherwise.

3 Adversary models

A POR scheme should ensure that if cloud serverS is storing the outsourced
files, then theProofVerif algorithm should always output1, meaning thatProofVerif

3

does not yield any false negatives. This corresponds to thecompletenessproperty
of the POR scheme. PORs should also guarantee that ifS provides a number (to
be determined) of valid proofs of retrievability for some fileF , then verifierV can
deduce that serverS is storing a retrievable version ofF . This matches thesound-
nessproperty of POR. These two properties are formally defined in the following
sections.

3.1 Completeness

If cloud serverS and verifierV are both honest, then on input of a challenge
chal and some file identifierfid sent by verifierV , theProofGen algorithm gener-
ates a proof of retrievabilityP that will be accepted by verifierV with probability
1.

Definition 1 (Completeness). A POR scheme iscompleteif for any honest pair of
cloud serverS and verifierV , and for any challengechal← Challenge(K, fid):

Pr(ProofVerif(K, fid, chal,P)→ 1 | P ← ProofGen(fid, chal)) = 1

3.2 Soundness

A proof of retrievability is deemed sound, if for any malicious cloud serverS,
the only way to convince verifierV that it is storing a fileF is by actually keeping a
retrievable version of that file. This implies that any cloud serverS that generates (a
polynomial number of) valid proofs of retrievability for some fileF , must possess
a version of that file that can be used later by clientC to recoverF . To reflect the
intuition behind this definition of soundness, Juels and Kaliski [1] suggested the
use of a file extractor algorithmE that is able to retrieve the fileF by interacting
with cloud serverS using thesoundPOR protocol. Along these lines, we present
a new and a more generic soundness definition that refines the formalizationof
Shacham and Waters [2] which in turn builds upon the work of Juels and Kaliski
[1]. Although the definition of Shacham and Waters [2] captures the soundness of
POR schemes that empower the verifier with unlimited (i.e. exponential) number
of “possible” POR challenges [2–4], it does not define properly the soundness of
POR schemes with limited number of “possible” POR challenges such as in [1, 5]
and inStealthGuard3. We recall that the formalization in [2] considers a POR
to be sound, if a file can be recovered whenever the cloud server generates a valid
POR response for that file with anon-negligibleprobability. While this definition is
accurate in the case where the verifier is endowed with unlimited number of POR
challenges, it cannot be employed to evaluate the soundness of the mechanisms
introduced in [1, 5] or the solution we will present in this paper. For example, if we
take the POR scheme in [5] and if we consider a scenario where the cloud server
corrupts randomly half of the outsourced files, then the cloud server will be able

3Note that having a bounded number of POR challenges does not negate the fact that the verifier
can perform unlimited number of POR queries with these same challenges,cf. [5].

4

to correctly answer half (which is non-negligible) of the POR challenges that the
verifier issues, yet the files are irretrievable. This implies that this POR mechanism
is not secure in the model of Shacham and Waters [2], still it is arguably sound.

The discrepancy between the soundness definition in [2] and the work of[1, 5]
springs from the fact that in practice to check whether a file is correctly stored at
the cloud server, the verifier issues a polynomial number of POR queries towhich
the server has to respond correctly; otherwise, the verifier detects a corruption at-
tack (the corruption attack could either be malicious or accidental) and flags the
server as malicious. This is actually what the PORs of [1, 5] andStealthGuard
aim to capture. In order to remedy this shortcoming, we propose augmenting the
definition of Shacham and Waters [2] (as will be shown in Algorithm 2) with anad-
ditional parameterγ that quantifies the number of POR queries that verifier should
issue to either be sure that a file is retrievable or to detect a corruption attack on
that file.

Now in accordance with [2], we first formalizesoundnessusing a game that
describes the capabilities of an adversaryA (i.e., malicious cloud server) which
can deviate arbitrarily from the POR protocol, and then we define the extractor
algorithmE .

To formally capture the capabilities of adversaryA, we assume that it has ac-
cess to the following oracles:

• OEncode: This oracle takes as inputs a fileF and the client’s keyK, and
returns a file identifierfid and a verifiable version̂F of F that will be out-
sourced toA.

Note that adversaryA can corrupt the outsourced filêF either by modifying
or deletingF̂ ’s blocks.

• OChallenge: On input of a file identifierfid and client’s keyK, the oracle
OChallenge returns a POR challengechal to adversaryA.

• OVerify: When queried with client’s keyK, a file identifierfid, a challenge
chal and a proof of retrievabilityP, the oracleOVerify returns bitb such that:
b = 1 if P is a valid proof of retrievability, andb = 0 otherwise.

AdversaryA accesses the aforementioned oracles in two phases: a learning phase
and a challenge phase. In the learning phase, adversaryA can call oraclesOEncode,
OChallenge, andOVerify for a polynomial number of times in any interleaved order
as depicted in Algorithm 1. Then, at the end of the learning phase, the adversary
A specifies a file identifierfid∗ that was already output by oracleOEncode.

We note that the goal of adversaryA in the challenge phase (cf. Algorithm 2)
is to generateγ valid proofs of retrievabilityP〉∗ for file F ∗ associated with file
identifierfid∗. To this end, adversaryA first calls the oracleOChallenge that supplies
A with γ challengeschal∗i , then it responds to these challenges by outputtingγ

proofsP∗
i . Now, on input of client’s keyK, file identifierfid∗challengeschal∗i and

proofsP∗
i , oracleOVerify outputsγ bits b∗i . AdversaryA is said to be successful if

5

b∗ =
γ∧

i=1
b∗i = 1. That is, ifA is able to generateγ proofs of retrievabilityP∗ for

file F ∗ that are accepted by oracleOVerify.
Given the game described above and in line with [1, 2], we formalize the sound-

ness of POR schemes through the definition of an extractor algorithmE that uses
adversaryA to recover/retrieve the fileF ∗ by processing as follows:

• E takes as inputs the client’s keyK and the file identifierfid∗;

• E is allowed to initiate a polynomial number of POR executions with adver-
saryA for the fileF ∗;

• E is also allowed to rewind adversaryA. This suggests in particular that
extractorE can execute the challenge phase of the soundness game a poly-
nomial number of times, while the state of adversaryA remains unchanged.

Intuitively, a POR scheme is sound, if for any adversaryA that wins the sound-
ness game with a non-negligible probabilityδ, there exists an extractor algorithmE
that succeeds in retrieving the challenge fileF ∗ with an overwhelming probability.
A probability is overwhelming if it is equal to1− ε, whereε is negligible.

Algorithm 1: Learning phase of the soundness

game

// A executes the following in any interleaved
// order for a polynomial number of times
(fid, F̂)← OEncode(F,K);
chal← OChallenge(K, fid);
P ←A;
b← OVerify(K, fid, chal,P);
// A outputs a file identifierfid∗

fid
∗

←A;

Algorithm 2: Challenge phase of the

soundness game

for i = 1 to γ do
chal

∗

i ← OChallenge(K, fid∗);
P

∗

i ←A;
b∗i ←
OVerify(K, fid∗i , chal

∗

i ,P
∗

i);
end

b∗ =
γ∧

i=1

b∗i

Definition 2 (Soundness). A POR scheme is said to be(δ, γ)-sound, if for every
adversaryA that providesγ valid proofs of retrievability in a row (i.e., succeeds
in the soundness game described above) with a non-negligible probabilityδ, there
exists an extractor algorithmE such that:

Pr(E(K, fid∗)→ F ∗ | E(K, fid∗)
interact←→ A) ≥ 1− ε

Whereε is a negligible function in the security parameterτ .

The definition above could be interpreted as follows: if verifierV issues a
sufficient number of queries (≥ γ) to which cloud serverS responds correctly,
thenV can ascertain thatS is still storing a retrievable version of fileF ∗ with
high probability. It should be noted that whileγ characterizes the number ofvalid
proofs of retrievability thatE has to receive (successfully or in a row) to assert that
file F ∗ is still retrievable,δ quantifies the number of operations that the extractorE
has to execute and the amount of data that it has to download to first declareF ∗ as
retrievable and then to extract it. Actually, the computation and the communication
complexity of extractorE will be of orderO(γ

δ
).

6

4 Overview

4.1 Idea

In StealthGuard, clientC first injects some pseudo-randomly generatedwatch-
dogs into random positions in the encrypted data. Once data is outsourced,C
launches lookup queries to check whether the watchdogs are stored as expected
by the cloud. By relying on a privacy-preserving word search (WS),we ensure
that neither the cloud serverS nor eavesdropping intruders can discover which
watchdog was targeted by search queries. As a result,C can launch an unbounded
number of POR queries (even for the same watchdog) without the need of updat-
ing the data with new watchdogs in the future. The responses are also obfuscated
thanks to the underlying WS scheme. This ensures that the only case in whichS
returns a valid set of responses for the POR scheme is when it stores the entire file
and executes the WS algorithm correctly (soundness property).

Besides, as in [1], in order to protect the data from small corruptions,Stealth-
Guard applies an ECC that enables the recovery of the corrupted data. Substantial
damage to the data is detected via the watchdog search.

4.2 StealthGuard phases

A client C uploads to the cloud serverS a file F which consists ofn splits
{S1, ..., Sn}. Thereafter a verifierV checks the retrievability ofF usingStealth-
Guard.

The protocol is divided into three phases:

• Setup: During this phase, clientC performs some transformations over the
file and inserts a certain number of watchdogs in each split. The resulting
file is sent to cloud serverS.

• WDSearch: This phase consists in searching for some watchdogw in a
privacy-preserving manner. Hence, verifierV prepares and sends a lookup
query forw; the cloudS in turn processes the relevant split to generate a
correct response to the search and returns the output toV .

• Verification: Verifier V checks the validity of the received response and
makes the decision about the existence of the watchdog in the outsourced
file.

We note that ifV receives at leastγ (γ is a threshold determined in Section
6.2) correct responses from the cloud, then it can for sure decide that F is
retrievable. On the other hand, ifV receives one response that is not valid,
then it is convinced either the file is corrupted or even lost.

7

Index Description
n number of splitsSi in F

m number of blocks in a splitSi

D number of blocks in an encoded splitS̃i

v number of watchdogs in one split
C number of blocks in a split̂Si with watchdogs
i index of a split∈ [[1, n]]

k index of a block inŜi ∈ [[1, C]]

j index of a watchdog∈ [[1, v]]

l size of a block
p index of a block inF̃ ∈ [[1, n ·D]]

q number of cloud’s matrices
κ index of a cloud’s matrix∈ [[1, q]]

(s, t) size of cloud’s matrices
(x, y) coordinates in a cloud’s matrix∈ [[1, s]]× [[1, t]]

Table 1:Notation used in the description of StealthGuard

5 StealthGuard

This section details the phases of the protocol. Table 1 sums up the notation
used in the description. We also designed a dynamic version ofStealthGuard that
allows efficient POR even when data is updated. Due to space limitations, we only
present in Section 5.4 an overview of dynamicStealthGuard.

5.1 Setup

This phase prepares a verifiable versionF̂ of file F = {S1, S2, ..., Sn}. Client
C first runs theKeyGen algorithm to generate the master secret keyK. It derives
n+3 additional keys, used for further operations in the protocol:Kenc = Henc(K),
Kwdog = Hwdog(K), KpermF = HpermF (K) and for i ∈ [[1, n]],KpermS,i =
HpermS(K, i) with Henc, Hwdog, HpermF andHpermS being four cryptographic
hash functions.K is the single information stored at the client.

Once all keying material is generated,C runs theEncode algorithm which first
generates a pseudo-random and unique file identifierfid for file F , and then pro-
cessesF as depicted in Figure 1.

1. Error correcting : The error-correcting code (ECC) assures the protection
of the file against small corruptions. This step applies to each splitSi an
ECC that operates overl-bit symbols. It uses an efficient[m+ d− 1,m, d]-
ECC, such as Reed-Solomon codes [6], that has the ability to correct up tod

2
errors4. Each split is expanded withd − 1 blocks of redundancy. Thus, the
new splits are made ofD = m+ d− 1 blocks.

2. File block permutation: StealthGuard applies a pseudo-random permuta-
tion to permute all the blocks in the file. This operation conceals the depen-
dencies between the original data blocks and the corresponding redundancy

4d is even

8

blocks within a split. Without this permutation, the corresponding redun-
dancy blocks are just appended to this split. An attacker could for instance
delete all the redundancy blocks and a single data block from this split and
thus render the file irretrievable. Such an attack would not easily be detected
since the malicious server could still be able to respond with valid proofs to a
given POR query targeting other splits in the file. The permutation prevents
this attack since data blocks and redundancy blocks are mixed up among all
splits. LetΠF : {0, 1}τ × [[1, n · D]] → [[1, n · D]] be a pseudo-random
permutation: for eachp ∈ [[1, n ·D]], the block at current positionp will be
at positionΠF (KpermF , p) in the permuted file that we denotẽF . F̃ is then
divided inton splits{S̃1, S̃2, ..., S̃n} of equal sizeD.

3. Encryption : StealthGuard uses a semantically secure encryptionE that
operates overl-bit blocks5 to encrypt the data. An encryption scheme like
AES in counter mode [7] can be used. The encryptionE is applied to each
block of F̃ usingKenc.

4. Watchdog creation: For each encrypted split,v l-bit watchdogs are gener-
ated using a pseudo-random functionΦ : {0, 1}τ×[[1, n]]×[[1, v]]×{0, 1}∗ →
{0, 1}l. Hence, forj ∈ [[1, v]], wi,j = Φ(Kwdog, i, j, fid). The use offid
guarantees that two different files belonging to the same client have differ-
ent watchdogs. Since the watchdogs are pseudo-randomly generated and
the blocks in the split are encrypted, a malicious cloud cannot distinguish
watchdogs from data blocks.

5. Watchdog insertion: Thev watchdogs are appended to each split. LetC =
D+v be the size of the new splits. A split-level pseudo-random permutation
ΠS : {0, 1}τ × [[1, C]]→ [[1, C]] is then applied to the blocks within the same
split in order to randomize the location of the watchdogs: fori ∈ [[1, n]],
the block at current positionk will be at positionΠS(KpermS,i, k) in the
permuted split. Note that in practice, the permutation is only applied to the
lastv blocks: fork ∈ [[D,C]], this step swaps block at current positionk for
block at positionΠS(KpermS,i, k). We denoteŜi, i ∈ [[1, n]], the permuted
split andb̂i,k, k ∈ [[1, C]] its blocks.

These operations yield filêF . The client uploads the splits{Ŝi}ni=1 andfid to the
cloud.

5.2 WDSearch

Verifier V wants to check the retrievability ofF . Hence, it issues lookup
queries for randomly selected watchdog, one watchdog for one split in one query.
Cloud serverS processes these queries without knowing what the values of the
watchdogs are and where they are located in the splits. We proposeWDSearch, a

5Practically,l will be 128 or 256 bits.

9

 …

…

…

…

…

 …

Split-level ECC

File-level permutation

Encryption (,)

Watchdog creation and insertion

Split-level permutation

=

=

blocks

1

watchdogs

 =

Figure 1:Setup phase in StealthGuard

privacy-preserving WS solution derived from PRISM in [8]. Our proposal is a sim-
pler version of PRISM and improves its performance in the particular context of
StealthGuard. Note that this proposed building block is only an example and any
existing privacy-preserving WS mechanism assuring the confidentiality ofboth the
query and the result can be used inStealthGuard. PRISM and thusWDSearch

are based on Private Information Retrieval (PIR). To process a query, S constructs
q (s, t)-binary matrices such thats · t = C. Each element in the matrices is filled
with the witness (a very short information) of the corresponding block in thesplit.
Based on the PIR query sent by the verifier, the server retrieves in the matrices
the witnesses corresponding to the requested watchdogs. We insist on thefact that
WDSearch is not a PIR solution: the server does not retrieve the watchdog itself
but only the witness.

WDSearch consists of two steps:

• WDQuery: VerifierV executes theChallenge algorithm to generate a chal-
lengechal that is transmitted to cloud serverS. Challenge takes as input
master keyK and file identifierfid and it is executed in three phases. In
the first phase,Challenge randomly selects a split indexi and a watchdog
index j (i ∈ [[1, n]] andj ∈ [[1, v]]), and computes the positionposj of the
watchdogwi,j in the splitŜi by applying the permutation performed during
the watchdog insertion step:posj = ΠS(KpermS,i, D + j). Then,Challenge
maps the positionposj to a unique position(xj , yj) in an(s, t)-matrix:

xj = ⌈
posj

t
⌉ yj = posj − ⌈

posj

t
⌉ × t+ t

In the second phase, given(xj , yj) and using any efficient PIR algorithm,
Challenge computes a PIR query, denotedWitnessQuery, to retrieve the wit-
ness (and not the watchdog) at position(xj , yj) in the matrix. In the last
phase,Challenge generates a random numberr (this nonce will be used by
the cloud when filling the binary matrices to guarantee freshness), and out-
puts the challengechal = (WitnessQuery, r, i). Eventually, verifierV sends
the challengechal and file identifierfid to cloud serverS.

10

Algorithm 3: Filling the cloud matrices

// For a given(s, t)-matrixMκ, a given splitŜi and a given random numberr
// k is the index of a block in split̂Si

k = 1;
for x = 1 to s do

for y = 1 to t do
Mκ[x, y]← κth bit of H(b̂i,k, r);
k = k + 1;

end
end

• WDResponse: Upon receiving the challengechal = (WitnessQuery, r, i)
and file identifierfid, cloud serverS runsProofGen to process the query. The
cloud createsq binary matrices of size(s, t). For each block̂bi,k in Ŝi, the
cloud computeshi,k = H(b̂i,k, r), wherek ∈ [[1, C]]. Here,H denotes
a cryptographic hash function. The use ofr forces the cloud to store the
actual data block. Otherwise it could drop the block, only store the hash and
respond to the query using that hash.

Let hi,k|q be the firstq bits of hi,k. For κ ∈ [[1, q]], letMκ be one of the
matrices created by the cloud. It fills theκth matrix with theκth bit of hi,k|q
as Algorithm 3 shows. It should be noted that according to the assignment
process described in Algorithm 3, the witness at position(xj , yj) inMκ is
associated with watchdogwi,j : it is theκth bit of H(wi,j , r).

Once all theq binary matrices are filled, the cloud processesWitnessQuery

by executing a PIR operation that retrieves one bit from each matrixMκ,
κ ∈ [[1, q]]. We denoteWitnessResponseκ the result of the PIR on matrix
Mκ. TheProofGen algorithm outputsP, i.e. the proof of retrievability that
consists in the setP = {WitnessResponse1, ...,WitnessResponseq}. Cloud
serverS sends the proofP to verifierV .

5.3 Verification

Verifier V runsProofVerif to analyze the received proofP. This algorithm
takes as input master keyK, proof P, split index i, watchdog indexj, and file
identifierfid. ProofVerif outputs a bit equal to 1 if the proof is valid or 0 otherwise.
V processes theqWitnessResponseκ in order to retrieve theq bitsǫκ at position

(xj , yj) in the matrixMκ, for κ ∈ [[1, q]] . Leth denoteǫ1ǫ2...ǫq.
We recall that verifierV queried watchdogwi,j for split Ŝi and that by having

access to the master keyK,V can recompute the value ofwi,j = Φ(Kwdog, i, j, fid)

and its position in the split̂Si, posj = ΠS(KpermS,i, D + j). Thereafter,V com-
putes the hash of the watchdoghi,posj = H(wi,j , r), with the samer chosen dur-
ing the challenge and considers theq first bits of hi,posj . Based on the value of
h = ǫ1ǫ2...ǫq andhi,posj , V checks whetherh = hi,posj |q. If it is the case, thenV

11

judges the proof valid and returns 1, otherwise it interprets the invalid proof as the
occurrence of an attack and outputs 0.

As mentioned in section 4.2, in order to acknowledge the retrievability ofF ,
verifier V needs to initiate at leastγ POR queries6 from randomly selected splits
in order to either ascertain thatF is retrievable or detect a corruption attack: ifV
receivesγ valid POR responses, then it can conclude that cloud serverS stores a
retrievable version ofF , otherwise, it concludes thatS has corrupted part of the
file.

5.4 Dynamic StealthGuard

The previously described protocol does not consider update operations that the
client can perform over its data. Similarly to the work in [5, 9–17], we propose
a scheme that handles these updates. Due to space limitations we present only
an idea of how dynamicStealthGuard operates. Any update in the data impacts
the security of our protocol. For example, if the client modifies the same block
several times then the cloud can discover that this particular block is not a watch-
dog. Therefore, dynamicStealthGuard updates the watchdogs in a split each time
an update occurs on that split. Besides, the verifier must be ensured thatthe file
stored at the server is actually the latest version. DynamicStealthGuard offers a
versioning solution to assure that the cloud always correctly applies the required
update operations and that it always stores the latest version of the file. Our pro-
posal uses Counting Bloom Filters [18] and Message Authentication Codes(MAC)
[19]. Each time a split is updated, some information regarding the split number and
the version number is added into the counting Bloom filter which is authenticated
using a MAC that can only be computed by the client and the verifier. Additionally,
to guarantee the freshness of the response at each update query, a new MAC key is
generated. This protocol does not imply any additional cost at the verifier except
of storing an additional MAC symmetric key.

Another challenging issue is that updating a data block requires to update the
corresponding redundancy blocks, resulting in the disclosure to the cloud server
of the dependencies between the data blocks and the redundancy blocks. There-
fore, the file permutation in theSetupphase becomes ineffective. Some techniques
are available to conceal these dependencies such as batch updates [5]or oblivious
RAM [16]. However, these approaches are expensive in terms of computation and
communication costs. Hence, we choose to trade off between POR security and
update efficiency by omitting the file permutation.

6 Security Analysis

In this section, we state the security theorems ofStealthGuard.

6The value ofγ will be determined in Section 6.2.

12

6.1 Completeness

Theorem 1. StealthGuard is complete.

Proof. Without loss of generality, we assume that the honest verifierV runs a POR
for a fileF . To this end, verifierV sends a challengechal = (WitnessQuery, r, i)
for watchdogwi,j , and the file identifierfid of F . Upon receiving challengechal
and file identifierfid, the cloud server generates a proof of retrievabilityP for F .

According toStealthGuard, the verification of POR consists of first retrieving
the firstq bits of a hashhi,posj , then verifying whetherhi,posj |q corresponds to the
first q-bits of the hashH(wi,j , r). Since the cloud serverS is honest, then this
entails that it storeswi,j , and therewith, can always computehi,posj = H(wi,j , r).

Consequently,ProofVerif(K, fid, chal,P) = 1.

6.2 Soundness

As in Section 5, we assume that each splitSi in a file F is composed ofm
blocks, and that theEncode algorithm employs a[D,m, d]-ECC that corrects up
to d

2 errors per split (i.e.,D = m + d − 1). We also assume that at the end of its
execution, theEncode algorithm outputs the encoded filêF which consists of a set
of splits Ŝi each comprisingC = (D + v) blocks (we recall thatv is the number
of watchdogs per split).

In the following, we state the main security theorem forStealthGuard.

Theorem 2. Let τ be the security parameter ofStealthGuard and letρ denote
d
2D .

StealthGuard is(δ, γ)-sound in the random oracle model, for anyδ > δneg and
γ ≥ γneg, where

δneg =
1

2τ

γneg = ⌈ ln(2)τ
ρneg

⌉

(1− ρ

ρneg
)2ρneg =

3ln(2)τ

D
andρneg ≤ ρ

Actually if γ ≥ γneg, then there exists an extractorE that recovers a fileF with
a probability1 − n

2τ , such thatn is the number of splits inF , by interacting with
an adversaryA against StealthGuard who succeeds in the soundness game with a
probability δ > 1

2τ .

Due to space limitations, a proof sketch of this theorem is provided in Ap-
pendix A. We note that the results derived above can be interpreted as follows: if
verifierV issuesγ ≥ γneg POR queries for some fileF to which the cloud server
S responds correctly, thenV can declareF as retrievable with probability1− n

2τ .

13

Also, we recall that a POR execution for a fileF in StealthGuard consists of
fetching (obliviously) a witness of a watchdog from the encodingF̂ of that file.
Consequently, to ensure a security level of1

2τ , the clientC must insert at leastγneg
watchdogs inF . That is, if fileF comprisesn splits, thennv ≥ γneg (v is the
number of watchdogs per split).

7 Discussion

StealthGuard requires the client to generatev >
γneg
n

watchdogs per split
wheren is the number of splits andγneg is the threshold of the number of queries
that verifierV should issue to check the retrievability of the outsourced data. As
shown in Theorem 2, this threshold does not depend on the size of data (inbytes).
Instead,γneg is defined solely by the security parameterτ , the numberD = m +
d − 1 of data blocks and redundancy block per split and the rateρ = d

2D of errors
that the underlying ECC can correct. Namely,γneg is inversely proportional to
bothD andρ. This means that by increasing the number of blocksD per split
or thecorrectableerror rateρ, the number of queries that the client should issue
decreases. However, having a largeρ would increase the size of data that client
C has to outsource to cloud serverS, which can be inconvenient for the client.
Besides, increasingD leads to an increase of the number of blocksC = s·t per split
Ŝi which has a direct impact on the communication cost and the computation load
per queryat both the verifierV and the cloud serverS. It follows that when defining
the parameters ofStealthGuard, one should consider the tradeoff between the
affordable storage cost and the computation and communication complexity per
POR query.

To enhance the computation performances ofStealthGuard, we suggest to
use theTrapdoor Group Private Information Retrieval which was proposed
in [20] to implement the PIR instance inWDSearch. This PIR enables the ver-
ifier in StealthGuard to fetch a row from an(s, t) matrix (representing a split)
without revealing to the cloud which row the verifier is querying. One important
feature of this PIR is that it only involves random number generations, additions
and multiplications inZp (wherep is a prime of size|p| = 200 bits) which are
not computationally intensive and could be performed by a lightweight verifier. In
addition, we emphasize that PIR inStealthGuard is not employed to retrieve a
watchdog, but rather to retrieve aq-bit hash of the watchdog (typicallyq = 80),
and that it is not performed on the entire file, but it is instead executed overa split.
Finally, we indicate that when employingTrapdoor Group Private Information
Retrieval, the communication cost ofStealthGuard is minimal whens ≃ √Cq

andt ≃
√

C
q

. This results in a computation and a communication complexity (per

query) at the verifier ofO(
√
Cq) and a computation and communication complex-

ity at the server ofO(C) andO(
√
Cq) respectively.

Example.A file F of 4GB is divided inton = 32768 splitsF = {S1, S2, ..., Sn},
and each splitSi is composed of4096 blocks of size256 bits. StealthGuard in-

14

serts8 watchdogs per split and applies an ECC that corrects up to228 corrupted
blocks (i.e.,ρ = 5%). We obtain thuŝF = {Ŝ1, Ŝ2, ..., Ŝn}, whereŜi is composed
of 4560 blocks of size256 bits. This results in a redundancy of≃ 11.3%, where
11.1% redundancy is due to the use of ECC, and0.20% redundancy is caused by
the use of watchdogs.

If (s, t) = (570, 8), q = 80 andStealthGuard implements the Trapdoor Group
PIR [20] where|p| = 200 bits, then the verifier’s query will be of size≃ 13.9 KB,
whereas the cloud server’s response will be of size≃ 15.6KB. In addition, if the
cloud server still stores the filêF , then the verifier will declare the file as retrievable
with probability1− n

260
≃ 1− 1

245
by executing the POR protocol1719 times. That

is, by downloading26.2MB which corresponds to0.64% of the size of the original
file F .

8 Related Work

The approach that is the closest toStealthGuard is the sentinel-based POR
introduced by Juels and Kaliski [1]. As inStealthGuard, before outsourcing the
file to the server, the client applies an ECC and inserts in the encrypted file spe-
cial blocks,sentinels, that are indistinguishable from encrypted blocks. However,
during the challenge, the verifier asks the prover for randomly-chosensentinels,
disclosing their positions and values to the prover. Thus, this scheme suggests a
limited number of POR queries. Therefore, the client may need to download the
file in order to insert new sentinels and upload it again to the cloud. [1] mentions,
without giving any further details, a PIR-based POR scheme that would allow an
unlimited number of challenges by keeping the positions of sentinels private, at the
price of high computational cost equivalent in practice to downloading the entire
file. In comparison,StealthGuard uses a PIR within the WS technique to retrieve
a witness of the watchdog (a certain number of bits instead of the entire watchdog),
and does not limit the number of POR verifications.
Ateniese et al. [21] define the concept of Provable Data Possession (PDP), which
is weaker than POR in that it assures that the server possesses parts ofthe file but
does not guarantee its full recovery. PDP uses RSA-based homomorphic tags as
check-values for each file block. To verify possession, the verifier asks the server
for tags for randomly chosen blocks. The server generates a proof based on the
selected blocks and their respective tags. This scheme provides public verifiability
meaning that any third party can verify the retrievability of a client’s file. However,
this proposal suffers from an initial expensive tag generation leading tohigh com-
putational cost at the client. The same authors later propose in [3] arobust auditing
protocol by incorporating erasure codes in their initial PDP scheme [21] torecover
from small data corruption. To prevent an adversary from distinguishing redun-
dancy blocks from original blocks, the latter are further permuted and encrypted.
Another permutation and encryption are performed on the redundancy blocks only
which are then concatenated to the file. This solution suffers from the factthat

15

a malicious cloud can selectively delete redundant blocks and still generatevalid
proofs. Even though these proofs are valid, they do not guarantee that the file is
retrievable.
Shacham and Waters in [2] introduce the concept of Compact POR. The client ap-
plies an erasure code and for each file block, it generatesauthenticators(similar
to tags in [21]), with BLS signatures [22], for public verifiability, or with Mes-
sage Authentication Codes (MAC) [19], for private verifiability. The generation
of these values are computationally expensive. Moreover, the number ofauthen-
ticators stored at the server is linear to the number of data blocks, leading to an
important storage overhead. Xu and Chang [4] propose to enhance thescheme in
[2] using the technique of polynomial commitment [23] which leads to light com-
munication costs. These two schemes employ erasure codes in conjunction with
authentication tags, which induces high costs at the time of retrieving the file. In-
deed, erasure coding does not inform the verifier about the position ofthe corrupted
blocks. Thus, the verifier has to check each tag individually to determine whether
it is correct or not. When a tag is detected as invalid, meaning that the correspond-
ing block is corrupted, the verifier applies the decoding to recover the original data
block.
A recent work of Stefanov et al. [5], Iris, proposes a POR protocolover authenti-
cated file systems subject to frequent changes. Each block of a file is authenticated
using a MAC to provide file-block integrity which makes the tag generation very
expensive.
Compared to all these schemes,StealthGuardperforms computationally lightweight
operations at the client, since the generation of watchdogs is less expensive than
the generation of tags like in [2, 21]. In addition, the storage overhead induced by
the storage of watchdogs is less important than in the previous work. At the cost of
more bits transmitted during the POR challenge-response,StealthGuard ensures
a better probability of detecting adversarial corruption.

Table 2 depicts the performance results ofStealthGuard and compares it with
previous work. We analyze our proposal compared to other schemes [1–4] with
respect to a file of size 4 GB. The comparison is made on the basis of the POR as-
surance of1− 1

245
computed in Section 7. We assume that all the compared schemes

have three initial operations in theSetupphase: the application of an ECC, the en-
cryption and the file-level permutation of data and redundancy blocks. Since these
three initial operations have comparable costs for all the schemes, we omit them
in the table. Computation costs are represented withexp for exponentiation,mul
for multiplication, PRF for pseudo-random function orPRP for pseudo-random
permutation. ForStealthGuard, we compute the different costs according to the
values provided in Section 7. For the other schemes, all initial parameters derive
from the respective papers. In [2] since the information on the number ofblocks in
a split is missing, we choose the same one as in [4]
Setup. In our scheme, the client computes32768×8 ≈ 2.6×105 PRF and2.6×105
PRP for the generation and the insertion of watchdogs. One of the advantages of
StealthGuard is having a more lightweight setup phase when the client prepro-

16

Parameter Setup cost Storage
overhead

Server cost Verifier cost Comm.
cost

[3] block size:
2 KB
tag size:
128 B

4.4× 106 exp
2.2× 106 mul

tags:
267 MB

764 PRP
764 PRF
765 exp
1528 mul

challenge:
1 exp
verif: 766 exp
764 PRP

challenge:
168 B
response:
148 B

[1] block size:
128 bits
number of sen-
tinels:
2× 106

2× 106 PRF sentinels:
30.6 MB

⊥ challenge:
1719 PRP
verif: ⊥

challenge:
6 KB
response:
26.9 MB

[2] block size:
80 bits
number of
blocks in one
split: 160
tag size:
80 bits

1 enc
5.4×106 PRF
1.1× 109 mul

tags:
51 MB

7245 mul challenge:
1 enc, 1 MAC
verif: 45 PRF,
160 + 205 mul

challenge:
1.9 KB
response:
1.6 KB

[4] block size:
160 bits
number of
blocks in one
split: 160

2.2× 108 mul
1.4×106 PRF

tags:
26 MB

160 exp
2.6 ∗ 105 mul

challenge:⊥
verif: 2 exp,
1639 PRF,
1639 mul

challenge:
36 KB
response:
60 B

SG block size:
256 bits
number of
blocks in one
split: 4096

2.6×105 PRF
2.6×105 PRP

watchdogs:
8 MB

6.2×108 mul challenge:
2.0× 106 mul
verif:
1.4× 105 mul

challenge:
23.3 MB
response:
26.2 MB

Table 2:Comparison of relevant related work withStealthGuard (SG).

cesses large files. Indeed, the setup phase in most of previous work [2–5] requires
the client to compute an authentication tag for each block of data in the file which
is computationally demanding in the case of large files.
Storage Overhead. The insertion of watchdogs inStealthGuard induces a smaller
storage overhead compared to other schemes that employ authentication tags.
Proof Generation and Verification. ForStealthGuard, we consider the PIR op-
erations as multiplications of elements inZp where |p| = 200 bits. To get the
server and verifier computational costs of existing work, based on the parameters
and the bounds given in their respective papers, we compute the number of re-
quested blocks in one challenge to obtain a probability of1− 1

245
to declare the file

as irretrievable: 764 blocks in [3], 1719 sentinels in [1], 45 blocks in [2]and 1639
blocks in [4]. StealthGuard induces high cost compared to existing work but is
still acceptable.
Communication. Even if its communication cost is relatively low compared to
StealthGuard, JK POR [1] suffers from the limited number of challenges, that
causes the client to download the whole file to regenerate new sentinels. Although
we realize thatStealthGuard’s communication cost is much higher than [2–4],
such schemes would induce additional cost at the file retrieval step, as mentioned
earlier.
To summarize,StealthGuard trades off between light computation at the client,
small storage overhead at the cloud and significant but still acceptable commu-
nication cost. Nevertheless, we believe thatStealthGuard’s advantages pay off

17

when processing large files. The difference between the costs induced by existing
schemes and those induced byStealthGuard may become negligible if the size of
the outsourced file increases.

9 Conclusion

StealthGuard is a new POR scheme which combines the use of randomly
generated watchdogs with a lightweight privacy-preserving word search mecha-
nism to achieve high retrievability assurance. As a result, a verifier can generate an
unbounded number of queries without decreasing the security of the protocol and
thus without the need for updating the watchdogs.StealthGuard has been proved
to be complete and sound.

As future work, we plan to implementStealthGuard in order to not only eval-
uate its efficiency in a real-world cloud computing environment but also to define
optimal values for system parameters.

References

[1] A. Juels and B. S. K. Jr., “Pors: proofs of retrievability for large files.”
in ACM Conference on Computer and Communications Security, P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp. 584–597.
[Online]. Available: http://dblp.uni-trier.de/db/conf/ccs/ccs2007.html

[2] Shacham, Hovav and Waters, Brent, “Compact proofs of retrievability,”
in Proceedings of the 14th International Conference on the Theory
and Application of Cryptology and Information Security: Advances
in Cryptology, ser. ASIACRYPT ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 90–107. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-89255-77

[3] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. N. J. Peterson, and D. Song, “Remote data checking using provable data
possession,”ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, p. 12, 2011.

[4] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,” in ASI-
ACCS, 2012, pp. 79–80.

[5] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: a scalablecloud file
system with efficient integrity checks,” inACSAC, 2012, pp. 229–238.

[6] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,”
Journal of the Society of Industrial and Applied Mathematics, vol. 8, no. 2, p.
300–304, 06/1960 1960.

18

[7] M. Dworkin, Recommendation for Block Cipher Modes of Operation: Meth-
ods and Techniques. National Institute of Standards and Technology. Special
Publication 800-38A, 2001.

[8] E.-O. Blass, R. di Pietro, R. Molva, and M.̈Onen, “PRISM - Privacy-
Preserving Search in MapReduce,” inProceedings of the 12th Privacy En-
hancing Technologies Symposium (PETS 2012). LNCS, July 2012.

[9] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and ef-
ficient provable data possession,” inProceedings of the 4th international
conference on Security and privacy in communication networks, ser. Se-
cureComm ’08. New York, NY, USA: ACM, 2008, pp. 9:1–9:10.

[10] C. Erway, A. K̈upç̈u, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” inProceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 213–222. [Online]. Available: http:
//doi.acm.org/10.1145/1653662.1653688

[11] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability
and data dynamics for storage security in cloud computing,” inProceedings
of the 14th European conference on Research in computer security, ser. ES-
ORICS’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 355–370.

[12] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,” inCO-
DASPY, 2011, pp. 237–248.

[13] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public auditability
and data dynamics for storage security in cloud computing,”IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859, 2011.

[14] Z. Mo, Y. Zhou, and S. Chen, “A dynamic proof of retrievability (por) scheme
with o(logn) complexity,” inICC, 2012, pp. 912–916.

[15] B. Chen and R. Curtmola, “Robust dynamic provable data possession,” in
ICDCS Workshops, 2012, pp. 515–525.

[16] D. Cash, A. K̈upç̈u, and D. Wichs, “Dynamic proofs of retrievability via
oblivious ram,” inEUROCRYPT, 2013, pp. 279–295.

[17] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of re-
trievability,” in ACM Conference on Computer and Communications Security,
2013, pp. 325–336.

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: a Scalable
Wide-Area Web Cache Sharing Protocol,”IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281–293, Jun. 2000.

19

[19] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Mes-
sage Authentication,” inProceedings of the 16th Annual International Cryp-
tology conference on Advances in Cryptology, CRYPTO’96. LNCS, August
1996, pp. 1–15.

[20] J. Trostle and A. Parrish, “Efficient Computationally Private Information Re-
trieval from Anonymity or Trapdoor Groups,” inProceedings of Conference
on Information Security, Boca Raton, USA, 2010, pp. 114–128.

[21] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.N. J.
Peterson, and D. Song, “Provable data possession at untrusted stores.” in
ACM Conference on Computer and Communications Security, P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp. 598–609.
[Online]. Available: http://dblp.uni-trier.de/db/conf/ccs/ccs2007.html

[22] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from theWeil Pair-
ing,” J. Cryptology, vol. 17, no. 4, pp. 297–319, Sep. 2004.

[23] A. Kate, G. Zaverucha, and I. Goldberg, “Constant-size commitmentsto poly-
nomials and their applications,”Advances in Cryptology-ASIACRYPT 2010,
pp. 177–194, 2010.

A Proof of Theorem 2

Proof. Assume that there is an adversaryA that corrupts on averageρadv fraction
of the outsourced files, and succeeds in the soundness game (cf. Algorithm 1 and
Algorithm 2) with some probabilityδ. In the following proof sketch, we show
that if δ > δneg = 1

2τ , then there exists an extractor algorithmE that retrieves
the challenge fileF ∗ by interacting with adversaryA and by controlling arandom
oracleH.

The proof sketch is organized into four main parts:
1.) Computation of the probability of successδ: Here we quantify the probabil-
ity δ that adversaryA succeeds in the soundness game as a function ofρadv.

Without loss of generality, we assume that the fileF ∗ is composed ofn splits
{S∗

1 , S
∗
2 , ..., S

∗
n} and that its encodinĝF ∗ consists ofn splits{Ŝ∗

1 , Ŝ
∗
2 , ..., Ŝ

∗
n}.

For each split̂S∗
i , we denoteXi,k the random variable that corresponds to the

event that adversaryA corrupts thekth block of splitŜ∗
i , such that:Xi,k = 1 if A

corrupts thekth block of the split, andXi,k = 0 otherwise.
For the sake of simplicity, we assume that for all1 ≤ i ≤ n and1 ≤ k ≤

C, the random variableXi,k follows a Bernoulli process of parameterρadv, i.e.,
Pr(Xi,k = 1) = ρadv andPr(Xi,k = 0) = 1 − ρadv. This implies thatXi,ks are
independent identical binary random variables. That is, the probability that a block
is corrupted byA is the same for all blocksof F̂ ∗. We stress that this assumption
is valid for StealthGuard thanks to the use of secure random permutations and

20

the semantically secure encryption in the second step and the third step of the
Encode algorithm (see Section 5). Therefore, adversaryA succeeds in providing
a valid proof of retrievability for some challengechali in the soundness game (cf.
Algorithm 2), if i.) it does not corrupt the watchdog associated with that challenge;
or if ii.) it corrupts the watchdog, but still is able to provide theq bits that are
expected by the oracleOVerify.

Accordingly, the probability thatA succeeds in providing a valid proof of re-
trievability for challengechali is defined as:PA

(Success,i) = (1− ρadv) +
ρadv
2q .

We remind the reader that adversaryA succeeds in the challenge phase, if it
succeeds in supplying the oracleOVerify with γ valid proofs of retrievability. There-
fore, the probability that adversaryA succeeds in the soundness game depicted in
Algorithm 1 is:

δ =

γ
∏

i=1

PA
(Success,i) = (1− ρadv)

γ +
γρadv(1− ρadv)

γ−1

2q
+ o(

1

2q
)

︸ ︷︷ ︸

ζ

We note that ifq is large enough, for instanceq = 80, thenζ is negligible. There-
fore to simplify, we assumeq ≥ 80 and thatδ ≃ (1− ρadv)

γ .
2.) Retrievability: In this part of the proof, we derive a thresholdρneg for the
corruption rateρadv that guarantees that ifρadv ≤ ρneg then the probability that
extractorE fails in recovering the fileF ∗ is negligible.

Let S̄∗
i denote the(D,m, d)-ECC encoding of the splitS∗

i .
We recall that extractorE fails in retrieving fileF ∗ if there is a splitS∗

i such
thatA corrupts more thanρD = d

2 blocks of its ECC encodinḡS∗
i . We also recall

that the probability that a blockbi,k in the file F̂ ∗ is corrupted by adversaryA is
ρadv, i.e.,Pr(Xi,k = 1) = ρadv.

Let P E
(Fail,i) be the probability thatE fails in recovering splitS∗

i . This event

happens if the ECC encodinḡS∗
i of S∗

i receives more thanρD = d
2 errors.

Using Chernoff bounds, we found that the probabilityP E
(Fail,i) is bounded as

follows: P E
(Fail,i) ≤ exp(−ρadvD

3 (1− ρ
ρadv

)2).

Note that the probabilityP E
(Fail,i) ≤ 1

2τ (i.e. negligible) for anyρadv that satis-

fies the inequality:(1− ρ
ρadv

)2ρadv ≥ 3ln(2)τ
D

. Namely, for anyρadv ≤ ρneg, where
ρneg is defined as:

(1− ρ

ρneg
)2ρneg =

3ln(2)τ

D
andρneg < ρ

3.) Bounding the number of queriesγ: In order to insure that a file is retrievable
whenever adversaryA succeeds in the soundness game, we have to setγ to a
threshold valueγneg, such that if adversaryA corrupts more thanρneg fraction
of the encoded filêF ∗, it will be detected by extractorE with an overwhelming
probability. In other words, we want to assure that ifγ ≥ γneg and the probability
of corruptionρadv is larger thanρneg, then the probabilityδ that adversaryA wins

21

the soundness game will be negligible, i.e.,δ = (1 − ρadv)
γ ≤ (1 − ρadv)

γneg ≤
δneg = 1

2τ .
To fulfill the above condition wheneverρadv ≥ ρneg, it suffices to defineγneg

as:

γneg = ⌈ ln(2)τ
ρneg

⌉ ≥ −ln(2)τ
ln(1− ρneg)

≥ −ln(2)τ
ln(1− ρadv)

4.) File extraction: In order to be able to recover fileF ∗, extractorE simulates the
output of the hash functionH (H is employed inStealthGuard to generate and
verify the proofs of retrievability) by controlling a random oracleH as depicted
below.
Simulation of the random oracleH. To respond to the queries of the random
oracleH, the extractorE keeps a tableTH of tuples(βj , H(βj)) as follows: on a
queryH(βi), extractorE checks if there is a tuple(βi, H(βi)) that corresponds to
βi. If so, thenE returnsH(βi). Otherwise, extractorE picks a random numberhi,
returnsH(βi) = hi and add the entry(βi, H(βi)) to its tableTH .

Assume here that adversaryA succeeds in the soundness game with probability
δ > δneg. In what follows we show that ifγ ≥ γneg, thenE will be able to recover
the fileF ∗ with an overwhelming probability. We denoteΠE

Success the probability
thatE extracts fileF ∗ by interacting withA.

Notice that ifγ ≥ γneg, then succeeding in the soundness game implies thatA
corrupts less thanρneg fraction of the file encodinĝF ∗. This means that the prob-
ability that an ECC encodinḡS∗

i receives more thanρD = d
2 errors is negligible,

and so is the probabilityP E
(Fail,i) thatE fails in retrieving splitS∗

i . Now we show
how extractorE recovers fileF ∗.

• E simulates the oracleOChallenge to issue a challengechal = (WitnessQuery, r, i)

for the challenge filêF ∗, wherer is the random number that will be used by
the adversaryA to generate its POR response andi is the index of the split
Ŝ∗
i thatE is interested in extracting. We note that to extractŜ∗

i , E employs
WitnessQuery to retrieve the hash values of the blocks composingŜ∗

i . With-
out loss of generality, we assume thatE wants to retrieve thekth block of the
split Ŝ∗

i (i.e., b̂i,k). Accordingly, if the proof sent byA for challengechal is
valid, thenE will be able to recover theq first bitshi,k of the hashH(b̂i,k, r)

(i.e.,hi,k = H(b̂i,k, r)|q).

• Provided withhi,k, the extractorE identifies the blockβ ∈ TH for which
H(β, r)|q = hi,k if there is any. If it is the case,E outputŝbi,k = β. Other-
wise,E declares the block̂bi,k as missing.

ExtractorE repeats the above procedure until retrieving then splits Ŝ∗
i of file F̂ ∗.

Once then splitsŜ∗
i are retrieved, extractorE uses the secret keyK to decrypt the

splits, then uses the ECC to correct the errors in the splits if there are any.
Note thatE fails in retrieving the fileF ∗ if it does not succeed in retrieving

at least one of the splitsS∗
i . The probability of this event isΠE

Fail ≤
n∑

i=1
P E
(Fail,i).

22

Hence,E recovers fileF ∗ with the following probability:ΠE
Success = 1 − ΠE

Fail ≥
1 −

n∑

i=1
P E
(Fail,i). Since adversaryA corrupts less thanρneg fraction of file F̂ ∗,

the probability that a splitS∗
i in the fileF ∗ is irretrievable is negligible, namely,

P E
(Fail,i) ≤ 1

2τ , and therefore:ΠE
Success ≥ 1− ε = 1− n

2τ .

23

